e1000_ethtool.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. extern char e1000_driver_name[];
  24. extern char e1000_driver_version[];
  25. extern int e1000_up(struct e1000_adapter *adapter);
  26. extern void e1000_down(struct e1000_adapter *adapter);
  27. extern void e1000_reset(struct e1000_adapter *adapter);
  28. extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  29. extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  30. extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  31. extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  32. extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  33. extern void e1000_update_stats(struct e1000_adapter *adapter);
  34. struct e1000_stats {
  35. char stat_string[ETH_GSTRING_LEN];
  36. int sizeof_stat;
  37. int stat_offset;
  38. };
  39. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  40. offsetof(struct e1000_adapter, m)
  41. static const struct e1000_stats e1000_gstrings_stats[] = {
  42. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  43. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  44. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  45. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  46. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  47. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  48. { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
  49. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  50. { "multicast", E1000_STAT(net_stats.multicast) },
  51. { "collisions", E1000_STAT(net_stats.collisions) },
  52. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  53. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  54. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  55. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  56. { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
  57. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  58. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  59. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  60. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  61. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  62. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  63. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  64. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  65. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  66. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  67. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  68. { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  69. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  70. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  71. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  72. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  73. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  74. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  75. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  76. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  77. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  78. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  79. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  80. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  81. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  82. { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  83. };
  84. #ifdef CONFIG_E1000_MQ
  85. #define E1000_QUEUE_STATS_LEN \
  86. (((struct e1000_adapter *)netdev->priv)->num_tx_queues + \
  87. ((struct e1000_adapter *)netdev->priv)->num_rx_queues) \
  88. * (sizeof(struct e1000_queue_stats) / sizeof(uint64_t))
  89. #else
  90. #define E1000_QUEUE_STATS_LEN 0
  91. #endif
  92. #define E1000_GLOBAL_STATS_LEN \
  93. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  94. #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  95. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  96. "Register test (offline)", "Eeprom test (offline)",
  97. "Interrupt test (offline)", "Loopback test (offline)",
  98. "Link test (on/offline)"
  99. };
  100. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  101. static int
  102. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  103. {
  104. struct e1000_adapter *adapter = netdev_priv(netdev);
  105. struct e1000_hw *hw = &adapter->hw;
  106. if (hw->media_type == e1000_media_type_copper) {
  107. ecmd->supported = (SUPPORTED_10baseT_Half |
  108. SUPPORTED_10baseT_Full |
  109. SUPPORTED_100baseT_Half |
  110. SUPPORTED_100baseT_Full |
  111. SUPPORTED_1000baseT_Full|
  112. SUPPORTED_Autoneg |
  113. SUPPORTED_TP);
  114. ecmd->advertising = ADVERTISED_TP;
  115. if (hw->autoneg == 1) {
  116. ecmd->advertising |= ADVERTISED_Autoneg;
  117. /* the e1000 autoneg seems to match ethtool nicely */
  118. ecmd->advertising |= hw->autoneg_advertised;
  119. }
  120. ecmd->port = PORT_TP;
  121. ecmd->phy_address = hw->phy_addr;
  122. if (hw->mac_type == e1000_82543)
  123. ecmd->transceiver = XCVR_EXTERNAL;
  124. else
  125. ecmd->transceiver = XCVR_INTERNAL;
  126. } else {
  127. ecmd->supported = (SUPPORTED_1000baseT_Full |
  128. SUPPORTED_FIBRE |
  129. SUPPORTED_Autoneg);
  130. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  131. ADVERTISED_FIBRE |
  132. ADVERTISED_Autoneg);
  133. ecmd->port = PORT_FIBRE;
  134. if (hw->mac_type >= e1000_82545)
  135. ecmd->transceiver = XCVR_INTERNAL;
  136. else
  137. ecmd->transceiver = XCVR_EXTERNAL;
  138. }
  139. if (netif_carrier_ok(adapter->netdev)) {
  140. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  141. &adapter->link_duplex);
  142. ecmd->speed = adapter->link_speed;
  143. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  144. * and HALF_DUPLEX != DUPLEX_HALF */
  145. if (adapter->link_duplex == FULL_DUPLEX)
  146. ecmd->duplex = DUPLEX_FULL;
  147. else
  148. ecmd->duplex = DUPLEX_HALF;
  149. } else {
  150. ecmd->speed = -1;
  151. ecmd->duplex = -1;
  152. }
  153. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  154. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  155. return 0;
  156. }
  157. static int
  158. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  159. {
  160. struct e1000_adapter *adapter = netdev_priv(netdev);
  161. struct e1000_hw *hw = &adapter->hw;
  162. /* When SoL/IDER sessions are active, autoneg/speed/duplex
  163. * cannot be changed */
  164. if (e1000_check_phy_reset_block(hw)) {
  165. DPRINTK(DRV, ERR, "Cannot change link characteristics "
  166. "when SoL/IDER is active.\n");
  167. return -EINVAL;
  168. }
  169. if (ecmd->autoneg == AUTONEG_ENABLE) {
  170. hw->autoneg = 1;
  171. if (hw->media_type == e1000_media_type_fiber)
  172. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  173. ADVERTISED_FIBRE |
  174. ADVERTISED_Autoneg;
  175. else
  176. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  177. ADVERTISED_10baseT_Full |
  178. ADVERTISED_100baseT_Half |
  179. ADVERTISED_100baseT_Full |
  180. ADVERTISED_1000baseT_Full|
  181. ADVERTISED_Autoneg |
  182. ADVERTISED_TP;
  183. ecmd->advertising = hw->autoneg_advertised;
  184. } else
  185. if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  186. return -EINVAL;
  187. /* reset the link */
  188. if (netif_running(adapter->netdev)) {
  189. e1000_down(adapter);
  190. e1000_reset(adapter);
  191. e1000_up(adapter);
  192. } else
  193. e1000_reset(adapter);
  194. return 0;
  195. }
  196. static void
  197. e1000_get_pauseparam(struct net_device *netdev,
  198. struct ethtool_pauseparam *pause)
  199. {
  200. struct e1000_adapter *adapter = netdev_priv(netdev);
  201. struct e1000_hw *hw = &adapter->hw;
  202. pause->autoneg =
  203. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  204. if (hw->fc == e1000_fc_rx_pause)
  205. pause->rx_pause = 1;
  206. else if (hw->fc == e1000_fc_tx_pause)
  207. pause->tx_pause = 1;
  208. else if (hw->fc == e1000_fc_full) {
  209. pause->rx_pause = 1;
  210. pause->tx_pause = 1;
  211. }
  212. }
  213. static int
  214. e1000_set_pauseparam(struct net_device *netdev,
  215. struct ethtool_pauseparam *pause)
  216. {
  217. struct e1000_adapter *adapter = netdev_priv(netdev);
  218. struct e1000_hw *hw = &adapter->hw;
  219. adapter->fc_autoneg = pause->autoneg;
  220. if (pause->rx_pause && pause->tx_pause)
  221. hw->fc = e1000_fc_full;
  222. else if (pause->rx_pause && !pause->tx_pause)
  223. hw->fc = e1000_fc_rx_pause;
  224. else if (!pause->rx_pause && pause->tx_pause)
  225. hw->fc = e1000_fc_tx_pause;
  226. else if (!pause->rx_pause && !pause->tx_pause)
  227. hw->fc = e1000_fc_none;
  228. hw->original_fc = hw->fc;
  229. if (adapter->fc_autoneg == AUTONEG_ENABLE) {
  230. if (netif_running(adapter->netdev)) {
  231. e1000_down(adapter);
  232. e1000_up(adapter);
  233. } else
  234. e1000_reset(adapter);
  235. } else
  236. return ((hw->media_type == e1000_media_type_fiber) ?
