bitmap.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. /*
  2. * lib/bitmap.c
  3. * Helper functions for bitmap.h.
  4. *
  5. * This source code is licensed under the GNU General Public License,
  6. * Version 2. See the file COPYING for more details.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/ctype.h>
  10. #include <linux/errno.h>
  11. #include <linux/bitmap.h>
  12. #include <linux/bitops.h>
  13. #include <asm/uaccess.h>
  14. /*
  15. * bitmaps provide an array of bits, implemented using an an
  16. * array of unsigned longs. The number of valid bits in a
  17. * given bitmap does _not_ need to be an exact multiple of
  18. * BITS_PER_LONG.
  19. *
  20. * The possible unused bits in the last, partially used word
  21. * of a bitmap are 'don't care'. The implementation makes
  22. * no particular effort to keep them zero. It ensures that
  23. * their value will not affect the results of any operation.
  24. * The bitmap operations that return Boolean (bitmap_empty,
  25. * for example) or scalar (bitmap_weight, for example) results
  26. * carefully filter out these unused bits from impacting their
  27. * results.
  28. *
  29. * These operations actually hold to a slightly stronger rule:
  30. * if you don't input any bitmaps to these ops that have some
  31. * unused bits set, then they won't output any set unused bits
  32. * in output bitmaps.
  33. *
  34. * The byte ordering of bitmaps is more natural on little
  35. * endian architectures. See the big-endian headers
  36. * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  37. * for the best explanations of this ordering.
  38. */
  39. int __bitmap_empty(const unsigned long *bitmap, int bits)
  40. {
  41. int k, lim = bits/BITS_PER_LONG;
  42. for (k = 0; k < lim; ++k)
  43. if (bitmap[k])
  44. return 0;
  45. if (bits % BITS_PER_LONG)
  46. if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  47. return 0;
  48. return 1;
  49. }
  50. EXPORT_SYMBOL(__bitmap_empty);
  51. int __bitmap_full(const unsigned long *bitmap, int bits)
  52. {
  53. int k, lim = bits/BITS_PER_LONG;
  54. for (k = 0; k < lim; ++k)
  55. if (~bitmap[k])
  56. return 0;
  57. if (bits % BITS_PER_LONG)
  58. if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  59. return 0;
  60. return 1;
  61. }
  62. EXPORT_SYMBOL(__bitmap_full);
  63. int __bitmap_equal(const unsigned long *bitmap1,
  64. const unsigned long *bitmap2, int bits)
  65. {
  66. int k, lim = bits/BITS_PER_LONG;
  67. for (k = 0; k < lim; ++k)
  68. if (bitmap1[k] != bitmap2[k])
  69. return 0;
  70. if (bits % BITS_PER_LONG)
  71. if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  72. return 0;
  73. return 1;
  74. }
  75. EXPORT_SYMBOL(__bitmap_equal);
  76. void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  77. {
  78. int k, lim = bits/BITS_PER_LONG;
  79. for (k = 0; k < lim; ++k)
  80. dst[k] = ~src[k];
  81. if (bits % BITS_PER_LONG)
  82. dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  83. }
  84. EXPORT_SYMBOL(__bitmap_complement);
  85. /*
  86. * __bitmap_shift_right - logical right shift of the bits in a bitmap
  87. * @dst - destination bitmap
  88. * @src - source bitmap
  89. * @nbits - shift by this many bits
  90. * @bits - bitmap size, in bits
  91. *
  92. * Shifting right (dividing) means moving bits in the MS -> LS bit
  93. * direction. Zeros are fed into the vacated MS positions and the
  94. * LS bits shifted off the bottom are lost.
  95. */
  96. void __bitmap_shift_right(unsigned long *dst,
  97. const unsigned long *src, int shift, int bits)
  98. {
  99. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  100. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  101. unsigned long mask = (1UL << left) - 1;
  102. for (k = 0; off + k < lim; ++k) {
  103. unsigned long upper, lower;
  104. /*
  105. * If shift is not word aligned, take lower rem bits of
  106. * word above and make them the top rem bits of result.
