arm_arch_timer.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/cpu_pm.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/of_irq.h>
  20. #include <linux/of_address.h>
  21. #include <linux/io.h>
  22. #include <linux/slab.h>
  23. #include <asm/arch_timer.h>
  24. #include <asm/virt.h>
  25. #include <clocksource/arm_arch_timer.h>
  26. #define CNTTIDR 0x08
  27. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  28. #define CNTVCT_LO 0x08
  29. #define CNTVCT_HI 0x0c
  30. #define CNTFRQ 0x10
  31. #define CNTP_TVAL 0x28
  32. #define CNTP_CTL 0x2c
  33. #define CNTV_TVAL 0x38
  34. #define CNTV_CTL 0x3c
  35. #define ARCH_CP15_TIMER BIT(0)
  36. #define ARCH_MEM_TIMER BIT(1)
  37. static unsigned arch_timers_present __initdata;
  38. static void __iomem *arch_counter_base;
  39. struct arch_timer {
  40. void __iomem *base;
  41. struct clock_event_device evt;
  42. };
  43. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  44. static u32 arch_timer_rate;
  45. enum ppi_nr {
  46. PHYS_SECURE_PPI,
  47. PHYS_NONSECURE_PPI,
  48. VIRT_PPI,
  49. HYP_PPI,
  50. MAX_TIMER_PPI
  51. };
  52. static int arch_timer_ppi[MAX_TIMER_PPI];
  53. static struct clock_event_device __percpu *arch_timer_evt;
  54. static bool arch_timer_use_virtual = true;
  55. static bool arch_timer_mem_use_virtual;
  56. /*
  57. * Architected system timer support.
  58. */
  59. static __always_inline
  60. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  61. struct clock_event_device *clk)
  62. {
  63. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  64. struct arch_timer *timer = to_arch_timer(clk);
  65. switch (reg) {
  66. case ARCH_TIMER_REG_CTRL:
  67. writel_relaxed(val, timer->base + CNTP_CTL);
  68. break;
  69. case ARCH_TIMER_REG_TVAL:
  70. writel_relaxed(val, timer->base + CNTP_TVAL);
  71. break;
  72. }
  73. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  74. struct arch_timer *timer = to_arch_timer(clk);
  75. switch (reg) {
  76. case ARCH_TIMER_REG_CTRL:
  77. writel_relaxed(val, timer->base + CNTV_CTL);
  78. break;
  79. case ARCH_TIMER_REG_TVAL:
  80. writel_relaxed(val, timer->base + CNTV_TVAL);
  81. break;
  82. }
  83. } else {
  84. arch_timer_reg_write_cp15(access, reg, val);
  85. }
  86. }
  87. static __always_inline
  88. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  89. struct clock_event_device *clk)
  90. {
  91. u32 val;
  92. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  93. struct arch_timer *timer = to_arch_timer(clk);
  94. switch (reg) {
  95. case ARCH_TIMER_REG_CTRL:
  96. val = readl_relaxed(timer->base + CNTP_CTL);
  97. break;
  98. case ARCH_TIMER_REG_TVAL:
  99. val = readl_relaxed(timer->base + CNTP_TVAL);
  100. break;
  101. }
  102. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  103. struct arch_timer *timer = to_arch_timer(clk);
  104. switch (reg) {
  105. case ARCH_TIMER_REG_CTRL:
  106. val = readl_relaxed(timer->base + CNTV_CTL);
  107. break;
  108. case ARCH_TIMER_REG_TVAL:
  109. val = readl_relaxed(timer->base + CNTV_TVAL);
  110. break;
  111. }
  112. } else {
  113. val = arch_timer_reg_read_cp15(access, reg);
  114. }
  115. return val;
  116. }
  117. static __always_inline irqreturn_t timer_handler(const int access,
  118. struct clock_event_device *evt)
  119. {
  120. unsigned long ctrl;
  121. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  122. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  123. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  124. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  125. evt->event_handler(evt);
  126. return IRQ_HANDLED;
  127. }
  128. return IRQ_NONE;
  129. }
  130. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  131. {
  132. struct clock_event_device *evt = dev_id;
  133. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  134. }
  135. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  136. {
  137. struct clock_event_device *evt = dev_id;
  138. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  139. }
  140. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  141. {
  142. struct clock_event_device *evt = dev_id;
  143. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  144. }