  237. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  238. return 0;
  239. }
  240. static uint32_t
  241. e1000_get_rx_csum(struct net_device *netdev)
  242. {
  243. struct e1000_adapter *adapter = netdev_priv(netdev);
  244. return adapter->rx_csum;
  245. }
  246. static int
  247. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  248. {
  249. struct e1000_adapter *adapter = netdev_priv(netdev);
  250. adapter->rx_csum = data;
  251. if (netif_running(netdev)) {
  252. e1000_down(adapter);
  253. e1000_up(adapter);
  254. } else
  255. e1000_reset(adapter);
  256. return 0;
  257. }
  258. static uint32_t
  259. e1000_get_tx_csum(struct net_device *netdev)
  260. {
  261. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  262. }
  263. static int
  264. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  265. {
  266. struct e1000_adapter *adapter = netdev_priv(netdev);
  267. if (adapter->hw.mac_type < e1000_82543) {
  268. if (!data)
  269. return -EINVAL;
  270. return 0;
  271. }
  272. if (data)
  273. netdev->features |= NETIF_F_HW_CSUM;
  274. else
  275. netdev->features &= ~NETIF_F_HW_CSUM;
  276. return 0;
  277. }
  278. #ifdef NETIF_F_TSO
  279. static int
  280. e1000_set_tso(struct net_device *netdev, uint32_t data)
  281. {
  282. struct e1000_adapter *adapter = netdev_priv(netdev);
  283. if ((adapter->hw.mac_type < e1000_82544) ||
  284. (adapter->hw.mac_type == e1000_82547))
  285. return data ? -EINVAL : 0;
  286. if (data)
  287. netdev->features |= NETIF_F_TSO;
  288. else
  289. netdev->features &= ~NETIF_F_TSO;
  290. return 0;
  291. }
  292. #endif /* NETIF_F_TSO */
  293. static uint32_t
  294. e1000_get_msglevel(struct net_device *netdev)
  295. {
  296. struct e1000_adapter *adapter = netdev_priv(netdev);
  297. return adapter->msg_enable;
  298. }
  299. static void
  300. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  301. {
  302. struct e1000_adapter *adapter = netdev_priv(netdev);
  303. adapter->msg_enable = data;
  304. }
  305. static int
  306. e1000_get_regs_len(struct net_device *netdev)
  307. {
  308. #define E1000_REGS_LEN 32
  309. return E1000_REGS_LEN * sizeof(uint32_t);
  310. }
  311. static void
  312. e1000_get_regs(struct net_device *netdev,
  313. struct ethtool_regs *regs, void *p)
  314. {
  315. struct e1000_adapter *adapter = netdev_priv(netdev);
  316. struct e1000_hw *hw = &adapter->hw;
  317. uint32_t *regs_buff = p;
  318. uint16_t phy_data;
  319. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  320. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  321. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  322. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  323. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  324. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  325. regs_buff[4] = E1000_READ_REG(hw, RDH);
  326. regs_buff[5] = E1000_READ_REG(hw, RDT);
  327. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  328. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  329. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  330. regs_buff[9] = E1000_READ_REG(hw, TDH);
  331. regs_buff[10] = E1000_READ_REG(hw, TDT);
  332. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  333. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  334. if (hw->phy_type == e1000_phy_igp) {
  335. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  336. IGP01E1000_PHY_AGC_A);
  337. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  338. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  339. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  340. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  341. IGP01E1000_PHY_AGC_B);
  342. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  343. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  344. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  345. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  346. IGP01E1000_PHY_AGC_C);
  347. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  348. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  349. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  350. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  351. IGP01E1000_PHY_AGC_D);
  352. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  353. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  354. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  355. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  356. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  357. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  358. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  359. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  360. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  361. IGP01E1000_PHY_PCS_INIT_REG);
  362. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  363. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  364. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  365. regs_buff[20] = 0; /* polarity correction enabled (always) */
  366. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  367. regs_buff[23] = regs_buff[18]; /* mdix mode */
  368. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  369. } else {
  370. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  371. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  372. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  373. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  374. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  375. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  376. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  377. regs_buff[18] = regs_buff[13]; /* cable polarity */
  378. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  379. regs_buff[20] = regs_buff[17]; /* polarity correction */
  380. /* phy receive errors */
  381. regs_buff[22] = adapter->phy_stats.receive_errors;
  382. regs_buff[23] = regs_buff[13]; /* mdix mode */
  383. }
  384. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  385. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  386. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  387. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  388. if (hw->mac_type >= e1000_82540 &&
  389. hw->media_type == e1000_media_type_copper) {
  390. regs_buff[26] = E1000_READ_REG(hw, MANC);
  391. }
  392. }
  393. static int
  394. e1000_get_eeprom_len(struct net_device *netdev)
  395. {
  396. struct e1000_adapter *adapter = netdev_priv(netdev);
  397. return adapter->hw.eeprom.word_size * 2;
  398. }
  399. static int
  400. e1000_get_eeprom(struct net_device *netdev,
  401. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  402. {
  403. struct e1000_adapter *adapter = netdev_priv(netdev);
  404. struct e1000_hw *hw = &adapter->hw;
  405. uint16_t *eeprom_buff;
  406. int first_word, last_word;
  407. int ret_val = 0;
  408. uint16_t i;
  409. if (eeprom->len == 0)
  410. return -EINVAL;
  411. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  412. first_word = eeprom->offset >> 1;
  413. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  414. eeprom_buff = kmalloc(sizeof(uint16_t) *
  415. (last_word - first_word + 1), GFP_KERNEL);
  416. if (!eeprom_buff)
  417. return -ENOMEM;
  418. if (hw->eeprom.type == e1000_eeprom_spi)
  419. ret_val = e1000_read_eeprom(hw, first_word,
  420. last_word - first_word + 1,
  421. eeprom_buff);
  422. else {
  423. for (i = 0; i < last_word - first_word + 1; i++)
  424. if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  425. &eeprom_buff[i])))
  426. break;
  427. }
  428. /* Device's eeprom is always little-endian, word addressable */
  429. for (i = 0; i < last_word - first_word + 1; i++)
  430. le16_to_cpus(&eeprom_buff[i]);
  431. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  432. eeprom->len);
  433. kfree(eeprom_buff);
  434. return ret_val;
  435. }
  436. static int
  437. e1000_set_eeprom(struct net_device *netdev,
  438. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  439. {
  440. struct e1000_adapter *adapter = netdev_priv(netdev);