  107. */
  108. if (!rem || off + k + 1 >= lim)
  109. upper = 0;
  110. else {
  111. upper = src[off + k + 1];
  112. if (off + k + 1 == lim - 1 && left)
  113. upper &= mask;
  114. }
  115. lower = src[off + k];
  116. if (left && off + k == lim - 1)
  117. lower &= mask;
  118. dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
  119. if (left && k == lim - 1)
  120. dst[k] &= mask;
  121. }
  122. if (off)
  123. memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  124. }
  125. EXPORT_SYMBOL(__bitmap_shift_right);
  126. /*
  127. * __bitmap_shift_left - logical left shift of the bits in a bitmap
  128. * @dst - destination bitmap
  129. * @src - source bitmap
  130. * @nbits - shift by this many bits
  131. * @bits - bitmap size, in bits
  132. *
  133. * Shifting left (multiplying) means moving bits in the LS -> MS
  134. * direction. Zeros are fed into the vacated LS bit positions
  135. * and those MS bits shifted off the top are lost.
  136. */
  137. void __bitmap_shift_left(unsigned long *dst,
  138. const unsigned long *src, int shift, int bits)
  139. {
  140. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  141. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  142. for (k = lim - off - 1; k >= 0; --k) {
  143. unsigned long upper, lower;
  144. /*
  145. * If shift is not word aligned, take upper rem bits of
  146. * word below and make them the bottom rem bits of result.
  147. */
  148. if (rem && k > 0)
  149. lower = src[k - 1];
  150. else
  151. lower = 0;
  152. upper = src[k];
  153. if (left && k == lim - 1)
  154. upper &= (1UL << left) - 1;
  155. dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
  156. if (left && k + off == lim - 1)
  157. dst[k + off] &= (1UL << left) - 1;
  158. }
  159. if (off)
  160. memset(dst, 0, off*sizeof(unsigned long));
  161. }
  162. EXPORT_SYMBOL(__bitmap_shift_left);
  163. void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  164. const unsigned long *bitmap2, int bits)
  165. {
  166. int k;
  167. int nr = BITS_TO_LONGS(bits);
  168. for (k = 0; k < nr; k++)
  169. dst[k] = bitmap1[k] & bitmap2[k];
  170. }
  171. EXPORT_SYMBOL(__bitmap_and);
  172. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  173. const unsigned long *bitmap2, int bits)
  174. {
  175. int k;
  176. int nr = BITS_TO_LONGS(bits);
  177. for (k = 0; k < nr; k++)
  178. dst[k] = bitmap1[k] | bitmap2[k];
  179. }
  180. EXPORT_SYMBOL(__bitmap_or);
  181. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  182. const unsigned long *bitmap2, int bits)
  183. {
  184. int k;
  185. int nr = BITS_TO_LONGS(bits);
  186. for (k = 0; k < nr; k++)
  187. dst[k] = bitmap1[k] ^ bitmap2[k];
  188. }
  189. EXPORT_SYMBOL(__bitmap_xor);
  190. void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  191. const unsigned long *bitmap2, int bits)
  192. {
  193. int k;
  194. int nr = BITS_TO_LONGS(bits);
  195. for (k = 0; k < nr; k++)
  196. dst[k] = bitmap1[k] & ~bitmap2[k];
  197. }
  198. EXPORT_SYMBOL(__bitmap_andnot);
  199. int __bitmap_intersects(const unsigned long *bitmap1,
  200. const unsigned long *bitmap2, int bits)
  201. {
  202. int k, lim = bits/BITS_PER_LONG;
  203. for (k = 0; k < lim; ++k)
  204. if (bitmap1[k] & bitmap2[k])
  205. return 1;
  206. if (bits % BITS_PER_LONG)
  207. if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  208. return 1;
  209. return 0;
  210. }
  211. EXPORT_SYMBOL(__bitmap_intersects);
  212. int __bitmap_subset(const unsigned long *bitmap1,
  213. const unsigned long *bitmap2, int bits)
  214. {
  215. int k, lim = bits/BITS_PER_LONG;
  216. for (k = 0; k < lim; ++k)
  217. if (bitmap1[k] & ~bitmap2[k])
  218. return 0;
  219. if (bits % BITS_PER_LONG)
  220. if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  221. return 0;
  222. return 1;
  223. }
  224. EXPORT_SYMBOL(__bitmap_subset);
  225. #if BITS_PER_LONG == 32
  226. int __bitmap_weight(const unsigned long *bitmap, int bits)
  227. {
  228. int k, w = 0, lim = bits/BITS_PER_LONG;
  229. for (k = 0; k < lim; k++)
  230. w += hweight32(bitmap[k]);
  231. if (bits % BITS_PER_LONG)
  232. w += hweight32(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  233. return w;
  234. }
  235. #else
  236. int __bitmap_weight(const unsigned long *bitmap, int bits)
  237. {
  238. int k, w = 0, lim = bits/BITS_PER_LONG;
  239. for (k = 0; k < lim; k++)
  240. w += hweight64(bitmap[k]);
  241. if (bits % BITS_PER_LONG)
  242. w += hweight64(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  243. return w;
  244. }
  245. #endif
  246. EXPORT_SYMBOL(__bitmap_weight);
  247. /*
  248. * Bitmap printing & parsing functions: first version by Bill Irwin,
  249. * second version by Paul Jackson, third by Joe Korty.
