keyboard.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * drivers/s390/char/keyboard.c
  3. * ebcdic keycode functions for s390 console drivers
  4. *
  5. * S390 version
  6. * Copyright (C) 2003 IBM Deutschland Entwicklung GmbH, IBM Corporation
  7. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  8. */
  9. #include <linux/config.h>
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/sysrq.h>
  13. #include <linux/kbd_kern.h>
  14. #include <linux/kbd_diacr.h>
  15. #include <asm/uaccess.h>
  16. #include "keyboard.h"
  17. /*
  18. * Handler Tables.
  19. */
  20. #define K_HANDLERS\
  21. k_self, k_fn, k_spec, k_ignore,\
  22. k_dead, k_ignore, k_ignore, k_ignore,\
  23. k_ignore, k_ignore, k_ignore, k_ignore,\
  24. k_ignore, k_ignore, k_ignore, k_ignore
  25. typedef void (k_handler_fn)(struct kbd_data *, unsigned char);
  26. static k_handler_fn K_HANDLERS;
  27. static k_handler_fn *k_handler[16] = { K_HANDLERS };
  28. /* maximum values each key_handler can handle */
  29. static const int kbd_max_vals[] = {
  30. 255, ARRAY_SIZE(func_table) - 1, NR_FN_HANDLER - 1, 0,
  31. NR_DEAD - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
  32. };
  33. static const int KBD_NR_TYPES = ARRAY_SIZE(kbd_max_vals);
  34. static unsigned char ret_diacr[NR_DEAD] = {
  35. '`', '\'', '^', '~', '"', ','
  36. };
  37. /*
  38. * Alloc/free of kbd_data structures.
  39. */
  40. struct kbd_data *
  41. kbd_alloc(void) {
  42. struct kbd_data *kbd;
  43. int i, len;
  44. kbd = kmalloc(sizeof(struct kbd_data), GFP_KERNEL);
  45. if (!kbd)
  46. goto out;
  47. memset(kbd, 0, sizeof(struct kbd_data));
  48. kbd->key_maps = kmalloc(sizeof(key_maps), GFP_KERNEL);
  49. if (!key_maps)
  50. goto out_kbd;
  51. memset(kbd->key_maps, 0, sizeof(key_maps));
  52. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  53. if (key_maps[i]) {
  54. kbd->key_maps[i] =
  55. kmalloc(sizeof(u_short)*NR_KEYS, GFP_KERNEL);
  56. if (!kbd->key_maps[i])
  57. goto out_maps;
  58. memcpy(kbd->key_maps[i], key_maps[i],
  59. sizeof(u_short)*NR_KEYS);
  60. }
  61. }
  62. kbd->func_table = kmalloc(sizeof(func_table), GFP_KERNEL);
  63. if (!kbd->func_table)
  64. goto out_maps;
  65. memset(kbd->func_table, 0, sizeof(func_table));
  66. for (i = 0; i < ARRAY_SIZE(func_table); i++) {
  67. if (func_table[i]) {
  68. len = strlen(func_table[i]) + 1;
  69. kbd->func_table[i] = kmalloc(len, GFP_KERNEL);
  70. if (!kbd->func_table[i])
  71. goto out_func;
  72. memcpy(kbd->func_table[i], func_table[i], len);
  73. }
  74. }
  75. kbd->fn_handler =
  76. kmalloc(sizeof(fn_handler_fn *) * NR_FN_HANDLER, GFP_KERNEL);
  77. if (!kbd->fn_handler)
  78. goto out_func;
  79. memset(kbd->fn_handler, 0, sizeof(fn_handler_fn *) * NR_FN_HANDLER);
  80. kbd->accent_table =
  81. kmalloc(sizeof(struct kbdiacr)*MAX_DIACR, GFP_KERNEL);
  82. if (!kbd->accent_table)
  83. goto out_fn_handler;
  84. memcpy(kbd->accent_table, accent_table,
  85. sizeof(struct kbdiacr)*MAX_DIACR);
  86. kbd->accent_table_size = accent_table_size;
  87. return kbd;
  88. out_fn_handler:
  89. kfree(kbd->fn_handler);
  90. out_func:
  91. for (i = 0; i < ARRAY_SIZE(func_table); i++)
  92. kfree(kbd->func_table[i]);
  93. kfree(kbd->func_table);
  94. out_maps:
  95. for (i = 0; i < ARRAY_SIZE(key_maps); i++)
  96. kfree(kbd->key_maps[i]);
  97. kfree(kbd->key_maps);
  98. out_kbd:
  99. kfree(kbd);
  100. out:
  101. return 0;
  102. }
  103. void
  104. kbd_free(struct kbd_data *kbd)
  105. {
  106. int i;
  107. kfree(kbd->accent_table);
  108. kfree(kbd->fn_handler);
  109. for (i = 0; i < ARRAY_SIZE(func_table); i++)
  110. kfree(kbd->func_table[i]);
  111. kfree(kbd->func_table);
  112. for (i = 0; i < ARRAY_SIZE(key_maps); i++)
  113. kfree(kbd->key_maps[i]);
  114. kfree(kbd->key_maps);
  115. kfree(kbd);
  116. }
  117. /*
  118. * Generate ascii -> ebcdic translation table from kbd_data.