  441. struct e1000_hw *hw = &adapter->hw;
  442. uint16_t *eeprom_buff;
  443. void *ptr;
  444. int max_len, first_word, last_word, ret_val = 0;
  445. uint16_t i;
  446. if (eeprom->len == 0)
  447. return -EOPNOTSUPP;
  448. if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  449. return -EFAULT;
  450. max_len = hw->eeprom.word_size * 2;
  451. first_word = eeprom->offset >> 1;
  452. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  453. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  454. if (!eeprom_buff)
  455. return -ENOMEM;
  456. ptr = (void *)eeprom_buff;
  457. if (eeprom->offset & 1) {
  458. /* need read/modify/write of first changed EEPROM word */
  459. /* only the second byte of the word is being modified */
  460. ret_val = e1000_read_eeprom(hw, first_word, 1,
  461. &eeprom_buff[0]);
  462. ptr++;
  463. }
  464. if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  465. /* need read/modify/write of last changed EEPROM word */
  466. /* only the first byte of the word is being modified */
  467. ret_val = e1000_read_eeprom(hw, last_word, 1,
  468. &eeprom_buff[last_word - first_word]);
  469. }
  470. /* Device's eeprom is always little-endian, word addressable */
  471. for (i = 0; i < last_word - first_word + 1; i++)
  472. le16_to_cpus(&eeprom_buff[i]);
  473. memcpy(ptr, bytes, eeprom->len);
  474. for (i = 0; i < last_word - first_word + 1; i++)
  475. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  476. ret_val = e1000_write_eeprom(hw, first_word,
  477. last_word - first_word + 1, eeprom_buff);
  478. /* Update the checksum over the first part of the EEPROM if needed
  479. * and flush shadow RAM for 82573 conrollers */
  480. if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
  481. (hw->mac_type == e1000_82573)))
  482. e1000_update_eeprom_checksum(hw);
  483. kfree(eeprom_buff);
  484. return ret_val;
  485. }
  486. static void
  487. e1000_get_drvinfo(struct net_device *netdev,
  488. struct ethtool_drvinfo *drvinfo)
  489. {
  490. struct e1000_adapter *adapter = netdev_priv(netdev);
  491. char firmware_version[32];
  492. uint16_t eeprom_data;
  493. strncpy(drvinfo->driver, e1000_driver_name, 32);
  494. strncpy(drvinfo->version, e1000_driver_version, 32);
  495. /* EEPROM image version # is reported as firmware version # for
  496. * 8257{1|2|3} controllers */
  497. e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
  498. switch (adapter->hw.mac_type) {
  499. case e1000_82571:
  500. case e1000_82572:
  501. case e1000_82573:
  502. sprintf(firmware_version, "%d.%d-%d",
  503. (eeprom_data & 0xF000) >> 12,
  504. (eeprom_data & 0x0FF0) >> 4,
  505. eeprom_data & 0x000F);
  506. break;
  507. default:
  508. sprintf(firmware_version, "N/A");
  509. }
  510. strncpy(drvinfo->fw_version, firmware_version, 32);
  511. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  512. drvinfo->n_stats = E1000_STATS_LEN;
  513. drvinfo->testinfo_len = E1000_TEST_LEN;
  514. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  515. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  516. }
  517. static void
  518. e1000_get_ringparam(struct net_device *netdev,
  519. struct ethtool_ringparam *ring)
  520. {
  521. struct e1000_adapter *adapter = netdev_priv(netdev);
  522. e1000_mac_type mac_type = adapter->hw.mac_type;
  523. struct e1000_tx_ring *txdr = adapter->tx_ring;
  524. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  525. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  526. E1000_MAX_82544_RXD;
  527. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  528. E1000_MAX_82544_TXD;
  529. ring->rx_mini_max_pending = 0;
  530. ring->rx_jumbo_max_pending = 0;
  531. ring->rx_pending = rxdr->count;
  532. ring->tx_pending = txdr->count;
  533. ring->rx_mini_pending = 0;
  534. ring->rx_jumbo_pending = 0;
  535. }
  536. static int
  537. e1000_set_ringparam(struct net_device *netdev,
  538. struct ethtool_ringparam *ring)
  539. {
  540. struct e1000_adapter *adapter = netdev_priv(netdev);
  541. e1000_mac_type mac_type = adapter->hw.mac_type;
  542. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  543. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  544. int i, err, tx_ring_size, rx_ring_size;
  545. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  546. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  547. if (netif_running(adapter->netdev))
  548. e1000_down(adapter);
  549. tx_old = adapter->tx_ring;
  550. rx_old = adapter->rx_ring;
  551. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  552. if (!adapter->tx_ring) {
  553. err = -ENOMEM;
  554. goto err_setup_rx;
  555. }
  556. memset(adapter->tx_ring, 0, tx_ring_size);
  557. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  558. if (!adapter->rx_ring) {
  559. kfree(adapter->tx_ring);
  560. err = -ENOMEM;
  561. goto err_setup_rx;
  562. }
  563. memset(adapter->rx_ring, 0, rx_ring_size);
  564. txdr = adapter->tx_ring;
  565. rxdr = adapter->rx_ring;
  566. if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  567. return -EINVAL;
  568. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  569. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  570. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  571. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  572. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  573. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  574. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  575. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  576. for (i = 0; i < adapter->num_tx_queues; i++)
  577. txdr[i].count = txdr->count;
  578. for (i = 0; i < adapter->num_rx_queues; i++)
  579. rxdr[i].count = rxdr->count;
  580. if (netif_running(adapter->netdev)) {
  581. /* Try to get new resources before deleting old */
  582. if ((err = e1000_setup_all_rx_resources(adapter)))
  583. goto err_setup_rx;
  584. if ((err = e1000_setup_all_tx_resources(adapter)))
  585. goto err_setup_tx;
  586. /* save the new, restore the old in order to free it,
  587. * then restore the new back again */
  588. rx_new = adapter->rx_ring;
  589. tx_new = adapter->tx_ring;
  590. adapter->rx_ring = rx_old;
  591. adapter->tx_ring = tx_old;
  592. e1000_free_all_rx_resources(adapter);
  593. e1000_free_all_tx_resources(adapter);
  594. kfree(tx_old);
  595. kfree(rx_old);
  596. adapter->rx_ring = rx_new;
  597. adapter->tx_ring = tx_new;
  598. if ((err = e1000_up(adapter)))
  599. return err;
  600. }
  601. return 0;
  602. err_setup_tx:
  603. e1000_free_all_rx_resources(adapter);
  604. err_setup_rx:
  605. adapter->rx_ring = rx_old;
  606. adapter->tx_ring = tx_old;
  607. e1000_up(adapter);
  608. return err;
  609. }
  610. #define REG_PATTERN_TEST(R, M, W) \
  611. { \
  612. uint32_t pat, value; \
  613. uint32_t test[] = \
  614. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  615. for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  616. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  617. value = E1000_READ_REG(&adapter->hw, R); \
  618. if (value != (test[pat] & W & M)) { \
  619. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  620. "0x%08X expected 0x%08X\n", \
  621. E1000_##R, value, (test[pat] & W & M)); \
  622. *data = (adapter->hw.mac_type < e1000_82543) ? \
  623. E1000_82542_##R : E1000_##R; \
  624. return 1; \
  625. } \
  626. } \
  627. }
  628. #define REG_SET_AND_CHECK(R, M, W) \
  629. { \
  630. uint32_t value; \
  631. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  632. value = E1000_READ_REG(&adapter->hw, R); \
  633. if ((W & M) != (value & M)) { \
  634. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  635. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  636. *data = (adapter->hw.mac_type < e1000_82543) ? \
  637. E1000_82542_##R : E1000_##R; \
  638. return 1; \
  639. } \
  640. }
  641. static int
  642. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  643. {
  644. uint32_t value, before, after;
  645. uint32_t i, toggle;
  646. /* The status register is Read Only, so a write should fail.