  250. */
  251. #define CHUNKSZ 32
  252. #define nbits_to_hold_value(val) fls(val)
  253. #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
  254. #define BASEDEC 10 /* fancier cpuset lists input in decimal */
  255. /**
  256. * bitmap_scnprintf - convert bitmap to an ASCII hex string.
  257. * @buf: byte buffer into which string is placed
  258. * @buflen: reserved size of @buf, in bytes
  259. * @maskp: pointer to bitmap to convert
  260. * @nmaskbits: size of bitmap, in bits
  261. *
  262. * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
  263. * comma-separated sets of eight digits per set.
  264. */
  265. int bitmap_scnprintf(char *buf, unsigned int buflen,
  266. const unsigned long *maskp, int nmaskbits)
  267. {
  268. int i, word, bit, len = 0;
  269. unsigned long val;
  270. const char *sep = "";
  271. int chunksz;
  272. u32 chunkmask;
  273. chunksz = nmaskbits & (CHUNKSZ - 1);
  274. if (chunksz == 0)
  275. chunksz = CHUNKSZ;
  276. i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
  277. for (; i >= 0; i -= CHUNKSZ) {
  278. chunkmask = ((1ULL << chunksz) - 1);
  279. word = i / BITS_PER_LONG;
  280. bit = i % BITS_PER_LONG;
  281. val = (maskp[word] >> bit) & chunkmask;
  282. len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
  283. (chunksz+3)/4, val);
  284. chunksz = CHUNKSZ;
  285. sep = ",";
  286. }
  287. return len;
  288. }
  289. EXPORT_SYMBOL(bitmap_scnprintf);
  290. /**
  291. * bitmap_parse - convert an ASCII hex string into a bitmap.
  292. * @buf: pointer to buffer in user space containing string.
  293. * @buflen: buffer size in bytes. If string is smaller than this
  294. * then it must be terminated with a \0.
  295. * @maskp: pointer to bitmap array that will contain result.
  296. * @nmaskbits: size of bitmap, in bits.
  297. *
  298. * Commas group hex digits into chunks. Each chunk defines exactly 32
  299. * bits of the resultant bitmask. No chunk may specify a value larger
  300. * than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value
  301. * then leading 0-bits are prepended. -EINVAL is returned for illegal
  302. * characters and for grouping errors such as "1,,5", ",44", "," and "".
  303. * Leading and trailing whitespace accepted, but not embedded whitespace.
  304. */
  305. int bitmap_parse(const char __user *ubuf, unsigned int ubuflen,
  306. unsigned long *maskp, int nmaskbits)
  307. {
  308. int c, old_c, totaldigits, ndigits, nchunks, nbits;
  309. u32 chunk;
  310. bitmap_zero(maskp, nmaskbits);
  311. nchunks = nbits = totaldigits = c = 0;
  312. do {
  313. chunk = ndigits = 0;
  314. /* Get the next chunk of the bitmap */
  315. while (ubuflen) {
  316. old_c = c;
  317. if (get_user(c, ubuf++))
  318. return -EFAULT;
  319. ubuflen--;
  320. if (isspace(c))
  321. continue;
  322. /*
  323. * If the last character was a space and the current
  324. * character isn't '\0', we've got embedded whitespace.
  325. * This is a no-no, so throw an error.
  326. */
  327. if (totaldigits && c && isspace(old_c))
  328. return -EINVAL;
  329. /* A '\0' or a ',' signal the end of the chunk */
  330. if (c == '\0' || c == ',')
  331. break;
  332. if (!isxdigit(c))
  333. return -EINVAL;
  334. /*
  335. * Make sure there are at least 4 free bits in 'chunk'.
  336. * If not, this hexdigit will overflow 'chunk', so
  337. * throw an error.
