io.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3. * Creative Labs, Inc.
  4. * Routines for control of EMU10K1 chips
  5. *
  6. * BUGS:
  7. * --
  8. *
  9. * TODO:
  10. * --
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. #include <linux/time.h>
  28. #include <sound/core.h>
  29. #include <sound/emu10k1.h>
  30. #include <linux/delay.h>
  31. #include "p17v.h"
  32. unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
  33. {
  34. unsigned long flags;
  35. unsigned int regptr, val;
  36. unsigned int mask;
  37. mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK;
  38. regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK);
  39. if (reg & 0xff000000) {
  40. unsigned char size, offset;
  41. size = (reg >> 24) & 0x3f;
  42. offset = (reg >> 16) & 0x1f;
  43. mask = ((1 << size) - 1) << offset;
  44. spin_lock_irqsave(&emu->emu_lock, flags);
  45. outl(regptr, emu->port + PTR);
  46. val = inl(emu->port + DATA);
  47. spin_unlock_irqrestore(&emu->emu_lock, flags);
  48. return (val & mask) >> offset;
  49. } else {
  50. spin_lock_irqsave(&emu->emu_lock, flags);
  51. outl(regptr, emu->port + PTR);
  52. val = inl(emu->port + DATA);
  53. spin_unlock_irqrestore(&emu->emu_lock, flags);
  54. return val;
  55. }
  56. }
  57. EXPORT_SYMBOL(snd_emu10k1_ptr_read);
  58. void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
  59. {
  60. unsigned int regptr;
  61. unsigned long flags;
  62. unsigned int mask;
  63. mask = emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK;
  64. regptr = ((reg << 16) & mask) | (chn & PTR_CHANNELNUM_MASK);
  65. if (reg & 0xff000000) {
  66. unsigned char size, offset;
  67. size = (reg >> 24) & 0x3f;
  68. offset = (reg >> 16) & 0x1f;
  69. mask = ((1 << size) - 1) << offset;
  70. data = (data << offset) & mask;
  71. spin_lock_irqsave(&emu->emu_lock, flags);
  72. outl(regptr, emu->port + PTR);
  73. data |= inl(emu->port + DATA) & ~mask;
  74. outl(data, emu->port + DATA);
  75. spin_unlock_irqrestore(&emu->emu_lock, flags);
  76. } else {
  77. spin_lock_irqsave(&emu->emu_lock, flags);
  78. outl(regptr, emu->port + PTR);
  79. outl(data, emu->port + DATA);
  80. spin_unlock_irqrestore(&emu->emu_lock, flags);
  81. }
  82. }
  83. EXPORT_SYMBOL(snd_emu10k1_ptr_write);
  84. unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
  85. unsigned int reg,
  86. unsigned int chn)
  87. {
  88. unsigned long flags;
  89. unsigned int regptr, val;
  90. regptr = (reg << 16) | chn;
  91. spin_lock_irqsave(&emu->emu_lock, flags);
  92. outl(regptr, emu->port + 0x20 + PTR);
  93. val = inl(emu->port + 0x20 + DATA);
  94. spin_unlock_irqrestore(&emu->emu_lock, flags);
  95. return val;
  96. }
  97. void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
  98. unsigned int reg,
  99. unsigned int chn,
  100. unsigned int data)
  101. {
  102. unsigned int regptr;
  103. unsigned long flags;
  104. regptr = (reg << 16) | chn;
  105. spin_lock_irqsave(&emu->emu_lock, flags);
  106. outl(regptr, emu->port + 0x20 + PTR);
  107. outl(data, emu->port + 0x20 + DATA);
  108. spin_unlock_irqrestore(&emu->emu_lock, flags);
  109. }
  110. int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
  111. unsigned int data)
  112. {
  113. unsigned int reset, set;
  114. unsigned int reg, tmp;
  115. int n, result;
  116. if (emu->card_capabilities->ca0108_chip)
  117. reg = 0x3c; /* PTR20, reg 0x3c */
  118. else {
  119. /* For other chip types the SPI register
  120. * is currently unknown. */
  121. return 1;
  122. }
  123. if (data > 0xffff) /* Only 16bit values allowed */
  124. return 1;
  125. tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
  126. reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
  127. set = reset | 0x10000; /* Set xxx1xxxx */
  128. snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
