intel_cacheinfo.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. /*
  2. * Routines to indentify caches on Intel CPU.
  3. *
  4. * Changes:
  5. * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
  6. * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
  7. */
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/device.h>
  11. #include <linux/compiler.h>
  12. #include <linux/cpu.h>
  13. #include <linux/sched.h>
  14. #include <asm/processor.h>
  15. #include <asm/smp.h>
  16. #define LVL_1_INST 1
  17. #define LVL_1_DATA 2
  18. #define LVL_2 3
  19. #define LVL_3 4
  20. #define LVL_TRACE 5
  21. struct _cache_table
  22. {
  23. unsigned char descriptor;
  24. char cache_type;
  25. short size;
  26. };
  27. /* all the cache descriptor types we care about (no TLB or trace cache entries) */
  28. static struct _cache_table cache_table[] __cpuinitdata =
  29. {
  30. { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
  31. { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
  32. { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
  33. { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
  34. { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  35. { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  36. { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  37. { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  38. { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
  39. { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
  40. { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  41. { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
  42. { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  43. { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
  44. { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
  45. { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
  46. { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
  47. { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
  48. { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  49. { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  50. { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  51. { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
  52. { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
  53. { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
  54. { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
  55. { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
  56. { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  57. { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  58. { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  59. { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
  60. { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
  61. { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
  62. { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
  63. { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
  64. { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
  65. { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
  66. { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
  67. { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
  68. { 0x00, 0, 0}
  69. };
  70. enum _cache_type
  71. {
  72. CACHE_TYPE_NULL = 0,
  73. CACHE_TYPE_DATA = 1,
  74. CACHE_TYPE_INST = 2,
  75. CACHE_TYPE_UNIFIED = 3
  76. };
  77. union _cpuid4_leaf_eax {
  78. struct {
  79. enum _cache_type type:5;
  80. unsigned int level:3;
  81. unsigned int is_self_initializing:1;
  82. unsigned int is_fully_associative:1;
  83. unsigned int reserved:4;
  84. unsigned int num_threads_sharing:12;
  85. unsigned int num_cores_on_die:6;
  86. } split;
  87. u32 full;
  88. };
  89. union _cpuid4_leaf_ebx {
  90. struct {
  91. unsigned int coherency_line_size:12;
  92. unsigned int physical_line_partition:10;
  93. unsigned int ways_of_associativity:10;
  94. } split;
  95. u32 full;
  96. };
  97. union _cpuid4_leaf_ecx {
  98. struct {
  99. unsigned int number_of_sets:32;
  100. } split;
  101. u32 full;
  102. };
  103. struct _cpuid4_info {
  104. union _cpuid4_leaf_eax eax;
  105. union _cpuid4_leaf_ebx ebx;
  106. union _cpuid4_leaf_ecx ecx;
  107. unsigned long size;
  108. cpumask_t shared_cpu_map;
  109. };
  110. static unsigned short num_cache_leaves;
  111. static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
  112. {
  113. unsigned int eax, ebx, ecx, edx;
  114. union _cpuid4_leaf_eax cache_eax;
  115. cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
  116. cache_eax.full = eax;
  117. if (cache_eax.split.type == CACHE_TYPE_NULL)
  118. return -EIO; /* better error ? */
  119. this_leaf->eax.full = eax;
  120. this_leaf->ebx.full = ebx;
  121. this_leaf->ecx.full = ecx;
  122. this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
  123. (this_leaf->ebx.split.coherency_line_size + 1) *
  124. (this_leaf->ebx.split.physical_line_partition + 1) *