  647. * Some bits that get toggled are ignored.
  648. */
  649. switch (adapter->hw.mac_type) {
  650. /* there are several bits on newer hardware that are r/w */
  651. case e1000_82571:
  652. case e1000_82572:
  653. toggle = 0x7FFFF3FF;
  654. break;
  655. case e1000_82573:
  656. toggle = 0x7FFFF033;
  657. break;
  658. default:
  659. toggle = 0xFFFFF833;
  660. break;
  661. }
  662. before = E1000_READ_REG(&adapter->hw, STATUS);
  663. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  664. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  665. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  666. if (value != after) {
  667. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  668. "0x%08X expected: 0x%08X\n", after, value);
  669. *data = 1;
  670. return 1;
  671. }
  672. /* restore previous status */
  673. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  674. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  675. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  676. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  677. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  678. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  679. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  680. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  681. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  682. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  683. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  684. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  685. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  686. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  687. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  688. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  689. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  690. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  691. if (adapter->hw.mac_type >= e1000_82543) {
  692. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  693. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  694. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  695. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  696. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  697. for (i = 0; i < E1000_RAR_ENTRIES; i++) {
  698. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  699. 0xFFFFFFFF);
  700. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  701. 0xFFFFFFFF);
  702. }
  703. } else {
  704. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  705. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  706. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  707. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  708. }
  709. for (i = 0; i < E1000_MC_TBL_SIZE; i++)
  710. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  711. *data = 0;
  712. return 0;
  713. }
  714. static int
  715. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  716. {
  717. uint16_t temp;
  718. uint16_t checksum = 0;
  719. uint16_t i;
  720. *data = 0;
  721. /* Read and add up the contents of the EEPROM */
  722. for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  723. if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  724. *data = 1;
  725. break;
  726. }
  727. checksum += temp;
  728. }
  729. /* If Checksum is not Correct return error else test passed */
  730. if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  731. *data = 2;
  732. return *data;
  733. }
  734. static irqreturn_t
  735. e1000_test_intr(int irq,
  736. void *data,
  737. struct pt_regs *regs)
  738. {
  739. struct net_device *netdev = (struct net_device *) data;
  740. struct e1000_adapter *adapter = netdev_priv(netdev);
  741. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  742. return IRQ_HANDLED;
  743. }
  744. static int
  745. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  746. {
  747. struct net_device *netdev = adapter->netdev;
  748. uint32_t mask, i=0, shared_int = TRUE;
  749. uint32_t irq = adapter->pdev->irq;
  750. *data = 0;
  751. /* Hook up test interrupt handler just for this test */
  752. if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  753. shared_int = FALSE;
  754. } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  755. netdev->name, netdev)){
  756. *data = 1;
  757. return -1;
  758. }
  759. /* Disable all the interrupts */
  760. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  761. msec_delay(10);
  762. /* Test each interrupt */
  763. for (; i < 10; i++) {
  764. /* Interrupt to test */
  765. mask = 1 << i;
  766. if (!shared_int) {
  767. /* Disable the interrupt to be reported in
  768. * the cause register and then force the same
  769. * interrupt and see if one gets posted. If
  770. * an interrupt was posted to the bus, the
  771. * test failed.
  772. */
  773. adapter->test_icr = 0;
  774. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  775. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  776. msec_delay(10);
  777. if (adapter->test_icr & mask) {
  778. *data = 3;
  779. break;
  780. }
  781. }
  782. /* Enable the interrupt to be reported in
  783. * the cause register and then force the same
  784. * interrupt and see if one gets posted. If
  785. * an interrupt was not posted to the bus, the
  786. * test failed.
  787. */
  788. adapter->test_icr = 0;
  789. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  790. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  791. msec_delay(10);
  792. if (!(adapter->test_icr & mask)) {
  793. *data = 4;
  794. break;
  795. }
  796. if (!shared_int) {
  797. /* Disable the other interrupts to be reported in
  798. * the cause register and then force the other
  799. * interrupts and see if any get posted. If
  800. * an interrupt was posted to the bus, the
  801. * test failed.
  802. */
  803. adapter->test_icr = 0;
  804. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  805. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  806. msec_delay(10);
  807. if (adapter->test_icr) {
  808. *data = 5;
  809. break;
  810. }
  811. }
  812. }
  813. /* Disable all the interrupts */
  814. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  815. msec_delay(10);
  816. /* Unhook test interrupt handler */
  817. free_irq(irq, netdev);
  818. return *data;
  819. }
  820. static void
  821. e1000_free_desc_rings(struct e1000_adapter *adapter)
  822. {
  823. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  824. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  825. struct pci_dev *pdev = adapter->pdev;
  826. int i;
  827. if (txdr->desc && txdr->buffer_info) {
  828. for (i = 0; i < txdr->count; i++) {
  829. if (txdr->buffer_info[i].dma)
  830. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  831. txdr->buffer_info[i].length,
  832. PCI_DMA_TODEVICE);
  833. if (txdr->buffer_info[i].skb)
  834. dev_kfree_skb(txdr->buffer_info[i].skb);
  835. }
  836. }
  837. if (rxdr->desc && rxdr->buffer_info) {
  838. for (i = 0; i < rxdr->count; i++) {
  839. if (rxdr->buffer_info[i].dma)
  840. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  841. rxdr->buffer_info[i].length,
  842. PCI_DMA_FROMDEVICE);
  843. if (rxdr->buffer_info[i].skb)
  844. dev_kfree_skb(rxdr->buffer_info[i].skb);
  845. }
  846. }
  847. if (txdr->desc) {
  848. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  849. txdr->desc = NULL;
  850. }
  851. if (rxdr->desc) {
  852. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  853. rxdr->desc = NULL;
  854. }
  855. kfree(txdr->buffer_info);
  856. txdr->buffer_info = NULL;
  857. kfree(rxdr->buffer_info);
  858. rxdr->buffer_info = NULL;
  859. return;
  860. }
  861. static int
  862. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  863. {
  864. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  865. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  866. struct pci_dev *pdev = adapter->pdev;
  867. uint32_t rctl;
  868. int size, i, ret_val;
  869. /* Setup Tx descriptor ring and Tx buffers */
  870. if (!txdr->count)
  871. txdr->count = E1000_DEFAULT_TXD;
  872. size = txdr->count * sizeof(struct e1000_buffer);
  873. if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  874. ret_val = 1;
  875. goto err_nomem;
  876. }
  877. memset(txdr->buffer_info, 0, size);
  878. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  879. E1000_ROUNDUP(txdr->size, 4096);
  880. if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  881. ret_val = 2;
  882. goto err_nomem;
  883. }
  884. memset(txdr->desc, 0, txdr->size);
  885. txdr->next_to_use = txdr->next_to_clean = 0;
  886. E1000_WRITE_REG(&adapter->hw, TDBAL,
  887. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  888. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  889. E1000_WRITE_REG(&adapter->hw, TDLEN,
  890. txdr->count * sizeof(struct e1000_tx_desc));