  129. tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
  130. snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
  131. result = 1;
  132. /* Wait for status bit to return to 0 */
  133. for (n = 0; n < 100; n++) {
  134. udelay(10);
  135. tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
  136. if (!(tmp & 0x10000)) {
  137. result = 0;
  138. break;
  139. }
  140. }
  141. if (result) /* Timed out */
  142. return 1;
  143. snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
  144. tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
  145. return 0;
  146. }
  147. /* The ADC does not support i2c read, so only write is implemented */
  148. int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
  149. u32 reg,
  150. u32 value)
  151. {
  152. u32 tmp;
  153. int timeout = 0;
  154. int status;
  155. int retry;
  156. if ((reg > 0x7f) || (value > 0x1ff)) {
  157. snd_printk(KERN_ERR "i2c_write: invalid values.\n");
  158. return -EINVAL;
  159. }
  160. tmp = reg << 25 | value << 16;
  161. // snd_printk("I2C-write:reg=0x%x, value=0x%x\n", reg, value);
  162. /* Not sure what this I2C channel controls. */
  163. /* snd_emu10k1_ptr_write(emu, P17V_I2C_0, 0, tmp); */
  164. /* This controls the I2C connected to the WM8775 ADC Codec */
  165. snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
  166. tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
  167. for (retry = 0; retry < 10; retry++) {
  168. /* Send the data to i2c */
  169. //tmp = snd_emu10k1_ptr_read(emu, P17V_I2C_ADDR, 0);
  170. //tmp = tmp & ~(I2C_A_ADC_READ|I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD_MASK);
  171. tmp = 0;
  172. tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
  173. snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
  174. /* Wait till the transaction ends */
  175. while (1) {
  176. udelay(10);
  177. status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
  178. // snd_printk("I2C:status=0x%x\n", status);
  179. timeout++;
  180. if ((status & I2C_A_ADC_START) == 0)
  181. break;
  182. if (timeout > 1000) {
  183. snd_printk("emu10k1:I2C:timeout status=0x%x\n", status);
  184. break;
  185. }
  186. }
  187. //Read back and see if the transaction is successful
  188. if ((status & I2C_A_ADC_ABORT) == 0)
  189. break;
  190. }
  191. if (retry == 10) {
  192. snd_printk(KERN_ERR "Writing to ADC failed!\n");
  193. return -EINVAL;
  194. }
  195. return 0;
  196. }
  197. int snd_emu1010_fpga_write(struct snd_emu10k1 * emu, u32 reg, u32 value)
  198. {
  199. unsigned long flags;
  200. if (reg > 0x3f)
  201. return 1;
  202. reg += 0x40; /* 0x40 upwards are registers. */
  203. if (value < 0 || value > 0x3f) /* 0 to 0x3f are values */
  204. return 1;
  205. spin_lock_irqsave(&emu->emu_lock, flags);
  206. outl(reg, emu->port + A_IOCFG);
  207. udelay(10);
  208. outl(reg | 0x80, emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */
  209. udelay(10);
  210. outl(value, emu->port + A_IOCFG);
  211. udelay(10);
  212. outl(value | 0x80 , emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */
  213. spin_unlock_irqrestore(&emu->emu_lock, flags);
  214. return 0;
  215. }
  216. int snd_emu1010_fpga_read(struct snd_emu10k1 * emu, u32 reg, u32 *value)
  217. {
  218. unsigned long flags;
  219. if (reg > 0x3f)
  220. return 1;
  221. reg += 0x40; /* 0x40 upwards are registers. */
  222. spin_lock_irqsave(&emu->emu_lock, flags);
  223. outl(reg, emu->port + A_IOCFG);
  224. udelay(10);
  225. outl(reg | 0x80, emu->port + A_IOCFG); /* High bit clocks the value into the fpga. */
  226. udelay(10);
  227. *value = ((inl(emu->port + A_IOCFG) >> 8) & 0x7f);
  228. spin_unlock_irqrestore(&emu->emu_lock, flags);
  229. return 0;
  230. }
  231. /* Each Destination has one and only one Source,
  232. * but one Source can feed any number of Destinations simultaneously.
