bnx2.c 143 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004, 2005 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include "bnx2.h"
  12. #include "bnx2_fw.h"
  13. #define DRV_MODULE_NAME "bnx2"
  14. #define PFX DRV_MODULE_NAME ": "
  15. #define DRV_MODULE_VERSION "1.4.30"
  16. #define DRV_MODULE_RELDATE "October 11, 2005"
  17. #define RUN_AT(x) (jiffies + (x))
  18. /* Time in jiffies before concluding the transmitter is hung. */
  19. #define TX_TIMEOUT (5*HZ)
  20. static char version[] __devinitdata =
  21. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  22. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  23. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  24. MODULE_LICENSE("GPL");
  25. MODULE_VERSION(DRV_MODULE_VERSION);
  26. static int disable_msi = 0;
  27. module_param(disable_msi, int, 0);
  28. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  29. typedef enum {
  30. BCM5706 = 0,
  31. NC370T,
  32. NC370I,
  33. BCM5706S,
  34. NC370F,
  35. BCM5708,
  36. BCM5708S,
  37. } board_t;
  38. /* indexed by board_t, above */
  39. static struct {
  40. char *name;
  41. } board_info[] __devinitdata = {
  42. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  43. { "HP NC370T Multifunction Gigabit Server Adapter" },
  44. { "HP NC370i Multifunction Gigabit Server Adapter" },
  45. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  46. { "HP NC370F Multifunction Gigabit Server Adapter" },
  47. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  48. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  49. };
  50. static struct pci_device_id bnx2_pci_tbl[] = {
  51. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  52. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  53. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  54. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  55. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  56. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  57. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  58. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  59. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  60. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  61. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  62. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  63. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  64. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  65. { 0, }
  66. };
  67. static struct flash_spec flash_table[] =
  68. {
  69. /* Slow EEPROM */
  70. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  71. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  72. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  73. "EEPROM - slow"},
  74. /* Expansion entry 0001 */
  75. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  76. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  77. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  78. "Entry 0001"},
  79. /* Saifun SA25F010 (non-buffered flash) */
  80. /* strap, cfg1, & write1 need updates */
  81. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  82. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  83. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  84. "Non-buffered flash (128kB)"},
  85. /* Saifun SA25F020 (non-buffered flash) */
  86. /* strap, cfg1, & write1 need updates */
  87. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  88. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  89. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  90. "Non-buffered flash (256kB)"},
  91. /* Expansion entry 0100 */
  92. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  93. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  94. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  95. "Entry 0100"},
  96. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  97. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  98. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  99. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  100. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  101. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  102. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  103. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  104. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  105. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  106. /* Saifun SA25F005 (non-buffered flash) */
  107. /* strap, cfg1, & write1 need updates */
  108. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  109. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  110. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  111. "Non-buffered flash (64kB)"},
  112. /* Fast EEPROM */
  113. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  114. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  115. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  116. "EEPROM - fast"},
  117. /* Expansion entry 1001 */
  118. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  119. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  120. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  121. "Entry 1001"},
  122. /* Expansion entry 1010 */
  123. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  124. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  125. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  126. "Entry 1010"},
  127. /* ATMEL AT45DB011B (buffered flash) */
  128. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  129. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  130. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  131. "Buffered flash (128kB)"},
  132. /* Expansion entry 1100 */
  133. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  134. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  135. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  136. "Entry 1100"},
  137. /* Expansion entry 1101 */
  138. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  139. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  140. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  141. "Entry 1101"},
  142. /* Ateml Expansion entry 1110 */
  143. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  144. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  145. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 1110 (Atmel)"},
  147. /* ATMEL AT45DB021B (buffered flash) */
  148. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  149. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  150. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  151. "Buffered flash (256kB)"},
  152. };
  153. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  154. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  155. {
  156. u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons);
  157. if (diff > MAX_TX_DESC_CNT)
  158. diff = (diff & MAX_TX_DESC_CNT) - 1;
  159. return (bp->tx_ring_size - diff);
  160. }
  161. static u32
  162. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  163. {
  164. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  165. return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW));
  166. }
  167. static void
  168. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  169. {
  170. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  171. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  172. }
  173. static void
  174. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  175. {
  176. offset += cid_addr;
  177. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  178. REG_WR(bp, BNX2_CTX_DATA, val);
  179. }
  180. static int
  181. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  182. {
  183. u32 val1;
  184. int i, ret;
  185. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  186. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  187. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  188. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  189. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  190. udelay(40);
  191. }
  192. val1 = (bp->phy_addr << 21) | (reg << 16) |
  193. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  194. BNX2_EMAC_MDIO_COMM_START_BUSY;
  195. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  196. for (i = 0; i < 50; i++) {
  197. udelay(10);
  198. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  199. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  200. udelay(5);
  201. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  202. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  203. break;
  204. }
  205. }
  206. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  207. *val = 0x0;
  208. ret = -EBUSY;
  209. }
  210. else {
  211. *val = val1;
  212. ret = 0;
  213. }
  214. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  215. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  216. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  217. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  218. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  219. udelay(40);
  220. }
  221. return ret;
  222. }
  223. static int
  224. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  225. {
  226. u32 val1;
  227. int i, ret;
  228. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  229. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  230. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  231. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  232. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  233. udelay(40);
  234. }
  235. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  236. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  237. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  238. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  239. for (i = 0; i < 50; i++) {
  240. udelay(10);
  241. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  242. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  243. udelay(5);
  244. break;
  245. }
  246. }
  247. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  248. ret = -EBUSY;
  249. else
  250. ret = 0;
  251. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  252. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  253. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  254. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  255. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  256. udelay(40);
  257. }
  258. return ret;
  259. }
  260. static void
  261. bnx2_disable_int(struct bnx2 *bp)
  262. {
  263. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  264. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  265. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  266. }
  267. static void
  268. bnx2_enable_int(struct bnx2 *bp)
  269. {
  270. u32 val;
  271. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  272. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  273. val = REG_RD(bp, BNX2_HC_COMMAND);
  274. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
  275. }
  276. static void
  277. bnx2_disable_int_sync(struct bnx2 *bp)
  278. {
  279. atomic_inc(&bp->intr_sem);
  280. bnx2_disable_int(bp);
  281. synchronize_irq(bp->pdev->irq);
  282. }
  283. static void
  284. bnx2_netif_stop(struct bnx2 *bp)
  285. {
  286. bnx2_disable_int_sync(bp);
  287. if (netif_running(bp->dev)) {
  288. netif_poll_disable(bp->dev);
  289. netif_tx_disable(bp->dev);
  290. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  291. }
  292. }
  293. static void
  294. bnx2_netif_start(struct bnx2 *bp)
  295. {
  296. if (atomic_dec_and_test(&bp->intr_sem)) {
  297. if (netif_running(bp->dev)) {
  298. netif_wake_queue(bp->dev);
  299. netif_poll_enable(bp->dev);
  300. bnx2_enable_int(bp);
  301. }
  302. }
  303. }
  304. static void
  305. bnx2_free_mem(struct bnx2 *bp)
  306. {
  307. if (bp->stats_blk) {
  308. pci_free_consistent(bp->pdev, sizeof(struct statistics_block),
  309. bp->stats_blk, bp->stats_blk_mapping);
  310. bp->stats_blk = NULL;
  311. }
  312. if (bp->status_blk) {
  313. pci_free_consistent(bp->pdev, sizeof(struct status_block),
  314. bp->status_blk, bp->status_blk_mapping);
  315. bp->status_blk = NULL;
  316. }
  317. if (bp->tx_desc_ring) {
  318. pci_free_consistent(bp->pdev,
  319. sizeof(struct tx_bd) * TX_DESC_CNT,
  320. bp->tx_desc_ring, bp->tx_desc_mapping);
  321. bp->tx_desc_ring = NULL;
  322. }
  323. kfree(bp->tx_buf_ring);
  324. bp->tx_buf_ring = NULL;
  325. if (bp->rx_desc_ring) {
  326. pci_free_consistent(bp->pdev,
  327. sizeof(struct rx_bd) * RX_DESC_CNT,
  328. bp->rx_desc_ring, bp->rx_desc_mapping);
  329. bp->rx_desc_ring = NULL;
  330. }
  331. kfree(bp->rx_buf_ring);
  332. bp->rx_buf_ring = NULL;
  333. }
  334. static int
  335. bnx2_alloc_mem(struct bnx2 *bp)
  336. {
  337. bp->tx_buf_ring = kmalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  338. GFP_KERNEL);
  339. if (bp->tx_buf_ring == NULL)
  340. return -ENOMEM;
  341. memset(bp->tx_buf_ring, 0, sizeof(struct sw_bd) * TX_DESC_CNT);
  342. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  343. sizeof(struct tx_bd) *
  344. TX_DESC_CNT,
  345. &bp->tx_desc_mapping);
  346. if (bp->tx_desc_ring == NULL)
  347. goto alloc_mem_err;
  348. bp->rx_buf_ring = kmalloc(sizeof(struct sw_bd) * RX_DESC_CNT,
  349. GFP_KERNEL);
  350. if (bp->rx_buf_ring == NULL)
  351. goto alloc_mem_err;
  352. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT);
  353. bp->rx_desc_ring = pci_alloc_consistent(bp->pdev,
  354. sizeof(struct rx_bd) *
  355. RX_DESC_CNT,
  356. &bp->rx_desc_mapping);
  357. if (bp->rx_desc_ring == NULL)
  358. goto alloc_mem_err;
  359. bp->status_blk = pci_alloc_consistent(bp->pdev,
  360. sizeof(struct status_block),
  361. &bp->status_blk_mapping);
  362. if (bp->status_blk == NULL)
  363. goto alloc_mem_err;
  364. memset(bp->status_blk, 0, sizeof(struct status_block));
  365. bp->stats_blk = pci_alloc_consistent(bp->pdev,
  366. sizeof(struct statistics_block),
  367. &bp->stats_blk_mapping);
  368. if (bp->stats_blk == NULL)
  369. goto alloc_mem_err;
  370. memset(bp->stats_blk, 0, sizeof(struct statistics_block));
  371. return 0;
  372. alloc_mem_err:
  373. bnx2_free_mem(bp);
  374. return -ENOMEM;
  375. }
  376. static void
  377. bnx2_report_fw_link(struct bnx2 *bp)
  378. {
  379. u32 fw_link_status = 0;
  380. if (bp->link_up) {
  381. u32 bmsr;
  382. switch (bp->line_speed) {
  383. case SPEED_10:
  384. if (bp->duplex == DUPLEX_HALF)
  385. fw_link_status = BNX2_LINK_STATUS_10HALF;
  386. else
  387. fw_link_status = BNX2_LINK_STATUS_10FULL;
  388. break;
  389. case SPEED_100:
  390. if (bp->duplex == DUPLEX_HALF)
  391. fw_link_status = BNX2_LINK_STATUS_100HALF;
  392. else
  393. fw_link_status = BNX2_LINK_STATUS_100FULL;
  394. break;
  395. case SPEED_1000:
  396. if (bp->duplex == DUPLEX_HALF)
  397. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  398. else
  399. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  400. break;
  401. case SPEED_2500:
  402. if (bp->duplex == DUPLEX_HALF)
  403. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  404. else
  405. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  406. break;
  407. }
  408. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  409. if (bp->autoneg) {
  410. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  411. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  412. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  413. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  414. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  415. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  416. else
  417. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  418. }
  419. }
  420. else
  421. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  422. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  423. }
  424. static void
  425. bnx2_report_link(struct bnx2 *bp)
  426. {
  427. if (bp->link_up) {
  428. netif_carrier_on(bp->dev);
  429. printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
  430. printk("%d Mbps ", bp->line_speed);
  431. if (bp->duplex == DUPLEX_FULL)
  432. printk("full duplex");
  433. else
  434. printk("half duplex");
  435. if (bp->flow_ctrl) {
  436. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  437. printk(", receive ");
  438. if (bp->flow_ctrl & FLOW_CTRL_TX)
  439. printk("& transmit ");
  440. }
  441. else {
  442. printk(", transmit ");
  443. }
  444. printk("flow control ON");
  445. }
  446. printk("\n");
  447. }
  448. else {
  449. netif_carrier_off(bp->dev);
  450. printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
  451. }
  452. bnx2_report_fw_link(bp);
  453. }
  454. static void
  455. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  456. {
  457. u32 local_adv, remote_adv;
  458. bp->flow_ctrl = 0;
  459. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  460. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  461. if (bp->duplex == DUPLEX_FULL) {
  462. bp->flow_ctrl = bp->req_flow_ctrl;
  463. }
  464. return;
  465. }
  466. if (bp->duplex != DUPLEX_FULL) {
  467. return;
  468. }
  469. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  470. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  471. u32 val;
  472. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  473. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  474. bp->flow_ctrl |= FLOW_CTRL_TX;
  475. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  476. bp->flow_ctrl |= FLOW_CTRL_RX;
  477. return;
  478. }
  479. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  480. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  481. if (bp->phy_flags & PHY_SERDES_FLAG) {
  482. u32 new_local_adv = 0;
  483. u32 new_remote_adv = 0;
  484. if (local_adv & ADVERTISE_1000XPAUSE)
  485. new_local_adv |= ADVERTISE_PAUSE_CAP;
  486. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  487. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  488. if (remote_adv & ADVERTISE_1000XPAUSE)
  489. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  490. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  491. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  492. local_adv = new_local_adv;
  493. remote_adv = new_remote_adv;
  494. }
  495. /* See Table 28B-3 of 802.3ab-1999 spec. */
  496. if (local_adv & ADVERTISE_PAUSE_CAP) {
  497. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  498. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  499. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  500. }
  501. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  502. bp->flow_ctrl = FLOW_CTRL_RX;
  503. }
  504. }
  505. else {
  506. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  507. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  508. }
  509. }
  510. }
  511. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  512. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  513. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  514. bp->flow_ctrl = FLOW_CTRL_TX;
  515. }
  516. }
  517. }
  518. static int
  519. bnx2_5708s_linkup(struct bnx2 *bp)
  520. {
  521. u32 val;
  522. bp->link_up = 1;
  523. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  524. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  525. case BCM5708S_1000X_STAT1_SPEED_10:
  526. bp->line_speed = SPEED_10;
  527. break;
  528. case BCM5708S_1000X_STAT1_SPEED_100:
  529. bp->line_speed = SPEED_100;
  530. break;
  531. case BCM5708S_1000X_STAT1_SPEED_1G:
  532. bp->line_speed = SPEED_1000;
  533. break;
  534. case BCM5708S_1000X_STAT1_SPEED_2G5:
  535. bp->line_speed = SPEED_2500;
  536. break;
  537. }
  538. if (val & BCM5708S_1000X_STAT1_FD)
  539. bp->duplex = DUPLEX_FULL;
  540. else
  541. bp->duplex = DUPLEX_HALF;
  542. return 0;
  543. }
  544. static int
  545. bnx2_5706s_linkup(struct bnx2 *bp)
  546. {
  547. u32 bmcr, local_adv, remote_adv, common;
  548. bp->link_up = 1;
  549. bp->line_speed = SPEED_1000;
  550. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  551. if (bmcr & BMCR_FULLDPLX) {
  552. bp->duplex = DUPLEX_FULL;
  553. }
  554. else {
  555. bp->duplex = DUPLEX_HALF;
  556. }
  557. if (!(bmcr & BMCR_ANENABLE)) {
  558. return 0;
  559. }
  560. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  561. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  562. common = local_adv & remote_adv;
  563. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  564. if (common & ADVERTISE_1000XFULL) {
  565. bp->duplex = DUPLEX_FULL;
  566. }
  567. else {
  568. bp->duplex = DUPLEX_HALF;
  569. }
  570. }
  571. return 0;
  572. }
  573. static int
  574. bnx2_copper_linkup(struct bnx2 *bp)
  575. {
  576. u32 bmcr;
  577. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  578. if (bmcr & BMCR_ANENABLE) {
  579. u32 local_adv, remote_adv, common;
  580. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  581. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  582. common = local_adv & (remote_adv >> 2);
  583. if (common & ADVERTISE_1000FULL) {
  584. bp->line_speed = SPEED_1000;
  585. bp->duplex = DUPLEX_FULL;
  586. }
  587. else if (common & ADVERTISE_1000HALF) {
  588. bp->line_speed = SPEED_1000;
  589. bp->duplex = DUPLEX_HALF;
  590. }
  591. else {
  592. bnx2_read_phy(bp, MII_ADVERTISE, &local_adv);
  593. bnx2_read_phy(bp, MII_LPA, &remote_adv);
  594. common = local_adv & remote_adv;
  595. if (common & ADVERTISE_100FULL) {
  596. bp->line_speed = SPEED_100;
  597. bp->duplex = DUPLEX_FULL;
  598. }
  599. else if (common & ADVERTISE_100HALF) {
  600. bp->line_speed = SPEED_100;
  601. bp->duplex = DUPLEX_HALF;
  602. }
  603. else if (common & ADVERTISE_10FULL) {
  604. bp->line_speed = SPEED_10;
  605. bp->duplex = DUPLEX_FULL;
  606. }
  607. else if (common & ADVERTISE_10HALF) {
  608. bp->line_speed = SPEED_10;
  609. bp->duplex = DUPLEX_HALF;
  610. }
  611. else {
  612. bp->line_speed = 0;
  613. bp->link_up = 0;
  614. }
  615. }
  616. }
  617. else {
  618. if (bmcr & BMCR_SPEED100) {
  619. bp->line_speed = SPEED_100;
  620. }
  621. else {
  622. bp->line_speed = SPEED_10;
  623. }
  624. if (bmcr & BMCR_FULLDPLX) {
  625. bp->duplex = DUPLEX_FULL;
  626. }
  627. else {
  628. bp->duplex = DUPLEX_HALF;
  629. }
  630. }
  631. return 0;
  632. }
  633. static int
  634. bnx2_set_mac_link(struct bnx2 *bp)
  635. {
  636. u32 val;
  637. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  638. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  639. (bp->duplex == DUPLEX_HALF)) {
  640. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  641. }
  642. /* Configure the EMAC mode register. */
  643. val = REG_RD(bp, BNX2_EMAC_MODE);
  644. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  645. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  646. BNX2_EMAC_MODE_25G);
  647. if (bp->link_up) {
  648. switch (bp->line_speed) {
  649. case SPEED_10:
  650. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  651. val |= BNX2_EMAC_MODE_PORT_MII_10;
  652. break;
  653. }
  654. /* fall through */
  655. case SPEED_100:
  656. val |= BNX2_EMAC_MODE_PORT_MII;
  657. break;
  658. case SPEED_2500:
  659. val |= BNX2_EMAC_MODE_25G;
  660. /* fall through */
  661. case SPEED_1000:
  662. val |= BNX2_EMAC_MODE_PORT_GMII;
  663. break;
  664. }
  665. }
  666. else {
  667. val |= BNX2_EMAC_MODE_PORT_GMII;
  668. }
  669. /* Set the MAC to operate in the appropriate duplex mode. */
  670. if (bp->duplex == DUPLEX_HALF)
  671. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  672. REG_WR(bp, BNX2_EMAC_MODE, val);
  673. /* Enable/disable rx PAUSE. */
  674. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  675. if (bp->flow_ctrl & FLOW_CTRL_RX)
  676. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  677. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  678. /* Enable/disable tx PAUSE. */
  679. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  680. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  681. if (bp->flow_ctrl & FLOW_CTRL_TX)
  682. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  683. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  684. /* Acknowledge the interrupt. */
  685. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  686. return 0;
  687. }
  688. static int
  689. bnx2_set_link(struct bnx2 *bp)
  690. {
  691. u32 bmsr;
  692. u8 link_up;
  693. if (bp->loopback == MAC_LOOPBACK) {
  694. bp->link_up = 1;
  695. return 0;
  696. }
  697. link_up = bp->link_up;
  698. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  699. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  700. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  701. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  702. u32 val;
  703. val = REG_RD(bp, BNX2_EMAC_STATUS);
  704. if (val & BNX2_EMAC_STATUS_LINK)
  705. bmsr |= BMSR_LSTATUS;
  706. else
  707. bmsr &= ~BMSR_LSTATUS;
  708. }
  709. if (bmsr & BMSR_LSTATUS) {
  710. bp->link_up = 1;
  711. if (bp->phy_flags & PHY_SERDES_FLAG) {
  712. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  713. bnx2_5706s_linkup(bp);
  714. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  715. bnx2_5708s_linkup(bp);
  716. }
  717. else {
  718. bnx2_copper_linkup(bp);
  719. }
  720. bnx2_resolve_flow_ctrl(bp);
  721. }
  722. else {
  723. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  724. (bp->autoneg & AUTONEG_SPEED)) {
  725. u32 bmcr;
  726. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  727. if (!(bmcr & BMCR_ANENABLE)) {
  728. bnx2_write_phy(bp, MII_BMCR, bmcr |
  729. BMCR_ANENABLE);
  730. }
  731. }
  732. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  733. bp->link_up = 0;
  734. }
  735. if (bp->link_up != link_up) {
  736. bnx2_report_link(bp);
  737. }
  738. bnx2_set_mac_link(bp);
  739. return 0;
  740. }
  741. static int
  742. bnx2_reset_phy(struct bnx2 *bp)
  743. {
  744. int i;
  745. u32 reg;
  746. bnx2_write_phy(bp, MII_BMCR, BMCR_RESET);
  747. #define PHY_RESET_MAX_WAIT 100
  748. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  749. udelay(10);
  750. bnx2_read_phy(bp, MII_BMCR, &reg);
  751. if (!(reg & BMCR_RESET)) {
  752. udelay(20);
  753. break;
  754. }
  755. }
  756. if (i == PHY_RESET_MAX_WAIT) {
  757. return -EBUSY;
  758. }
  759. return 0;
  760. }
  761. static u32
  762. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  763. {
  764. u32 adv = 0;
  765. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  766. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  767. if (bp->phy_flags & PHY_SERDES_FLAG) {
  768. adv = ADVERTISE_1000XPAUSE;
  769. }
  770. else {
  771. adv = ADVERTISE_PAUSE_CAP;
  772. }
  773. }
  774. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  775. if (bp->phy_flags & PHY_SERDES_FLAG) {
  776. adv = ADVERTISE_1000XPSE_ASYM;
  777. }
  778. else {
  779. adv = ADVERTISE_PAUSE_ASYM;
  780. }
  781. }
  782. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  783. if (bp->phy_flags & PHY_SERDES_FLAG) {
  784. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  785. }
  786. else {
  787. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  788. }
  789. }
  790. return adv;
  791. }
  792. static int
  793. bnx2_setup_serdes_phy(struct bnx2 *bp)
  794. {
  795. u32 adv, bmcr, up1;
  796. u32 new_adv = 0;
  797. if (!(bp->autoneg & AUTONEG_SPEED)) {
  798. u32 new_bmcr;
  799. int force_link_down = 0;
  800. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  801. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  802. if (up1 & BCM5708S_UP1_2G5) {
  803. up1 &= ~BCM5708S_UP1_2G5;
  804. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  805. force_link_down = 1;
  806. }
  807. }
  808. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  809. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  810. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  811. new_bmcr = bmcr & ~BMCR_ANENABLE;
  812. new_bmcr |= BMCR_SPEED1000;
  813. if (bp->req_duplex == DUPLEX_FULL) {
  814. adv |= ADVERTISE_1000XFULL;
  815. new_bmcr |= BMCR_FULLDPLX;
  816. }
  817. else {
  818. adv |= ADVERTISE_1000XHALF;
  819. new_bmcr &= ~BMCR_FULLDPLX;
  820. }
  821. if ((new_bmcr != bmcr) || (force_link_down)) {
  822. /* Force a link down visible on the other side */
  823. if (bp->link_up) {
  824. bnx2_write_phy(bp, MII_ADVERTISE, adv &
  825. ~(ADVERTISE_1000XFULL |
  826. ADVERTISE_1000XHALF));
  827. bnx2_write_phy(bp, MII_BMCR, bmcr |
  828. BMCR_ANRESTART | BMCR_ANENABLE);
  829. bp->link_up = 0;
  830. netif_carrier_off(bp->dev);
  831. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  832. }
  833. bnx2_write_phy(bp, MII_ADVERTISE, adv);
  834. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  835. }
  836. return 0;
  837. }
  838. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  839. bnx2_read_phy(bp, BCM5708S_UP1, &up1);
  840. up1 |= BCM5708S_UP1_2G5;
  841. bnx2_write_phy(bp, BCM5708S_UP1, up1);
  842. }
  843. if (bp->advertising & ADVERTISED_1000baseT_Full)
  844. new_adv |= ADVERTISE_1000XFULL;
  845. new_adv |= bnx2_phy_get_pause_adv(bp);
  846. bnx2_read_phy(bp, MII_ADVERTISE, &adv);
  847. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  848. bp->serdes_an_pending = 0;
  849. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  850. /* Force a link down visible on the other side */
  851. if (bp->link_up) {
  852. int i;
  853. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  854. for (i = 0; i < 110; i++) {
  855. udelay(100);
  856. }
  857. }
  858. bnx2_write_phy(bp, MII_ADVERTISE, new_adv);
  859. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART |
  860. BMCR_ANENABLE);
  861. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  862. /* Speed up link-up time when the link partner
  863. * does not autonegotiate which is very common
  864. * in blade servers. Some blade servers use
  865. * IPMI for kerboard input and it's important
  866. * to minimize link disruptions. Autoneg. involves
  867. * exchanging base pages plus 3 next pages and
  868. * normally completes in about 120 msec.