  338. */
  339. if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
  340. return -EOVERFLOW;
  341. chunk = (chunk << 4) | unhex(c);
  342. ndigits++; totaldigits++;
  343. }
  344. if (ndigits == 0)
  345. return -EINVAL;
  346. if (nchunks == 0 && chunk == 0)
  347. continue;
  348. __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
  349. *maskp |= chunk;
  350. nchunks++;
  351. nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
  352. if (nbits > nmaskbits)
  353. return -EOVERFLOW;
  354. } while (ubuflen && c == ',');
  355. return 0;
  356. }
  357. EXPORT_SYMBOL(bitmap_parse);
  358. /*
  359. * bscnl_emit(buf, buflen, rbot, rtop, bp)
  360. *
  361. * Helper routine for bitmap_scnlistprintf(). Write decimal number
  362. * or range to buf, suppressing output past buf+buflen, with optional
  363. * comma-prefix. Return len of what would be written to buf, if it
  364. * all fit.
  365. */
  366. static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
  367. {
  368. if (len > 0)
  369. len += scnprintf(buf + len, buflen - len, ",");
  370. if (rbot == rtop)
  371. len += scnprintf(buf + len, buflen - len, "%d", rbot);
  372. else
  373. len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
  374. return len;
  375. }
  376. /**
  377. * bitmap_scnlistprintf - convert bitmap to list format ASCII string
  378. * @buf: byte buffer into which string is placed
  379. * @buflen: reserved size of @buf, in bytes
  380. * @maskp: pointer to bitmap to convert
  381. * @nmaskbits: size of bitmap, in bits
  382. *
  383. * Output format is a comma-separated list of decimal numbers and
  384. * ranges. Consecutively set bits are shown as two hyphen-separated
  385. * decimal numbers, the smallest and largest bit numbers set in
  386. * the range. Output format is compatible with the format
  387. * accepted as input by bitmap_parselist().
  388. *
  389. * The return value is the number of characters which would be
  390. * generated for the given input, excluding the trailing '\0', as
  391. * per ISO C99.
  392. */
  393. int bitmap_scnlistprintf(char *buf, unsigned int buflen,
  394. const unsigned long *maskp, int nmaskbits)
  395. {
  396. int len = 0;
  397. /* current bit is 'cur', most recently seen range is [rbot, rtop] */
  398. int cur, rbot, rtop;
  399. rbot = cur = find_first_bit(maskp, nmaskbits);
  400. while (cur < nmaskbits) {
  401. rtop = cur;
  402. cur = find_next_bit(maskp, nmaskbits, cur+1);
  403. if (cur >= nmaskbits || cur > rtop + 1) {
  404. len = bscnl_emit(buf, buflen, rbot, rtop, len);
  405. rbot = cur;
  406. }
  407. }
  408. return len;
  409. }
  410. EXPORT_SYMBOL(bitmap_scnlistprintf);
  411. /**
  412. * bitmap_parselist - convert list format ASCII string to bitmap
  413. * @buf: read nul-terminated user string from this buffer
  414. * @mask: write resulting mask here
  415. * @nmaskbits: number of bits in mask to be written
  416. *
  417. * Input format is a comma-separated list of decimal numbers and
  418. * ranges. Consecutively set bits are shown as two hyphen-separated
  419. * decimal numbers, the smallest and largest bit numbers set in
  420. * the range.
  421. *
  422. * Returns 0 on success, -errno on invalid input strings:
  423. * -EINVAL: second number in range smaller than first
  424. * -EINVAL: invalid character in string
  425. * -ERANGE: bit number specified too large for mask
  426. */
  427. int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
  428. {
  429. unsigned a, b;
  430. bitmap_zero(maskp, nmaskbits);
  431. do {
  432. if (!isdigit(*bp))
  433. return -EINVAL;
  434. b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
  435. if (*bp == '-') {
  436. bp++;
  437. if (!isdigit(*bp))
  438. return -EINVAL;
  439. b = simple_strtoul(bp, (char **)&bp, BASEDEC);
  440. }
  441. if (!(a <= b))
  442. return -EINVAL;
  443. if (b >= nmaskbits)
  444. return -ERANGE;
  445. while (a <= b) {
  446. set_bit(a, maskp);
  447. a++;
  448. }
  449. if (*bp == ',')
  450. bp++;
  451. } while (*bp != '\0' && *bp != '\n');
  452. return 0;
  453. }
  454. EXPORT_SYMBOL(bitmap_parselist);
  455. /*
  456. * bitmap_pos_to_ord(buf, pos, bits)
  457. * @buf: pointer to a bitmap
  458. * @pos: a bit position in @buf (0 <= @pos < @bits)
  459. * @bits: number of valid bit positions in @buf
  460. *
  461. * Map the bit at position @pos in @buf (of length @bits) to the
  462. * ordinal of which set bit it is. If it is not set or if @pos
  463. * is not a valid bit position, map to -1.