  233. */
  234. int snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 * emu, u32 dst, u32 src)
  235. {
  236. snd_emu1010_fpga_write(emu, 0x00, ((dst >> 8) & 0x3f) );
  237. snd_emu1010_fpga_write(emu, 0x01, (dst & 0x3f) );
  238. snd_emu1010_fpga_write(emu, 0x02, ((src >> 8) & 0x3f) );
  239. snd_emu1010_fpga_write(emu, 0x03, (src & 0x3f) );
  240. return 0;
  241. }
  242. void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
  243. {
  244. unsigned long flags;
  245. unsigned int enable;
  246. spin_lock_irqsave(&emu->emu_lock, flags);
  247. enable = inl(emu->port + INTE) | intrenb;
  248. outl(enable, emu->port + INTE);
  249. spin_unlock_irqrestore(&emu->emu_lock, flags);
  250. }
  251. void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
  252. {
  253. unsigned long flags;
  254. unsigned int enable;
  255. spin_lock_irqsave(&emu->emu_lock, flags);
  256. enable = inl(emu->port + INTE) & ~intrenb;
  257. outl(enable, emu->port + INTE);
  258. spin_unlock_irqrestore(&emu->emu_lock, flags);
  259. }
  260. void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
  261. {
  262. unsigned long flags;
  263. unsigned int val;
  264. spin_lock_irqsave(&emu->emu_lock, flags);
  265. /* voice interrupt */
  266. if (voicenum >= 32) {
  267. outl(CLIEH << 16, emu->port + PTR);
  268. val = inl(emu->port + DATA);
  269. val |= 1 << (voicenum - 32);
  270. } else {
  271. outl(CLIEL << 16, emu->port + PTR);
  272. val = inl(emu->port + DATA);
  273. val |= 1 << voicenum;
  274. }
  275. outl(val, emu->port + DATA);
  276. spin_unlock_irqrestore(&emu->emu_lock, flags);
  277. }
  278. void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
  279. {
  280. unsigned long flags;
  281. unsigned int val;
  282. spin_lock_irqsave(&emu->emu_lock, flags);
  283. /* voice interrupt */
  284. if (voicenum >= 32) {
  285. outl(CLIEH << 16, emu->port + PTR);
  286. val = inl(emu->port + DATA);
  287. val &= ~(1 << (voicenum - 32));
  288. } else {
  289. outl(CLIEL << 16, emu->port + PTR);
  290. val = inl(emu->port + DATA);
  291. val &= ~(1 << voicenum);
  292. }
  293. outl(val, emu->port + DATA);
  294. spin_unlock_irqrestore(&emu->emu_lock, flags);
  295. }
  296. void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
  297. {
  298. unsigned long flags;
  299. spin_lock_irqsave(&emu->emu_lock, flags);
  300. /* voice interrupt */
  301. if (voicenum >= 32) {
  302. outl(CLIPH << 16, emu->port + PTR);
  303. voicenum = 1 << (voicenum - 32);
  304. } else {
  305. outl(CLIPL << 16, emu->port + PTR);
  306. voicenum = 1 << voicenum;
  307. }
  308. outl(voicenum, emu->port + DATA);
  309. spin_unlock_irqrestore(&emu->emu_lock, flags);
  310. }
  311. void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
  312. {
  313. unsigned long flags;
  314. unsigned int val;
  315. spin_lock_irqsave(&emu->emu_lock, flags);
  316. /* voice interrupt */
  317. if (voicenum >= 32) {
  318. outl(HLIEH << 16, emu->port + PTR);
  319. val = inl(emu->port + DATA);
  320. val |= 1 << (voicenum - 32);
  321. } else {
  322. outl(HLIEL << 16, emu->port + PTR);
  323. val = inl(emu->port + DATA);
  324. val |= 1 << voicenum;
  325. }