  869. */
  870. bp->current_interval = SERDES_AN_TIMEOUT;
  871. bp->serdes_an_pending = 1;
  872. mod_timer(&bp->timer, jiffies + bp->current_interval);
  873. }
  874. }
  875. return 0;
  876. }
  877. #define ETHTOOL_ALL_FIBRE_SPEED \
  878. (ADVERTISED_1000baseT_Full)
  879. #define ETHTOOL_ALL_COPPER_SPEED \
  880. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  881. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  882. ADVERTISED_1000baseT_Full)
  883. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  884. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  885. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  886. static int
  887. bnx2_setup_copper_phy(struct bnx2 *bp)
  888. {
  889. u32 bmcr;
  890. u32 new_bmcr;
  891. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  892. if (bp->autoneg & AUTONEG_SPEED) {
  893. u32 adv_reg, adv1000_reg;
  894. u32 new_adv_reg = 0;
  895. u32 new_adv1000_reg = 0;
  896. bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg);
  897. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  898. ADVERTISE_PAUSE_ASYM);
  899. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  900. adv1000_reg &= PHY_ALL_1000_SPEED;
  901. if (bp->advertising & ADVERTISED_10baseT_Half)
  902. new_adv_reg |= ADVERTISE_10HALF;
  903. if (bp->advertising & ADVERTISED_10baseT_Full)
  904. new_adv_reg |= ADVERTISE_10FULL;
  905. if (bp->advertising & ADVERTISED_100baseT_Half)
  906. new_adv_reg |= ADVERTISE_100HALF;
  907. if (bp->advertising & ADVERTISED_100baseT_Full)
  908. new_adv_reg |= ADVERTISE_100FULL;
  909. if (bp->advertising & ADVERTISED_1000baseT_Full)
  910. new_adv1000_reg |= ADVERTISE_1000FULL;
  911. new_adv_reg |= ADVERTISE_CSMA;
  912. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  913. if ((adv1000_reg != new_adv1000_reg) ||
  914. (adv_reg != new_adv_reg) ||
  915. ((bmcr & BMCR_ANENABLE) == 0)) {
  916. bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg);
  917. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  918. bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART |
  919. BMCR_ANENABLE);
  920. }
  921. else if (bp->link_up) {
  922. /* Flow ctrl may have changed from auto to forced */
  923. /* or vice-versa. */
  924. bnx2_resolve_flow_ctrl(bp);
  925. bnx2_set_mac_link(bp);
  926. }
  927. return 0;
  928. }
  929. new_bmcr = 0;
  930. if (bp->req_line_speed == SPEED_100) {
  931. new_bmcr |= BMCR_SPEED100;
  932. }
  933. if (bp->req_duplex == DUPLEX_FULL) {
  934. new_bmcr |= BMCR_FULLDPLX;
  935. }
  936. if (new_bmcr != bmcr) {
  937. u32 bmsr;
  938. int i = 0;
  939. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  940. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  941. if (bmsr & BMSR_LSTATUS) {
  942. /* Force link down */
  943. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  944. do {
  945. udelay(100);
  946. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  947. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  948. i++;
  949. } while ((bmsr & BMSR_LSTATUS) && (i < 620));
  950. }
  951. bnx2_write_phy(bp, MII_BMCR, new_bmcr);
  952. /* Normally, the new speed is setup after the link has
  953. * gone down and up again. In some cases, link will not go
  954. * down so we need to set up the new speed here.
  955. */
  956. if (bmsr & BMSR_LSTATUS) {
  957. bp->line_speed = bp->req_line_speed;
  958. bp->duplex = bp->req_duplex;
  959. bnx2_resolve_flow_ctrl(bp);
  960. bnx2_set_mac_link(bp);
  961. }
  962. }
  963. return 0;
  964. }
  965. static int
  966. bnx2_setup_phy(struct bnx2 *bp)
  967. {
  968. if (bp->loopback == MAC_LOOPBACK)
  969. return 0;
  970. if (bp->phy_flags & PHY_SERDES_FLAG) {
  971. return (bnx2_setup_serdes_phy(bp));
  972. }
  973. else {
  974. return (bnx2_setup_copper_phy(bp));
  975. }
  976. }
  977. static int
  978. bnx2_init_5708s_phy(struct bnx2 *bp)
  979. {
  980. u32 val;
  981. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  982. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  983. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  984. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  985. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  986. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  987. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  988. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  989. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  990. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  991. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  992. val |= BCM5708S_UP1_2G5;
  993. bnx2_write_phy(bp, BCM5708S_UP1, val);
  994. }
  995. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  996. (CHIP_ID(bp) == CHIP_ID_5708_B0)) {
  997. /* increase tx signal amplitude */
  998. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  999. BCM5708S_BLK_ADDR_TX_MISC);
  1000. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1001. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1002. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1003. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1004. }
  1005. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1006. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1007. if (val) {
  1008. u32 is_backplane;
  1009. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1010. BNX2_SHARED_HW_CFG_CONFIG);
  1011. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1012. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1013. BCM5708S_BLK_ADDR_TX_MISC);
  1014. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1015. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1016. BCM5708S_BLK_ADDR_DIG);
  1017. }
  1018. }
  1019. return 0;
  1020. }
  1021. static int
  1022. bnx2_init_5706s_phy(struct bnx2 *bp)
  1023. {
  1024. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1025. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  1026. REG_WR(bp, BNX2_MISC_UNUSED0, 0x300);
  1027. }
  1028. if (bp->dev->mtu > 1500) {
  1029. u32 val;
  1030. /* Set extended packet length bit */
  1031. bnx2_write_phy(bp, 0x18, 0x7);
  1032. bnx2_read_phy(bp, 0x18, &val);
  1033. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1034. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1035. bnx2_read_phy(bp, 0x1c, &val);
  1036. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1037. }
  1038. else {
  1039. u32 val;
  1040. bnx2_write_phy(bp, 0x18, 0x7);
  1041. bnx2_read_phy(bp, 0x18, &val);
  1042. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1043. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1044. bnx2_read_phy(bp, 0x1c, &val);
  1045. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1046. }
  1047. return 0;
  1048. }
  1049. static int
  1050. bnx2_init_copper_phy(struct bnx2 *bp)
  1051. {
  1052. u32 val;
  1053. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  1054. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1055. bnx2_write_phy(bp, 0x18, 0x0c00);
  1056. bnx2_write_phy(bp, 0x17, 0x000a);
  1057. bnx2_write_phy(bp, 0x15, 0x310b);
  1058. bnx2_write_phy(bp, 0x17, 0x201f);
  1059. bnx2_write_phy(bp, 0x15, 0x9506);
  1060. bnx2_write_phy(bp, 0x17, 0x401f);
  1061. bnx2_write_phy(bp, 0x15, 0x14e2);
  1062. bnx2_write_phy(bp, 0x18, 0x0400);
  1063. }
  1064. if (bp->dev->mtu > 1500) {
  1065. /* Set extended packet length bit */
  1066. bnx2_write_phy(bp, 0x18, 0x7);
  1067. bnx2_read_phy(bp, 0x18, &val);
  1068. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1069. bnx2_read_phy(bp, 0x10, &val);
  1070. bnx2_write_phy(bp, 0x10, val | 0x1);
  1071. }
  1072. else {
  1073. bnx2_write_phy(bp, 0x18, 0x7);
  1074. bnx2_read_phy(bp, 0x18, &val);
  1075. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1076. bnx2_read_phy(bp, 0x10, &val);
  1077. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1078. }
  1079. /* ethernet@wirespeed */
  1080. bnx2_write_phy(bp, 0x18, 0x7007);
  1081. bnx2_read_phy(bp, 0x18, &val);
  1082. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1083. return 0;
  1084. }
  1085. static int
  1086. bnx2_init_phy(struct bnx2 *bp)
  1087. {
  1088. u32 val;
  1089. int rc = 0;
  1090. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1091. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1092. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1093. bnx2_reset_phy(bp);
  1094. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1095. bp->phy_id = val << 16;
  1096. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1097. bp->phy_id |= val & 0xffff;
  1098. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1099. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1100. rc = bnx2_init_5706s_phy(bp);
  1101. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1102. rc = bnx2_init_5708s_phy(bp);
  1103. }
  1104. else {
  1105. rc = bnx2_init_copper_phy(bp);
  1106. }
  1107. bnx2_setup_phy(bp);
  1108. return rc;
  1109. }
  1110. static int
  1111. bnx2_set_mac_loopback(struct bnx2 *bp)
  1112. {
  1113. u32 mac_mode;
  1114. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1115. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1116. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1117. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1118. bp->link_up = 1;
  1119. return 0;
  1120. }
  1121. static int
  1122. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data)
  1123. {
  1124. int i;
  1125. u32 val;
  1126. if (bp->fw_timed_out)
  1127. return -EBUSY;
  1128. bp->fw_wr_seq++;
  1129. msg_data |= bp->fw_wr_seq;
  1130. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1131. /* wait for an acknowledgement. */
  1132. for (i = 0; i < (FW_ACK_TIME_OUT_MS * 1000)/5; i++) {
  1133. udelay(5);
  1134. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1135. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1136. break;
  1137. }
  1138. /* If we timed out, inform the firmware that this is the case. */
  1139. if (((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) &&
  1140. ((msg_data & BNX2_DRV_MSG_DATA) != BNX2_DRV_MSG_DATA_WAIT0)) {
  1141. msg_data &= ~BNX2_DRV_MSG_CODE;
  1142. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1143. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1144. bp->fw_timed_out = 1;
  1145. return -EBUSY;
  1146. }
  1147. return 0;
  1148. }
  1149. static void
  1150. bnx2_init_context(struct bnx2 *bp)
  1151. {
  1152. u32 vcid;
  1153. vcid = 96;
  1154. while (vcid) {
  1155. u32 vcid_addr, pcid_addr, offset;
  1156. vcid--;
  1157. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1158. u32 new_vcid;
  1159. vcid_addr = GET_PCID_ADDR(vcid);
  1160. if (vcid & 0x8) {
  1161. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1162. }
  1163. else {
  1164. new_vcid = vcid;
  1165. }
  1166. pcid_addr = GET_PCID_ADDR(new_vcid);
  1167. }
  1168. else {
  1169. vcid_addr = GET_CID_ADDR(vcid);
  1170. pcid_addr = vcid_addr;
  1171. }
  1172. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1173. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1174. /* Zero out the context. */
  1175. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
  1176. CTX_WR(bp, 0x00, offset, 0);
  1177. }
  1178. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1179. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1180. }
  1181. }
  1182. static int
  1183. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1184. {
  1185. u16 *good_mbuf;
  1186. u32 good_mbuf_cnt;
  1187. u32 val;
  1188. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1189. if (good_mbuf == NULL) {
  1190. printk(KERN_ERR PFX "Failed to allocate memory in "
  1191. "bnx2_alloc_bad_rbuf\n");
  1192. return -ENOMEM;
  1193. }
  1194. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1195. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1196. good_mbuf_cnt = 0;
  1197. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1198. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1199. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1200. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1201. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1202. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1203. /* The addresses with Bit 9 set are bad memory blocks. */
  1204. if (!(val & (1 << 9))) {
  1205. good_mbuf[good_mbuf_cnt] = (u16) val;
  1206. good_mbuf_cnt++;
  1207. }
  1208. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1209. }
  1210. /* Free the good ones back to the mbuf pool thus discarding
  1211. * all the bad ones. */
  1212. while (good_mbuf_cnt) {
  1213. good_mbuf_cnt--;
  1214. val = good_mbuf[good_mbuf_cnt];
  1215. val = (val << 9) | val | 1;
  1216. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1217. }
  1218. kfree(good_mbuf);
  1219. return 0;
  1220. }
  1221. static void
  1222. bnx2_set_mac_addr(struct bnx2 *bp)
  1223. {
  1224. u32 val;
  1225. u8 *mac_addr = bp->dev->dev_addr;
  1226. val = (mac_addr[0] << 8) | mac_addr[1];
  1227. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1228. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1229. (mac_addr[4] << 8) | mac_addr[5];
  1230. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1231. }
  1232. static inline int
  1233. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1234. {
  1235. struct sk_buff *skb;
  1236. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1237. dma_addr_t mapping;
  1238. struct rx_bd *rxbd = &bp->rx_desc_ring[index];
  1239. unsigned long align;
  1240. skb = dev_alloc_skb(bp->rx_buf_size);
  1241. if (skb == NULL) {
  1242. return -ENOMEM;
  1243. }
  1244. if (unlikely((align = (unsigned long) skb->data & 0x7))) {
  1245. skb_reserve(skb, 8 - align);
  1246. }
  1247. skb->dev = bp->dev;
  1248. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1249. PCI_DMA_FROMDEVICE);
  1250. rx_buf->skb = skb;
  1251. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1252. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1253. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1254. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1255. return 0;
  1256. }
  1257. static void
  1258. bnx2_phy_int(struct bnx2 *bp)
  1259. {
  1260. u32 new_link_state, old_link_state;
  1261. new_link_state = bp->status_blk->status_attn_bits &
  1262. STATUS_ATTN_BITS_LINK_STATE;
  1263. old_link_state = bp->status_blk->status_attn_bits_ack &
  1264. STATUS_ATTN_BITS_LINK_STATE;
  1265. if (new_link_state != old_link_state) {
  1266. if (new_link_state) {
  1267. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD,
  1268. STATUS_ATTN_BITS_LINK_STATE);
  1269. }
  1270. else {
  1271. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD,
  1272. STATUS_ATTN_BITS_LINK_STATE);
  1273. }
  1274. bnx2_set_link(bp);
  1275. }
  1276. }
  1277. static void
  1278. bnx2_tx_int(struct bnx2 *bp)
  1279. {
  1280. struct status_block *sblk = bp->status_blk;
  1281. u16 hw_cons, sw_cons, sw_ring_cons;
  1282. int tx_free_bd = 0;
  1283. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1284. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1285. hw_cons++;
  1286. }
  1287. sw_cons = bp->tx_cons;
  1288. while (sw_cons != hw_cons) {
  1289. struct sw_bd *tx_buf;
  1290. struct sk_buff *skb;
  1291. int i, last;
  1292. sw_ring_cons = TX_RING_IDX(sw_cons);
  1293. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1294. skb = tx_buf->skb;
  1295. #ifdef BCM_TSO
  1296. /* partial BD completions possible with TSO packets */
  1297. if (skb_shinfo(skb)->tso_size) {
  1298. u16 last_idx, last_ring_idx;
  1299. last_idx = sw_cons +
  1300. skb_shinfo(skb)->nr_frags + 1;
  1301. last_ring_idx = sw_ring_cons +
  1302. skb_shinfo(skb)->nr_frags + 1;
  1303. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1304. last_idx++;
  1305. }
  1306. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1307. break;
  1308. }
  1309. }
  1310. #endif
  1311. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1312. skb_headlen(skb), PCI_DMA_TODEVICE);
  1313. tx_buf->skb = NULL;
  1314. last = skb_shinfo(skb)->nr_frags;
  1315. for (i = 0; i < last; i++) {
  1316. sw_cons = NEXT_TX_BD(sw_cons);
  1317. pci_unmap_page(bp->pdev,
  1318. pci_unmap_addr(
  1319. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1320. mapping),
  1321. skb_shinfo(skb)->frags[i].size,
  1322. PCI_DMA_TODEVICE);
  1323. }
  1324. sw_cons = NEXT_TX_BD(sw_cons);
  1325. tx_free_bd += last + 1;
  1326. dev_kfree_skb_irq(skb);
  1327. hw_cons = bp->hw_tx_cons =
  1328. sblk->status_tx_quick_consumer_index0;
  1329. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1330. hw_cons++;
  1331. }
  1332. }
  1333. bp->tx_cons = sw_cons;
  1334. if (unlikely(netif_queue_stopped(bp->dev))) {
  1335. spin_lock(&bp->tx_lock);
  1336. if ((netif_queue_stopped(bp->dev)) &&
  1337. (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) {
  1338. netif_wake_queue(bp->dev);
  1339. }
  1340. spin_unlock(&bp->tx_lock);
  1341. }
  1342. }
  1343. static inline void
  1344. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1345. u16 cons, u16 prod)
  1346. {
  1347. struct sw_bd *cons_rx_buf = &bp->rx_buf_ring[cons];
  1348. struct sw_bd *prod_rx_buf = &bp->rx_buf_ring[prod];
  1349. struct rx_bd *cons_bd = &bp->rx_desc_ring[cons];
  1350. struct rx_bd *prod_bd = &bp->rx_desc_ring[prod];
  1351. pci_dma_sync_single_for_device(bp->pdev,
  1352. pci_unmap_addr(cons_rx_buf, mapping),
  1353. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1354. prod_rx_buf->skb = cons_rx_buf->skb;
  1355. pci_unmap_addr_set(prod_rx_buf, mapping,
  1356. pci_unmap_addr(cons_rx_buf, mapping));
  1357. memcpy(prod_bd, cons_bd, 8);
  1358. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1359. }
  1360. static int
  1361. bnx2_rx_int(struct bnx2 *bp, int budget)
  1362. {
  1363. struct status_block *sblk = bp->status_blk;
  1364. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  1365. struct l2_fhdr *rx_hdr;
  1366. int rx_pkt = 0;
  1367. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  1368. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  1369. hw_cons++;
  1370. }
  1371. sw_cons = bp->rx_cons;
  1372. sw_prod = bp->rx_prod;
  1373. /* Memory barrier necessary as speculative reads of the rx
  1374. * buffer can be ahead of the index in the status block
  1375. */
  1376. rmb();
  1377. while (sw_cons != hw_cons) {
  1378. unsigned int len;
  1379. u16 status;
  1380. struct sw_bd *rx_buf;
  1381. struct sk_buff *skb;
  1382. sw_ring_cons = RX_RING_IDX(sw_cons);
  1383. sw_ring_prod = RX_RING_IDX(sw_prod);
  1384. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  1385. skb = rx_buf->skb;
  1386. pci_dma_sync_single_for_cpu(bp->pdev,
  1387. pci_unmap_addr(rx_buf, mapping),
  1388. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1389. rx_hdr = (struct l2_fhdr *) skb->data;
  1390. len = rx_hdr->l2_fhdr_pkt_len - 4;
  1391. if (rx_hdr->l2_fhdr_errors &
  1392. (L2_FHDR_ERRORS_BAD_CRC |
  1393. L2_FHDR_ERRORS_PHY_DECODE |
  1394. L2_FHDR_ERRORS_ALIGNMENT |
  1395. L2_FHDR_ERRORS_TOO_SHORT |
  1396. L2_FHDR_ERRORS_GIANT_FRAME)) {
  1397. goto reuse_rx;
  1398. }
  1399. /* Since we don't have a jumbo ring, copy small packets
  1400. * if mtu > 1500
  1401. */
  1402. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  1403. struct sk_buff *new_skb;
  1404. new_skb = dev_alloc_skb(len + 2);
  1405. if (new_skb == NULL)
  1406. goto reuse_rx;
  1407. /* aligned copy */
  1408. memcpy(new_skb->data,
  1409. skb->data + bp->rx_offset - 2,
  1410. len + 2);
  1411. skb_reserve(new_skb, 2);
  1412. skb_put(new_skb, len);
  1413. new_skb->dev = bp->dev;
  1414. bnx2_reuse_rx_skb(bp, skb,
  1415. sw_ring_cons, sw_ring_prod);
  1416. skb = new_skb;
  1417. }
  1418. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  1419. pci_unmap_single(bp->pdev,
  1420. pci_unmap_addr(rx_buf, mapping),
  1421. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  1422. skb_reserve(skb, bp->rx_offset);
  1423. skb_put(skb, len);
  1424. }
  1425. else {
  1426. reuse_rx:
  1427. bnx2_reuse_rx_skb(bp, skb,
  1428. sw_ring_cons, sw_ring_prod);
  1429. goto next_rx;
  1430. }
  1431. skb->protocol = eth_type_trans(skb, bp->dev);
  1432. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  1433. (htons(skb->protocol) != 0x8100)) {
  1434. dev_kfree_skb_irq(skb);
  1435. goto next_rx;
  1436. }
  1437. status = rx_hdr->l2_fhdr_status;
  1438. skb->ip_summed = CHECKSUM_NONE;
  1439. if (bp->rx_csum &&
  1440. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  1441. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  1442. u16 cksum = rx_hdr->l2_fhdr_tcp_udp_xsum;
  1443. if (cksum == 0xffff)
  1444. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1445. }
  1446. #ifdef BCM_VLAN
  1447. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  1448. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  1449. rx_hdr->l2_fhdr_vlan_tag);
  1450. }
  1451. else
  1452. #endif
  1453. netif_receive_skb(skb);
  1454. bp->dev->last_rx = jiffies;
  1455. rx_pkt++;
  1456. next_rx:
  1457. rx_buf->skb = NULL;
  1458. sw_cons = NEXT_RX_BD(sw_cons);
  1459. sw_prod = NEXT_RX_BD(sw_prod);
  1460. if ((rx_pkt == budget))
  1461. break;
  1462. /* Refresh hw_cons to see if there is new work */
  1463. if (sw_cons == hw_cons) {
  1464. hw_cons = bp->hw_rx_cons =
  1465. sblk->status_rx_quick_consumer_index0;
  1466. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  1467. hw_cons++;
  1468. rmb();
  1469. }
  1470. }
  1471. bp->rx_cons = sw_cons;
  1472. bp->rx_prod = sw_prod;
  1473. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  1474. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  1475. mmiowb();
  1476. return rx_pkt;
  1477. }
  1478. /* MSI ISR - The only difference between this and the INTx ISR
  1479. * is that the MSI interrupt is always serviced.