  125. (this_leaf->ebx.split.ways_of_associativity + 1);
  126. return 0;
  127. }
  128. static int __init find_num_cache_leaves(void)
  129. {
  130. unsigned int eax, ebx, ecx, edx;
  131. union _cpuid4_leaf_eax cache_eax;
  132. int i = -1;
  133. do {
  134. ++i;
  135. /* Do cpuid(4) loop to find out num_cache_leaves */
  136. cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
  137. cache_eax.full = eax;
  138. } while (cache_eax.split.type != CACHE_TYPE_NULL);
  139. return i;
  140. }
  141. unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
  142. {
  143. unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
  144. unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
  145. unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
  146. if (c->cpuid_level > 4) {
  147. static int is_initialized;
  148. if (is_initialized == 0) {
  149. /* Init num_cache_leaves from boot CPU */
  150. num_cache_leaves = find_num_cache_leaves();
  151. is_initialized++;
  152. }
  153. /*
  154. * Whenever possible use cpuid(4), deterministic cache
  155. * parameters cpuid leaf to find the cache details
  156. */
  157. for (i = 0; i < num_cache_leaves; i++) {
  158. struct _cpuid4_info this_leaf;
  159. int retval;
  160. retval = cpuid4_cache_lookup(i, &this_leaf);
  161. if (retval >= 0) {
  162. switch(this_leaf.eax.split.level) {
  163. case 1:
  164. if (this_leaf.eax.split.type ==
  165. CACHE_TYPE_DATA)
  166. new_l1d = this_leaf.size/1024;
  167. else if (this_leaf.eax.split.type ==
  168. CACHE_TYPE_INST)
  169. new_l1i = this_leaf.size/1024;
  170. break;
  171. case 2:
  172. new_l2 = this_leaf.size/1024;
  173. break;
  174. case 3:
  175. new_l3 = this_leaf.size/1024;
  176. break;
  177. default:
  178. break;
  179. }
  180. }
  181. }
  182. }
  183. if (c->cpuid_level > 1) {
  184. /* supports eax=2 call */
  185. int i, j, n;
  186. int regs[4];
  187. unsigned char *dp = (unsigned char *)regs;
  188. /* Number of times to iterate */
  189. n = cpuid_eax(2) & 0xFF;
  190. for ( i = 0 ; i < n ; i++ ) {
  191. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  192. /* If bit 31 is set, this is an unknown format */
  193. for ( j = 0 ; j < 3 ; j++ ) {
  194. if ( regs[j] < 0 ) regs[j] = 0;
  195. }
  196. /* Byte 0 is level count, not a descriptor */
  197. for ( j = 1 ; j < 16 ; j++ ) {
  198. unsigned char des = dp[j];
  199. unsigned char k = 0;
  200. /* look up this descriptor in the table */
  201. while (cache_table[k].descriptor != 0)
  202. {
  203. if (cache_table[k].descriptor == des) {
  204. switch (cache_table[k].cache_type) {
  205. case LVL_1_INST:
  206. l1i += cache_table[k].size;
  207. break;
  208. case LVL_1_DATA:
  209. l1d += cache_table[k].size;
  210. break;
  211. case LVL_2:
  212. l2 += cache_table[k].size;
  213. break;
  214. case LVL_3:
  215. l3 += cache_table[k].size;
  216. break;
  217. case LVL_TRACE:
  218. trace += cache_table[k].size;
  219. break;
  220. }
  221. break;
  222. }
  223. k++;
  224. }
  225. }
  226. }
  227. if (new_l1d)
  228. l1d = new_l1d;
  229. if (new_l1i)
  230. l1i = new_l1i;
  231. if (new_l2)
  232. l2 = new_l2;
  233. if (new_l3)
  234. l3 = new_l3;
  235. if ( trace )
  236. printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
  237. else if ( l1i )
  238. printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
  239. if ( l1d )
  240. printk(", L1 D cache: %dK\n", l1d);
  241. else
  242. printk("\n");
  243. if ( l2 )
  244. printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
  245. if ( l3 )
  246. printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
  247. c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
  248. }
  249. return l2;
  250. }
  251. /* pointer to _cpuid4_info array (for each cache leaf) */
  252. static struct _cpuid4_info *cpuid4_info[NR_CPUS];
  253. #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
  254. #ifdef CONFIG_SMP
  255. static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
  256. {
  257. struct _cpuid4_info *this_leaf, *sibling_leaf;
  258. unsigned long num_threads_sharing;
  259. int index_msb, i;
  260. struct cpuinfo_x86 *c = cpu_data;
  261. this_leaf = CPUID4_INFO_IDX(cpu, index);
  262. num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
  263. if (num_threads_sharing == 1)
  264. cpu_set(cpu, this_leaf->shared_cpu_map);
  265. else {
  266. index_msb = get_count_order(num_threads_sharing);
  267. for_each_online_cpu(i) {
  268. if (c[i].apicid >> index_msb ==
  269. c[cpu].apicid >> index_msb) {
  270. cpu_set(i, this_leaf->shared_cpu_map);
  271. if (i != cpu && cpuid4_info[i]) {
  272. sibling_leaf = CPUID4_INFO_IDX(i, index);
  273. cpu_set(cpu, sibling_leaf->shared_cpu_map);
  274. }
  275. }
  276. }
  277. }
  278. }
  279. static void __devinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
  280. {