  145. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  146. {
  147. struct clock_event_device *evt = dev_id;
  148. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  149. }
  150. static __always_inline void timer_set_mode(const int access, int mode,
  151. struct clock_event_device *clk)
  152. {
  153. unsigned long ctrl;
  154. switch (mode) {
  155. case CLOCK_EVT_MODE_UNUSED:
  156. case CLOCK_EVT_MODE_SHUTDOWN:
  157. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  158. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  159. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  160. break;
  161. default:
  162. break;
  163. }
  164. }
  165. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  166. struct clock_event_device *clk)
  167. {
  168. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  169. }
  170. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  171. struct clock_event_device *clk)
  172. {
  173. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  174. }
  175. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  176. struct clock_event_device *clk)
  177. {
  178. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  179. }
  180. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  181. struct clock_event_device *clk)
  182. {
  183. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  184. }
  185. static __always_inline void set_next_event(const int access, unsigned long evt,
  186. struct clock_event_device *clk)
  187. {
  188. unsigned long ctrl;
  189. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  190. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  191. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  192. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  193. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  194. }
  195. static int arch_timer_set_next_event_virt(unsigned long evt,
  196. struct clock_event_device *clk)
  197. {
  198. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  199. return 0;
  200. }
  201. static int arch_timer_set_next_event_phys(unsigned long evt,
  202. struct clock_event_device *clk)
  203. {
  204. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  205. return 0;
  206. }
  207. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  208. struct clock_event_device *clk)
  209. {
  210. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  211. return 0;
  212. }
  213. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  214. struct clock_event_device *clk)
  215. {
  216. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  217. return 0;
  218. }
  219. static void __arch_timer_setup(unsigned type,
  220. struct clock_event_device *clk)
  221. {
  222. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  223. if (type == ARCH_CP15_TIMER) {
  224. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  225. clk->name = "arch_sys_timer";
  226. clk->rating = 450;
  227. clk->cpumask = cpumask_of(smp_processor_id());
  228. if (arch_timer_use_virtual) {
  229. clk->irq = arch_timer_ppi[VIRT_PPI];
  230. clk->set_mode = arch_timer_set_mode_virt;
  231. clk->set_next_event = arch_timer_set_next_event_virt;
  232. } else {
  233. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  234. clk->set_mode = arch_timer_set_mode_phys;
  235. clk->set_next_event = arch_timer_set_next_event_phys;
  236. }
  237. } else {
  238. clk->name = "arch_mem_timer";
  239. clk->rating = 400;
  240. clk->cpumask = cpu_all_mask;
  241. if (arch_timer_mem_use_virtual) {
  242. clk->set_mode = arch_timer_set_mode_virt_mem;
  243. clk->set_next_event =
  244. arch_timer_set_next_event_virt_mem;
  245. } else {
  246. clk->set_mode = arch_timer_set_mode_phys_mem;
  247. clk->set_next_event =
  248. arch_timer_set_next_event_phys_mem;
  249. }
  250. }
  251. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  252. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  253. }
  254. static void arch_timer_configure_evtstream(void)
  255. {
  256. int evt_stream_div, pos;
  257. /* Find the closest power of two to the divisor */
  258. evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
  259. pos = fls(evt_stream_div);
  260. if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
  261. pos--;