  1480. */
  1481. static irqreturn_t
  1482. bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs)
  1483. {
  1484. struct net_device *dev = dev_instance;
  1485. struct bnx2 *bp = dev->priv;
  1486. prefetch(bp->status_blk);
  1487. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1488. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1489. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1490. /* Return here if interrupt is disabled. */
  1491. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1492. return IRQ_HANDLED;
  1493. netif_rx_schedule(dev);
  1494. return IRQ_HANDLED;
  1495. }
  1496. static irqreturn_t
  1497. bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
  1498. {
  1499. struct net_device *dev = dev_instance;
  1500. struct bnx2 *bp = dev->priv;
  1501. /* When using INTx, it is possible for the interrupt to arrive
  1502. * at the CPU before the status block posted prior to the
  1503. * interrupt. Reading a register will flush the status block.
  1504. * When using MSI, the MSI message will always complete after
  1505. * the status block write.
  1506. */
  1507. if ((bp->status_blk->status_idx == bp->last_status_idx) &&
  1508. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  1509. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  1510. return IRQ_NONE;
  1511. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1512. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1514. /* Return here if interrupt is shared and is disabled. */
  1515. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1516. return IRQ_HANDLED;
  1517. netif_rx_schedule(dev);
  1518. return IRQ_HANDLED;
  1519. }
  1520. static inline int
  1521. bnx2_has_work(struct bnx2 *bp)
  1522. {
  1523. struct status_block *sblk = bp->status_blk;
  1524. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  1525. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  1526. return 1;
  1527. if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
  1528. bp->link_up)
  1529. return 1;
  1530. return 0;
  1531. }
  1532. static int
  1533. bnx2_poll(struct net_device *dev, int *budget)
  1534. {
  1535. struct bnx2 *bp = dev->priv;
  1536. if ((bp->status_blk->status_attn_bits &
  1537. STATUS_ATTN_BITS_LINK_STATE) !=
  1538. (bp->status_blk->status_attn_bits_ack &
  1539. STATUS_ATTN_BITS_LINK_STATE)) {
  1540. spin_lock(&bp->phy_lock);
  1541. bnx2_phy_int(bp);
  1542. spin_unlock(&bp->phy_lock);
  1543. }
  1544. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  1545. bnx2_tx_int(bp);
  1546. if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
  1547. int orig_budget = *budget;
  1548. int work_done;
  1549. if (orig_budget > dev->quota)
  1550. orig_budget = dev->quota;
  1551. work_done = bnx2_rx_int(bp, orig_budget);
  1552. *budget -= work_done;
  1553. dev->quota -= work_done;
  1554. }
  1555. bp->last_status_idx = bp->status_blk->status_idx;
  1556. rmb();
  1557. if (!bnx2_has_work(bp)) {
  1558. netif_rx_complete(dev);
  1559. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1560. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1561. bp->last_status_idx);
  1562. return 0;
  1563. }
  1564. return 1;
  1565. }
  1566. /* Called with rtnl_lock from vlan functions and also dev->xmit_lock
  1567. * from set_multicast.
  1568. */
  1569. static void
  1570. bnx2_set_rx_mode(struct net_device *dev)
  1571. {
  1572. struct bnx2 *bp = dev->priv;
  1573. u32 rx_mode, sort_mode;
  1574. int i;
  1575. spin_lock_bh(&bp->phy_lock);
  1576. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  1577. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  1578. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  1579. #ifdef BCM_VLAN
  1580. if (!bp->vlgrp) {
  1581. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1582. }
  1583. #else
  1584. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1585. #endif
  1586. if (dev->flags & IFF_PROMISC) {
  1587. /* Promiscuous mode. */
  1588. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  1589. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN;
  1590. }
  1591. else if (dev->flags & IFF_ALLMULTI) {
  1592. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1593. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1594. 0xffffffff);
  1595. }
  1596. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  1597. }
  1598. else {
  1599. /* Accept one or more multicast(s). */
  1600. struct dev_mc_list *mclist;
  1601. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  1602. u32 regidx;
  1603. u32 bit;
  1604. u32 crc;
  1605. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  1606. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  1607. i++, mclist = mclist->next) {
  1608. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  1609. bit = crc & 0xff;
  1610. regidx = (bit & 0xe0) >> 5;
  1611. bit &= 0x1f;
  1612. mc_filter[regidx] |= (1 << bit);
  1613. }
  1614. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1615. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1616. mc_filter[i]);
  1617. }
  1618. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  1619. }
  1620. if (rx_mode != bp->rx_mode) {
  1621. bp->rx_mode = rx_mode;
  1622. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  1623. }
  1624. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1625. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  1626. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  1627. spin_unlock_bh(&bp->phy_lock);
  1628. }
  1629. static void
  1630. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  1631. u32 rv2p_proc)
  1632. {
  1633. int i;
  1634. u32 val;
  1635. for (i = 0; i < rv2p_code_len; i += 8) {
  1636. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, *rv2p_code);
  1637. rv2p_code++;
  1638. REG_WR(bp, BNX2_RV2P_INSTR_LOW, *rv2p_code);
  1639. rv2p_code++;
  1640. if (rv2p_proc == RV2P_PROC1) {
  1641. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  1642. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  1643. }
  1644. else {
  1645. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  1646. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  1647. }
  1648. }
  1649. /* Reset the processor, un-stall is done later. */
  1650. if (rv2p_proc == RV2P_PROC1) {
  1651. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  1652. }
  1653. else {
  1654. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  1655. }
  1656. }
  1657. static void
  1658. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  1659. {
  1660. u32 offset;
  1661. u32 val;
  1662. /* Halt the CPU. */
  1663. val = REG_RD_IND(bp, cpu_reg->mode);
  1664. val |= cpu_reg->mode_value_halt;
  1665. REG_WR_IND(bp, cpu_reg->mode, val);
  1666. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1667. /* Load the Text area. */
  1668. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  1669. if (fw->text) {
  1670. int j;
  1671. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  1672. REG_WR_IND(bp, offset, fw->text[j]);
  1673. }
  1674. }
  1675. /* Load the Data area. */
  1676. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  1677. if (fw->data) {
  1678. int j;
  1679. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  1680. REG_WR_IND(bp, offset, fw->data[j]);
  1681. }
  1682. }
  1683. /* Load the SBSS area. */
  1684. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  1685. if (fw->sbss) {
  1686. int j;
  1687. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  1688. REG_WR_IND(bp, offset, fw->sbss[j]);
  1689. }
  1690. }
  1691. /* Load the BSS area. */
  1692. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  1693. if (fw->bss) {
  1694. int j;
  1695. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  1696. REG_WR_IND(bp, offset, fw->bss[j]);
  1697. }
  1698. }
  1699. /* Load the Read-Only area. */
  1700. offset = cpu_reg->spad_base +
  1701. (fw->rodata_addr - cpu_reg->mips_view_base);
  1702. if (fw->rodata) {
  1703. int j;
  1704. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  1705. REG_WR_IND(bp, offset, fw->rodata[j]);
  1706. }
  1707. }
  1708. /* Clear the pre-fetch instruction. */
  1709. REG_WR_IND(bp, cpu_reg->inst, 0);
  1710. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  1711. /* Start the CPU. */
  1712. val = REG_RD_IND(bp, cpu_reg->mode);
  1713. val &= ~cpu_reg->mode_value_halt;
  1714. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  1715. REG_WR_IND(bp, cpu_reg->mode, val);
  1716. }
  1717. static void
  1718. bnx2_init_cpus(struct bnx2 *bp)
  1719. {
  1720. struct cpu_reg cpu_reg;
  1721. struct fw_info fw;
  1722. /* Initialize the RV2P processor. */
  1723. load_rv2p_fw(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), RV2P_PROC1);
  1724. load_rv2p_fw(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), RV2P_PROC2);
  1725. /* Initialize the RX Processor. */
  1726. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  1727. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  1728. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  1729. cpu_reg.state = BNX2_RXP_CPU_STATE;
  1730. cpu_reg.state_value_clear = 0xffffff;
  1731. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  1732. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  1733. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  1734. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  1735. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  1736. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  1737. cpu_reg.mips_view_base = 0x8000000;
  1738. fw.ver_major = bnx2_RXP_b06FwReleaseMajor;
  1739. fw.ver_minor = bnx2_RXP_b06FwReleaseMinor;
  1740. fw.ver_fix = bnx2_RXP_b06FwReleaseFix;
  1741. fw.start_addr = bnx2_RXP_b06FwStartAddr;
  1742. fw.text_addr = bnx2_RXP_b06FwTextAddr;
  1743. fw.text_len = bnx2_RXP_b06FwTextLen;
  1744. fw.text_index = 0;
  1745. fw.text = bnx2_RXP_b06FwText;
  1746. fw.data_addr = bnx2_RXP_b06FwDataAddr;
  1747. fw.data_len = bnx2_RXP_b06FwDataLen;
  1748. fw.data_index = 0;
  1749. fw.data = bnx2_RXP_b06FwData;
  1750. fw.sbss_addr = bnx2_RXP_b06FwSbssAddr;
  1751. fw.sbss_len = bnx2_RXP_b06FwSbssLen;
  1752. fw.sbss_index = 0;
  1753. fw.sbss = bnx2_RXP_b06FwSbss;
  1754. fw.bss_addr = bnx2_RXP_b06FwBssAddr;
  1755. fw.bss_len = bnx2_RXP_b06FwBssLen;
  1756. fw.bss_index = 0;
  1757. fw.bss = bnx2_RXP_b06FwBss;
  1758. fw.rodata_addr = bnx2_RXP_b06FwRodataAddr;
  1759. fw.rodata_len = bnx2_RXP_b06FwRodataLen;
  1760. fw.rodata_index = 0;
  1761. fw.rodata = bnx2_RXP_b06FwRodata;
  1762. load_cpu_fw(bp, &cpu_reg, &fw);
  1763. /* Initialize the TX Processor. */
  1764. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  1765. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  1766. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  1767. cpu_reg.state = BNX2_TXP_CPU_STATE;
  1768. cpu_reg.state_value_clear = 0xffffff;
  1769. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  1770. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  1771. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  1772. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  1773. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  1774. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  1775. cpu_reg.mips_view_base = 0x8000000;
  1776. fw.ver_major = bnx2_TXP_b06FwReleaseMajor;
  1777. fw.ver_minor = bnx2_TXP_b06FwReleaseMinor;
  1778. fw.ver_fix = bnx2_TXP_b06FwReleaseFix;
  1779. fw.start_addr = bnx2_TXP_b06FwStartAddr;
  1780. fw.text_addr = bnx2_TXP_b06FwTextAddr;
  1781. fw.text_len = bnx2_TXP_b06FwTextLen;
  1782. fw.text_index = 0;
  1783. fw.text = bnx2_TXP_b06FwText;
  1784. fw.data_addr = bnx2_TXP_b06FwDataAddr;
  1785. fw.data_len = bnx2_TXP_b06FwDataLen;
  1786. fw.data_index = 0;
  1787. fw.data = bnx2_TXP_b06FwData;
  1788. fw.sbss_addr = bnx2_TXP_b06FwSbssAddr;
  1789. fw.sbss_len = bnx2_TXP_b06FwSbssLen;
  1790. fw.sbss_index = 0;
  1791. fw.sbss = bnx2_TXP_b06FwSbss;
  1792. fw.bss_addr = bnx2_TXP_b06FwBssAddr;
  1793. fw.bss_len = bnx2_TXP_b06FwBssLen;
  1794. fw.bss_index = 0;
  1795. fw.bss = bnx2_TXP_b06FwBss;
  1796. fw.rodata_addr = bnx2_TXP_b06FwRodataAddr;
  1797. fw.rodata_len = bnx2_TXP_b06FwRodataLen;
  1798. fw.rodata_index = 0;
  1799. fw.rodata = bnx2_TXP_b06FwRodata;
  1800. load_cpu_fw(bp, &cpu_reg, &fw);
  1801. /* Initialize the TX Patch-up Processor. */
  1802. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  1803. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  1804. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  1805. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  1806. cpu_reg.state_value_clear = 0xffffff;
  1807. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  1808. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  1809. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  1810. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  1811. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  1812. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  1813. cpu_reg.mips_view_base = 0x8000000;
  1814. fw.ver_major = bnx2_TPAT_b06FwReleaseMajor;
  1815. fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor;
  1816. fw.ver_fix = bnx2_TPAT_b06FwReleaseFix;
  1817. fw.start_addr = bnx2_TPAT_b06FwStartAddr;
  1818. fw.text_addr = bnx2_TPAT_b06FwTextAddr;
  1819. fw.text_len = bnx2_TPAT_b06FwTextLen;
  1820. fw.text_index = 0;
  1821. fw.text = bnx2_TPAT_b06FwText;
  1822. fw.data_addr = bnx2_TPAT_b06FwDataAddr;
  1823. fw.data_len = bnx2_TPAT_b06FwDataLen;
  1824. fw.data_index = 0;
  1825. fw.data = bnx2_TPAT_b06FwData;
  1826. fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr;
  1827. fw.sbss_len = bnx2_TPAT_b06FwSbssLen;
  1828. fw.sbss_index = 0;
  1829. fw.sbss = bnx2_TPAT_b06FwSbss;
  1830. fw.bss_addr = bnx2_TPAT_b06FwBssAddr;
  1831. fw.bss_len = bnx2_TPAT_b06FwBssLen;
  1832. fw.bss_index = 0;
  1833. fw.bss = bnx2_TPAT_b06FwBss;
  1834. fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr;
  1835. fw.rodata_len = bnx2_TPAT_b06FwRodataLen;
  1836. fw.rodata_index = 0;
  1837. fw.rodata = bnx2_TPAT_b06FwRodata;
  1838. load_cpu_fw(bp, &cpu_reg, &fw);
  1839. /* Initialize the Completion Processor. */
  1840. cpu_reg.mode = BNX2_COM_CPU_MODE;
  1841. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  1842. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  1843. cpu_reg.state = BNX2_COM_CPU_STATE;
  1844. cpu_reg.state_value_clear = 0xffffff;
  1845. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  1846. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  1847. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  1848. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  1849. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  1850. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  1851. cpu_reg.mips_view_base = 0x8000000;
  1852. fw.ver_major = bnx2_COM_b06FwReleaseMajor;
  1853. fw.ver_minor = bnx2_COM_b06FwReleaseMinor;
  1854. fw.ver_fix = bnx2_COM_b06FwReleaseFix;
  1855. fw.start_addr = bnx2_COM_b06FwStartAddr;
  1856. fw.text_addr = bnx2_COM_b06FwTextAddr;
  1857. fw.text_len = bnx2_COM_b06FwTextLen;
  1858. fw.text_index = 0;
  1859. fw.text = bnx2_COM_b06FwText;
  1860. fw.data_addr = bnx2_COM_b06FwDataAddr;
  1861. fw.data_len = bnx2_COM_b06FwDataLen;
  1862. fw.data_index = 0;
  1863. fw.data = bnx2_COM_b06FwData;
  1864. fw.sbss_addr = bnx2_COM_b06FwSbssAddr;
  1865. fw.sbss_len = bnx2_COM_b06FwSbssLen;
  1866. fw.sbss_index = 0;
  1867. fw.sbss = bnx2_COM_b06FwSbss;
  1868. fw.bss_addr = bnx2_COM_b06FwBssAddr;
  1869. fw.bss_len = bnx2_COM_b06FwBssLen;
  1870. fw.bss_index = 0;
  1871. fw.bss = bnx2_COM_b06FwBss;
  1872. fw.rodata_addr = bnx2_COM_b06FwRodataAddr;
  1873. fw.rodata_len = bnx2_COM_b06FwRodataLen;
  1874. fw.rodata_index = 0;
  1875. fw.rodata = bnx2_COM_b06FwRodata;
  1876. load_cpu_fw(bp, &cpu_reg, &fw);
  1877. }
  1878. static int
  1879. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  1880. {
  1881. u16 pmcsr;
  1882. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  1883. switch (state) {
  1884. case PCI_D0: {
  1885. u32 val;
  1886. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  1887. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  1888. PCI_PM_CTRL_PME_STATUS);
  1889. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  1890. /* delay required during transition out of D3hot */
  1891. msleep(20);
  1892. val = REG_RD(bp, BNX2_EMAC_MODE);
  1893. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  1894. val &= ~BNX2_EMAC_MODE_MPKT;
  1895. REG_WR(bp, BNX2_EMAC_MODE, val);
  1896. val = REG_RD(bp, BNX2_RPM_CONFIG);
  1897. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  1898. REG_WR(bp, BNX2_RPM_CONFIG, val);
  1899. break;
  1900. }
  1901. case PCI_D3hot: {
  1902. int i;
  1903. u32 val, wol_msg;
  1904. if (bp->wol) {
  1905. u32 advertising;
  1906. u8 autoneg;
  1907. autoneg = bp->autoneg;
  1908. advertising = bp->advertising;
  1909. bp->autoneg = AUTONEG_SPEED;
  1910. bp->advertising = ADVERTISED_10baseT_Half |
  1911. ADVERTISED_10baseT_Full |
  1912. ADVERTISED_100baseT_Half |
  1913. ADVERTISED_100baseT_Full |
  1914. ADVERTISED_Autoneg;
  1915. bnx2_setup_copper_phy(bp);
  1916. bp->autoneg = autoneg;
  1917. bp->advertising = advertising;
  1918. bnx2_set_mac_addr(bp);
  1919. val = REG_RD(bp, BNX2_EMAC_MODE);
  1920. /* Enable port mode. */
  1921. val &= ~BNX2_EMAC_MODE_PORT;
  1922. val |= BNX2_EMAC_MODE_PORT_MII |
  1923. BNX2_EMAC_MODE_MPKT_RCVD |
  1924. BNX2_EMAC_MODE_ACPI_RCVD |
  1925. BNX2_EMAC_MODE_FORCE_LINK |
  1926. BNX2_EMAC_MODE_MPKT;
  1927. REG_WR(bp, BNX2_EMAC_MODE, val);
  1928. /* receive all multicast */
  1929. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  1930. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  1931. 0xffffffff);
  1932. }
  1933. REG_WR(bp, BNX2_EMAC_RX_MODE,
  1934. BNX2_EMAC_RX_MODE_SORT_MODE);
  1935. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  1936. BNX2_RPM_SORT_USER0_MC_EN;
  1937. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  1938. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  1939. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  1940. BNX2_RPM_SORT_USER0_ENA);
  1941. /* Need to enable EMAC and RPM for WOL. */
  1942. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1943. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  1944. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  1945. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  1946. val = REG_RD(bp, BNX2_RPM_CONFIG);
  1947. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  1948. REG_WR(bp, BNX2_RPM_CONFIG, val);
  1949. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  1950. }
  1951. else {
  1952. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  1953. }
  1954. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg);
  1955. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  1956. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  1957. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  1958. if (bp->wol)
  1959. pmcsr |= 3;
  1960. }
  1961. else {
  1962. pmcsr |= 3;
  1963. }
  1964. if (bp->wol) {
  1965. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  1966. }
  1967. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  1968. pmcsr);
  1969. /* No more memory access after this point until
  1970. * device is brought back to D0.