  326. outl(val, emu->port + DATA);
  327. spin_unlock_irqrestore(&emu->emu_lock, flags);
  328. }
  329. void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
  330. {
  331. unsigned long flags;
  332. unsigned int val;
  333. spin_lock_irqsave(&emu->emu_lock, flags);
  334. /* voice interrupt */
  335. if (voicenum >= 32) {
  336. outl(HLIEH << 16, emu->port + PTR);
  337. val = inl(emu->port + DATA);
  338. val &= ~(1 << (voicenum - 32));
  339. } else {
  340. outl(HLIEL << 16, emu->port + PTR);
  341. val = inl(emu->port + DATA);
  342. val &= ~(1 << voicenum);
  343. }
  344. outl(val, emu->port + DATA);
  345. spin_unlock_irqrestore(&emu->emu_lock, flags);
  346. }
  347. void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
  348. {
  349. unsigned long flags;
  350. spin_lock_irqsave(&emu->emu_lock, flags);
  351. /* voice interrupt */
  352. if (voicenum >= 32) {
  353. outl(HLIPH << 16, emu->port + PTR);
  354. voicenum = 1 << (voicenum - 32);
  355. } else {
  356. outl(HLIPL << 16, emu->port + PTR);
  357. voicenum = 1 << voicenum;
  358. }
  359. outl(voicenum, emu->port + DATA);
  360. spin_unlock_irqrestore(&emu->emu_lock, flags);
  361. }
  362. void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
  363. {
  364. unsigned long flags;
  365. unsigned int sol;
  366. spin_lock_irqsave(&emu->emu_lock, flags);
  367. /* voice interrupt */
  368. if (voicenum >= 32) {
  369. outl(SOLEH << 16, emu->port + PTR);
  370. sol = inl(emu->port + DATA);
  371. sol |= 1 << (voicenum - 32);
  372. } else {
  373. outl(SOLEL << 16, emu->port + PTR);
  374. sol = inl(emu->port + DATA);
  375. sol |= 1 << voicenum;
  376. }
  377. outl(sol, emu->port + DATA);
  378. spin_unlock_irqrestore(&emu->emu_lock, flags);
  379. }
  380. void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
  381. {
  382. unsigned long flags;
  383. unsigned int sol;
  384. spin_lock_irqsave(&emu->emu_lock, flags);
  385. /* voice interrupt */
  386. if (voicenum >= 32) {
  387. outl(SOLEH << 16, emu->port + PTR);
  388. sol = inl(emu->port + DATA);
  389. sol &= ~(1 << (voicenum - 32));
  390. } else {
  391. outl(SOLEL << 16, emu->port + PTR);
  392. sol = inl(emu->port + DATA);
  393. sol &= ~(1 << voicenum);
  394. }
  395. outl(sol, emu->port + DATA);
  396. spin_unlock_irqrestore(&emu->emu_lock, flags);
  397. }
  398. void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
  399. {
  400. volatile unsigned count;
  401. unsigned int newtime = 0, curtime;
  402. curtime = inl(emu->port + WC) >> 6;
  403. while (wait-- > 0) {
  404. count = 0;
  405. while (count++ < 16384) {
  406. newtime = inl(emu->port + WC) >> 6;
  407. if (newtime != curtime)
  408. break;
  409. }
  410. if (count >= 16384)
  411. break;
  412. curtime = newtime;
  413. }
  414. }
  415. unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
  416. {
  417. struct snd_emu10k1 *emu = ac97->private_data;
  418. unsigned long flags;
  419. unsigned short val;
  420. spin_lock_irqsave(&emu->emu_lock, flags);
  421. outb(reg, emu->port + AC97ADDRESS);
  422. val = inw(emu->port + AC97DATA);
  423. spin_unlock_irqrestore(&emu->emu_lock, flags);
  424. return val;
  425. }