  281. struct _cpuid4_info *this_leaf, *sibling_leaf;
  282. int sibling;
  283. this_leaf = CPUID4_INFO_IDX(cpu, index);
  284. for_each_cpu_mask(sibling, this_leaf->shared_cpu_map) {
  285. sibling_leaf = CPUID4_INFO_IDX(sibling, index);
  286. cpu_clear(cpu, sibling_leaf->shared_cpu_map);
  287. }
  288. }
  289. #else
  290. static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
  291. static void __init cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
  292. #endif
  293. static void free_cache_attributes(unsigned int cpu)
  294. {
  295. kfree(cpuid4_info[cpu]);
  296. cpuid4_info[cpu] = NULL;
  297. }
  298. static int __cpuinit detect_cache_attributes(unsigned int cpu)
  299. {
  300. struct _cpuid4_info *this_leaf;
  301. unsigned long j;
  302. int retval;
  303. cpumask_t oldmask;
  304. if (num_cache_leaves == 0)
  305. return -ENOENT;
  306. cpuid4_info[cpu] = kmalloc(
  307. sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
  308. if (unlikely(cpuid4_info[cpu] == NULL))
  309. return -ENOMEM;
  310. memset(cpuid4_info[cpu], 0,
  311. sizeof(struct _cpuid4_info) * num_cache_leaves);
  312. oldmask = current->cpus_allowed;
  313. retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
  314. if (retval)
  315. goto out;
  316. /* Do cpuid and store the results */
  317. retval = 0;
  318. for (j = 0; j < num_cache_leaves; j++) {
  319. this_leaf = CPUID4_INFO_IDX(cpu, j);
  320. retval = cpuid4_cache_lookup(j, this_leaf);
  321. if (unlikely(retval < 0))
  322. break;
  323. cache_shared_cpu_map_setup(cpu, j);
  324. }
  325. set_cpus_allowed(current, oldmask);
  326. out:
  327. if (retval)
  328. free_cache_attributes(cpu);
  329. return retval;
  330. }
  331. #ifdef CONFIG_SYSFS
  332. #include <linux/kobject.h>
  333. #include <linux/sysfs.h>
  334. extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
  335. /* pointer to kobject for cpuX/cache */
  336. static struct kobject * cache_kobject[NR_CPUS];
  337. struct _index_kobject {
  338. struct kobject kobj;
  339. unsigned int cpu;
  340. unsigned short index;
  341. };
  342. /* pointer to array of kobjects for cpuX/cache/indexY */
  343. static struct _index_kobject *index_kobject[NR_CPUS];
  344. #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
  345. #define show_one_plus(file_name, object, val) \
  346. static ssize_t show_##file_name \
  347. (struct _cpuid4_info *this_leaf, char *buf) \
  348. { \
  349. return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
  350. }
  351. show_one_plus(level, eax.split.level, 0);
  352. show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
  353. show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
  354. show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
  355. show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
  356. static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
  357. {
  358. return sprintf (buf, "%luK\n", this_leaf->size / 1024);
  359. }
  360. static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
  361. {
  362. char mask_str[NR_CPUS];
  363. cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
  364. return sprintf(buf, "%s\n", mask_str);
  365. }
  366. static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
  367. switch(this_leaf->eax.split.type) {
  368. case CACHE_TYPE_DATA:
  369. return sprintf(buf, "Data\n");
  370. break;
  371. case CACHE_TYPE_INST:
  372. return sprintf(buf, "Instruction\n");
  373. break;
  374. case CACHE_TYPE_UNIFIED:
  375. return sprintf(buf, "Unified\n");
  376. break;
  377. default:
  378. return sprintf(buf, "Unknown\n");
  379. break;
  380. }
  381. }
  382. struct _cache_attr {
  383. struct attribute attr;
  384. ssize_t (*show)(struct _cpuid4_info *, char *);
  385. ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
  386. };
  387. #define define_one_ro(_name) \
  388. static struct _cache_attr _name = \
  389. __ATTR(_name, 0444, show_##_name, NULL)
  390. define_one_ro(level);
  391. define_one_ro(type);
  392. define_one_ro(coherency_line_size);
  393. define_one_ro(physical_line_partition);
  394. define_one_ro(ways_of_associativity);
  395. define_one_ro(number_of_sets);
  396. define_one_ro(size);
  397. define_one_ro(shared_cpu_map);
  398. static struct attribute * default_attrs[] = {
  399. &type.attr,
  400. &level.attr,
  401. &coherency_line_size.attr,
  402. &physical_line_partition.attr,
  403. &ways_of_associativity.attr,
  404. &number_of_sets.attr,
  405. &size.attr,
  406. &shared_cpu_map.attr,
  407. NULL
  408. };
  409. #define to_object(k) container_of(k, struct _index_kobject, kobj)
  410. #define to_attr(a) container_of(a, struct _cache_attr, attr)
  411. static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
  412. {
  413. struct _cache_attr *fattr = to_attr(attr);
  414. struct _index_kobject *this_leaf = to_object(kobj);
  415. ssize_t ret;
  416. ret = fattr->show ?