  1971. */
  1972. udelay(50);
  1973. break;
  1974. }
  1975. default:
  1976. return -EINVAL;
  1977. }
  1978. return 0;
  1979. }
  1980. static int
  1981. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  1982. {
  1983. u32 val;
  1984. int j;
  1985. /* Request access to the flash interface. */
  1986. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  1987. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  1988. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  1989. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  1990. break;
  1991. udelay(5);
  1992. }
  1993. if (j >= NVRAM_TIMEOUT_COUNT)
  1994. return -EBUSY;
  1995. return 0;
  1996. }
  1997. static int
  1998. bnx2_release_nvram_lock(struct bnx2 *bp)
  1999. {
  2000. int j;
  2001. u32 val;
  2002. /* Relinquish nvram interface. */
  2003. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2004. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2005. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2006. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2007. break;
  2008. udelay(5);
  2009. }
  2010. if (j >= NVRAM_TIMEOUT_COUNT)
  2011. return -EBUSY;
  2012. return 0;
  2013. }
  2014. static int
  2015. bnx2_enable_nvram_write(struct bnx2 *bp)
  2016. {
  2017. u32 val;
  2018. val = REG_RD(bp, BNX2_MISC_CFG);
  2019. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2020. if (!bp->flash_info->buffered) {
  2021. int j;
  2022. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2023. REG_WR(bp, BNX2_NVM_COMMAND,
  2024. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2025. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2026. udelay(5);
  2027. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2028. if (val & BNX2_NVM_COMMAND_DONE)
  2029. break;
  2030. }
  2031. if (j >= NVRAM_TIMEOUT_COUNT)
  2032. return -EBUSY;
  2033. }
  2034. return 0;
  2035. }
  2036. static void
  2037. bnx2_disable_nvram_write(struct bnx2 *bp)
  2038. {
  2039. u32 val;
  2040. val = REG_RD(bp, BNX2_MISC_CFG);
  2041. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2042. }
  2043. static void
  2044. bnx2_enable_nvram_access(struct bnx2 *bp)
  2045. {
  2046. u32 val;
  2047. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2048. /* Enable both bits, even on read. */
  2049. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2050. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2051. }
  2052. static void
  2053. bnx2_disable_nvram_access(struct bnx2 *bp)
  2054. {
  2055. u32 val;
  2056. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2057. /* Disable both bits, even after read. */
  2058. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2059. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2060. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2061. }
  2062. static int
  2063. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2064. {
  2065. u32 cmd;
  2066. int j;
  2067. if (bp->flash_info->buffered)
  2068. /* Buffered flash, no erase needed */
  2069. return 0;
  2070. /* Build an erase command */
  2071. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2072. BNX2_NVM_COMMAND_DOIT;
  2073. /* Need to clear DONE bit separately. */
  2074. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2075. /* Address of the NVRAM to read from. */
  2076. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2077. /* Issue an erase command. */
  2078. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2079. /* Wait for completion. */
  2080. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2081. u32 val;
  2082. udelay(5);
  2083. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2084. if (val & BNX2_NVM_COMMAND_DONE)
  2085. break;
  2086. }
  2087. if (j >= NVRAM_TIMEOUT_COUNT)
  2088. return -EBUSY;
  2089. return 0;
  2090. }
  2091. static int
  2092. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2093. {
  2094. u32 cmd;
  2095. int j;
  2096. /* Build the command word. */
  2097. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2098. /* Calculate an offset of a buffered flash. */
  2099. if (bp->flash_info->buffered) {
  2100. offset = ((offset / bp->flash_info->page_size) <<
  2101. bp->flash_info->page_bits) +
  2102. (offset % bp->flash_info->page_size);
  2103. }
  2104. /* Need to clear DONE bit separately. */
  2105. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2106. /* Address of the NVRAM to read from. */
  2107. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2108. /* Issue a read command. */
  2109. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2110. /* Wait for completion. */
  2111. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2112. u32 val;
  2113. udelay(5);
  2114. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2115. if (val & BNX2_NVM_COMMAND_DONE) {
  2116. val = REG_RD(bp, BNX2_NVM_READ);
  2117. val = be32_to_cpu(val);
  2118. memcpy(ret_val, &val, 4);
  2119. break;
  2120. }
  2121. }
  2122. if (j >= NVRAM_TIMEOUT_COUNT)
  2123. return -EBUSY;
  2124. return 0;
  2125. }
  2126. static int
  2127. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2128. {
  2129. u32 cmd, val32;
  2130. int j;
  2131. /* Build the command word. */
  2132. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2133. /* Calculate an offset of a buffered flash. */
  2134. if (bp->flash_info->buffered) {
  2135. offset = ((offset / bp->flash_info->page_size) <<
  2136. bp->flash_info->page_bits) +
  2137. (offset % bp->flash_info->page_size);
  2138. }
  2139. /* Need to clear DONE bit separately. */
  2140. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2141. memcpy(&val32, val, 4);
  2142. val32 = cpu_to_be32(val32);
  2143. /* Write the data. */
  2144. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2145. /* Address of the NVRAM to write to. */
  2146. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2147. /* Issue the write command. */
  2148. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2149. /* Wait for completion. */
  2150. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2151. udelay(5);
  2152. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2153. break;
  2154. }
  2155. if (j >= NVRAM_TIMEOUT_COUNT)
  2156. return -EBUSY;
  2157. return 0;
  2158. }
  2159. static int
  2160. bnx2_init_nvram(struct bnx2 *bp)
  2161. {
  2162. u32 val;
  2163. int j, entry_count, rc;
  2164. struct flash_spec *flash;
  2165. /* Determine the selected interface. */
  2166. val = REG_RD(bp, BNX2_NVM_CFG1);
  2167. entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
  2168. rc = 0;
  2169. if (val & 0x40000000) {
  2170. /* Flash interface has been reconfigured */
  2171. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2172. j++, flash++) {
  2173. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2174. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2175. bp->flash_info = flash;
  2176. break;
  2177. }
  2178. }
  2179. }
  2180. else {
  2181. u32 mask;
  2182. /* Not yet been reconfigured */
  2183. if (val & (1 << 23))
  2184. mask = FLASH_BACKUP_STRAP_MASK;
  2185. else
  2186. mask = FLASH_STRAP_MASK;
  2187. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2188. j++, flash++) {
  2189. if ((val & mask) == (flash->strapping & mask)) {
  2190. bp->flash_info = flash;
  2191. /* Request access to the flash interface. */
  2192. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2193. return rc;
  2194. /* Enable access to flash interface */
  2195. bnx2_enable_nvram_access(bp);
  2196. /* Reconfigure the flash interface */
  2197. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2198. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2199. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2200. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2201. /* Disable access to flash interface */
  2202. bnx2_disable_nvram_access(bp);
  2203. bnx2_release_nvram_lock(bp);
  2204. break;
  2205. }
  2206. }
  2207. } /* if (val & 0x40000000) */
  2208. if (j == entry_count) {
  2209. bp->flash_info = NULL;
  2210. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2211. rc = -ENODEV;
  2212. }
  2213. return rc;
  2214. }
  2215. static int
  2216. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2217. int buf_size)
  2218. {
  2219. int rc = 0;
  2220. u32 cmd_flags, offset32, len32, extra;
  2221. if (buf_size == 0)
  2222. return 0;
  2223. /* Request access to the flash interface. */
  2224. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2225. return rc;
  2226. /* Enable access to flash interface */
  2227. bnx2_enable_nvram_access(bp);
  2228. len32 = buf_size;
  2229. offset32 = offset;
  2230. extra = 0;
  2231. cmd_flags = 0;
  2232. if (offset32 & 3) {
  2233. u8 buf[4];
  2234. u32 pre_len;
  2235. offset32 &= ~3;
  2236. pre_len = 4 - (offset & 3);
  2237. if (pre_len >= len32) {
  2238. pre_len = len32;
  2239. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2240. BNX2_NVM_COMMAND_LAST;
  2241. }
  2242. else {
  2243. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2244. }
  2245. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2246. if (rc)
  2247. return rc;
  2248. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2249. offset32 += 4;
  2250. ret_buf += pre_len;
  2251. len32 -= pre_len;
  2252. }
  2253. if (len32 & 3) {
  2254. extra = 4 - (len32 & 3);
  2255. len32 = (len32 + 4) & ~3;
  2256. }
  2257. if (len32 == 4) {
  2258. u8 buf[4];
  2259. if (cmd_flags)
  2260. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2261. else
  2262. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2263. BNX2_NVM_COMMAND_LAST;
  2264. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2265. memcpy(ret_buf, buf, 4 - extra);
  2266. }
  2267. else if (len32 > 0) {
  2268. u8 buf[4];
  2269. /* Read the first word. */
  2270. if (cmd_flags)
  2271. cmd_flags = 0;
  2272. else
  2273. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2274. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2275. /* Advance to the next dword. */
  2276. offset32 += 4;
  2277. ret_buf += 4;
  2278. len32 -= 4;
  2279. while (len32 > 4 && rc == 0) {
  2280. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2281. /* Advance to the next dword. */
  2282. offset32 += 4;
  2283. ret_buf += 4;
  2284. len32 -= 4;
  2285. }
  2286. if (rc)
  2287. return rc;
  2288. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2289. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2290. memcpy(ret_buf, buf, 4 - extra);
  2291. }
  2292. /* Disable access to flash interface */
  2293. bnx2_disable_nvram_access(bp);
  2294. bnx2_release_nvram_lock(bp);
  2295. return rc;
  2296. }
  2297. static int
  2298. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2299. int buf_size)
  2300. {
  2301. u32 written, offset32, len32;
  2302. u8 *buf, start[4], end[4];
  2303. int rc = 0;
  2304. int align_start, align_end;
  2305. buf = data_buf;
  2306. offset32 = offset;
  2307. len32 = buf_size;
  2308. align_start = align_end = 0;
  2309. if ((align_start = (offset32 & 3))) {
  2310. offset32 &= ~3;
  2311. len32 += align_start;
  2312. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2313. return rc;
  2314. }
  2315. if (len32 & 3) {
  2316. if ((len32 > 4) || !align_start) {
  2317. align_end = 4 - (len32 & 3);
  2318. len32 += align_end;
  2319. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4,
  2320. end, 4))) {
  2321. return rc;
  2322. }
  2323. }
  2324. }
  2325. if (align_start || align_end) {
  2326. buf = kmalloc(len32, GFP_KERNEL);
  2327. if (buf == 0)
  2328. return -ENOMEM;
  2329. if (align_start) {
  2330. memcpy(buf, start, 4);
  2331. }
  2332. if (align_end) {
  2333. memcpy(buf + len32 - 4, end, 4);
  2334. }
  2335. memcpy(buf + align_start, data_buf, buf_size);
  2336. }
  2337. written = 0;
  2338. while ((written < len32) && (rc == 0)) {
  2339. u32 page_start, page_end, data_start, data_end;
  2340. u32 addr, cmd_flags;
  2341. int i;
  2342. u8 flash_buffer[264];
  2343. /* Find the page_start addr */
  2344. page_start = offset32 + written;
  2345. page_start -= (page_start % bp->flash_info->page_size);
  2346. /* Find the page_end addr */
  2347. page_end = page_start + bp->flash_info->page_size;
  2348. /* Find the data_start addr */
  2349. data_start = (written == 0) ? offset32 : page_start;
  2350. /* Find the data_end addr */
  2351. data_end = (page_end > offset32 + len32) ?
  2352. (offset32 + len32) : page_end;
  2353. /* Request access to the flash interface. */
  2354. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2355. goto nvram_write_end;
  2356. /* Enable access to flash interface */
  2357. bnx2_enable_nvram_access(bp);
  2358. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2359. if (bp->flash_info->buffered == 0) {
  2360. int j;
  2361. /* Read the whole page into the buffer
  2362. * (non-buffer flash only) */
  2363. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  2364. if (j == (bp->flash_info->page_size - 4)) {
  2365. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2366. }
  2367. rc = bnx2_nvram_read_dword(bp,
  2368. page_start + j,
  2369. &flash_buffer[j],
  2370. cmd_flags);
  2371. if (rc)
  2372. goto nvram_write_end;
  2373. cmd_flags = 0;
  2374. }
  2375. }
  2376. /* Enable writes to flash interface (unlock write-protect) */
  2377. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  2378. goto nvram_write_end;
  2379. /* Erase the page */
  2380. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  2381. goto nvram_write_end;
  2382. /* Re-enable the write again for the actual write */
  2383. bnx2_enable_nvram_write(bp);
  2384. /* Loop to write back the buffer data from page_start to
  2385. * data_start */
  2386. i = 0;
  2387. if (bp->flash_info->buffered == 0) {
  2388. for (addr = page_start; addr < data_start;
  2389. addr += 4, i += 4) {
  2390. rc = bnx2_nvram_write_dword(bp, addr,
  2391. &flash_buffer[i], cmd_flags);
  2392. if (rc != 0)
  2393. goto nvram_write_end;
  2394. cmd_flags = 0;
  2395. }
  2396. }
  2397. /* Loop to write the new data from data_start to data_end */
  2398. for (addr = data_start; addr < data_end; addr += 4, i++) {
  2399. if ((addr == page_end - 4) ||
  2400. ((bp->flash_info->buffered) &&
  2401. (addr == data_end - 4))) {
  2402. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2403. }
  2404. rc = bnx2_nvram_write_dword(bp, addr, buf,
  2405. cmd_flags);
  2406. if (rc != 0)
  2407. goto nvram_write_end;
  2408. cmd_flags = 0;
  2409. buf += 4;
  2410. }
  2411. /* Loop to write back the buffer data from data_end
  2412. * to page_end */
  2413. if (bp->flash_info->buffered == 0) {
  2414. for (addr = data_end; addr < page_end;
  2415. addr += 4, i += 4) {
  2416. if (addr == page_end-4) {
  2417. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2418. }
  2419. rc = bnx2_nvram_write_dword(bp, addr,
  2420. &flash_buffer[i], cmd_flags);
  2421. if (rc != 0)
  2422. goto nvram_write_end;
  2423. cmd_flags = 0;
  2424. }
  2425. }
  2426. /* Disable writes to flash interface (lock write-protect) */
  2427. bnx2_disable_nvram_write(bp);
  2428. /* Disable access to flash interface */
  2429. bnx2_disable_nvram_access(bp);
  2430. bnx2_release_nvram_lock(bp);
  2431. /* Increment written */
  2432. written += data_end - data_start;
  2433. }
  2434. nvram_write_end:
  2435. if (align_start || align_end)
  2436. kfree(buf);
  2437. return rc;
  2438. }
  2439. static int
  2440. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  2441. {
  2442. u32 val;
  2443. int i, rc = 0;
  2444. /* Wait for the current PCI transaction to complete before
  2445. * issuing a reset. */
  2446. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  2447. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  2448. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  2449. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  2450. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  2451. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  2452. udelay(5);
  2453. /* Deposit a driver reset signature so the firmware knows that
  2454. * this is a soft reset. */
  2455. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  2456. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  2457. bp->fw_timed_out = 0;
  2458. /* Wait for the firmware to tell us it is ok to issue a reset. */
  2459. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code);
  2460. /* Do a dummy read to force the chip to complete all current transaction
  2461. * before we issue a reset. */
  2462. val = REG_RD(bp, BNX2_MISC_ID);
  2463. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2464. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2465. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2466. /* Chip reset. */
  2467. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  2468. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2469. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  2470. msleep(15);
  2471. /* Reset takes approximate 30 usec */
  2472. for (i = 0; i < 10; i++) {
  2473. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  2474. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2475. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
  2476. break;
  2477. }
  2478. udelay(10);
  2479. }
  2480. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2481. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  2482. printk(KERN_ERR PFX "Chip reset did not complete\n");
  2483. return -EBUSY;
  2484. }
  2485. /* Make sure byte swapping is properly configured. */
  2486. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  2487. if (val != 0x01020304) {
  2488. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  2489. return -ENODEV;
  2490. }
  2491. bp->fw_timed_out = 0;
  2492. /* Wait for the firmware to finish its initialization. */
  2493. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code);
  2494. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2495. /* Adjust the voltage regular to two steps lower. The default
  2496. * of this register is 0x0000000e. */
  2497. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  2498. /* Remove bad rbuf memory from the free pool. */
  2499. rc = bnx2_alloc_bad_rbuf(bp);
  2500. }
  2501. return rc;
  2502. }
  2503. static int
  2504. bnx2_init_chip(struct bnx2 *bp)
  2505. {
  2506. u32 val;
  2507. /* Make sure the interrupt is not active. */
  2508. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2509. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  2510. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  2511. #ifdef __BIG_ENDIAN
  2512. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  2513. #endif
  2514. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  2515. DMA_READ_CHANS << 12 |
  2516. DMA_WRITE_CHANS << 16;
  2517. val |= (0x2 << 20) | (1 << 11);
  2518. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz = 133))
  2519. val |= (1 << 23);
  2520. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  2521. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  2522. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  2523. REG_WR(bp, BNX2_DMA_CONFIG, val);
  2524. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2525. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  2526. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  2527. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  2528. }
  2529. if (bp->flags & PCIX_FLAG) {
  2530. u16 val16;