  891. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  892. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  893. E1000_WRITE_REG(&adapter->hw, TCTL,
  894. E1000_TCTL_PSP | E1000_TCTL_EN |
  895. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  896. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  897. for (i = 0; i < txdr->count; i++) {
  898. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  899. struct sk_buff *skb;
  900. unsigned int size = 1024;
  901. if (!(skb = alloc_skb(size, GFP_KERNEL))) {
  902. ret_val = 3;
  903. goto err_nomem;
  904. }
  905. skb_put(skb, size);
  906. txdr->buffer_info[i].skb = skb;
  907. txdr->buffer_info[i].length = skb->len;
  908. txdr->buffer_info[i].dma =
  909. pci_map_single(pdev, skb->data, skb->len,
  910. PCI_DMA_TODEVICE);
  911. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  912. tx_desc->lower.data = cpu_to_le32(skb->len);
  913. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  914. E1000_TXD_CMD_IFCS |
  915. E1000_TXD_CMD_RPS);
  916. tx_desc->upper.data = 0;
  917. }
  918. /* Setup Rx descriptor ring and Rx buffers */
  919. if (!rxdr->count)
  920. rxdr->count = E1000_DEFAULT_RXD;
  921. size = rxdr->count * sizeof(struct e1000_buffer);
  922. if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  923. ret_val = 4;
  924. goto err_nomem;
  925. }
  926. memset(rxdr->buffer_info, 0, size);
  927. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  928. if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  929. ret_val = 5;
  930. goto err_nomem;
  931. }
  932. memset(rxdr->desc, 0, rxdr->size);
  933. rxdr->next_to_use = rxdr->next_to_clean = 0;
  934. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  935. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  936. E1000_WRITE_REG(&adapter->hw, RDBAL,
  937. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  938. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  939. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  940. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  941. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  942. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  943. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  944. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  945. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  946. for (i = 0; i < rxdr->count; i++) {
  947. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  948. struct sk_buff *skb;
  949. if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  950. GFP_KERNEL))) {
  951. ret_val = 6;
  952. goto err_nomem;
  953. }
  954. skb_reserve(skb, NET_IP_ALIGN);
  955. rxdr->buffer_info[i].skb = skb;
  956. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  957. rxdr->buffer_info[i].dma =
  958. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  959. PCI_DMA_FROMDEVICE);
  960. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  961. memset(skb->data, 0x00, skb->len);
  962. }
  963. return 0;
  964. err_nomem:
  965. e1000_free_desc_rings(adapter);
  966. return ret_val;
  967. }
  968. static void
  969. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  970. {
  971. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  972. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  973. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  974. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  975. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  976. }
  977. static void
  978. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  979. {
  980. uint16_t phy_reg;
  981. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  982. * Extended PHY Specific Control Register to 25MHz clock. This
  983. * value defaults back to a 2.5MHz clock when the PHY is reset.
  984. */
  985. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  986. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  987. e1000_write_phy_reg(&adapter->hw,
  988. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  989. /* In addition, because of the s/w reset above, we need to enable
  990. * CRS on TX. This must be set for both full and half duplex
  991. * operation.
  992. */
  993. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  994. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  995. e1000_write_phy_reg(&adapter->hw,
  996. M88E1000_PHY_SPEC_CTRL, phy_reg);
  997. }
  998. static int
  999. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  1000. {
  1001. uint32_t ctrl_reg;
  1002. uint16_t phy_reg;
  1003. /* Setup the Device Control Register for PHY loopback test. */
  1004. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1005. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  1006. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1007. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1008. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  1009. E1000_CTRL_FD); /* Force Duplex to FULL */
  1010. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1011. /* Read the PHY Specific Control Register (0x10) */
  1012. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  1013. /* Clear Auto-Crossover bits in PHY Specific Control Register
  1014. * (bits 6:5).
  1015. */
  1016. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  1017. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  1018. /* Perform software reset on the PHY */
  1019. e1000_phy_reset(&adapter->hw);
  1020. /* Have to setup TX_CLK and TX_CRS after software reset */
  1021. e1000_phy_reset_clk_and_crs(adapter);
  1022. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  1023. /* Wait for reset to complete. */
  1024. udelay(500);
  1025. /* Have to setup TX_CLK and TX_CRS after software reset */
  1026. e1000_phy_reset_clk_and_crs(adapter);
  1027. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  1028. e1000_phy_disable_receiver(adapter);
  1029. /* Set the loopback bit in the PHY control register. */
  1030. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1031. phy_reg |= MII_CR_LOOPBACK;
  1032. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1033. /* Setup TX_CLK and TX_CRS one more time. */
  1034. e1000_phy_reset_clk_and_crs(adapter);
  1035. /* Check Phy Configuration */
  1036. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1037. if (phy_reg != 0x4100)
  1038. return 9;
  1039. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1040. if (phy_reg != 0x0070)
  1041. return 10;
  1042. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1043. if (phy_reg != 0x001A)
  1044. return 11;
  1045. return 0;
  1046. }
  1047. static int
  1048. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1049. {
  1050. uint32_t ctrl_reg = 0;
  1051. uint32_t stat_reg = 0;
  1052. adapter->hw.autoneg = FALSE;
  1053. if (adapter->hw.phy_type == e1000_phy_m88) {
  1054. /* Auto-MDI/MDIX Off */
  1055. e1000_write_phy_reg(&adapter->hw,
  1056. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1057. /* reset to update Auto-MDI/MDIX */
  1058. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1059. /* autoneg off */
  1060. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1061. }
  1062. /* force 1000, set loopback */
  1063. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1064. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1065. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1066. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1067. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1068. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1069. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1070. E1000_CTRL_FD); /* Force Duplex to FULL */
  1071. if (adapter->hw.media_type == e1000_media_type_copper &&
  1072. adapter->hw.phy_type == e1000_phy_m88) {
  1073. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1074. } else {
  1075. /* Set the ILOS bit on the fiber Nic is half
  1076. * duplex link is detected. */
  1077. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1078. if ((stat_reg & E1000_STATUS_FD) == 0)
  1079. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1080. }
  1081. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1082. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1083. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1084. */
  1085. if (adapter->hw.phy_type == e1000_phy_m88)
  1086. e1000_phy_disable_receiver(adapter);
  1087. udelay(500);
  1088. return 0;
  1089. }
  1090. static int
  1091. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1092. {
  1093. uint16_t phy_reg = 0;
  1094. uint16_t count = 0;
  1095. switch (adapter->hw.mac_type) {
  1096. case e1000_82543:
  1097. if (adapter->hw.media_type == e1000_media_type_copper) {
  1098. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1099. * Some PHY registers get corrupted at random, so
  1100. * attempt this 10 times.