  417. fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
  418. buf) :
  419. 0;
  420. return ret;
  421. }
  422. static ssize_t store(struct kobject * kobj, struct attribute * attr,
  423. const char * buf, size_t count)
  424. {
  425. return 0;
  426. }
  427. static struct sysfs_ops sysfs_ops = {
  428. .show = show,
  429. .store = store,
  430. };
  431. static struct kobj_type ktype_cache = {
  432. .sysfs_ops = &sysfs_ops,
  433. .default_attrs = default_attrs,
  434. };
  435. static struct kobj_type ktype_percpu_entry = {
  436. .sysfs_ops = &sysfs_ops,
  437. };
  438. static void cpuid4_cache_sysfs_exit(unsigned int cpu)
  439. {
  440. kfree(cache_kobject[cpu]);
  441. kfree(index_kobject[cpu]);
  442. cache_kobject[cpu] = NULL;
  443. index_kobject[cpu] = NULL;
  444. free_cache_attributes(cpu);
  445. }
  446. static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
  447. {
  448. if (num_cache_leaves == 0)
  449. return -ENOENT;
  450. detect_cache_attributes(cpu);
  451. if (cpuid4_info[cpu] == NULL)
  452. return -ENOENT;
  453. /* Allocate all required memory */
  454. cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
  455. if (unlikely(cache_kobject[cpu] == NULL))
  456. goto err_out;
  457. memset(cache_kobject[cpu], 0, sizeof(struct kobject));
  458. index_kobject[cpu] = kmalloc(
  459. sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
  460. if (unlikely(index_kobject[cpu] == NULL))
  461. goto err_out;
  462. memset(index_kobject[cpu], 0,
  463. sizeof(struct _index_kobject) * num_cache_leaves);
  464. return 0;
  465. err_out:
  466. cpuid4_cache_sysfs_exit(cpu);
  467. return -ENOMEM;
  468. }
  469. /* Add/Remove cache interface for CPU device */
  470. static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
  471. {
  472. unsigned int cpu = sys_dev->id;
  473. unsigned long i, j;
  474. struct _index_kobject *this_object;
  475. int retval = 0;
  476. retval = cpuid4_cache_sysfs_init(cpu);
  477. if (unlikely(retval < 0))
  478. return retval;
  479. cache_kobject[cpu]->parent = &sys_dev->kobj;
  480. kobject_set_name(cache_kobject[cpu], "%s", "cache");
  481. cache_kobject[cpu]->ktype = &ktype_percpu_entry;
  482. retval = kobject_register(cache_kobject[cpu]);
  483. for (i = 0; i < num_cache_leaves; i++) {
  484. this_object = INDEX_KOBJECT_PTR(cpu,i);
  485. this_object->cpu = cpu;
  486. this_object->index = i;
  487. this_object->kobj.parent = cache_kobject[cpu];
  488. kobject_set_name(&(this_object->kobj), "index%1lu", i);
  489. this_object->kobj.ktype = &ktype_cache;
  490. retval = kobject_register(&(this_object->kobj));
  491. if (unlikely(retval)) {
  492. for (j = 0; j < i; j++) {
  493. kobject_unregister(
  494. &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
  495. }
  496. kobject_unregister(cache_kobject[cpu]);
  497. cpuid4_cache_sysfs_exit(cpu);
  498. break;
  499. }
  500. }
  501. return retval;
  502. }
  503. static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
  504. {
  505. unsigned int cpu = sys_dev->id;
  506. unsigned long i;
  507. for (i = 0; i < num_cache_leaves; i++) {
  508. cache_remove_shared_cpu_map(cpu, i);
  509. kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
  510. }
  511. kobject_unregister(cache_kobject[cpu]);
  512. cpuid4_cache_sysfs_exit(cpu);
  513. return;
  514. }
  515. static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
  516. unsigned long action, void *hcpu)
  517. {
  518. unsigned int cpu = (unsigned long)hcpu;
  519. struct sys_device *sys_dev;
  520. sys_dev = get_cpu_sysdev(cpu);
  521. switch (action) {
  522. case CPU_ONLINE:
  523. cache_add_dev(sys_dev);
  524. break;
  525. case CPU_DEAD:
  526. cache_remove_dev(sys_dev);
  527. break;
  528. }
  529. return NOTIFY_OK;
  530. }
  531. static struct notifier_block cacheinfo_cpu_notifier =
  532. {
  533. .notifier_call = cacheinfo_cpu_callback,
  534. };
  535. static int __cpuinit cache_sysfs_init(void)
  536. {
  537. int i;
  538. if (num_cache_leaves == 0)
  539. return 0;
  540. register_cpu_notifier(&cacheinfo_cpu_notifier);
  541. for_each_online_cpu(i) {
  542. cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
  543. (void *)(long)i);
  544. }
  545. return 0;
  546. }
  547. device_initcall(cache_sysfs_init);
  548. #endif