  2531. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2532. &val16);
  2533. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  2534. val16 & ~PCI_X_CMD_ERO);
  2535. }
  2536. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2537. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  2538. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  2539. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  2540. /* Initialize context mapping and zero out the quick contexts. The
  2541. * context block must have already been enabled. */
  2542. bnx2_init_context(bp);
  2543. bnx2_init_cpus(bp);
  2544. bnx2_init_nvram(bp);
  2545. bnx2_set_mac_addr(bp);
  2546. val = REG_RD(bp, BNX2_MQ_CONFIG);
  2547. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  2548. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  2549. REG_WR(bp, BNX2_MQ_CONFIG, val);
  2550. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  2551. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  2552. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  2553. val = (BCM_PAGE_BITS - 8) << 24;
  2554. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  2555. /* Configure page size. */
  2556. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  2557. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  2558. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  2559. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  2560. val = bp->mac_addr[0] +
  2561. (bp->mac_addr[1] << 8) +
  2562. (bp->mac_addr[2] << 16) +
  2563. bp->mac_addr[3] +
  2564. (bp->mac_addr[4] << 8) +
  2565. (bp->mac_addr[5] << 16);
  2566. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  2567. /* Program the MTU. Also include 4 bytes for CRC32. */
  2568. val = bp->dev->mtu + ETH_HLEN + 4;
  2569. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  2570. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  2571. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  2572. bp->last_status_idx = 0;
  2573. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  2574. /* Set up how to generate a link change interrupt. */
  2575. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2576. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  2577. (u64) bp->status_blk_mapping & 0xffffffff);
  2578. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  2579. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  2580. (u64) bp->stats_blk_mapping & 0xffffffff);
  2581. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  2582. (u64) bp->stats_blk_mapping >> 32);
  2583. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  2584. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  2585. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  2586. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  2587. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  2588. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  2589. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  2590. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  2591. REG_WR(bp, BNX2_HC_COM_TICKS,
  2592. (bp->com_ticks_int << 16) | bp->com_ticks);
  2593. REG_WR(bp, BNX2_HC_CMD_TICKS,
  2594. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  2595. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
  2596. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  2597. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  2598. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS);
  2599. else {
  2600. REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE |
  2601. BNX2_HC_CONFIG_TX_TMR_MODE |
  2602. BNX2_HC_CONFIG_COLLECT_STATS);
  2603. }
  2604. /* Clear internal stats counters. */
  2605. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  2606. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
  2607. /* Initialize the receive filter. */
  2608. bnx2_set_rx_mode(bp->dev);
  2609. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET);
  2610. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
  2611. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  2612. udelay(20);
  2613. return 0;
  2614. }
  2615. static void
  2616. bnx2_init_tx_ring(struct bnx2 *bp)
  2617. {
  2618. struct tx_bd *txbd;
  2619. u32 val;
  2620. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  2621. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  2622. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  2623. bp->tx_prod = 0;
  2624. bp->tx_cons = 0;
  2625. bp->hw_tx_cons = 0;
  2626. bp->tx_prod_bseq = 0;
  2627. val = BNX2_L2CTX_TYPE_TYPE_L2;
  2628. val |= BNX2_L2CTX_TYPE_SIZE_L2;
  2629. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val);
  2630. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2;
  2631. val |= 8 << 16;
  2632. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val);
  2633. val = (u64) bp->tx_desc_mapping >> 32;
  2634. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val);
  2635. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  2636. CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val);
  2637. }
  2638. static void
  2639. bnx2_init_rx_ring(struct bnx2 *bp)
  2640. {
  2641. struct rx_bd *rxbd;
  2642. int i;
  2643. u16 prod, ring_prod;
  2644. u32 val;
  2645. /* 8 for CRC and VLAN */
  2646. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  2647. /* 8 for alignment */
  2648. bp->rx_buf_size = bp->rx_buf_use_size + 8;
  2649. ring_prod = prod = bp->rx_prod = 0;
  2650. bp->rx_cons = 0;
  2651. bp->hw_rx_cons = 0;
  2652. bp->rx_prod_bseq = 0;
  2653. rxbd = &bp->rx_desc_ring[0];
  2654. for (i = 0; i < MAX_RX_DESC_CNT; i++, rxbd++) {
  2655. rxbd->rx_bd_len = bp->rx_buf_use_size;
  2656. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  2657. }
  2658. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping >> 32;
  2659. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping & 0xffffffff;
  2660. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  2661. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  2662. val |= 0x02 << 8;
  2663. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  2664. val = (u64) bp->rx_desc_mapping >> 32;
  2665. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  2666. val = (u64) bp->rx_desc_mapping & 0xffffffff;
  2667. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  2668. for ( ;ring_prod < bp->rx_ring_size; ) {
  2669. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  2670. break;
  2671. }
  2672. prod = NEXT_RX_BD(prod);
  2673. ring_prod = RX_RING_IDX(prod);
  2674. }
  2675. bp->rx_prod = prod;
  2676. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  2677. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  2678. }
  2679. static void
  2680. bnx2_free_tx_skbs(struct bnx2 *bp)
  2681. {
  2682. int i;
  2683. if (bp->tx_buf_ring == NULL)
  2684. return;
  2685. for (i = 0; i < TX_DESC_CNT; ) {
  2686. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  2687. struct sk_buff *skb = tx_buf->skb;
  2688. int j, last;
  2689. if (skb == NULL) {
  2690. i++;
  2691. continue;
  2692. }
  2693. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2694. skb_headlen(skb), PCI_DMA_TODEVICE);
  2695. tx_buf->skb = NULL;
  2696. last = skb_shinfo(skb)->nr_frags;
  2697. for (j = 0; j < last; j++) {
  2698. tx_buf = &bp->tx_buf_ring[i + j + 1];
  2699. pci_unmap_page(bp->pdev,
  2700. pci_unmap_addr(tx_buf, mapping),
  2701. skb_shinfo(skb)->frags[j].size,
  2702. PCI_DMA_TODEVICE);
  2703. }
  2704. dev_kfree_skb_any(skb);
  2705. i += j + 1;
  2706. }
  2707. }
  2708. static void
  2709. bnx2_free_rx_skbs(struct bnx2 *bp)
  2710. {
  2711. int i;
  2712. if (bp->rx_buf_ring == NULL)
  2713. return;
  2714. for (i = 0; i < RX_DESC_CNT; i++) {
  2715. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  2716. struct sk_buff *skb = rx_buf->skb;
  2717. if (skb == NULL)
  2718. continue;
  2719. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  2720. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  2721. rx_buf->skb = NULL;
  2722. dev_kfree_skb_any(skb);
  2723. }
  2724. }
  2725. static void
  2726. bnx2_free_skbs(struct bnx2 *bp)
  2727. {
  2728. bnx2_free_tx_skbs(bp);
  2729. bnx2_free_rx_skbs(bp);
  2730. }
  2731. static int
  2732. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  2733. {
  2734. int rc;
  2735. rc = bnx2_reset_chip(bp, reset_code);
  2736. bnx2_free_skbs(bp);
  2737. if (rc)
  2738. return rc;
  2739. bnx2_init_chip(bp);
  2740. bnx2_init_tx_ring(bp);
  2741. bnx2_init_rx_ring(bp);
  2742. return 0;
  2743. }
  2744. static int
  2745. bnx2_init_nic(struct bnx2 *bp)
  2746. {
  2747. int rc;
  2748. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  2749. return rc;
  2750. bnx2_init_phy(bp);
  2751. bnx2_set_link(bp);
  2752. return 0;
  2753. }
  2754. static int
  2755. bnx2_test_registers(struct bnx2 *bp)
  2756. {
  2757. int ret;
  2758. int i;
  2759. static struct {
  2760. u16 offset;
  2761. u16 flags;
  2762. u32 rw_mask;
  2763. u32 ro_mask;
  2764. } reg_tbl[] = {
  2765. { 0x006c, 0, 0x00000000, 0x0000003f },
  2766. { 0x0090, 0, 0xffffffff, 0x00000000 },
  2767. { 0x0094, 0, 0x00000000, 0x00000000 },
  2768. { 0x0404, 0, 0x00003f00, 0x00000000 },
  2769. { 0x0418, 0, 0x00000000, 0xffffffff },
  2770. { 0x041c, 0, 0x00000000, 0xffffffff },
  2771. { 0x0420, 0, 0x00000000, 0x80ffffff },
  2772. { 0x0424, 0, 0x00000000, 0x00000000 },
  2773. { 0x0428, 0, 0x00000000, 0x00000001 },
  2774. { 0x0450, 0, 0x00000000, 0x0000ffff },
  2775. { 0x0454, 0, 0x00000000, 0xffffffff },
  2776. { 0x0458, 0, 0x00000000, 0xffffffff },
  2777. { 0x0808, 0, 0x00000000, 0xffffffff },
  2778. { 0x0854, 0, 0x00000000, 0xffffffff },
  2779. { 0x0868, 0, 0x00000000, 0x77777777 },
  2780. { 0x086c, 0, 0x00000000, 0x77777777 },
  2781. { 0x0870, 0, 0x00000000, 0x77777777 },
  2782. { 0x0874, 0, 0x00000000, 0x77777777 },
  2783. { 0x0c00, 0, 0x00000000, 0x00000001 },
  2784. { 0x0c04, 0, 0x00000000, 0x03ff0001 },
  2785. { 0x0c08, 0, 0x0f0ff073, 0x00000000 },
  2786. { 0x0c0c, 0, 0x00ffffff, 0x00000000 },
  2787. { 0x0c30, 0, 0x00000000, 0xffffffff },
  2788. { 0x0c34, 0, 0x00000000, 0xffffffff },
  2789. { 0x0c38, 0, 0x00000000, 0xffffffff },
  2790. { 0x0c3c, 0, 0x00000000, 0xffffffff },
  2791. { 0x0c40, 0, 0x00000000, 0xffffffff },
  2792. { 0x0c44, 0, 0x00000000, 0xffffffff },
  2793. { 0x0c48, 0, 0x00000000, 0x0007ffff },
  2794. { 0x0c4c, 0, 0x00000000, 0xffffffff },
  2795. { 0x0c50, 0, 0x00000000, 0xffffffff },
  2796. { 0x0c54, 0, 0x00000000, 0xffffffff },
  2797. { 0x0c58, 0, 0x00000000, 0xffffffff },
  2798. { 0x0c5c, 0, 0x00000000, 0xffffffff },
  2799. { 0x0c60, 0, 0x00000000, 0xffffffff },
  2800. { 0x0c64, 0, 0x00000000, 0xffffffff },
  2801. { 0x0c68, 0, 0x00000000, 0xffffffff },
  2802. { 0x0c6c, 0, 0x00000000, 0xffffffff },
  2803. { 0x0c70, 0, 0x00000000, 0xffffffff },
  2804. { 0x0c74, 0, 0x00000000, 0xffffffff },
  2805. { 0x0c78, 0, 0x00000000, 0xffffffff },
  2806. { 0x0c7c, 0, 0x00000000, 0xffffffff },
  2807. { 0x0c80, 0, 0x00000000, 0xffffffff },
  2808. { 0x0c84, 0, 0x00000000, 0xffffffff },
  2809. { 0x0c88, 0, 0x00000000, 0xffffffff },
  2810. { 0x0c8c, 0, 0x00000000, 0xffffffff },
  2811. { 0x0c90, 0, 0x00000000, 0xffffffff },
  2812. { 0x0c94, 0, 0x00000000, 0xffffffff },
  2813. { 0x0c98, 0, 0x00000000, 0xffffffff },
  2814. { 0x0c9c, 0, 0x00000000, 0xffffffff },
  2815. { 0x0ca0, 0, 0x00000000, 0xffffffff },
  2816. { 0x0ca4, 0, 0x00000000, 0xffffffff },
  2817. { 0x0ca8, 0, 0x00000000, 0x0007ffff },
  2818. { 0x0cac, 0, 0x00000000, 0xffffffff },
  2819. { 0x0cb0, 0, 0x00000000, 0xffffffff },
  2820. { 0x0cb4, 0, 0x00000000, 0xffffffff },
  2821. { 0x0cb8, 0, 0x00000000, 0xffffffff },
  2822. { 0x0cbc, 0, 0x00000000, 0xffffffff },
  2823. { 0x0cc0, 0, 0x00000000, 0xffffffff },
  2824. { 0x0cc4, 0, 0x00000000, 0xffffffff },
  2825. { 0x0cc8, 0, 0x00000000, 0xffffffff },
  2826. { 0x0ccc, 0, 0x00000000, 0xffffffff },
  2827. { 0x0cd0, 0, 0x00000000, 0xffffffff },
  2828. { 0x0cd4, 0, 0x00000000, 0xffffffff },
  2829. { 0x0cd8, 0, 0x00000000, 0xffffffff },
  2830. { 0x0cdc, 0, 0x00000000, 0xffffffff },
  2831. { 0x0ce0, 0, 0x00000000, 0xffffffff },
  2832. { 0x0ce4, 0, 0x00000000, 0xffffffff },
  2833. { 0x0ce8, 0, 0x00000000, 0xffffffff },
  2834. { 0x0cec, 0, 0x00000000, 0xffffffff },
  2835. { 0x0cf0, 0, 0x00000000, 0xffffffff },
  2836. { 0x0cf4, 0, 0x00000000, 0xffffffff },
  2837. { 0x0cf8, 0, 0x00000000, 0xffffffff },
  2838. { 0x0cfc, 0, 0x00000000, 0xffffffff },
  2839. { 0x0d00, 0, 0x00000000, 0xffffffff },
  2840. { 0x0d04, 0, 0x00000000, 0xffffffff },
  2841. { 0x1000, 0, 0x00000000, 0x00000001 },
  2842. { 0x1004, 0, 0x00000000, 0x000f0001 },
  2843. { 0x1044, 0, 0x00000000, 0xffc003ff },
  2844. { 0x1080, 0, 0x00000000, 0x0001ffff },
  2845. { 0x1084, 0, 0x00000000, 0xffffffff },
  2846. { 0x1088, 0, 0x00000000, 0xffffffff },
  2847. { 0x108c, 0, 0x00000000, 0xffffffff },
  2848. { 0x1090, 0, 0x00000000, 0xffffffff },
  2849. { 0x1094, 0, 0x00000000, 0xffffffff },
  2850. { 0x1098, 0, 0x00000000, 0xffffffff },
  2851. { 0x109c, 0, 0x00000000, 0xffffffff },
  2852. { 0x10a0, 0, 0x00000000, 0xffffffff },
  2853. { 0x1408, 0, 0x01c00800, 0x00000000 },
  2854. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  2855. { 0x14a8, 0, 0x00000000, 0x000001ff },
  2856. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  2857. { 0x14b0, 0, 0x00000002, 0x00000001 },
  2858. { 0x14b8, 0, 0x00000000, 0x00000000 },
  2859. { 0x14c0, 0, 0x00000000, 0x00000009 },
  2860. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  2861. { 0x14cc, 0, 0x00000000, 0x00000001 },
  2862. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  2863. { 0x1500, 0, 0x00000000, 0xffffffff },
  2864. { 0x1504, 0, 0x00000000, 0xffffffff },
  2865. { 0x1508, 0, 0x00000000, 0xffffffff },
  2866. { 0x150c, 0, 0x00000000, 0xffffffff },
  2867. { 0x1510, 0, 0x00000000, 0xffffffff },
  2868. { 0x1514, 0, 0x00000000, 0xffffffff },
  2869. { 0x1518, 0, 0x00000000, 0xffffffff },
  2870. { 0x151c, 0, 0x00000000, 0xffffffff },
  2871. { 0x1520, 0, 0x00000000, 0xffffffff },
  2872. { 0x1524, 0, 0x00000000, 0xffffffff },
  2873. { 0x1528, 0, 0x00000000, 0xffffffff },
  2874. { 0x152c, 0, 0x00000000, 0xffffffff },
  2875. { 0x1530, 0, 0x00000000, 0xffffffff },
  2876. { 0x1534, 0, 0x00000000, 0xffffffff },
  2877. { 0x1538, 0, 0x00000000, 0xffffffff },
  2878. { 0x153c, 0, 0x00000000, 0xffffffff },
  2879. { 0x1540, 0, 0x00000000, 0xffffffff },
  2880. { 0x1544, 0, 0x00000000, 0xffffffff },
  2881. { 0x1548, 0, 0x00000000, 0xffffffff },
  2882. { 0x154c, 0, 0x00000000, 0xffffffff },
  2883. { 0x1550, 0, 0x00000000, 0xffffffff },
  2884. { 0x1554, 0, 0x00000000, 0xffffffff },
  2885. { 0x1558, 0, 0x00000000, 0xffffffff },
  2886. { 0x1600, 0, 0x00000000, 0xffffffff },
  2887. { 0x1604, 0, 0x00000000, 0xffffffff },
  2888. { 0x1608, 0, 0x00000000, 0xffffffff },
  2889. { 0x160c, 0, 0x00000000, 0xffffffff },
  2890. { 0x1610, 0, 0x00000000, 0xffffffff },
  2891. { 0x1614, 0, 0x00000000, 0xffffffff },
  2892. { 0x1618, 0, 0x00000000, 0xffffffff },
  2893. { 0x161c, 0, 0x00000000, 0xffffffff },
  2894. { 0x1620, 0, 0x00000000, 0xffffffff },
  2895. { 0x1624, 0, 0x00000000, 0xffffffff },
  2896. { 0x1628, 0, 0x00000000, 0xffffffff },
  2897. { 0x162c, 0, 0x00000000, 0xffffffff },
  2898. { 0x1630, 0, 0x00000000, 0xffffffff },
  2899. { 0x1634, 0, 0x00000000, 0xffffffff },
  2900. { 0x1638, 0, 0x00000000, 0xffffffff },
  2901. { 0x163c, 0, 0x00000000, 0xffffffff },
  2902. { 0x1640, 0, 0x00000000, 0xffffffff },
  2903. { 0x1644, 0, 0x00000000, 0xffffffff },
  2904. { 0x1648, 0, 0x00000000, 0xffffffff },
  2905. { 0x164c, 0, 0x00000000, 0xffffffff },
  2906. { 0x1650, 0, 0x00000000, 0xffffffff },
  2907. { 0x1654, 0, 0x00000000, 0xffffffff },
  2908. { 0x1800, 0, 0x00000000, 0x00000001 },
  2909. { 0x1804, 0, 0x00000000, 0x00000003 },
  2910. { 0x1840, 0, 0x00000000, 0xffffffff },
  2911. { 0x1844, 0, 0x00000000, 0xffffffff },
  2912. { 0x1848, 0, 0x00000000, 0xffffffff },
  2913. { 0x184c, 0, 0x00000000, 0xffffffff },
  2914. { 0x1850, 0, 0x00000000, 0xffffffff },
  2915. { 0x1900, 0, 0x7ffbffff, 0x00000000 },
  2916. { 0x1904, 0, 0xffffffff, 0x00000000 },
  2917. { 0x190c, 0, 0xffffffff, 0x00000000 },
  2918. { 0x1914, 0, 0xffffffff, 0x00000000 },
  2919. { 0x191c, 0, 0xffffffff, 0x00000000 },
  2920. { 0x1924, 0, 0xffffffff, 0x00000000 },
  2921. { 0x192c, 0, 0xffffffff, 0x00000000 },
  2922. { 0x1934, 0, 0xffffffff, 0x00000000 },
  2923. { 0x193c, 0, 0xffffffff, 0x00000000 },
  2924. { 0x1944, 0, 0xffffffff, 0x00000000 },
  2925. { 0x194c, 0, 0xffffffff, 0x00000000 },
  2926. { 0x1954, 0, 0xffffffff, 0x00000000 },
  2927. { 0x195c, 0, 0xffffffff, 0x00000000 },
  2928. { 0x1964, 0, 0xffffffff, 0x00000000 },
  2929. { 0x196c, 0, 0xffffffff, 0x00000000 },
  2930. { 0x1974, 0, 0xffffffff, 0x00000000 },
  2931. { 0x197c, 0, 0xffffffff, 0x00000000 },
  2932. { 0x1980, 0, 0x0700ffff, 0x00000000 },
  2933. { 0x1c00, 0, 0x00000000, 0x00000001 },
  2934. { 0x1c04, 0, 0x00000000, 0x00000003 },
  2935. { 0x1c08, 0, 0x0000000f, 0x00000000 },
  2936. { 0x1c40, 0, 0x00000000, 0xffffffff },
  2937. { 0x1c44, 0, 0x00000000, 0xffffffff },
  2938. { 0x1c48, 0, 0x00000000, 0xffffffff },
  2939. { 0x1c4c, 0, 0x00000000, 0xffffffff },
  2940. { 0x1c50, 0, 0x00000000, 0xffffffff },
  2941. { 0x1d00, 0, 0x7ffbffff, 0x00000000 },
  2942. { 0x1d04, 0, 0xffffffff, 0x00000000 },
  2943. { 0x1d0c, 0, 0xffffffff, 0x00000000 },
  2944. { 0x1d14, 0, 0xffffffff, 0x00000000 },
  2945. { 0x1d1c, 0, 0xffffffff, 0x00000000 },
  2946. { 0x1d24, 0, 0xffffffff, 0x00000000 },
  2947. { 0x1d2c, 0, 0xffffffff, 0x00000000 },
  2948. { 0x1d34, 0, 0xffffffff, 0x00000000 },
  2949. { 0x1d3c, 0, 0xffffffff, 0x00000000 },
  2950. { 0x1d44, 0, 0xffffffff, 0x00000000 },
  2951. { 0x1d4c, 0, 0xffffffff, 0x00000000 },
  2952. { 0x1d54, 0, 0xffffffff, 0x00000000 },
  2953. { 0x1d5c, 0, 0xffffffff, 0x00000000 },
  2954. { 0x1d64, 0, 0xffffffff, 0x00000000 },
  2955. { 0x1d6c, 0, 0xffffffff, 0x00000000 },
  2956. { 0x1d74, 0, 0xffffffff, 0x00000000 },
  2957. { 0x1d7c, 0, 0xffffffff, 0x00000000 },
  2958. { 0x1d80, 0, 0x0700ffff, 0x00000000 },
  2959. { 0x2004, 0, 0x00000000, 0x0337000f },
  2960. { 0x2008, 0, 0xffffffff, 0x00000000 },
  2961. { 0x200c, 0, 0xffffffff, 0x00000000 },
  2962. { 0x2010, 0, 0xffffffff, 0x00000000 },
  2963. { 0x2014, 0, 0x801fff80, 0x00000000 },
  2964. { 0x2018, 0, 0x000003ff, 0x00000000 },
  2965. { 0x2800, 0, 0x00000000, 0x00000001 },
  2966. { 0x2804, 0, 0x00000000, 0x00003f01 },
  2967. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  2968. { 0x2810, 0, 0xffff0000, 0x00000000 },
  2969. { 0x2814, 0, 0xffff0000, 0x00000000 },
  2970. { 0x2818, 0, 0xffff0000, 0x00000000 },
  2971. { 0x281c, 0, 0xffff0000, 0x00000000 },
  2972. { 0x2834, 0, 0xffffffff, 0x00000000 },
  2973. { 0x2840, 0, 0x00000000, 0xffffffff },
  2974. { 0x2844, 0, 0x00000000, 0xffffffff },
  2975. { 0x2848, 0, 0xffffffff, 0x00000000 },
  2976. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  2977. { 0x2c00, 0, 0x00000000, 0x00000011 },
  2978. { 0x2c04, 0, 0x00000000, 0x00030007 },
  2979. { 0x3000, 0, 0x00000000, 0x00000001 },
  2980. { 0x3004, 0, 0x00000000, 0x007007ff },
  2981. { 0x3008, 0, 0x00000003, 0x00000000 },
  2982. { 0x300c, 0, 0xffffffff, 0x00000000 },
  2983. { 0x3010, 0, 0xffffffff, 0x00000000 },
  2984. { 0x3014, 0, 0xffffffff, 0x00000000 },
  2985. { 0x3034, 0, 0xffffffff, 0x00000000 },
  2986. { 0x3038, 0, 0xffffffff, 0x00000000 },