  1101. */
  1102. while (e1000_nonintegrated_phy_loopback(adapter) &&
  1103. count++ < 10);
  1104. if (count < 11)
  1105. return 0;
  1106. }
  1107. break;
  1108. case e1000_82544:
  1109. case e1000_82540:
  1110. case e1000_82545:
  1111. case e1000_82545_rev_3:
  1112. case e1000_82546:
  1113. case e1000_82546_rev_3:
  1114. case e1000_82541:
  1115. case e1000_82541_rev_2:
  1116. case e1000_82547:
  1117. case e1000_82547_rev_2:
  1118. case e1000_82571:
  1119. case e1000_82572:
  1120. case e1000_82573:
  1121. return e1000_integrated_phy_loopback(adapter);
  1122. break;
  1123. default:
  1124. /* Default PHY loopback work is to read the MII
  1125. * control register and assert bit 14 (loopback mode).
  1126. */
  1127. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1128. phy_reg |= MII_CR_LOOPBACK;
  1129. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1130. return 0;
  1131. break;
  1132. }
  1133. return 8;
  1134. }
  1135. static int
  1136. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1137. {
  1138. struct e1000_hw *hw = &adapter->hw;
  1139. uint32_t rctl;
  1140. if (hw->media_type == e1000_media_type_fiber ||
  1141. hw->media_type == e1000_media_type_internal_serdes) {
  1142. switch (hw->mac_type) {
  1143. case e1000_82545:
  1144. case e1000_82546:
  1145. case e1000_82545_rev_3:
  1146. case e1000_82546_rev_3:
  1147. return e1000_set_phy_loopback(adapter);
  1148. break;
  1149. case e1000_82571:
  1150. case e1000_82572:
  1151. #define E1000_SERDES_LB_ON 0x410
  1152. e1000_set_phy_loopback(adapter);
  1153. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
  1154. msec_delay(10);
  1155. return 0;
  1156. break;
  1157. default:
  1158. rctl = E1000_READ_REG(hw, RCTL);
  1159. rctl |= E1000_RCTL_LBM_TCVR;
  1160. E1000_WRITE_REG(hw, RCTL, rctl);
  1161. return 0;
  1162. }
  1163. } else if (hw->media_type == e1000_media_type_copper)
  1164. return e1000_set_phy_loopback(adapter);
  1165. return 7;
  1166. }
  1167. static void
  1168. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1169. {
  1170. struct e1000_hw *hw = &adapter->hw;
  1171. uint32_t rctl;
  1172. uint16_t phy_reg;
  1173. rctl = E1000_READ_REG(hw, RCTL);
  1174. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1175. E1000_WRITE_REG(hw, RCTL, rctl);
  1176. switch (hw->mac_type) {
  1177. case e1000_82571:
  1178. case e1000_82572:
  1179. if (hw->media_type == e1000_media_type_fiber ||
  1180. hw->media_type == e1000_media_type_internal_serdes) {
  1181. #define E1000_SERDES_LB_OFF 0x400
  1182. E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
  1183. msec_delay(10);
  1184. break;
  1185. }
  1186. /* Fall Through */
  1187. case e1000_82545:
  1188. case e1000_82546:
  1189. case e1000_82545_rev_3:
  1190. case e1000_82546_rev_3:
  1191. default:
  1192. hw->autoneg = TRUE;
  1193. e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
  1194. if (phy_reg & MII_CR_LOOPBACK) {
  1195. phy_reg &= ~MII_CR_LOOPBACK;
  1196. e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
  1197. e1000_phy_reset(hw);
  1198. }
  1199. break;
  1200. }
  1201. }
  1202. static void
  1203. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1204. {
  1205. memset(skb->data, 0xFF, frame_size);
  1206. frame_size &= ~1;
  1207. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1208. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1209. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1210. }
  1211. static int
  1212. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1213. {
  1214. frame_size &= ~1;
  1215. if (*(skb->data + 3) == 0xFF) {
  1216. if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1217. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1218. return 0;
  1219. }
  1220. }
  1221. return 13;
  1222. }
  1223. static int
  1224. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1225. {
  1226. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1227. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1228. struct pci_dev *pdev = adapter->pdev;
  1229. int i, j, k, l, lc, good_cnt, ret_val=0;
  1230. unsigned long time;
  1231. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1232. /* Calculate the loop count based on the largest descriptor ring
  1233. * The idea is to wrap the largest ring a number of times using 64
  1234. * send/receive pairs during each loop
  1235. */
  1236. if (rxdr->count <= txdr->count)
  1237. lc = ((txdr->count / 64) * 2) + 1;
  1238. else
  1239. lc = ((rxdr->count / 64) * 2) + 1;
  1240. k = l = 0;
  1241. for (j = 0; j <= lc; j++) { /* loop count loop */
  1242. for (i = 0; i < 64; i++) { /* send the packets */
  1243. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1244. 1024);
  1245. pci_dma_sync_single_for_device(pdev,
  1246. txdr->buffer_info[k].dma,
  1247. txdr->buffer_info[k].length,
  1248. PCI_DMA_TODEVICE);
  1249. if (unlikely(++k == txdr->count)) k = 0;
  1250. }
  1251. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1252. msec_delay(200);
  1253. time = jiffies; /* set the start time for the receive */
  1254. good_cnt = 0;
  1255. do { /* receive the sent packets */
  1256. pci_dma_sync_single_for_cpu(pdev,
  1257. rxdr->buffer_info[l].dma,
  1258. rxdr->buffer_info[l].length,
  1259. PCI_DMA_FROMDEVICE);
  1260. ret_val = e1000_check_lbtest_frame(
  1261. rxdr->buffer_info[l].skb,
  1262. 1024);
  1263. if (!ret_val)
  1264. good_cnt++;
  1265. if (unlikely(++l == rxdr->count)) l = 0;
  1266. /* time + 20 msecs (200 msecs on 2.4) is more than
  1267. * enough time to complete the receives, if it's
  1268. * exceeded, break and error off
  1269. */
  1270. } while (good_cnt < 64 && jiffies < (time + 20));
  1271. if (good_cnt != 64) {
  1272. ret_val = 13; /* ret_val is the same as mis-compare */
  1273. break;
  1274. }
  1275. if (jiffies >= (time + 2)) {
  1276. ret_val = 14; /* error code for time out error */
  1277. break;
  1278. }
  1279. } /* end loop count loop */
  1280. return ret_val;
  1281. }
  1282. static int
  1283. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1284. {
  1285. /* PHY loopback cannot be performed if SoL/IDER
  1286. * sessions are active */
  1287. if (e1000_check_phy_reset_block(&adapter->hw)) {
  1288. DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
  1289. "when SoL/IDER is active.\n");
  1290. *data = 0;
  1291. goto out;