  262. /* enable event stream */
  263. arch_timer_evtstrm_enable(min(pos, 15));
  264. }
  265. static int arch_timer_setup(struct clock_event_device *clk)
  266. {
  267. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  268. if (arch_timer_use_virtual)
  269. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  270. else {
  271. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  272. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  273. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  274. }
  275. arch_counter_set_user_access();
  276. if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
  277. arch_timer_configure_evtstream();
  278. return 0;
  279. }
  280. static void
  281. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  282. {
  283. /* Who has more than one independent system counter? */
  284. if (arch_timer_rate)
  285. return;
  286. /* Try to determine the frequency from the device tree or CNTFRQ */
  287. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  288. if (cntbase)
  289. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  290. else
  291. arch_timer_rate = arch_timer_get_cntfrq();
  292. }
  293. /* Check the timer frequency. */
  294. if (arch_timer_rate == 0)
  295. pr_warn("Architected timer frequency not available\n");
  296. }
  297. static void arch_timer_banner(unsigned type)
  298. {
  299. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  300. type & ARCH_CP15_TIMER ? "cp15" : "",
  301. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  302. type & ARCH_MEM_TIMER ? "mmio" : "",
  303. (unsigned long)arch_timer_rate / 1000000,
  304. (unsigned long)(arch_timer_rate / 10000) % 100,
  305. type & ARCH_CP15_TIMER ?
  306. arch_timer_use_virtual ? "virt" : "phys" :
  307. "",
  308. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  309. type & ARCH_MEM_TIMER ?
  310. arch_timer_mem_use_virtual ? "virt" : "phys" :
  311. "");
  312. }
  313. u32 arch_timer_get_rate(void)
  314. {
  315. return arch_timer_rate;
  316. }
  317. static u64 arch_counter_get_cntvct_mem(void)
  318. {
  319. u32 vct_lo, vct_hi, tmp_hi;
  320. do {
  321. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  322. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  323. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  324. } while (vct_hi != tmp_hi);
  325. return ((u64) vct_hi << 32) | vct_lo;
  326. }
  327. /*
  328. * Default to cp15 based access because arm64 uses this function for
  329. * sched_clock() before DT is probed and the cp15 method is guaranteed
  330. * to exist on arm64. arm doesn't use this before DT is probed so even
  331. * if we don't have the cp15 accessors we won't have a problem.
  332. */
  333. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  334. static cycle_t arch_counter_read(struct clocksource *cs)
  335. {
  336. return arch_timer_read_counter();
  337. }
  338. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  339. {
  340. return arch_timer_read_counter();
  341. }
  342. static struct clocksource clocksource_counter = {
  343. .name = "arch_sys_counter",
  344. .rating = 400,
  345. .read = arch_counter_read,
  346. .mask = CLOCKSOURCE_MASK(56),
  347. .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
  348. };
  349. static struct cyclecounter cyclecounter = {
  350. .read = arch_counter_read_cc,
  351. .mask = CLOCKSOURCE_MASK(56),
  352. };
  353. static struct timecounter timecounter;
  354. struct timecounter *arch_timer_get_timecounter(void)
  355. {
  356. return &timecounter;
  357. }
  358. static void __init arch_counter_register(unsigned type)
  359. {
  360. u64 start_count;
  361. /* Register the CP15 based counter if we have one */
  362. if (type & ARCH_CP15_TIMER)
  363. arch_timer_read_counter = arch_counter_get_cntvct;
  364. else
  365. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  366. start_count = arch_timer_read_counter();
  367. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  368. cyclecounter.mult = clocksource_counter.mult;
  369. cyclecounter.shift = clocksource_counter.shift;
  370. timecounter_init(&timecounter, &cyclecounter, start_count);
  371. }
  372. static void arch_timer_stop(struct clock_event_device *clk)
  373. {