  119. */
  120. void
  121. kbd_ascebc(struct kbd_data *kbd, unsigned char *ascebc)
  122. {
  123. unsigned short *keymap, keysym;
  124. int i, j, k;
  125. memset(ascebc, 0x40, 256);
  126. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  127. keymap = kbd->key_maps[i];
  128. if (!keymap)
  129. continue;
  130. for (j = 0; j < NR_KEYS; j++) {
  131. k = ((i & 1) << 7) + j;
  132. keysym = keymap[j];
  133. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  134. KTYP(keysym) == (KT_LETTER | 0xf0))
  135. ascebc[KVAL(keysym)] = k;
  136. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  137. ascebc[ret_diacr[KVAL(keysym)]] = k;
  138. }
  139. }
  140. }
  141. /*
  142. * Generate ebcdic -> ascii translation table from kbd_data.
  143. */
  144. void
  145. kbd_ebcasc(struct kbd_data *kbd, unsigned char *ebcasc)
  146. {
  147. unsigned short *keymap, keysym;
  148. int i, j, k;
  149. memset(ebcasc, ' ', 256);
  150. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  151. keymap = kbd->key_maps[i];
  152. if (!keymap)
  153. continue;
  154. for (j = 0; j < NR_KEYS; j++) {
  155. keysym = keymap[j];
  156. k = ((i & 1) << 7) + j;
  157. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  158. KTYP(keysym) == (KT_LETTER | 0xf0))
  159. ebcasc[k] = KVAL(keysym);
  160. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  161. ebcasc[k] = ret_diacr[KVAL(keysym)];
  162. }
  163. }
  164. }
  165. /*
  166. * We have a combining character DIACR here, followed by the character CH.
  167. * If the combination occurs in the table, return the corresponding value.
  168. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  169. * Otherwise, conclude that DIACR was not combining after all,
  170. * queue it and return CH.
  171. */
  172. static unsigned char
  173. handle_diacr(struct kbd_data *kbd, unsigned char ch)
  174. {
  175. int i, d;
  176. d = kbd->diacr;
  177. kbd->diacr = 0;
  178. for (i = 0; i < kbd->accent_table_size; i++) {
  179. if (kbd->accent_table[i].diacr == d &&
  180. kbd->accent_table[i].base == ch)
  181. return kbd->accent_table[i].result;
  182. }
  183. if (ch == ' ' || ch == d)
  184. return d;
  185. kbd_put_queue(kbd->tty, d);
  186. return ch;
  187. }
  188. /*
  189. * Handle dead key.
  190. */
  191. static void
  192. k_dead(struct kbd_data *kbd, unsigned char value)
  193. {
  194. value = ret_diacr[value];
  195. kbd->diacr = (kbd->diacr ? handle_diacr(kbd, value) : value);
  196. }
  197. /*
  198. * Normal character handler.
  199. */
  200. static void
  201. k_self(struct kbd_data *kbd, unsigned char value)
  202. {
  203. if (kbd->diacr)
  204. value = handle_diacr(kbd, value);
  205. kbd_put_queue(kbd->tty, value);
  206. }
  207. /*
  208. * Special key handlers
  209. */
  210. static void
  211. k_ignore(struct kbd_data *kbd, unsigned char value)
  212. {
  213. }
  214. /*
  215. * Function key handler.
  216. */
  217. static void
  218. k_fn(struct kbd_data *kbd, unsigned char value)
  219. {
  220. if (kbd->func_table[value])
  221. kbd_puts_queue(kbd->tty, kbd->func_table[value]);
  222. }
  223. static void
  224. k_spec(struct kbd_data *kbd, unsigned char value)
  225. {
  226. if (value >= NR_FN_HANDLER)
  227. return;
  228. if (kbd->fn_handler[value])
  229. kbd->fn_handler[value](kbd);
  230. }
  231. /*
  232. * Put utf8 character to tty flip buffer.