  1292. }
  1293. if ((*data = e1000_setup_desc_rings(adapter)))
  1294. goto out;
  1295. if ((*data = e1000_setup_loopback_test(adapter)))
  1296. goto err_loopback;
  1297. *data = e1000_run_loopback_test(adapter);
  1298. e1000_loopback_cleanup(adapter);
  1299. err_loopback:
  1300. e1000_free_desc_rings(adapter);
  1301. out:
  1302. return *data;
  1303. }
  1304. static int
  1305. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1306. {
  1307. *data = 0;
  1308. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1309. int i = 0;
  1310. adapter->hw.serdes_link_down = TRUE;
  1311. /* On some blade server designs, link establishment
  1312. * could take as long as 2-3 minutes */
  1313. do {
  1314. e1000_check_for_link(&adapter->hw);
  1315. if (adapter->hw.serdes_link_down == FALSE)
  1316. return *data;
  1317. msec_delay(20);
  1318. } while (i++ < 3750);
  1319. *data = 1;
  1320. } else {
  1321. e1000_check_for_link(&adapter->hw);
  1322. if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1323. msec_delay(4000);
  1324. if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1325. *data = 1;
  1326. }
  1327. }
  1328. return *data;
  1329. }
  1330. static int
  1331. e1000_diag_test_count(struct net_device *netdev)
  1332. {
  1333. return E1000_TEST_LEN;
  1334. }
  1335. static void
  1336. e1000_diag_test(struct net_device *netdev,
  1337. struct ethtool_test *eth_test, uint64_t *data)
  1338. {
  1339. struct e1000_adapter *adapter = netdev_priv(netdev);
  1340. boolean_t if_running = netif_running(netdev);
  1341. if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1342. /* Offline tests */
  1343. /* save speed, duplex, autoneg settings */
  1344. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1345. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1346. uint8_t autoneg = adapter->hw.autoneg;
  1347. /* Link test performed before hardware reset so autoneg doesn't
  1348. * interfere with test result */
  1349. if (e1000_link_test(adapter, &data[4]))
  1350. eth_test->flags |= ETH_TEST_FL_FAILED;
  1351. if (if_running)
  1352. e1000_down(adapter);
  1353. else
  1354. e1000_reset(adapter);
  1355. if (e1000_reg_test(adapter, &data[0]))
  1356. eth_test->flags |= ETH_TEST_FL_FAILED;
  1357. e1000_reset(adapter);
  1358. if (e1000_eeprom_test(adapter, &data[1]))
  1359. eth_test->flags |= ETH_TEST_FL_FAILED;
  1360. e1000_reset(adapter);
  1361. if (e1000_intr_test(adapter, &data[2]))
  1362. eth_test->flags |= ETH_TEST_FL_FAILED;
  1363. e1000_reset(adapter);
  1364. if (e1000_loopback_test(adapter, &data[3]))
  1365. eth_test->flags |= ETH_TEST_FL_FAILED;
  1366. /* restore speed, duplex, autoneg settings */
  1367. adapter->hw.autoneg_advertised = autoneg_advertised;
  1368. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1369. adapter->hw.autoneg = autoneg;
  1370. e1000_reset(adapter);
  1371. if (if_running)
  1372. e1000_up(adapter);
  1373. } else {
  1374. /* Online tests */
  1375. if (e1000_link_test(adapter, &data[4]))
  1376. eth_test->flags |= ETH_TEST_FL_FAILED;
  1377. /* Offline tests aren't run; pass by default */
  1378. data[0] = 0;
  1379. data[1] = 0;
  1380. data[2] = 0;
  1381. data[3] = 0;
  1382. }
  1383. msleep_interruptible(4 * 1000);
  1384. }
  1385. static void
  1386. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1387. {
  1388. struct e1000_adapter *adapter = netdev_priv(netdev);
  1389. struct e1000_hw *hw = &adapter->hw;
  1390. switch (adapter->hw.device_id) {
  1391. case E1000_DEV_ID_82542:
  1392. case E1000_DEV_ID_82543GC_FIBER:
  1393. case E1000_DEV_ID_82543GC_COPPER:
  1394. case E1000_DEV_ID_82544EI_FIBER:
  1395. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1396. case E1000_DEV_ID_82545EM_FIBER:
  1397. case E1000_DEV_ID_82545EM_COPPER:
  1398. wol->supported = 0;
  1399. wol->wolopts = 0;
  1400. return;
  1401. case E1000_DEV_ID_82546EB_FIBER:
  1402. case E1000_DEV_ID_82546GB_FIBER:
  1403. case E1000_DEV_ID_82571EB_FIBER:
  1404. /* Wake events only supported on port A for dual fiber */
  1405. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1406. wol->supported = 0;
  1407. wol->wolopts = 0;
  1408. return;
  1409. }
  1410. /* Fall Through */
  1411. default:
  1412. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1413. WAKE_BCAST | WAKE_MAGIC;
  1414. wol->wolopts = 0;
  1415. if (adapter->wol & E1000_WUFC_EX)
  1416. wol->wolopts |= WAKE_UCAST;
  1417. if (adapter->wol & E1000_WUFC_MC)
  1418. wol->wolopts |= WAKE_MCAST;
  1419. if (adapter->wol & E1000_WUFC_BC)
  1420. wol->wolopts |= WAKE_BCAST;
  1421. if (adapter->wol & E1000_WUFC_MAG)
  1422. wol->wolopts |= WAKE_MAGIC;
  1423. return;
  1424. }
  1425. }
  1426. static int
  1427. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1428. {
  1429. struct e1000_adapter *adapter = netdev_priv(netdev);
  1430. struct e1000_hw *hw = &adapter->hw;
  1431. switch (adapter->hw.device_id) {
  1432. case E1000_DEV_ID_82542:
  1433. case E1000_DEV_ID_82543GC_FIBER:
  1434. case E1000_DEV_ID_82543GC_COPPER:
  1435. case E1000_DEV_ID_82544EI_FIBER:
  1436. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1437. case E1000_DEV_ID_82545EM_FIBER:
  1438. case E1000_DEV_ID_82545EM_COPPER:
  1439. return wol->wolopts ? -EOPNOTSUPP : 0;
  1440. case E1000_DEV_ID_82546EB_FIBER:
  1441. case E1000_DEV_ID_82546GB_FIBER:
  1442. case E1000_DEV_ID_82571EB_FIBER:
  1443. /* Wake events only supported on port A for dual fiber */
  1444. if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1445. return wol->wolopts ? -EOPNOTSUPP : 0;
  1446. /* Fall Through */
  1447. default:
  1448. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1449. return -EOPNOTSUPP;
  1450. adapter->wol = 0;
  1451. if (wol->wolopts & WAKE_UCAST)
  1452. adapter->wol |= E1000_WUFC_EX;
  1453. if (wol->wolopts & WAKE_MCAST)
  1454. adapter->wol |= E1000_WUFC_MC;
  1455. if (wol->wolopts & WAKE_BCAST)
  1456. adapter->wol |= E1000_WUFC_BC;
  1457. if (wol->wolopts & WAKE_MAGIC)
  1458. adapter->wol |= E1000_WUFC_MAG;
  1459. }
  1460. return 0;
  1461. }
  1462. /* toggle LED 4 times per second = 2 "blinks" per second */
  1463. #define E1000_ID_INTERVAL (HZ/4)
  1464. /* bit defines for adapter->led_status */
  1465. #define E1000_LED_ON 0
  1466. static void
  1467. e1000_led_blink_callback(unsigned long data)
  1468. {