  374. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  375. clk->irq, smp_processor_id());
  376. if (arch_timer_use_virtual)
  377. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  378. else {
  379. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  380. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  381. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  382. }
  383. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  384. }
  385. static int arch_timer_cpu_notify(struct notifier_block *self,
  386. unsigned long action, void *hcpu)
  387. {
  388. /*
  389. * Grab cpu pointer in each case to avoid spurious
  390. * preemptible warnings
  391. */
  392. switch (action & ~CPU_TASKS_FROZEN) {
  393. case CPU_STARTING:
  394. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  395. break;
  396. case CPU_DYING:
  397. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  398. break;
  399. }
  400. return NOTIFY_OK;
  401. }
  402. static struct notifier_block arch_timer_cpu_nb = {
  403. .notifier_call = arch_timer_cpu_notify,
  404. };
  405. #ifdef CONFIG_CPU_PM
  406. static unsigned int saved_cntkctl;
  407. static int arch_timer_cpu_pm_notify(struct notifier_block *self,
  408. unsigned long action, void *hcpu)
  409. {
  410. if (action == CPU_PM_ENTER)
  411. saved_cntkctl = arch_timer_get_cntkctl();
  412. else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
  413. arch_timer_set_cntkctl(saved_cntkctl);
  414. return NOTIFY_OK;
  415. }
  416. static struct notifier_block arch_timer_cpu_pm_notifier = {
  417. .notifier_call = arch_timer_cpu_pm_notify,
  418. };
  419. static int __init arch_timer_cpu_pm_init(void)
  420. {
  421. return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
  422. }
  423. #else
  424. static int __init arch_timer_cpu_pm_init(void)
  425. {
  426. return 0;
  427. }
  428. #endif
  429. static int __init arch_timer_register(void)
  430. {
  431. int err;
  432. int ppi;
  433. arch_timer_evt = alloc_percpu(struct clock_event_device);
  434. if (!arch_timer_evt) {
  435. err = -ENOMEM;
  436. goto out;
  437. }
  438. if (arch_timer_use_virtual) {
  439. ppi = arch_timer_ppi[VIRT_PPI];
  440. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  441. "arch_timer", arch_timer_evt);
  442. } else {
  443. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  444. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  445. "arch_timer", arch_timer_evt);
  446. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  447. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  448. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  449. "arch_timer", arch_timer_evt);
  450. if (err)
  451. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  452. arch_timer_evt);
  453. }
  454. }
  455. if (err) {
  456. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  457. ppi, err);
  458. goto out_free;
  459. }
  460. err = register_cpu_notifier(&arch_timer_cpu_nb);
  461. if (err)
  462. goto out_free_irq;
  463. err = arch_timer_cpu_pm_init();
  464. if (err)
  465. goto out_unreg_notify;
  466. /* Immediately configure the timer on the boot CPU */
  467. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  468. return 0;
  469. out_unreg_notify:
  470. unregister_cpu_notifier(&arch_timer_cpu_nb);
  471. out_free_irq:
  472. if (arch_timer_use_virtual)
  473. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  474. else {
  475. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  476. arch_timer_evt);
  477. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  478. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  479. arch_timer_evt);
  480. }
  481. out_free:
  482. free_percpu(arch_timer_evt);
  483. out:
  484. return err;
  485. }
  486. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  487. {
  488. int ret;
  489. irq_handler_t func;
  490. struct arch_timer *t;
  491. t = kzalloc(sizeof(*t), GFP_KERNEL);
  492. if (!t)
  493. return -ENOMEM;
  494. t->base = base;
  495. t->evt.irq = irq;
  496. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  497. if (arch_timer_mem_use_virtual)
  498. func = arch_timer_handler_virt_mem;
  499. else
  500. func = arch_timer_handler_phys_mem;
  501. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  502. if (ret) {