  464. *
  465. * If for example, just bits 4 through 7 are set in @buf, then @pos
  466. * values 4 through 7 will get mapped to 0 through 3, respectively,
  467. * and other @pos values will get mapped to 0. When @pos value 7
  468. * gets mapped to (returns) @ord value 3 in this example, that means
  469. * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  470. *
  471. * The bit positions 0 through @bits are valid positions in @buf.
  472. */
  473. static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
  474. {
  475. int i, ord;
  476. if (pos < 0 || pos >= bits || !test_bit(pos, buf))
  477. return -1;
  478. i = find_first_bit(buf, bits);
  479. ord = 0;
  480. while (i < pos) {
  481. i = find_next_bit(buf, bits, i + 1);
  482. ord++;
  483. }
  484. BUG_ON(i != pos);
  485. return ord;
  486. }
  487. /**
  488. * bitmap_ord_to_pos(buf, ord, bits)
  489. * @buf: pointer to bitmap
  490. * @ord: ordinal bit position (n-th set bit, n >= 0)
  491. * @bits: number of valid bit positions in @buf
  492. *
  493. * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  494. * Value of @ord should be in range 0 <= @ord < weight(buf), else
  495. * results are undefined.
  496. *
  497. * If for example, just bits 4 through 7 are set in @buf, then @ord
  498. * values 0 through 3 will get mapped to 4 through 7, respectively,
  499. * and all other @ord values return undefined values. When @ord value 3
  500. * gets mapped to (returns) @pos value 7 in this example, that means
  501. * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  502. *
  503. * The bit positions 0 through @bits are valid positions in @buf.
  504. */
  505. static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
  506. {
  507. int pos = 0;
  508. if (ord >= 0 && ord < bits) {
  509. int i;
  510. for (i = find_first_bit(buf, bits);
  511. i < bits && ord > 0;
  512. i = find_next_bit(buf, bits, i + 1))
  513. ord--;
  514. if (i < bits && ord == 0)
  515. pos = i;
  516. }
  517. return pos;
  518. }
  519. /**
  520. * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  521. * @dst: remapped result
  522. * @src: subset to be remapped
  523. * @old: defines domain of map
  524. * @new: defines range of map
  525. * @bits: number of bits in each of these bitmaps
  526. *
  527. * Let @old and @new define a mapping of bit positions, such that
  528. * whatever position is held by the n-th set bit in @old is mapped
  529. * to the n-th set bit in @new. In the more general case, allowing
  530. * for the possibility that the weight 'w' of @new is less than the
  531. * weight of @old, map the position of the n-th set bit in @old to
  532. * the position of the m-th set bit in @new, where m == n % w.
  533. *
  534. * If either of the @old and @new bitmaps are empty, or if @src and
  535. * @dst point to the same location, then this routine copies @src
  536. * to @dst.
  537. *
  538. * The positions of unset bits in @old are mapped to themselves
  539. * (the identify map).
  540. *
  541. * Apply the above specified mapping to @src, placing the result in
  542. * @dst, clearing any bits previously set in @dst.
  543. *
  544. * For example, lets say that @old has bits 4 through 7 set, and
  545. * @new has bits 12 through 15 set. This defines the mapping of bit
  546. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  547. * bit positions unchanged. So if say @src comes into this routine
  548. * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  549. * 13 and 15 set.
  550. */
  551. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  552. const unsigned long *old, const unsigned long *new,
  553. int bits)
  554. {
  555. int oldbit, w;
  556. if (dst == src) /* following doesn't handle inplace remaps */
  557. return;
  558. bitmap_zero(dst, bits);
  559. w = bitmap_weight(new, bits);
  560. for (oldbit = find_first_bit(src, bits);
  561. oldbit < bits;
  562. oldbit = find_next_bit(src, bits, oldbit + 1)) {
  563. int n = bitmap_pos_to_ord(old, oldbit, bits);
  564. if (n < 0 || w == 0)
  565. set_bit(oldbit, dst); /* identity map */
  566. else
  567. set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
  568. }
  569. }
  570. EXPORT_SYMBOL(bitmap_remap);
  571. /**
  572. * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  573. * @oldbit - bit position to be mapped
  574. * @old: defines domain of map
  575. * @new: defines range of map
  576. * @bits: number of bits in each of these bitmaps
  577. *
  578. * Let @old and @new define a mapping of bit positions, such that
  579. * whatever position is held by the n-th set bit in @old is mapped
  580. * to the n-th set bit in @new. In the more general case, allowing
  581. * for the possibility that the weight 'w' of @new is less than the
  582. * weight of @old, map the position of the n-th set bit in @old to
  583. * the position of the m-th set bit in @new, where m == n % w.