  2987. { 0x3050, 0, 0x00000001, 0x00000000 },
  2988. { 0x3c00, 0, 0x00000000, 0x00000001 },
  2989. { 0x3c04, 0, 0x00000000, 0x00070000 },
  2990. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  2991. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  2992. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  2993. { 0x3c14, 0, 0x00000000, 0xffffffff },
  2994. { 0x3c18, 0, 0x00000000, 0xffffffff },
  2995. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  2996. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  2997. { 0x3c24, 0, 0xffffffff, 0x00000000 },
  2998. { 0x3c28, 0, 0xffffffff, 0x00000000 },
  2999. { 0x3c2c, 0, 0xffffffff, 0x00000000 },
  3000. { 0x3c30, 0, 0xffffffff, 0x00000000 },
  3001. { 0x3c34, 0, 0xffffffff, 0x00000000 },
  3002. { 0x3c38, 0, 0xffffffff, 0x00000000 },
  3003. { 0x3c3c, 0, 0xffffffff, 0x00000000 },
  3004. { 0x3c40, 0, 0xffffffff, 0x00000000 },
  3005. { 0x3c44, 0, 0xffffffff, 0x00000000 },
  3006. { 0x3c48, 0, 0xffffffff, 0x00000000 },
  3007. { 0x3c4c, 0, 0xffffffff, 0x00000000 },
  3008. { 0x3c50, 0, 0xffffffff, 0x00000000 },
  3009. { 0x3c54, 0, 0xffffffff, 0x00000000 },
  3010. { 0x3c58, 0, 0xffffffff, 0x00000000 },
  3011. { 0x3c5c, 0, 0xffffffff, 0x00000000 },
  3012. { 0x3c60, 0, 0xffffffff, 0x00000000 },
  3013. { 0x3c64, 0, 0xffffffff, 0x00000000 },
  3014. { 0x3c68, 0, 0xffffffff, 0x00000000 },
  3015. { 0x3c6c, 0, 0xffffffff, 0x00000000 },
  3016. { 0x3c70, 0, 0xffffffff, 0x00000000 },
  3017. { 0x3c74, 0, 0x0000003f, 0x00000000 },
  3018. { 0x3c78, 0, 0x00000000, 0x00000000 },
  3019. { 0x3c7c, 0, 0x00000000, 0x00000000 },
  3020. { 0x3c80, 0, 0x3fffffff, 0x00000000 },
  3021. { 0x3c84, 0, 0x0000003f, 0x00000000 },
  3022. { 0x3c88, 0, 0x00000000, 0xffffffff },
  3023. { 0x3c8c, 0, 0x00000000, 0xffffffff },
  3024. { 0x4000, 0, 0x00000000, 0x00000001 },
  3025. { 0x4004, 0, 0x00000000, 0x00030000 },
  3026. { 0x4008, 0, 0x00000ff0, 0x00000000 },
  3027. { 0x400c, 0, 0xffffffff, 0x00000000 },
  3028. { 0x4088, 0, 0x00000000, 0x00070303 },
  3029. { 0x4400, 0, 0x00000000, 0x00000001 },
  3030. { 0x4404, 0, 0x00000000, 0x00003f01 },
  3031. { 0x4408, 0, 0x7fff00ff, 0x00000000 },
  3032. { 0x440c, 0, 0xffffffff, 0x00000000 },
  3033. { 0x4410, 0, 0xffff, 0x0000 },
  3034. { 0x4414, 0, 0xffff, 0x0000 },
  3035. { 0x4418, 0, 0xffff, 0x0000 },
  3036. { 0x441c, 0, 0xffff, 0x0000 },
  3037. { 0x4428, 0, 0xffffffff, 0x00000000 },
  3038. { 0x442c, 0, 0xffffffff, 0x00000000 },
  3039. { 0x4430, 0, 0xffffffff, 0x00000000 },
  3040. { 0x4434, 0, 0xffffffff, 0x00000000 },
  3041. { 0x4438, 0, 0xffffffff, 0x00000000 },
  3042. { 0x443c, 0, 0xffffffff, 0x00000000 },
  3043. { 0x4440, 0, 0xffffffff, 0x00000000 },
  3044. { 0x4444, 0, 0xffffffff, 0x00000000 },
  3045. { 0x4c00, 0, 0x00000000, 0x00000001 },
  3046. { 0x4c04, 0, 0x00000000, 0x0000003f },
  3047. { 0x4c08, 0, 0xffffffff, 0x00000000 },
  3048. { 0x4c0c, 0, 0x0007fc00, 0x00000000 },
  3049. { 0x4c10, 0, 0x80003fe0, 0x00000000 },
  3050. { 0x4c14, 0, 0xffffffff, 0x00000000 },
  3051. { 0x4c44, 0, 0x00000000, 0x9fff9fff },
  3052. { 0x4c48, 0, 0x00000000, 0xb3009fff },
  3053. { 0x4c4c, 0, 0x00000000, 0x77f33b30 },
  3054. { 0x4c50, 0, 0x00000000, 0xffffffff },
  3055. { 0x5004, 0, 0x00000000, 0x0000007f },
  3056. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3057. { 0x500c, 0, 0xf800f800, 0x07ff07ff },
  3058. { 0x5400, 0, 0x00000008, 0x00000001 },
  3059. { 0x5404, 0, 0x00000000, 0x0000003f },
  3060. { 0x5408, 0, 0x0000001f, 0x00000000 },
  3061. { 0x540c, 0, 0xffffffff, 0x00000000 },
  3062. { 0x5410, 0, 0xffffffff, 0x00000000 },
  3063. { 0x5414, 0, 0x0000ffff, 0x00000000 },
  3064. { 0x5418, 0, 0x0000ffff, 0x00000000 },
  3065. { 0x541c, 0, 0x0000ffff, 0x00000000 },
  3066. { 0x5420, 0, 0x0000ffff, 0x00000000 },
  3067. { 0x5428, 0, 0x000000ff, 0x00000000 },
  3068. { 0x542c, 0, 0xff00ffff, 0x00000000 },
  3069. { 0x5430, 0, 0x001fff80, 0x00000000 },
  3070. { 0x5438, 0, 0xffffffff, 0x00000000 },
  3071. { 0x543c, 0, 0xffffffff, 0x00000000 },
  3072. { 0x5440, 0, 0xf800f800, 0x07ff07ff },
  3073. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3074. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3075. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3076. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3077. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3078. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3079. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3080. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3081. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3082. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3083. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3084. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3085. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3086. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3087. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3088. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3089. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3090. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3091. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3092. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3093. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3094. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3095. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3096. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3097. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3098. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3099. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3100. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3101. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3102. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3103. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3104. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3105. { 0xffff, 0, 0x00000000, 0x00000000 },
  3106. };
  3107. ret = 0;
  3108. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3109. u32 offset, rw_mask, ro_mask, save_val, val;
  3110. offset = (u32) reg_tbl[i].offset;
  3111. rw_mask = reg_tbl[i].rw_mask;
  3112. ro_mask = reg_tbl[i].ro_mask;
  3113. save_val = readl(bp->regview + offset);
  3114. writel(0, bp->regview + offset);
  3115. val = readl(bp->regview + offset);
  3116. if ((val & rw_mask) != 0) {
  3117. goto reg_test_err;
  3118. }
  3119. if ((val & ro_mask) != (save_val & ro_mask)) {
  3120. goto reg_test_err;
  3121. }
  3122. writel(0xffffffff, bp->regview + offset);
  3123. val = readl(bp->regview + offset);
  3124. if ((val & rw_mask) != rw_mask) {
  3125. goto reg_test_err;
  3126. }
  3127. if ((val & ro_mask) != (save_val & ro_mask)) {
  3128. goto reg_test_err;
  3129. }
  3130. writel(save_val, bp->regview + offset);
  3131. continue;
  3132. reg_test_err:
  3133. writel(save_val, bp->regview + offset);
  3134. ret = -ENODEV;
  3135. break;
  3136. }
  3137. return ret;
  3138. }
  3139. static int
  3140. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3141. {
  3142. static u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3143. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3144. int i;
  3145. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3146. u32 offset;
  3147. for (offset = 0; offset < size; offset += 4) {
  3148. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3149. if (REG_RD_IND(bp, start + offset) !=
  3150. test_pattern[i]) {
  3151. return -ENODEV;
  3152. }
  3153. }
  3154. }
  3155. return 0;
  3156. }
  3157. static int
  3158. bnx2_test_memory(struct bnx2 *bp)
  3159. {
  3160. int ret = 0;
  3161. int i;
  3162. static struct {
  3163. u32 offset;
  3164. u32 len;
  3165. } mem_tbl[] = {
  3166. { 0x60000, 0x4000 },
  3167. { 0xa0000, 0x3000 },
  3168. { 0xe0000, 0x4000 },
  3169. { 0x120000, 0x4000 },
  3170. { 0x1a0000, 0x4000 },
  3171. { 0x160000, 0x4000 },
  3172. { 0xffffffff, 0 },
  3173. };
  3174. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3175. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3176. mem_tbl[i].len)) != 0) {
  3177. return ret;
  3178. }
  3179. }
  3180. return ret;
  3181. }
  3182. static int
  3183. bnx2_test_loopback(struct bnx2 *bp)
  3184. {
  3185. unsigned int pkt_size, num_pkts, i;
  3186. struct sk_buff *skb, *rx_skb;
  3187. unsigned char *packet;
  3188. u16 rx_start_idx, rx_idx, send_idx;
  3189. u32 send_bseq, val;
  3190. dma_addr_t map;
  3191. struct tx_bd *txbd;
  3192. struct sw_bd *rx_buf;
  3193. struct l2_fhdr *rx_hdr;
  3194. int ret = -ENODEV;
  3195. if (!netif_running(bp->dev))
  3196. return -ENODEV;
  3197. bp->loopback = MAC_LOOPBACK;
  3198. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_DIAG);
  3199. bnx2_set_mac_loopback(bp);
  3200. pkt_size = 1514;
  3201. skb = dev_alloc_skb(pkt_size);
  3202. if (!skb)
  3203. return -ENOMEM;
  3204. packet = skb_put(skb, pkt_size);
  3205. memcpy(packet, bp->mac_addr, 6);
  3206. memset(packet + 6, 0x0, 8);
  3207. for (i = 14; i < pkt_size; i++)
  3208. packet[i] = (unsigned char) (i & 0xff);
  3209. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3210. PCI_DMA_TODEVICE);
  3211. val = REG_RD(bp, BNX2_HC_COMMAND);
  3212. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3213. REG_RD(bp, BNX2_HC_COMMAND);
  3214. udelay(5);
  3215. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3216. send_idx = 0;
  3217. send_bseq = 0;
  3218. num_pkts = 0;
  3219. txbd = &bp->tx_desc_ring[send_idx];
  3220. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3221. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3222. txbd->tx_bd_mss_nbytes = pkt_size;
  3223. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3224. num_pkts++;
  3225. send_idx = NEXT_TX_BD(send_idx);
  3226. send_bseq += pkt_size;
  3227. REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, send_idx);
  3228. REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, send_bseq);
  3229. udelay(100);
  3230. val = REG_RD(bp, BNX2_HC_COMMAND);
  3231. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3232. REG_RD(bp, BNX2_HC_COMMAND);
  3233. udelay(5);
  3234. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3235. dev_kfree_skb_irq(skb);
  3236. if (bp->status_blk->status_tx_quick_consumer_index0 != send_idx) {
  3237. goto loopback_test_done;
  3238. }
  3239. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3240. if (rx_idx != rx_start_idx + num_pkts) {
  3241. goto loopback_test_done;
  3242. }
  3243. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3244. rx_skb = rx_buf->skb;
  3245. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3246. skb_reserve(rx_skb, bp->rx_offset);
  3247. pci_dma_sync_single_for_cpu(bp->pdev,
  3248. pci_unmap_addr(rx_buf, mapping),
  3249. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3250. if (rx_hdr->l2_fhdr_errors &
  3251. (L2_FHDR_ERRORS_BAD_CRC |
  3252. L2_FHDR_ERRORS_PHY_DECODE |
  3253. L2_FHDR_ERRORS_ALIGNMENT |
  3254. L2_FHDR_ERRORS_TOO_SHORT |
  3255. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3256. goto loopback_test_done;
  3257. }
  3258. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3259. goto loopback_test_done;
  3260. }
  3261. for (i = 14; i < pkt_size; i++) {
  3262. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3263. goto loopback_test_done;
  3264. }
  3265. }
  3266. ret = 0;
  3267. loopback_test_done:
  3268. bp->loopback = 0;
  3269. return ret;
  3270. }
  3271. #define NVRAM_SIZE 0x200
  3272. #define CRC32_RESIDUAL 0xdebb20e3
  3273. static int
  3274. bnx2_test_nvram(struct bnx2 *bp)
  3275. {
  3276. u32 buf[NVRAM_SIZE / 4];
  3277. u8 *data = (u8 *) buf;
  3278. int rc = 0;
  3279. u32 magic, csum;
  3280. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3281. goto test_nvram_done;
  3282. magic = be32_to_cpu(buf[0]);
  3283. if (magic != 0x669955aa) {
  3284. rc = -ENODEV;
  3285. goto test_nvram_done;
  3286. }
  3287. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3288. goto test_nvram_done;
  3289. csum = ether_crc_le(0x100, data);
  3290. if (csum != CRC32_RESIDUAL) {
  3291. rc = -ENODEV;
  3292. goto test_nvram_done;
  3293. }
  3294. csum = ether_crc_le(0x100, data + 0x100);
  3295. if (csum != CRC32_RESIDUAL) {
  3296. rc = -ENODEV;
  3297. }
  3298. test_nvram_done:
  3299. return rc;
  3300. }
  3301. static int
  3302. bnx2_test_link(struct bnx2 *bp)
  3303. {
  3304. u32 bmsr;
  3305. spin_lock_bh(&bp->phy_lock);
  3306. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3307. bnx2_read_phy(bp, MII_BMSR, &bmsr);
  3308. spin_unlock_bh(&bp->phy_lock);
  3309. if (bmsr & BMSR_LSTATUS) {
  3310. return 0;
  3311. }
  3312. return -ENODEV;
  3313. }
  3314. static int
  3315. bnx2_test_intr(struct bnx2 *bp)
  3316. {
  3317. int i;
  3318. u32 val;
  3319. u16 status_idx;
  3320. if (!netif_running(bp->dev))
  3321. return -ENODEV;
  3322. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3323. /* This register is not touched during run-time. */
  3324. val = REG_RD(bp, BNX2_HC_COMMAND);
  3325. REG_WR(bp, BNX2_HC_COMMAND, val | BNX2_HC_COMMAND_COAL_NOW);
  3326. REG_RD(bp, BNX2_HC_COMMAND);
  3327. for (i = 0; i < 10; i++) {
  3328. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3329. status_idx) {
  3330. break;
  3331. }
  3332. msleep_interruptible(10);
  3333. }
  3334. if (i < 10)
  3335. return 0;
  3336. return -ENODEV;
  3337. }
  3338. static void
  3339. bnx2_timer(unsigned long data)
  3340. {
  3341. struct bnx2 *bp = (struct bnx2 *) data;
  3342. u32 msg;
  3343. if (!netif_running(bp->dev))
  3344. return;
  3345. if (atomic_read(&bp->intr_sem) != 0)
  3346. goto bnx2_restart_timer;
  3347. msg = (u32) ++bp->fw_drv_pulse_wr_seq;
  3348. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
  3349. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  3350. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  3351. spin_lock(&bp->phy_lock);
  3352. if (bp->serdes_an_pending) {
  3353. bp->serdes_an_pending--;
  3354. }
  3355. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3356. u32 bmcr;
  3357. bp->current_interval = bp->timer_interval;
  3358. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3359. if (bmcr & BMCR_ANENABLE) {
  3360. u32 phy1, phy2;
  3361. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3362. bnx2_read_phy(bp, 0x1c, &phy1);
  3363. bnx2_write_phy(bp, 0x17, 0x0f01);
  3364. bnx2_read_phy(bp, 0x15, &phy2);
  3365. bnx2_write_phy(bp, 0x17, 0x0f01);
  3366. bnx2_read_phy(bp, 0x15, &phy2);
  3367. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3368. !(phy2 & 0x20)) { /* no CONFIG */
  3369. bmcr &= ~BMCR_ANENABLE;
  3370. bmcr |= BMCR_SPEED1000 |
  3371. BMCR_FULLDPLX;
  3372. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3373. bp->phy_flags |=
  3374. PHY_PARALLEL_DETECT_FLAG;
  3375. }
  3376. }
  3377. }
  3378. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3379. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3380. u32 phy2;
  3381. bnx2_write_phy(bp, 0x17, 0x0f01);
  3382. bnx2_read_phy(bp, 0x15, &phy2);
  3383. if (phy2 & 0x20) {
  3384. u32 bmcr;
  3385. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3386. bmcr |= BMCR_ANENABLE;
  3387. bnx2_write_phy(bp, MII_BMCR, bmcr);
  3388. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3389. }
  3390. }
  3391. else
  3392. bp->current_interval = bp->timer_interval;
  3393. spin_unlock(&bp->phy_lock);
  3394. }
  3395. bnx2_restart_timer:
  3396. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3397. }
  3398. /* Called with rtnl_lock */
  3399. static int
  3400. bnx2_open(struct net_device *dev)
  3401. {
  3402. struct bnx2 *bp = dev->priv;
  3403. int rc;
  3404. bnx2_set_power_state(bp, PCI_D0);
  3405. bnx2_disable_int(bp);
  3406. rc = bnx2_alloc_mem(bp);
  3407. if (rc)
  3408. return rc;
  3409. if ((CHIP_ID(bp) != CHIP_ID_5706_A0) &&
  3410. (CHIP_ID(bp) != CHIP_ID_5706_A1) &&
  3411. !disable_msi) {
  3412. if (pci_enable_msi(bp->pdev) == 0) {
  3413. bp->flags |= USING_MSI_FLAG;
  3414. rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name,
  3415. dev);
  3416. }
  3417. else {
  3418. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3419. SA_SHIRQ, dev->name, dev);
  3420. }
  3421. }
  3422. else {
  3423. rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ,
  3424. dev->name, dev);
  3425. }
  3426. if (rc) {
  3427. bnx2_free_mem(bp);
  3428. return rc;
  3429. }
  3430. rc = bnx2_init_nic(bp);
  3431. if (rc) {
  3432. free_irq(bp->pdev->irq, dev);
  3433. if (bp->flags & USING_MSI_FLAG) {
  3434. pci_disable_msi(bp->pdev);
  3435. bp->flags &= ~USING_MSI_FLAG;
  3436. }
  3437. bnx2_free_skbs(bp);
  3438. bnx2_free_mem(bp);
  3439. return rc;
  3440. }
  3441. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3442. atomic_set(&bp->intr_sem, 0);
  3443. bnx2_enable_int(bp);
  3444. if (bp->flags & USING_MSI_FLAG) {
  3445. /* Test MSI to make sure it is working
  3446. * If MSI test fails, go back to INTx mode
  3447. */
  3448. if (bnx2_test_intr(bp) != 0) {
  3449. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  3450. " using MSI, switching to INTx mode. Please"
  3451. " report this failure to the PCI maintainer"
  3452. " and include system chipset information.\n",
  3453. bp->dev->name);
  3454. bnx2_disable_int(bp);
  3455. free_irq(bp->pdev->irq, dev);
  3456. pci_disable_msi(bp->pdev);
  3457. bp->flags &= ~USING_MSI_FLAG;
  3458. rc = bnx2_init_nic(bp);
  3459. if (!rc) {
  3460. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3461. SA_SHIRQ, dev->name, dev);
  3462. }
  3463. if (rc) {
  3464. bnx2_free_skbs(bp);
  3465. bnx2_free_mem(bp);
  3466. del_timer_sync(&bp->timer);
  3467. return rc;
  3468. }
  3469. bnx2_enable_int(bp);
  3470. }
  3471. }
  3472. if (bp->flags & USING_MSI_FLAG) {
  3473. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  3474. }
  3475. netif_start_queue(dev);
  3476. return 0;
  3477. }
  3478. static void
  3479. bnx2_reset_task(void *data)
  3480. {
  3481. struct bnx2 *bp = data;
  3482. if (!netif_running(bp->dev))
  3483. return;
  3484. bp->in_reset_task = 1;
  3485. bnx2_netif_stop(bp);
  3486. bnx2_init_nic(bp);
  3487. atomic_set(&bp->intr_sem, 1);
  3488. bnx2_netif_start(bp);
  3489. bp->in_reset_task = 0;
  3490. }
  3491. static void
  3492. bnx2_tx_timeout(struct net_device *dev)
  3493. {
  3494. struct bnx2 *bp = dev->priv;
  3495. /* This allows the netif to be shutdown gracefully before resetting */
  3496. schedule_work(&bp->reset_task);
  3497. }
  3498. #ifdef BCM_VLAN
  3499. /* Called with rtnl_lock */
  3500. static void
  3501. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  3502. {
  3503. struct bnx2 *bp = dev->priv;
  3504. bnx2_netif_stop(bp);
  3505. bp->vlgrp = vlgrp;
  3506. bnx2_set_rx_mode(dev);
  3507. bnx2_netif_start(bp);
  3508. }
  3509. /* Called with rtnl_lock */
  3510. static void
  3511. bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
  3512. {
  3513. struct bnx2 *bp = dev->priv;
  3514. bnx2_netif_stop(bp);
  3515. if (bp->vlgrp)
  3516. bp->vlgrp->vlan_devices[vid] = NULL;
  3517. bnx2_set_rx_mode(dev);
  3518. bnx2_netif_start(bp);
  3519. }
  3520. #endif
  3521. /* Called with dev->xmit_lock.
  3522. * hard_start_xmit is pseudo-lockless - a lock is only required when
  3523. * the tx queue is full. This way, we get the benefit of lockless
  3524. * operations most of the time without the complexities to handle
  3525. * netif_stop_queue/wake_queue race conditions.