  233. * UTF-8 is defined for words of up to 31 bits,
  234. * but we need only 16 bits here
  235. */
  236. static void
  237. to_utf8(struct tty_struct *tty, ushort c)
  238. {
  239. if (c < 0x80)
  240. /* 0******* */
  241. kbd_put_queue(tty, c);
  242. else if (c < 0x800) {
  243. /* 110***** 10****** */
  244. kbd_put_queue(tty, 0xc0 | (c >> 6));
  245. kbd_put_queue(tty, 0x80 | (c & 0x3f));
  246. } else {
  247. /* 1110**** 10****** 10****** */
  248. kbd_put_queue(tty, 0xe0 | (c >> 12));
  249. kbd_put_queue(tty, 0x80 | ((c >> 6) & 0x3f));
  250. kbd_put_queue(tty, 0x80 | (c & 0x3f));
  251. }
  252. }
  253. /*
  254. * Process keycode.
  255. */
  256. void
  257. kbd_keycode(struct kbd_data *kbd, unsigned int keycode)
  258. {
  259. unsigned short keysym;
  260. unsigned char type, value;
  261. if (!kbd || !kbd->tty)
  262. return;
  263. if (keycode >= 384)
  264. keysym = kbd->key_maps[5][keycode - 384];
  265. else if (keycode >= 256)
  266. keysym = kbd->key_maps[4][keycode - 256];
  267. else if (keycode >= 128)
  268. keysym = kbd->key_maps[1][keycode - 128];
  269. else
  270. keysym = kbd->key_maps[0][keycode];
  271. type = KTYP(keysym);
  272. if (type >= 0xf0) {
  273. type -= 0xf0;
  274. if (type == KT_LETTER)
  275. type = KT_LATIN;
  276. value = KVAL(keysym);
  277. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  278. if (kbd->sysrq) {
  279. if (kbd->sysrq == K(KT_LATIN, '-')) {
  280. kbd->sysrq = 0;
  281. handle_sysrq(value, 0, kbd->tty);
  282. return;
  283. }
  284. if (value == '-') {
  285. kbd->sysrq = K(KT_LATIN, '-');
  286. return;
  287. }
  288. /* Incomplete sysrq sequence. */
  289. (*k_handler[KTYP(kbd->sysrq)])(kbd, KVAL(kbd->sysrq));
  290. kbd->sysrq = 0;
  291. } else if ((type == KT_LATIN && value == '^') ||
  292. (type == KT_DEAD && ret_diacr[value] == '^')) {
  293. kbd->sysrq = K(type, value);
  294. return;
  295. }
  296. #endif
  297. (*k_handler[type])(kbd, value);
  298. } else
  299. to_utf8(kbd->tty, keysym);
  300. }
  301. /*
  302. * Ioctl stuff.
  303. */
  304. static int
  305. do_kdsk_ioctl(struct kbd_data *kbd, struct kbentry __user *user_kbe,
  306. int cmd, int perm)
  307. {
  308. struct kbentry tmp;
  309. ushort *key_map, val, ov;
  310. if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
  311. return -EFAULT;
  312. #if NR_KEYS < 256
  313. if (tmp.kb_index >= NR_KEYS)
  314. return -EINVAL;
  315. #endif
  316. #if MAX_NR_KEYMAPS < 256
  317. if (tmp.kb_table >= MAX_NR_KEYMAPS)
  318. return -EINVAL;
  319. #endif
  320. switch (cmd) {
  321. case KDGKBENT:
  322. key_map = kbd->key_maps[tmp.kb_table];
  323. if (key_map) {
  324. val = U(key_map[tmp.kb_index]);
  325. if (KTYP(val) >= KBD_NR_TYPES)
  326. val = K_HOLE;
  327. } else
  328. val = (tmp.kb_index ? K_HOLE : K_NOSUCHMAP);
  329. return put_user(val, &user_kbe->kb_value);
  330. case KDSKBENT:
  331. if (!perm)
  332. return -EPERM;
  333. if (!tmp.kb_index && tmp.kb_value == K_NOSUCHMAP) {
  334. /* disallocate map */
  335. key_map = kbd->key_maps[tmp.kb_table];
  336. if (key_map) {
  337. kbd->key_maps[tmp.kb_table] = 0;
  338. kfree(key_map);
  339. }
  340. break;
  341. }
  342. if (KTYP(tmp.kb_value) >= KBD_NR_TYPES)
  343. return -EINVAL;
  344. if (KVAL(tmp.kb_value) > kbd_max_vals[KTYP(tmp.kb_value)])
  345. return -EINVAL;
  346. if (!(key_map = kbd->key_maps[tmp.kb_table])) {
  347. int j;
  348. key_map = (ushort *) kmalloc(sizeof(plain_map),
  349. GFP_KERNEL);
  350. if (!key_map)
  351. return -ENOMEM;
  352. kbd->key_maps[tmp.kb_table] = key_map;
  353. for (j = 0; j < NR_KEYS; j++)
  354. key_map[j] = U(K_HOLE);
  355. }
  356. ov = U(key_map[tmp.kb_index]);
  357. if (tmp.kb_value == ov)
  358. break; /* nothing to do */
  359. /*
  360. * Attention Key.