  584. *
  585. * The positions of unset bits in @old are mapped to themselves
  586. * (the identify map).
  587. *
  588. * Apply the above specified mapping to bit position @oldbit, returning
  589. * the new bit position.
  590. *
  591. * For example, lets say that @old has bits 4 through 7 set, and
  592. * @new has bits 12 through 15 set. This defines the mapping of bit
  593. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  594. * bit positions unchanged. So if say @oldbit is 5, then this routine
  595. * returns 13.
  596. */
  597. int bitmap_bitremap(int oldbit, const unsigned long *old,
  598. const unsigned long *new, int bits)
  599. {
  600. int w = bitmap_weight(new, bits);
  601. int n = bitmap_pos_to_ord(old, oldbit, bits);
  602. if (n < 0 || w == 0)
  603. return oldbit;
  604. else
  605. return bitmap_ord_to_pos(new, n % w, bits);
  606. }
  607. EXPORT_SYMBOL(bitmap_bitremap);
  608. /**
  609. * bitmap_find_free_region - find a contiguous aligned mem region
  610. * @bitmap: an array of unsigned longs corresponding to the bitmap
  611. * @bits: number of bits in the bitmap
  612. * @order: region size to find (size is actually 1<<order)
  613. *
  614. * This is used to allocate a memory region from a bitmap. The idea is
  615. * that the region has to be 1<<order sized and 1<<order aligned (this
  616. * makes the search algorithm much faster).
  617. *
  618. * The region is marked as set bits in the bitmap if a free one is
  619. * found.
  620. *
  621. * Returns either beginning of region or negative error
  622. */
  623. int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
  624. {
  625. unsigned long mask;
  626. int pages = 1 << order;
  627. int i;
  628. if(pages > BITS_PER_LONG)
  629. return -EINVAL;
  630. /* make a mask of the order */
  631. mask = (1ul << (pages - 1));
  632. mask += mask - 1;
  633. /* run up the bitmap pages bits at a time */
  634. for (i = 0; i < bits; i += pages) {
  635. int index = i/BITS_PER_LONG;
  636. int offset = i - (index * BITS_PER_LONG);
  637. if((bitmap[index] & (mask << offset)) == 0) {
  638. /* set region in bimap */
  639. bitmap[index] |= (mask << offset);
  640. return i;
  641. }
  642. }
  643. return -ENOMEM;
  644. }
  645. EXPORT_SYMBOL(bitmap_find_free_region);
  646. /**
  647. * bitmap_release_region - release allocated bitmap region
  648. * @bitmap: a pointer to the bitmap
  649. * @pos: the beginning of the region
  650. * @order: the order of the bits to release (number is 1<<order)
  651. *
  652. * This is the complement to __bitmap_find_free_region and releases
  653. * the found region (by clearing it in the bitmap).
  654. */
  655. void bitmap_release_region(unsigned long *bitmap, int pos, int order)
  656. {
  657. int pages = 1 << order;
  658. unsigned long mask = (1ul << (pages - 1));
  659. int index = pos/BITS_PER_LONG;
  660. int offset = pos - (index * BITS_PER_LONG);
  661. mask += mask - 1;
  662. bitmap[index] &= ~(mask << offset);
  663. }
  664. EXPORT_SYMBOL(bitmap_release_region);
  665. int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
  666. {
  667. int pages = 1 << order;
  668. unsigned long mask = (1ul << (pages - 1));
  669. int index = pos/BITS_PER_LONG;
  670. int offset = pos - (index * BITS_PER_LONG);
  671. /* We don't do regions of pages > BITS_PER_LONG. The
  672. * algorithm would be a simple look for multiple zeros in the
  673. * array, but there's no driver today that needs this. If you
  674. * trip this BUG(), you get to code it... */
  675. BUG_ON(pages > BITS_PER_LONG);
  676. mask += mask - 1;
  677. if (bitmap[index] & (mask << offset))
  678. return -EBUSY;
  679. bitmap[index] |= (mask << offset);
  680. return 0;
  681. }
  682. EXPORT_SYMBOL(bitmap_allocate_region);