  3526. */
  3527. static int
  3528. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  3529. {
  3530. struct bnx2 *bp = dev->priv;
  3531. dma_addr_t mapping;
  3532. struct tx_bd *txbd;
  3533. struct sw_bd *tx_buf;
  3534. u32 len, vlan_tag_flags, last_frag, mss;
  3535. u16 prod, ring_prod;
  3536. int i;
  3537. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  3538. netif_stop_queue(dev);
  3539. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  3540. dev->name);
  3541. return NETDEV_TX_BUSY;
  3542. }
  3543. len = skb_headlen(skb);
  3544. prod = bp->tx_prod;
  3545. ring_prod = TX_RING_IDX(prod);
  3546. vlan_tag_flags = 0;
  3547. if (skb->ip_summed == CHECKSUM_HW) {
  3548. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  3549. }
  3550. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  3551. vlan_tag_flags |=
  3552. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  3553. }
  3554. #ifdef BCM_TSO
  3555. if ((mss = skb_shinfo(skb)->tso_size) &&
  3556. (skb->len > (bp->dev->mtu + ETH_HLEN))) {
  3557. u32 tcp_opt_len, ip_tcp_len;
  3558. if (skb_header_cloned(skb) &&
  3559. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  3560. dev_kfree_skb(skb);
  3561. return NETDEV_TX_OK;
  3562. }
  3563. tcp_opt_len = ((skb->h.th->doff - 5) * 4);
  3564. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  3565. tcp_opt_len = 0;
  3566. if (skb->h.th->doff > 5) {
  3567. tcp_opt_len = (skb->h.th->doff - 5) << 2;
  3568. }
  3569. ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr);
  3570. skb->nh.iph->check = 0;
  3571. skb->nh.iph->tot_len = ntohs(mss + ip_tcp_len + tcp_opt_len);
  3572. skb->h.th->check =
  3573. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  3574. skb->nh.iph->daddr,
  3575. 0, IPPROTO_TCP, 0);
  3576. if (tcp_opt_len || (skb->nh.iph->ihl > 5)) {
  3577. vlan_tag_flags |= ((skb->nh.iph->ihl - 5) +
  3578. (tcp_opt_len >> 2)) << 8;
  3579. }
  3580. }
  3581. else
  3582. #endif
  3583. {
  3584. mss = 0;
  3585. }
  3586. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  3587. tx_buf = &bp->tx_buf_ring[ring_prod];
  3588. tx_buf->skb = skb;
  3589. pci_unmap_addr_set(tx_buf, mapping, mapping);
  3590. txbd = &bp->tx_desc_ring[ring_prod];
  3591. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3592. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3593. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3594. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  3595. last_frag = skb_shinfo(skb)->nr_frags;
  3596. for (i = 0; i < last_frag; i++) {
  3597. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3598. prod = NEXT_TX_BD(prod);
  3599. ring_prod = TX_RING_IDX(prod);
  3600. txbd = &bp->tx_desc_ring[ring_prod];
  3601. len = frag->size;
  3602. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  3603. len, PCI_DMA_TODEVICE);
  3604. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  3605. mapping, mapping);
  3606. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3607. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3608. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3609. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  3610. }
  3611. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  3612. prod = NEXT_TX_BD(prod);
  3613. bp->tx_prod_bseq += skb->len;
  3614. REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod);
  3615. REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq);
  3616. mmiowb();
  3617. bp->tx_prod = prod;
  3618. dev->trans_start = jiffies;
  3619. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  3620. spin_lock(&bp->tx_lock);
  3621. netif_stop_queue(dev);
  3622. if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)
  3623. netif_wake_queue(dev);
  3624. spin_unlock(&bp->tx_lock);
  3625. }
  3626. return NETDEV_TX_OK;
  3627. }
  3628. /* Called with rtnl_lock */
  3629. static int
  3630. bnx2_close(struct net_device *dev)
  3631. {
  3632. struct bnx2 *bp = dev->priv;
  3633. u32 reset_code;
  3634. /* Calling flush_scheduled_work() may deadlock because
  3635. * linkwatch_event() may be on the workqueue and it will try to get
  3636. * the rtnl_lock which we are holding.
  3637. */
  3638. while (bp->in_reset_task)
  3639. msleep(1);
  3640. bnx2_netif_stop(bp);
  3641. del_timer_sync(&bp->timer);
  3642. if (bp->wol)
  3643. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3644. else
  3645. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3646. bnx2_reset_chip(bp, reset_code);
  3647. free_irq(bp->pdev->irq, dev);
  3648. if (bp->flags & USING_MSI_FLAG) {
  3649. pci_disable_msi(bp->pdev);
  3650. bp->flags &= ~USING_MSI_FLAG;
  3651. }
  3652. bnx2_free_skbs(bp);
  3653. bnx2_free_mem(bp);
  3654. bp->link_up = 0;
  3655. netif_carrier_off(bp->dev);
  3656. bnx2_set_power_state(bp, PCI_D3hot);
  3657. return 0;
  3658. }
  3659. #define GET_NET_STATS64(ctr) \
  3660. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  3661. (unsigned long) (ctr##_lo)
  3662. #define GET_NET_STATS32(ctr) \
  3663. (ctr##_lo)
  3664. #if (BITS_PER_LONG == 64)
  3665. #define GET_NET_STATS GET_NET_STATS64
  3666. #else
  3667. #define GET_NET_STATS GET_NET_STATS32
  3668. #endif
  3669. static struct net_device_stats *
  3670. bnx2_get_stats(struct net_device *dev)
  3671. {
  3672. struct bnx2 *bp = dev->priv;
  3673. struct statistics_block *stats_blk = bp->stats_blk;
  3674. struct net_device_stats *net_stats = &bp->net_stats;
  3675. if (bp->stats_blk == NULL) {
  3676. return net_stats;
  3677. }
  3678. net_stats->rx_packets =
  3679. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  3680. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  3681. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  3682. net_stats->tx_packets =
  3683. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  3684. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  3685. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  3686. net_stats->rx_bytes =
  3687. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  3688. net_stats->tx_bytes =
  3689. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  3690. net_stats->multicast =
  3691. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  3692. net_stats->collisions =
  3693. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  3694. net_stats->rx_length_errors =
  3695. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  3696. stats_blk->stat_EtherStatsOverrsizePkts);
  3697. net_stats->rx_over_errors =
  3698. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  3699. net_stats->rx_frame_errors =
  3700. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  3701. net_stats->rx_crc_errors =
  3702. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  3703. net_stats->rx_errors = net_stats->rx_length_errors +
  3704. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  3705. net_stats->rx_crc_errors;
  3706. net_stats->tx_aborted_errors =
  3707. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  3708. stats_blk->stat_Dot3StatsLateCollisions);
  3709. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  3710. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  3711. net_stats->tx_carrier_errors = 0;
  3712. else {
  3713. net_stats->tx_carrier_errors =
  3714. (unsigned long)
  3715. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  3716. }
  3717. net_stats->tx_errors =
  3718. (unsigned long)
  3719. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  3720. +
  3721. net_stats->tx_aborted_errors +
  3722. net_stats->tx_carrier_errors;
  3723. return net_stats;
  3724. }
  3725. /* All ethtool functions called with rtnl_lock */
  3726. static int
  3727. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3728. {
  3729. struct bnx2 *bp = dev->priv;
  3730. cmd->supported = SUPPORTED_Autoneg;
  3731. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3732. cmd->supported |= SUPPORTED_1000baseT_Full |
  3733. SUPPORTED_FIBRE;
  3734. cmd->port = PORT_FIBRE;
  3735. }
  3736. else {
  3737. cmd->supported |= SUPPORTED_10baseT_Half |
  3738. SUPPORTED_10baseT_Full |
  3739. SUPPORTED_100baseT_Half |
  3740. SUPPORTED_100baseT_Full |
  3741. SUPPORTED_1000baseT_Full |
  3742. SUPPORTED_TP;
  3743. cmd->port = PORT_TP;
  3744. }
  3745. cmd->advertising = bp->advertising;
  3746. if (bp->autoneg & AUTONEG_SPEED) {
  3747. cmd->autoneg = AUTONEG_ENABLE;
  3748. }
  3749. else {
  3750. cmd->autoneg = AUTONEG_DISABLE;
  3751. }
  3752. if (netif_carrier_ok(dev)) {
  3753. cmd->speed = bp->line_speed;
  3754. cmd->duplex = bp->duplex;
  3755. }
  3756. else {
  3757. cmd->speed = -1;
  3758. cmd->duplex = -1;
  3759. }
  3760. cmd->transceiver = XCVR_INTERNAL;
  3761. cmd->phy_address = bp->phy_addr;
  3762. return 0;
  3763. }
  3764. static int
  3765. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  3766. {
  3767. struct bnx2 *bp = dev->priv;
  3768. u8 autoneg = bp->autoneg;
  3769. u8 req_duplex = bp->req_duplex;
  3770. u16 req_line_speed = bp->req_line_speed;
  3771. u32 advertising = bp->advertising;
  3772. if (cmd->autoneg == AUTONEG_ENABLE) {
  3773. autoneg |= AUTONEG_SPEED;
  3774. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  3775. /* allow advertising 1 speed */
  3776. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  3777. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  3778. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  3779. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  3780. if (bp->phy_flags & PHY_SERDES_FLAG)
  3781. return -EINVAL;
  3782. advertising = cmd->advertising;
  3783. }
  3784. else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
  3785. advertising = cmd->advertising;
  3786. }
  3787. else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
  3788. return -EINVAL;
  3789. }
  3790. else {
  3791. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3792. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  3793. }
  3794. else {
  3795. advertising = ETHTOOL_ALL_COPPER_SPEED;
  3796. }
  3797. }
  3798. advertising |= ADVERTISED_Autoneg;
  3799. }
  3800. else {
  3801. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3802. if ((cmd->speed != SPEED_1000) ||
  3803. (cmd->duplex != DUPLEX_FULL)) {
  3804. return -EINVAL;
  3805. }
  3806. }
  3807. else if (cmd->speed == SPEED_1000) {
  3808. return -EINVAL;
  3809. }
  3810. autoneg &= ~AUTONEG_SPEED;
  3811. req_line_speed = cmd->speed;
  3812. req_duplex = cmd->duplex;
  3813. advertising = 0;
  3814. }
  3815. bp->autoneg = autoneg;
  3816. bp->advertising = advertising;
  3817. bp->req_line_speed = req_line_speed;
  3818. bp->req_duplex = req_duplex;
  3819. spin_lock_bh(&bp->phy_lock);
  3820. bnx2_setup_phy(bp);
  3821. spin_unlock_bh(&bp->phy_lock);
  3822. return 0;
  3823. }
  3824. static void
  3825. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3826. {
  3827. struct bnx2 *bp = dev->priv;
  3828. strcpy(info->driver, DRV_MODULE_NAME);
  3829. strcpy(info->version, DRV_MODULE_VERSION);
  3830. strcpy(info->bus_info, pci_name(bp->pdev));
  3831. info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
  3832. info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
  3833. info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
  3834. info->fw_version[6] = (bp->fw_ver & 0xff) + '0';
  3835. info->fw_version[1] = info->fw_version[3] = info->fw_version[5] = '.';
  3836. info->fw_version[7] = 0;
  3837. }
  3838. static void
  3839. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3840. {
  3841. struct bnx2 *bp = dev->priv;
  3842. if (bp->flags & NO_WOL_FLAG) {
  3843. wol->supported = 0;
  3844. wol->wolopts = 0;
  3845. }
  3846. else {
  3847. wol->supported = WAKE_MAGIC;
  3848. if (bp->wol)
  3849. wol->wolopts = WAKE_MAGIC;
  3850. else
  3851. wol->wolopts = 0;
  3852. }
  3853. memset(&wol->sopass, 0, sizeof(wol->sopass));
  3854. }
  3855. static int
  3856. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  3857. {
  3858. struct bnx2 *bp = dev->priv;
  3859. if (wol->wolopts & ~WAKE_MAGIC)
  3860. return -EINVAL;
  3861. if (wol->wolopts & WAKE_MAGIC) {
  3862. if (bp->flags & NO_WOL_FLAG)
  3863. return -EINVAL;
  3864. bp->wol = 1;
  3865. }
  3866. else {
  3867. bp->wol = 0;
  3868. }
  3869. return 0;
  3870. }
  3871. static int
  3872. bnx2_nway_reset(struct net_device *dev)
  3873. {
  3874. struct bnx2 *bp = dev->priv;
  3875. u32 bmcr;
  3876. if (!(bp->autoneg & AUTONEG_SPEED)) {
  3877. return -EINVAL;
  3878. }
  3879. spin_lock_bh(&bp->phy_lock);
  3880. /* Force a link down visible on the other side */
  3881. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3882. bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK);
  3883. spin_unlock_bh(&bp->phy_lock);
  3884. msleep(20);
  3885. spin_lock_bh(&bp->phy_lock);
  3886. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  3887. bp->current_interval = SERDES_AN_TIMEOUT;
  3888. bp->serdes_an_pending = 1;
  3889. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3890. }
  3891. }
  3892. bnx2_read_phy(bp, MII_BMCR, &bmcr);
  3893. bmcr &= ~BMCR_LOOPBACK;
  3894. bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  3895. spin_unlock_bh(&bp->phy_lock);
  3896. return 0;
  3897. }
  3898. static int
  3899. bnx2_get_eeprom_len(struct net_device *dev)
  3900. {
  3901. struct bnx2 *bp = dev->priv;
  3902. if (bp->flash_info == 0)
  3903. return 0;
  3904. return (int) bp->flash_info->total_size;
  3905. }
  3906. static int
  3907. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  3908. u8 *eebuf)
  3909. {
  3910. struct bnx2 *bp = dev->priv;
  3911. int rc;
  3912. /* parameters already validated in ethtool_get_eeprom */
  3913. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  3914. return rc;
  3915. }
  3916. static int
  3917. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  3918. u8 *eebuf)
  3919. {
  3920. struct bnx2 *bp = dev->priv;
  3921. int rc;
  3922. /* parameters already validated in ethtool_set_eeprom */
  3923. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  3924. return rc;
  3925. }
  3926. static int
  3927. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  3928. {
  3929. struct bnx2 *bp = dev->priv;
  3930. memset(coal, 0, sizeof(struct ethtool_coalesce));
  3931. coal->rx_coalesce_usecs = bp->rx_ticks;
  3932. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  3933. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  3934. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  3935. coal->tx_coalesce_usecs = bp->tx_ticks;
  3936. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  3937. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  3938. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  3939. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  3940. return 0;
  3941. }
  3942. static int
  3943. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  3944. {
  3945. struct bnx2 *bp = dev->priv;
  3946. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  3947. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  3948. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  3949. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  3950. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  3951. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  3952. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  3953. if (bp->rx_quick_cons_trip_int > 0xff)
  3954. bp->rx_quick_cons_trip_int = 0xff;
  3955. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  3956. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  3957. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  3958. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  3959. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  3960. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  3961. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  3962. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  3963. 0xff;
  3964. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  3965. if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
  3966. bp->stats_ticks &= 0xffff00;
  3967. if (netif_running(bp->dev)) {
  3968. bnx2_netif_stop(bp);
  3969. bnx2_init_nic(bp);
  3970. bnx2_netif_start(bp);
  3971. }
  3972. return 0;
  3973. }
  3974. static void
  3975. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  3976. {
  3977. struct bnx2 *bp = dev->priv;
  3978. ering->rx_max_pending = MAX_RX_DESC_CNT;
  3979. ering->rx_mini_max_pending = 0;
  3980. ering->rx_jumbo_max_pending = 0;
  3981. ering->rx_pending = bp->rx_ring_size;
  3982. ering->rx_mini_pending = 0;
  3983. ering->rx_jumbo_pending = 0;
  3984. ering->tx_max_pending = MAX_TX_DESC_CNT;
  3985. ering->tx_pending = bp->tx_ring_size;
  3986. }
  3987. static int
  3988. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  3989. {
  3990. struct bnx2 *bp = dev->priv;
  3991. if ((ering->rx_pending > MAX_RX_DESC_CNT) ||
  3992. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  3993. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  3994. return -EINVAL;
  3995. }
  3996. bp->rx_ring_size = ering->rx_pending;
  3997. bp->tx_ring_size = ering->tx_pending;
  3998. if (netif_running(bp->dev)) {
  3999. bnx2_netif_stop(bp);
  4000. bnx2_init_nic(bp);
  4001. bnx2_netif_start(bp);
  4002. }
  4003. return 0;
  4004. }
  4005. static void
  4006. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4007. {
  4008. struct bnx2 *bp = dev->priv;
  4009. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  4010. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  4011. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  4012. }
  4013. static int
  4014. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4015. {
  4016. struct bnx2 *bp = dev->priv;
  4017. bp->req_flow_ctrl = 0;
  4018. if (epause->rx_pause)
  4019. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4020. if (epause->tx_pause)
  4021. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4022. if (epause->autoneg) {
  4023. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4024. }
  4025. else {
  4026. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4027. }
  4028. spin_lock_bh(&bp->phy_lock);
  4029. bnx2_setup_phy(bp);
  4030. spin_unlock_bh(&bp->phy_lock);
  4031. return 0;
  4032. }
  4033. static u32
  4034. bnx2_get_rx_csum(struct net_device *dev)
  4035. {
  4036. struct bnx2 *bp = dev->priv;
  4037. return bp->rx_csum;
  4038. }
  4039. static int
  4040. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4041. {
  4042. struct bnx2 *bp = dev->priv;
  4043. bp->rx_csum = data;
  4044. return 0;
  4045. }
  4046. #define BNX2_NUM_STATS 45
  4047. static struct {
  4048. char string[ETH_GSTRING_LEN];
  4049. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4050. { "rx_bytes" },
  4051. { "rx_error_bytes" },
  4052. { "tx_bytes" },
  4053. { "tx_error_bytes" },
  4054. { "rx_ucast_packets" },
  4055. { "rx_mcast_packets" },
  4056. { "rx_bcast_packets" },
  4057. { "tx_ucast_packets" },
  4058. { "tx_mcast_packets" },
  4059. { "tx_bcast_packets" },
  4060. { "tx_mac_errors" },
  4061. { "tx_carrier_errors" },
  4062. { "rx_crc_errors" },
  4063. { "rx_align_errors" },
  4064. { "tx_single_collisions" },
  4065. { "tx_multi_collisions" },
  4066. { "tx_deferred" },
  4067. { "tx_excess_collisions" },
  4068. { "tx_late_collisions" },
  4069. { "tx_total_collisions" },
  4070. { "rx_fragments" },
  4071. { "rx_jabbers" },
  4072. { "rx_undersize_packets" },
  4073. { "rx_oversize_packets" },
  4074. { "rx_64_byte_packets" },
  4075. { "rx_65_to_127_byte_packets" },
  4076. { "rx_128_to_255_byte_packets" },
  4077. { "rx_256_to_511_byte_packets" },
  4078. { "rx_512_to_1023_byte_packets" },
  4079. { "rx_1024_to_1522_byte_packets" },
  4080. { "rx_1523_to_9022_byte_packets" },
  4081. { "tx_64_byte_packets" },
  4082. { "tx_65_to_127_byte_packets" },
  4083. { "tx_128_to_255_byte_packets" },
  4084. { "tx_256_to_511_byte_packets" },
  4085. { "tx_512_to_1023_byte_packets" },
  4086. { "tx_1024_to_1522_byte_packets" },
  4087. { "tx_1523_to_9022_byte_packets" },
  4088. { "rx_xon_frames" },
  4089. { "rx_xoff_frames" },
  4090. { "tx_xon_frames" },
  4091. { "tx_xoff_frames" },
  4092. { "rx_mac_ctrl_frames" },
  4093. { "rx_filtered_packets" },
  4094. { "rx_discards" },
  4095. };
  4096. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4097. static unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4098. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4099. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4100. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4101. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4102. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4103. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4104. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4105. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4106. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4107. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4108. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4109. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4110. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4111. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4112. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4113. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4114. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4115. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4116. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4117. STATS_OFFSET32(stat_EtherStatsCollisions),
  4118. STATS_OFFSET32(stat_EtherStatsFragments),
  4119. STATS_OFFSET32(stat_EtherStatsJabbers),
  4120. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4121. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4122. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4123. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4124. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4125. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4126. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4127. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4128. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4129. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4130. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4131. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4132. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4133. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4134. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4135. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4136. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4137. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4138. STATS_OFFSET32(stat_OutXonSent),
  4139. STATS_OFFSET32(stat_OutXoffSent),
  4140. STATS_OFFSET32(stat_MacControlFramesReceived),
  4141. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4142. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4143. };
  4144. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4145. * skipped because of errata.