  503. pr_err("arch_timer: Failed to request mem timer irq\n");
  504. kfree(t);
  505. }
  506. return ret;
  507. }
  508. static const struct of_device_id arch_timer_of_match[] __initconst = {
  509. { .compatible = "arm,armv7-timer", },
  510. { .compatible = "arm,armv8-timer", },
  511. {},
  512. };
  513. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  514. { .compatible = "arm,armv7-timer-mem", },
  515. {},
  516. };
  517. static void __init arch_timer_common_init(void)
  518. {
  519. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  520. /* Wait until both nodes are probed if we have two timers */
  521. if ((arch_timers_present & mask) != mask) {
  522. if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
  523. !(arch_timers_present & ARCH_MEM_TIMER))
  524. return;
  525. if (of_find_matching_node(NULL, arch_timer_of_match) &&
  526. !(arch_timers_present & ARCH_CP15_TIMER))
  527. return;
  528. }
  529. arch_timer_banner(arch_timers_present);
  530. arch_counter_register(arch_timers_present);
  531. arch_timer_arch_init();
  532. }
  533. static void __init arch_timer_init(struct device_node *np)
  534. {
  535. int i;
  536. if (arch_timers_present & ARCH_CP15_TIMER) {
  537. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  538. return;
  539. }
  540. arch_timers_present |= ARCH_CP15_TIMER;
  541. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  542. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  543. arch_timer_detect_rate(NULL, np);
  544. /*
  545. * If HYP mode is available, we know that the physical timer
  546. * has been configured to be accessible from PL1. Use it, so
  547. * that a guest can use the virtual timer instead.
  548. *
  549. * If no interrupt provided for virtual timer, we'll have to
  550. * stick to the physical timer. It'd better be accessible...
  551. */
  552. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  553. arch_timer_use_virtual = false;
  554. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  555. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  556. pr_warn("arch_timer: No interrupt available, giving up\n");
  557. return;
  558. }
  559. }
  560. arch_timer_register();
  561. arch_timer_common_init();
  562. }
  563. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  564. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  565. static void __init arch_timer_mem_init(struct device_node *np)
  566. {
  567. struct device_node *frame, *best_frame = NULL;
  568. void __iomem *cntctlbase, *base;
  569. unsigned int irq;
  570. u32 cnttidr;
  571. arch_timers_present |= ARCH_MEM_TIMER;
  572. cntctlbase = of_iomap(np, 0);
  573. if (!cntctlbase) {
  574. pr_err("arch_timer: Can't find CNTCTLBase\n");
  575. return;
  576. }
  577. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  578. iounmap(cntctlbase);
  579. /*
  580. * Try to find a virtual capable frame. Otherwise fall back to a
  581. * physical capable frame.
  582. */
  583. for_each_available_child_of_node(np, frame) {
  584. int n;
  585. if (of_property_read_u32(frame, "frame-number", &n)) {
  586. pr_err("arch_timer: Missing frame-number\n");
  587. of_node_put(best_frame);
  588. of_node_put(frame);
  589. return;
  590. }
  591. if (cnttidr & CNTTIDR_VIRT(n)) {
  592. of_node_put(best_frame);
  593. best_frame = frame;
  594. arch_timer_mem_use_virtual = true;
  595. break;
  596. }
  597. of_node_put(best_frame);
  598. best_frame = of_node_get(frame);
  599. }
  600. base = arch_counter_base = of_iomap(best_frame, 0);
  601. if (!base) {
  602. pr_err("arch_timer: Can't map frame's registers\n");
  603. of_node_put(best_frame);
  604. return;
  605. }
  606. if (arch_timer_mem_use_virtual)
  607. irq = irq_of_parse_and_map(best_frame, 1);
  608. else
  609. irq = irq_of_parse_and_map(best_frame, 0);
  610. of_node_put(best_frame);
  611. if (!irq) {
  612. pr_err("arch_timer: Frame missing %s irq",
  613. arch_timer_mem_use_virtual ? "virt" : "phys");
  614. return;
  615. }
  616. arch_timer_detect_rate(base, np);
  617. arch_timer_mem_register(base, irq);
  618. arch_timer_common_init();
  619. }
  620. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  621. arch_timer_mem_init);