  361. */
  362. if (((ov == K_SAK) || (tmp.kb_value == K_SAK)) &&
  363. !capable(CAP_SYS_ADMIN))
  364. return -EPERM;
  365. key_map[tmp.kb_index] = U(tmp.kb_value);
  366. break;
  367. }
  368. return 0;
  369. }
  370. static int
  371. do_kdgkb_ioctl(struct kbd_data *kbd, struct kbsentry __user *u_kbs,
  372. int cmd, int perm)
  373. {
  374. unsigned char kb_func;
  375. char *p;
  376. int len;
  377. /* Get u_kbs->kb_func. */
  378. if (get_user(kb_func, &u_kbs->kb_func))
  379. return -EFAULT;
  380. #if MAX_NR_FUNC < 256
  381. if (kb_func >= MAX_NR_FUNC)
  382. return -EINVAL;
  383. #endif
  384. switch (cmd) {
  385. case KDGKBSENT:
  386. p = kbd->func_table[kb_func];
  387. if (p) {
  388. len = strlen(p);
  389. if (len >= sizeof(u_kbs->kb_string))
  390. len = sizeof(u_kbs->kb_string) - 1;
  391. if (copy_to_user(u_kbs->kb_string, p, len))
  392. return -EFAULT;
  393. } else
  394. len = 0;
  395. if (put_user('\0', u_kbs->kb_string + len))
  396. return -EFAULT;
  397. break;
  398. case KDSKBSENT:
  399. if (!perm)
  400. return -EPERM;
  401. len = strnlen_user(u_kbs->kb_string,
  402. sizeof(u_kbs->kb_string) - 1);
  403. p = kmalloc(len, GFP_KERNEL);
  404. if (!p)
  405. return -ENOMEM;
  406. if (copy_from_user(p, u_kbs->kb_string, len)) {
  407. kfree(p);
  408. return -EFAULT;
  409. }
  410. p[len] = 0;
  411. kfree(kbd->func_table[kb_func]);
  412. kbd->func_table[kb_func] = p;
  413. break;
  414. }
  415. return 0;
  416. }
  417. int
  418. kbd_ioctl(struct kbd_data *kbd, struct file *file,
  419. unsigned int cmd, unsigned long arg)
  420. {
  421. struct kbdiacrs __user *a;
  422. void __user *argp;
  423. int ct, perm;
  424. argp = (void __user *)arg;
  425. /*
  426. * To have permissions to do most of the vt ioctls, we either have
  427. * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
  428. */
  429. perm = current->signal->tty == kbd->tty || capable(CAP_SYS_TTY_CONFIG);
  430. switch (cmd) {
  431. case KDGKBTYPE:
  432. return put_user(KB_101, (char __user *)argp);
  433. case KDGKBENT:
  434. case KDSKBENT:
  435. return do_kdsk_ioctl(kbd, argp, cmd, perm);
  436. case KDGKBSENT:
  437. case KDSKBSENT:
  438. return do_kdgkb_ioctl(kbd, argp, cmd, perm);
  439. case KDGKBDIACR:
  440. a = argp;
  441. if (put_user(kbd->accent_table_size, &a->kb_cnt))
  442. return -EFAULT;
  443. ct = kbd->accent_table_size;
  444. if (copy_to_user(a->kbdiacr, kbd->accent_table,
  445. ct * sizeof(struct kbdiacr)))
  446. return -EFAULT;
  447. return 0;
  448. case KDSKBDIACR:
  449. a = argp;
  450. if (!perm)
  451. return -EPERM;
  452. if (get_user(ct, &a->kb_cnt))
  453. return -EFAULT;
  454. if (ct >= MAX_DIACR)
  455. return -EINVAL;
  456. kbd->accent_table_size = ct;
  457. if (copy_from_user(kbd->accent_table, a->kbdiacr,
  458. ct * sizeof(struct kbdiacr)))
  459. return -EFAULT;
  460. return 0;
  461. default:
  462. return -ENOIOCTLCMD;
  463. }
  464. }
  465. EXPORT_SYMBOL(kbd_ioctl);
  466. EXPORT_SYMBOL(kbd_ascebc);
  467. EXPORT_SYMBOL(kbd_free);
  468. EXPORT_SYMBOL(kbd_alloc);
  469. EXPORT_SYMBOL(kbd_keycode);