  4146. */
  4147. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4148. 8,0,8,8,8,8,8,8,8,8,
  4149. 4,0,4,4,4,4,4,4,4,4,
  4150. 4,4,4,4,4,4,4,4,4,4,
  4151. 4,4,4,4,4,4,4,4,4,4,
  4152. 4,4,4,4,4,
  4153. };
  4154. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4155. 8,0,8,8,8,8,8,8,8,8,
  4156. 4,4,4,4,4,4,4,4,4,4,
  4157. 4,4,4,4,4,4,4,4,4,4,
  4158. 4,4,4,4,4,4,4,4,4,4,
  4159. 4,4,4,4,4,
  4160. };
  4161. #define BNX2_NUM_TESTS 6
  4162. static struct {
  4163. char string[ETH_GSTRING_LEN];
  4164. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4165. { "register_test (offline)" },
  4166. { "memory_test (offline)" },
  4167. { "loopback_test (offline)" },
  4168. { "nvram_test (online)" },
  4169. { "interrupt_test (online)" },
  4170. { "link_test (online)" },
  4171. };
  4172. static int
  4173. bnx2_self_test_count(struct net_device *dev)
  4174. {
  4175. return BNX2_NUM_TESTS;
  4176. }
  4177. static void
  4178. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4179. {
  4180. struct bnx2 *bp = dev->priv;
  4181. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4182. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4183. bnx2_netif_stop(bp);
  4184. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4185. bnx2_free_skbs(bp);
  4186. if (bnx2_test_registers(bp) != 0) {
  4187. buf[0] = 1;
  4188. etest->flags |= ETH_TEST_FL_FAILED;
  4189. }
  4190. if (bnx2_test_memory(bp) != 0) {
  4191. buf[1] = 1;
  4192. etest->flags |= ETH_TEST_FL_FAILED;
  4193. }
  4194. if (bnx2_test_loopback(bp) != 0) {
  4195. buf[2] = 1;
  4196. etest->flags |= ETH_TEST_FL_FAILED;
  4197. }
  4198. if (!netif_running(bp->dev)) {
  4199. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4200. }
  4201. else {
  4202. bnx2_init_nic(bp);
  4203. bnx2_netif_start(bp);
  4204. }
  4205. /* wait for link up */
  4206. msleep_interruptible(3000);
  4207. if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG))
  4208. msleep_interruptible(4000);
  4209. }
  4210. if (bnx2_test_nvram(bp) != 0) {
  4211. buf[3] = 1;
  4212. etest->flags |= ETH_TEST_FL_FAILED;
  4213. }
  4214. if (bnx2_test_intr(bp) != 0) {
  4215. buf[4] = 1;
  4216. etest->flags |= ETH_TEST_FL_FAILED;
  4217. }
  4218. if (bnx2_test_link(bp) != 0) {
  4219. buf[5] = 1;
  4220. etest->flags |= ETH_TEST_FL_FAILED;
  4221. }
  4222. }
  4223. static void
  4224. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4225. {
  4226. switch (stringset) {
  4227. case ETH_SS_STATS:
  4228. memcpy(buf, bnx2_stats_str_arr,
  4229. sizeof(bnx2_stats_str_arr));
  4230. break;
  4231. case ETH_SS_TEST:
  4232. memcpy(buf, bnx2_tests_str_arr,
  4233. sizeof(bnx2_tests_str_arr));
  4234. break;
  4235. }
  4236. }
  4237. static int
  4238. bnx2_get_stats_count(struct net_device *dev)
  4239. {
  4240. return BNX2_NUM_STATS;
  4241. }
  4242. static void
  4243. bnx2_get_ethtool_stats(struct net_device *dev,
  4244. struct ethtool_stats *stats, u64 *buf)
  4245. {
  4246. struct bnx2 *bp = dev->priv;
  4247. int i;
  4248. u32 *hw_stats = (u32 *) bp->stats_blk;
  4249. u8 *stats_len_arr = NULL;
  4250. if (hw_stats == NULL) {
  4251. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4252. return;
  4253. }
  4254. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4255. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4256. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4257. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4258. stats_len_arr = bnx2_5706_stats_len_arr;
  4259. else
  4260. stats_len_arr = bnx2_5708_stats_len_arr;
  4261. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4262. if (stats_len_arr[i] == 0) {
  4263. /* skip this counter */
  4264. buf[i] = 0;
  4265. continue;
  4266. }
  4267. if (stats_len_arr[i] == 4) {
  4268. /* 4-byte counter */
  4269. buf[i] = (u64)
  4270. *(hw_stats + bnx2_stats_offset_arr[i]);
  4271. continue;
  4272. }
  4273. /* 8-byte counter */
  4274. buf[i] = (((u64) *(hw_stats +
  4275. bnx2_stats_offset_arr[i])) << 32) +
  4276. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  4277. }
  4278. }
  4279. static int
  4280. bnx2_phys_id(struct net_device *dev, u32 data)
  4281. {
  4282. struct bnx2 *bp = dev->priv;
  4283. int i;
  4284. u32 save;
  4285. if (data == 0)
  4286. data = 2;
  4287. save = REG_RD(bp, BNX2_MISC_CFG);
  4288. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  4289. for (i = 0; i < (data * 2); i++) {
  4290. if ((i % 2) == 0) {
  4291. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  4292. }
  4293. else {
  4294. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  4295. BNX2_EMAC_LED_1000MB_OVERRIDE |
  4296. BNX2_EMAC_LED_100MB_OVERRIDE |
  4297. BNX2_EMAC_LED_10MB_OVERRIDE |
  4298. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  4299. BNX2_EMAC_LED_TRAFFIC);
  4300. }
  4301. msleep_interruptible(500);
  4302. if (signal_pending(current))
  4303. break;
  4304. }
  4305. REG_WR(bp, BNX2_EMAC_LED, 0);
  4306. REG_WR(bp, BNX2_MISC_CFG, save);
  4307. return 0;
  4308. }
  4309. static struct ethtool_ops bnx2_ethtool_ops = {
  4310. .get_settings = bnx2_get_settings,
  4311. .set_settings = bnx2_set_settings,
  4312. .get_drvinfo = bnx2_get_drvinfo,
  4313. .get_wol = bnx2_get_wol,
  4314. .set_wol = bnx2_set_wol,
  4315. .nway_reset = bnx2_nway_reset,
  4316. .get_link = ethtool_op_get_link,
  4317. .get_eeprom_len = bnx2_get_eeprom_len,
  4318. .get_eeprom = bnx2_get_eeprom,
  4319. .set_eeprom = bnx2_set_eeprom,
  4320. .get_coalesce = bnx2_get_coalesce,
  4321. .set_coalesce = bnx2_set_coalesce,
  4322. .get_ringparam = bnx2_get_ringparam,
  4323. .set_ringparam = bnx2_set_ringparam,
  4324. .get_pauseparam = bnx2_get_pauseparam,
  4325. .set_pauseparam = bnx2_set_pauseparam,
  4326. .get_rx_csum = bnx2_get_rx_csum,
  4327. .set_rx_csum = bnx2_set_rx_csum,
  4328. .get_tx_csum = ethtool_op_get_tx_csum,
  4329. .set_tx_csum = ethtool_op_set_tx_csum,
  4330. .get_sg = ethtool_op_get_sg,
  4331. .set_sg = ethtool_op_set_sg,
  4332. #ifdef BCM_TSO
  4333. .get_tso = ethtool_op_get_tso,
  4334. .set_tso = ethtool_op_set_tso,
  4335. #endif
  4336. .self_test_count = bnx2_self_test_count,
  4337. .self_test = bnx2_self_test,
  4338. .get_strings = bnx2_get_strings,
  4339. .phys_id = bnx2_phys_id,
  4340. .get_stats_count = bnx2_get_stats_count,
  4341. .get_ethtool_stats = bnx2_get_ethtool_stats,
  4342. .get_perm_addr = ethtool_op_get_perm_addr,
  4343. };
  4344. /* Called with rtnl_lock */
  4345. static int
  4346. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4347. {
  4348. struct mii_ioctl_data *data = if_mii(ifr);
  4349. struct bnx2 *bp = dev->priv;
  4350. int err;
  4351. switch(cmd) {
  4352. case SIOCGMIIPHY:
  4353. data->phy_id = bp->phy_addr;
  4354. /* fallthru */
  4355. case SIOCGMIIREG: {
  4356. u32 mii_regval;
  4357. spin_lock_bh(&bp->phy_lock);
  4358. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  4359. spin_unlock_bh(&bp->phy_lock);
  4360. data->val_out = mii_regval;
  4361. return err;
  4362. }
  4363. case SIOCSMIIREG:
  4364. if (!capable(CAP_NET_ADMIN))
  4365. return -EPERM;
  4366. spin_lock_bh(&bp->phy_lock);
  4367. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  4368. spin_unlock_bh(&bp->phy_lock);
  4369. return err;
  4370. default:
  4371. /* do nothing */
  4372. break;
  4373. }
  4374. return -EOPNOTSUPP;
  4375. }
  4376. /* Called with rtnl_lock */
  4377. static int
  4378. bnx2_change_mac_addr(struct net_device *dev, void *p)
  4379. {
  4380. struct sockaddr *addr = p;
  4381. struct bnx2 *bp = dev->priv;
  4382. if (!is_valid_ether_addr(addr->sa_data))
  4383. return -EINVAL;
  4384. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4385. if (netif_running(dev))
  4386. bnx2_set_mac_addr(bp);
  4387. return 0;
  4388. }
  4389. /* Called with rtnl_lock */
  4390. static int
  4391. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  4392. {
  4393. struct bnx2 *bp = dev->priv;
  4394. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  4395. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  4396. return -EINVAL;
  4397. dev->mtu = new_mtu;
  4398. if (netif_running(dev)) {
  4399. bnx2_netif_stop(bp);
  4400. bnx2_init_nic(bp);
  4401. bnx2_netif_start(bp);
  4402. }
  4403. return 0;
  4404. }
  4405. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4406. static void
  4407. poll_bnx2(struct net_device *dev)
  4408. {
  4409. struct bnx2 *bp = dev->priv;
  4410. disable_irq(bp->pdev->irq);
  4411. bnx2_interrupt(bp->pdev->irq, dev, NULL);
  4412. enable_irq(bp->pdev->irq);
  4413. }
  4414. #endif
  4415. static int __devinit
  4416. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  4417. {
  4418. struct bnx2 *bp;
  4419. unsigned long mem_len;
  4420. int rc;
  4421. u32 reg;
  4422. SET_MODULE_OWNER(dev);
  4423. SET_NETDEV_DEV(dev, &pdev->dev);
  4424. bp = dev->priv;
  4425. bp->flags = 0;
  4426. bp->phy_flags = 0;
  4427. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  4428. rc = pci_enable_device(pdev);
  4429. if (rc) {
  4430. printk(KERN_ERR PFX "Cannot enable PCI device, aborting.");
  4431. goto err_out;
  4432. }
  4433. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  4434. printk(KERN_ERR PFX "Cannot find PCI device base address, "
  4435. "aborting.\n");
  4436. rc = -ENODEV;
  4437. goto err_out_disable;
  4438. }
  4439. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  4440. if (rc) {
  4441. printk(KERN_ERR PFX "Cannot obtain PCI resources, aborting.\n");
  4442. goto err_out_disable;
  4443. }
  4444. pci_set_master(pdev);
  4445. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  4446. if (bp->pm_cap == 0) {
  4447. printk(KERN_ERR PFX "Cannot find power management capability, "
  4448. "aborting.\n");
  4449. rc = -EIO;
  4450. goto err_out_release;
  4451. }
  4452. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  4453. if (bp->pcix_cap == 0) {
  4454. printk(KERN_ERR PFX "Cannot find PCIX capability, aborting.\n");
  4455. rc = -EIO;
  4456. goto err_out_release;
  4457. }
  4458. if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) {
  4459. bp->flags |= USING_DAC_FLAG;
  4460. if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
  4461. printk(KERN_ERR PFX "pci_set_consistent_dma_mask "
  4462. "failed, aborting.\n");
  4463. rc = -EIO;
  4464. goto err_out_release;
  4465. }
  4466. }
  4467. else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) {
  4468. printk(KERN_ERR PFX "System does not support DMA, aborting.\n");
  4469. rc = -EIO;
  4470. goto err_out_release;
  4471. }
  4472. bp->dev = dev;
  4473. bp->pdev = pdev;
  4474. spin_lock_init(&bp->phy_lock);
  4475. spin_lock_init(&bp->tx_lock);
  4476. INIT_WORK(&bp->reset_task, bnx2_reset_task, bp);
  4477. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  4478. mem_len = MB_GET_CID_ADDR(17);
  4479. dev->mem_end = dev->mem_start + mem_len;
  4480. dev->irq = pdev->irq;
  4481. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  4482. if (!bp->regview) {
  4483. printk(KERN_ERR PFX "Cannot map register space, aborting.\n");
  4484. rc = -ENOMEM;
  4485. goto err_out_release;
  4486. }
  4487. /* Configure byte swap and enable write to the reg_window registers.
  4488. * Rely on CPU to do target byte swapping on big endian systems
  4489. * The chip's target access swapping will not swap all accesses
  4490. */
  4491. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  4492. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  4493. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  4494. bnx2_set_power_state(bp, PCI_D0);
  4495. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  4496. /* Get bus information. */
  4497. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  4498. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  4499. u32 clkreg;
  4500. bp->flags |= PCIX_FLAG;
  4501. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  4502. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  4503. switch (clkreg) {
  4504. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  4505. bp->bus_speed_mhz = 133;
  4506. break;
  4507. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  4508. bp->bus_speed_mhz = 100;
  4509. break;
  4510. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  4511. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  4512. bp->bus_speed_mhz = 66;
  4513. break;
  4514. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  4515. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  4516. bp->bus_speed_mhz = 50;
  4517. break;
  4518. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  4519. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  4520. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  4521. bp->bus_speed_mhz = 33;
  4522. break;
  4523. }
  4524. }
  4525. else {
  4526. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  4527. bp->bus_speed_mhz = 66;
  4528. else
  4529. bp->bus_speed_mhz = 33;
  4530. }
  4531. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  4532. bp->flags |= PCI_32BIT_FLAG;
  4533. /* 5706A0 may falsely detect SERR and PERR. */
  4534. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4535. reg = REG_RD(bp, PCI_COMMAND);
  4536. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  4537. REG_WR(bp, PCI_COMMAND, reg);
  4538. }
  4539. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  4540. !(bp->flags & PCIX_FLAG)) {
  4541. printk(KERN_ERR PFX "5706 A1 can only be used in a PCIX bus, "
  4542. "aborting.\n");
  4543. goto err_out_unmap;
  4544. }
  4545. bnx2_init_nvram(bp);
  4546. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  4547. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  4548. BNX2_SHM_HDR_SIGNATURE_SIG)
  4549. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0);
  4550. else
  4551. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  4552. /* Get the permanent MAC address. First we need to make sure the
  4553. * firmware is actually running.
  4554. */
  4555. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  4556. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  4557. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  4558. printk(KERN_ERR PFX "Firmware not running, aborting.\n");
  4559. rc = -ENODEV;
  4560. goto err_out_unmap;
  4561. }
  4562. bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  4563. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  4564. bp->mac_addr[0] = (u8) (reg >> 8);
  4565. bp->mac_addr[1] = (u8) reg;
  4566. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  4567. bp->mac_addr[2] = (u8) (reg >> 24);
  4568. bp->mac_addr[3] = (u8) (reg >> 16);
  4569. bp->mac_addr[4] = (u8) (reg >> 8);
  4570. bp->mac_addr[5] = (u8) reg;
  4571. bp->tx_ring_size = MAX_TX_DESC_CNT;
  4572. bp->rx_ring_size = 100;
  4573. bp->rx_csum = 1;
  4574. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  4575. bp->tx_quick_cons_trip_int = 20;
  4576. bp->tx_quick_cons_trip = 20;
  4577. bp->tx_ticks_int = 80;
  4578. bp->tx_ticks = 80;
  4579. bp->rx_quick_cons_trip_int = 6;
  4580. bp->rx_quick_cons_trip = 6;
  4581. bp->rx_ticks_int = 18;
  4582. bp->rx_ticks = 18;
  4583. bp->stats_ticks = 1000000 & 0xffff00;
  4584. bp->timer_interval = HZ;
  4585. bp->current_interval = HZ;
  4586. bp->phy_addr = 1;
  4587. /* Disable WOL support if we are running on a SERDES chip. */
  4588. if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) {
  4589. bp->phy_flags |= PHY_SERDES_FLAG;
  4590. bp->flags |= NO_WOL_FLAG;
  4591. if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  4592. bp->phy_addr = 2;
  4593. reg = REG_RD_IND(bp, bp->shmem_base +
  4594. BNX2_SHARED_HW_CFG_CONFIG);
  4595. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  4596. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  4597. }
  4598. }
  4599. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  4600. bp->tx_quick_cons_trip_int =
  4601. bp->tx_quick_cons_trip;
  4602. bp->tx_ticks_int = bp->tx_ticks;
  4603. bp->rx_quick_cons_trip_int =
  4604. bp->rx_quick_cons_trip;
  4605. bp->rx_ticks_int = bp->rx_ticks;
  4606. bp->comp_prod_trip_int = bp->comp_prod_trip;
  4607. bp->com_ticks_int = bp->com_ticks;
  4608. bp->cmd_ticks_int = bp->cmd_ticks;
  4609. }
  4610. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  4611. bp->req_line_speed = 0;
  4612. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4613. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  4614. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  4615. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  4616. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  4617. bp->autoneg = 0;
  4618. bp->req_line_speed = bp->line_speed = SPEED_1000;
  4619. bp->req_duplex = DUPLEX_FULL;
  4620. }
  4621. }
  4622. else {
  4623. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  4624. }
  4625. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  4626. init_timer(&bp->timer);
  4627. bp->timer.expires = RUN_AT(bp->timer_interval);
  4628. bp->timer.data = (unsigned long) bp;
  4629. bp->timer.function = bnx2_timer;
  4630. return 0;
  4631. err_out_unmap:
  4632. if (bp->regview) {
  4633. iounmap(bp->regview);
  4634. bp->regview = NULL;
  4635. }
  4636. err_out_release:
  4637. pci_release_regions(pdev);
  4638. err_out_disable:
  4639. pci_disable_device(pdev);
  4640. pci_set_drvdata(pdev, NULL);
  4641. err_out:
  4642. return rc;
  4643. }
  4644. static int __devinit
  4645. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  4646. {
  4647. static int version_printed = 0;
  4648. struct net_device *dev = NULL;
  4649. struct bnx2 *bp;
  4650. int rc, i;
  4651. if (version_printed++ == 0)
  4652. printk(KERN_INFO "%s", version);
  4653. /* dev zeroed in init_etherdev */
  4654. dev = alloc_etherdev(sizeof(*bp));
  4655. if (!dev)
  4656. return -ENOMEM;
  4657. rc = bnx2_init_board(pdev, dev);
  4658. if (rc < 0) {
  4659. free_netdev(dev);
  4660. return rc;
  4661. }
  4662. dev->open = bnx2_open;
  4663. dev->hard_start_xmit = bnx2_start_xmit;
  4664. dev->stop = bnx2_close;
  4665. dev->get_stats = bnx2_get_stats;
  4666. dev->set_multicast_list = bnx2_set_rx_mode;
  4667. dev->do_ioctl = bnx2_ioctl;
  4668. dev->set_mac_address = bnx2_change_mac_addr;
  4669. dev->change_mtu = bnx2_change_mtu;
  4670. dev->tx_timeout = bnx2_tx_timeout;
  4671. dev->watchdog_timeo = TX_TIMEOUT;
  4672. #ifdef BCM_VLAN
  4673. dev->vlan_rx_register = bnx2_vlan_rx_register;
  4674. dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid;
  4675. #endif
  4676. dev->poll = bnx2_poll;
  4677. dev->ethtool_ops = &bnx2_ethtool_ops;
  4678. dev->weight = 64;
  4679. bp = dev->priv;
  4680. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4681. dev->poll_controller = poll_bnx2;
  4682. #endif
  4683. if ((rc = register_netdev(dev))) {
  4684. printk(KERN_ERR PFX "Cannot register net device\n");
  4685. if (bp->regview)
  4686. iounmap(bp->regview);
  4687. pci_release_regions(pdev);
  4688. pci_disable_device(pdev);
  4689. pci_set_drvdata(pdev, NULL);
  4690. free_netdev(dev);
  4691. return rc;
  4692. }
  4693. pci_set_drvdata(pdev, dev);
  4694. memcpy(dev->dev_addr, bp->mac_addr, 6);
  4695. memcpy(dev->perm_addr, bp->mac_addr, 6);
  4696. bp->name = board_info[ent->driver_data].name,
  4697. printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, "
  4698. "IRQ %d, ",
  4699. dev->name,
  4700. bp->name,
  4701. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  4702. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  4703. ((bp->flags & PCIX_FLAG) ? "-X" : ""),
  4704. ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
  4705. bp->bus_speed_mhz,
  4706. dev->base_addr,
  4707. bp->pdev->irq);
  4708. printk("node addr ");
  4709. for (i = 0; i < 6; i++)
  4710. printk("%2.2x", dev->dev_addr[i]);
  4711. printk("\n");
  4712. dev->features |= NETIF_F_SG;
  4713. if (bp->flags & USING_DAC_FLAG)
  4714. dev->features |= NETIF_F_HIGHDMA;
  4715. dev->features |= NETIF_F_IP_CSUM;
  4716. #ifdef BCM_VLAN
  4717. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  4718. #endif
  4719. #ifdef BCM_TSO
  4720. dev->features |= NETIF_F_TSO;
  4721. #endif
  4722. netif_carrier_off(bp->dev);
  4723. return 0;
  4724. }
  4725. static void __devexit
  4726. bnx2_remove_one(struct pci_dev *pdev)
  4727. {
  4728. struct net_device *dev = pci_get_drvdata(pdev);
  4729. struct bnx2 *bp = dev->priv;
  4730. flush_scheduled_work();
  4731. unregister_netdev(dev);
  4732. if (bp->regview)
  4733. iounmap(bp->regview);
  4734. free_netdev(dev);
  4735. pci_release_regions(pdev);
  4736. pci_disable_device(pdev);
  4737. pci_set_drvdata(pdev, NULL);
  4738. }
  4739. static int
  4740. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  4741. {
  4742. struct net_device *dev = pci_get_drvdata(pdev);
  4743. struct bnx2 *bp = dev->priv;
  4744. u32 reset_code;
  4745. if (!netif_running(dev))
  4746. return 0;
  4747. bnx2_netif_stop(bp);
  4748. netif_device_detach(dev);
  4749. del_timer_sync(&bp->timer);
  4750. if (bp->wol)
  4751. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4752. else
  4753. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4754. bnx2_reset_chip(bp, reset_code);
  4755. bnx2_free_skbs(bp);
  4756. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  4757. return 0;
  4758. }
  4759. static int
  4760. bnx2_resume(struct pci_dev *pdev)
  4761. {
  4762. struct net_device *dev = pci_get_drvdata(pdev);
  4763. struct bnx2 *bp = dev->priv;
  4764. if (!netif_running(dev))
  4765. return 0;
  4766. bnx2_set_power_state(bp, PCI_D0);
  4767. netif_device_attach(dev);
  4768. bnx2_init_nic(bp);
  4769. bnx2_netif_start(bp);
  4770. return 0;
  4771. }
  4772. static struct pci_driver bnx2_pci_driver = {
  4773. .name = DRV_MODULE_NAME,
  4774. .id_table = bnx2_pci_tbl,
  4775. .probe = bnx2_init_one,
  4776. .remove = __devexit_p(bnx2_remove_one),
  4777. .suspend = bnx2_suspend,
  4778. .resume = bnx2_resume,
  4779. };
  4780. static int __init bnx2_init(void)
  4781. {
  4782. return pci_module_init(&bnx2_pci_driver);
  4783. }
  4784. static void __exit bnx2_cleanup(void)
  4785. {
  4786. pci_unregister_driver(&bnx2_pci_driver);
  4787. }
  4788. module_init(bnx2_init);
  4789. module_exit(bnx2_cleanup);