  1469. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1470. if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1471. e1000_led_off(&adapter->hw);
  1472. else
  1473. e1000_led_on(&adapter->hw);
  1474. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1475. }
  1476. static int
  1477. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1478. {
  1479. struct e1000_adapter *adapter = netdev_priv(netdev);
  1480. if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1481. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1482. if (adapter->hw.mac_type < e1000_82571) {
  1483. if (!adapter->blink_timer.function) {
  1484. init_timer(&adapter->blink_timer);
  1485. adapter->blink_timer.function = e1000_led_blink_callback;
  1486. adapter->blink_timer.data = (unsigned long) adapter;
  1487. }
  1488. e1000_setup_led(&adapter->hw);
  1489. mod_timer(&adapter->blink_timer, jiffies);
  1490. msleep_interruptible(data * 1000);
  1491. del_timer_sync(&adapter->blink_timer);
  1492. } else if (adapter->hw.mac_type < e1000_82573) {
  1493. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1494. (E1000_LEDCTL_LED2_BLINK_RATE |
  1495. E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
  1496. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1497. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
  1498. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
  1499. msleep_interruptible(data * 1000);
  1500. } else {
  1501. E1000_WRITE_REG(&adapter->hw, LEDCTL,
  1502. (E1000_LEDCTL_LED2_BLINK_RATE |
  1503. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1504. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1505. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1506. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1507. msleep_interruptible(data * 1000);
  1508. }
  1509. e1000_led_off(&adapter->hw);
  1510. clear_bit(E1000_LED_ON, &adapter->led_status);
  1511. e1000_cleanup_led(&adapter->hw);
  1512. return 0;
  1513. }
  1514. static int
  1515. e1000_nway_reset(struct net_device *netdev)
  1516. {
  1517. struct e1000_adapter *adapter = netdev_priv(netdev);
  1518. if (netif_running(netdev)) {
  1519. e1000_down(adapter);
  1520. e1000_up(adapter);
  1521. }
  1522. return 0;
  1523. }
  1524. static int
  1525. e1000_get_stats_count(struct net_device *netdev)
  1526. {
  1527. return E1000_STATS_LEN;
  1528. }
  1529. static void
  1530. e1000_get_ethtool_stats(struct net_device *netdev,
  1531. struct ethtool_stats *stats, uint64_t *data)
  1532. {
  1533. struct e1000_adapter *adapter = netdev_priv(netdev);
  1534. #ifdef CONFIG_E1000_MQ
  1535. uint64_t *queue_stat;
  1536. int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t);
  1537. int j, k;
  1538. #endif
  1539. int i;
  1540. e1000_update_stats(adapter);
  1541. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1542. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1543. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1544. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1545. }
  1546. #ifdef CONFIG_E1000_MQ
  1547. for (j = 0; j < adapter->num_tx_queues; j++) {
  1548. queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats;
  1549. for (k = 0; k < stat_count; k++)
  1550. data[i + k] = queue_stat[k];
  1551. i += k;
  1552. }
  1553. for (j = 0; j < adapter->num_rx_queues; j++) {
  1554. queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats;
  1555. for (k = 0; k < stat_count; k++)
  1556. data[i + k] = queue_stat[k];
  1557. i += k;
  1558. }
  1559. #endif
  1560. /* BUG_ON(i != E1000_STATS_LEN); */
  1561. }
  1562. static void
  1563. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1564. {
  1565. #ifdef CONFIG_E1000_MQ
  1566. struct e1000_adapter *adapter = netdev_priv(netdev);
  1567. #endif
  1568. uint8_t *p = data;
  1569. int i;
  1570. switch (stringset) {
  1571. case ETH_SS_TEST:
  1572. memcpy(data, *e1000_gstrings_test,
  1573. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1574. break;
  1575. case ETH_SS_STATS:
  1576. for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
  1577. memcpy(p, e1000_gstrings_stats[i].stat_string,
  1578. ETH_GSTRING_LEN);
  1579. p += ETH_GSTRING_LEN;
  1580. }
  1581. #ifdef CONFIG_E1000_MQ
  1582. for (i = 0; i < adapter->num_tx_queues; i++) {
  1583. sprintf(p, "tx_queue_%u_packets", i);
  1584. p += ETH_GSTRING_LEN;
  1585. sprintf(p, "tx_queue_%u_bytes", i);
  1586. p += ETH_GSTRING_LEN;
  1587. }
  1588. for (i = 0; i < adapter->num_rx_queues; i++) {
  1589. sprintf(p, "rx_queue_%u_packets", i);
  1590. p += ETH_GSTRING_LEN;
  1591. sprintf(p, "rx_queue_%u_bytes", i);
  1592. p += ETH_GSTRING_LEN;
  1593. }
  1594. #endif
  1595. /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
  1596. break;
  1597. }
  1598. }
  1599. static struct ethtool_ops e1000_ethtool_ops = {
  1600. .get_settings = e1000_get_settings,
  1601. .set_settings = e1000_set_settings,
  1602. .get_drvinfo = e1000_get_drvinfo,
  1603. .get_regs_len = e1000_get_regs_len,
  1604. .get_regs = e1000_get_regs,
  1605. .get_wol = e1000_get_wol,
  1606. .set_wol = e1000_set_wol,
  1607. .get_msglevel = e1000_get_msglevel,
  1608. .set_msglevel = e1000_set_msglevel,
  1609. .nway_reset = e1000_nway_reset,
  1610. .get_link = ethtool_op_get_link,
  1611. .get_eeprom_len = e1000_get_eeprom_len,
  1612. .get_eeprom = e1000_get_eeprom,
  1613. .set_eeprom = e1000_set_eeprom,
  1614. .get_ringparam = e1000_get_ringparam,
  1615. .set_ringparam = e1000_set_ringparam,
  1616. .get_pauseparam = e1000_get_pauseparam,
  1617. .set_pauseparam = e1000_set_pauseparam,
  1618. .get_rx_csum = e1000_get_rx_csum,
  1619. .set_rx_csum = e1000_set_rx_csum,
  1620. .get_tx_csum = e1000_get_tx_csum,
  1621. .set_tx_csum = e1000_set_tx_csum,
  1622. .get_sg = ethtool_op_get_sg,
  1623. .set_sg = ethtool_op_set_sg,
  1624. #ifdef NETIF_F_TSO
  1625. .get_tso = ethtool_op_get_tso,
  1626. .set_tso = e1000_set_tso,
  1627. #endif
  1628. .self_test_count = e1000_diag_test_count,
  1629. .self_test = e1000_diag_test,
  1630. .get_strings = e1000_get_strings,
  1631. .phys_id = e1000_phys_id,
  1632. .get_stats_count = e1000_get_stats_count,
  1633. .get_ethtool_stats = e1000_get_ethtool_stats,
  1634. .get_perm_addr = ethtool_op_get_perm_addr,
  1635. };
  1636. void e1000_set_ethtool_ops(struct net_device *netdev)
  1637. {
  1638. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1639. }