  426. void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
  427. {
  428. struct snd_emu10k1 *emu = ac97->private_data;
  429. unsigned long flags;
  430. spin_lock_irqsave(&emu->emu_lock, flags);
  431. outb(reg, emu->port + AC97ADDRESS);
  432. outw(data, emu->port + AC97DATA);
  433. spin_unlock_irqrestore(&emu->emu_lock, flags);
  434. }
  435. /*
  436. * convert rate to pitch
  437. */
  438. unsigned int snd_emu10k1_rate_to_pitch(unsigned int rate)
  439. {
  440. static u32 logMagTable[128] = {
  441. 0x00000, 0x02dfc, 0x05b9e, 0x088e6, 0x0b5d6, 0x0e26f, 0x10eb3, 0x13aa2,
  442. 0x1663f, 0x1918a, 0x1bc84, 0x1e72e, 0x2118b, 0x23b9a, 0x2655d, 0x28ed5,
  443. 0x2b803, 0x2e0e8, 0x30985, 0x331db, 0x359eb, 0x381b6, 0x3a93d, 0x3d081,
  444. 0x3f782, 0x41e42, 0x444c1, 0x46b01, 0x49101, 0x4b6c4, 0x4dc49, 0x50191,
  445. 0x5269e, 0x54b6f, 0x57006, 0x59463, 0x5b888, 0x5dc74, 0x60029, 0x623a7,
  446. 0x646ee, 0x66a00, 0x68cdd, 0x6af86, 0x6d1fa, 0x6f43c, 0x7164b, 0x73829,
  447. 0x759d4, 0x77b4f, 0x79c9a, 0x7bdb5, 0x7dea1, 0x7ff5e, 0x81fed, 0x8404e,
  448. 0x86082, 0x88089, 0x8a064, 0x8c014, 0x8df98, 0x8fef1, 0x91e20, 0x93d26,
  449. 0x95c01, 0x97ab4, 0x9993e, 0x9b79f, 0x9d5d9, 0x9f3ec, 0xa11d8, 0xa2f9d,
  450. 0xa4d3c, 0xa6ab5, 0xa8808, 0xaa537, 0xac241, 0xadf26, 0xafbe7, 0xb1885,
  451. 0xb3500, 0xb5157, 0xb6d8c, 0xb899f, 0xba58f, 0xbc15e, 0xbdd0c, 0xbf899,
  452. 0xc1404, 0xc2f50, 0xc4a7b, 0xc6587, 0xc8073, 0xc9b3f, 0xcb5ed, 0xcd07c,
  453. 0xceaec, 0xd053f, 0xd1f73, 0xd398a, 0xd5384, 0xd6d60, 0xd8720, 0xda0c3,
  454. 0xdba4a, 0xdd3b4, 0xded03, 0xe0636, 0xe1f4e, 0xe384a, 0xe512c, 0xe69f3,
  455. 0xe829f, 0xe9b31, 0xeb3a9, 0xecc08, 0xee44c, 0xefc78, 0xf148a, 0xf2c83,
  456. 0xf4463, 0xf5c2a, 0xf73da, 0xf8b71, 0xfa2f0, 0xfba57, 0xfd1a7, 0xfe8df
  457. };
  458. static char logSlopeTable[128] = {
  459. 0x5c, 0x5c, 0x5b, 0x5a, 0x5a, 0x59, 0x58, 0x58,
  460. 0x57, 0x56, 0x56, 0x55, 0x55, 0x54, 0x53, 0x53,
  461. 0x52, 0x52, 0x51, 0x51, 0x50, 0x50, 0x4f, 0x4f,
  462. 0x4e, 0x4d, 0x4d, 0x4d, 0x4c, 0x4c, 0x4b, 0x4b,
  463. 0x4a, 0x4a, 0x49, 0x49, 0x48, 0x48, 0x47, 0x47,
  464. 0x47, 0x46, 0x46, 0x45, 0x45, 0x45, 0x44, 0x44,
  465. 0x43, 0x43, 0x43, 0x42, 0x42, 0x42, 0x41, 0x41,
  466. 0x41, 0x40, 0x40, 0x40, 0x3f, 0x3f, 0x3f, 0x3e,
  467. 0x3e, 0x3e, 0x3d, 0x3d, 0x3d, 0x3c, 0x3c, 0x3c,
  468. 0x3b, 0x3b, 0x3b, 0x3b, 0x3a, 0x3a, 0x3a, 0x39,
  469. 0x39, 0x39, 0x39, 0x38, 0x38, 0x38, 0x38, 0x37,
  470. 0x37, 0x37, 0x37, 0x36, 0x36, 0x36, 0x36, 0x35,
  471. 0x35, 0x35, 0x35, 0x34, 0x34, 0x34, 0x34, 0x34,
  472. 0x33, 0x33, 0x33, 0x33, 0x32, 0x32, 0x32, 0x32,
  473. 0x32, 0x31, 0x31, 0x31, 0x31, 0x31, 0x30, 0x30,
  474. 0x30, 0x30, 0x30, 0x2f, 0x2f, 0x2f, 0x2f, 0x2f
  475. };
  476. int i;
  477. if (rate == 0)
  478. return 0; /* Bail out if no leading "1" */
  479. rate *= 11185; /* Scale 48000 to 0x20002380 */
  480. for (i = 31; i > 0; i--) {
  481. if (rate & 0x80000000) { /* Detect leading "1" */
  482. return (((unsigned int) (i - 15) << 20) +
  483. logMagTable[0x7f & (rate >> 24)] +
  484. (0x7f & (rate >> 17)) *
  485. logSlopeTable[0x7f & (rate >> 24)]);
  486. }
  487. rate <<= 1;
  488. }
  489. return 0; /* Should never reach this point */
  490. }