i915_gem.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  41. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  42. int write);
  43. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  44. uint64_t offset,
  45. uint64_t size);
  46. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  48. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  49. unsigned alignment);
  50. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  55. static LIST_HEAD(shrink_list);
  56. static DEFINE_SPINLOCK(shrink_list_lock);
  57. static inline bool
  58. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  59. {
  60. return obj_priv->gtt_space &&
  61. !obj_priv->active &&
  62. obj_priv->pin_count == 0;
  63. }
  64. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  65. unsigned long end)
  66. {
  67. drm_i915_private_t *dev_priv = dev->dev_private;
  68. if (start >= end ||
  69. (start & (PAGE_SIZE - 1)) != 0 ||
  70. (end & (PAGE_SIZE - 1)) != 0) {
  71. return -EINVAL;
  72. }
  73. drm_mm_init(&dev_priv->mm.gtt_space, start,
  74. end - start);
  75. dev->gtt_total = (uint32_t) (end - start);
  76. return 0;
  77. }
  78. int
  79. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  80. struct drm_file *file_priv)
  81. {
  82. struct drm_i915_gem_init *args = data;
  83. int ret;
  84. mutex_lock(&dev->struct_mutex);
  85. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  86. mutex_unlock(&dev->struct_mutex);
  87. return ret;
  88. }
  89. int
  90. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  91. struct drm_file *file_priv)
  92. {
  93. struct drm_i915_gem_get_aperture *args = data;
  94. if (!(dev->driver->driver_features & DRIVER_GEM))
  95. return -ENODEV;
  96. args->aper_size = dev->gtt_total;
  97. args->aper_available_size = (args->aper_size -
  98. atomic_read(&dev->pin_memory));
  99. return 0;
  100. }
  101. /**
  102. * Creates a new mm object and returns a handle to it.
  103. */
  104. int
  105. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  106. struct drm_file *file_priv)
  107. {
  108. struct drm_i915_gem_create *args = data;
  109. struct drm_gem_object *obj;
  110. int ret;
  111. u32 handle;
  112. args->size = roundup(args->size, PAGE_SIZE);
  113. /* Allocate the new object */
  114. obj = i915_gem_alloc_object(dev, args->size);
  115. if (obj == NULL)
  116. return -ENOMEM;
  117. ret = drm_gem_handle_create(file_priv, obj, &handle);
  118. /* drop reference from allocate - handle holds it now */
  119. drm_gem_object_unreference_unlocked(obj);
  120. if (ret) {
  121. return ret;
  122. }
  123. args->handle = handle;
  124. return 0;
  125. }
  126. static inline int
  127. fast_shmem_read(struct page **pages,
  128. loff_t page_base, int page_offset,
  129. char __user *data,
  130. int length)
  131. {
  132. char __iomem *vaddr;
  133. int unwritten;
  134. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  135. if (vaddr == NULL)
  136. return -ENOMEM;
  137. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  138. kunmap_atomic(vaddr, KM_USER0);
  139. if (unwritten)
  140. return -EFAULT;
  141. return 0;
  142. }
  143. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  144. {
  145. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  146. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  147. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  148. obj_priv->tiling_mode != I915_TILING_NONE;
  149. }
  150. static inline void
  151. slow_shmem_copy(struct page *dst_page,
  152. int dst_offset,
  153. struct page *src_page,
  154. int src_offset,
  155. int length)
  156. {
  157. char *dst_vaddr, *src_vaddr;
  158. dst_vaddr = kmap(dst_page);
  159. src_vaddr = kmap(src_page);
  160. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  161. kunmap(src_page);
  162. kunmap(dst_page);
  163. }
  164. static inline void
  165. slow_shmem_bit17_copy(struct page *gpu_page,
  166. int gpu_offset,
  167. struct page *cpu_page,
  168. int cpu_offset,
  169. int length,
  170. int is_read)
  171. {
  172. char *gpu_vaddr, *cpu_vaddr;
  173. /* Use the unswizzled path if this page isn't affected. */
  174. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  175. if (is_read)
  176. return slow_shmem_copy(cpu_page, cpu_offset,
  177. gpu_page, gpu_offset, length);
  178. else
  179. return slow_shmem_copy(gpu_page, gpu_offset,
  180. cpu_page, cpu_offset, length);
  181. }
  182. gpu_vaddr = kmap(gpu_page);
  183. cpu_vaddr = kmap(cpu_page);
  184. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  185. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  186. */
  187. while (length > 0) {
  188. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  189. int this_length = min(cacheline_end - gpu_offset, length);
  190. int swizzled_gpu_offset = gpu_offset ^ 64;
  191. if (is_read) {
  192. memcpy(cpu_vaddr + cpu_offset,
  193. gpu_vaddr + swizzled_gpu_offset,
  194. this_length);
  195. } else {
  196. memcpy(gpu_vaddr + swizzled_gpu_offset,
  197. cpu_vaddr + cpu_offset,
  198. this_length);
  199. }
  200. cpu_offset += this_length;
  201. gpu_offset += this_length;
  202. length -= this_length;
  203. }
  204. kunmap(cpu_page);
  205. kunmap(gpu_page);
  206. }
  207. /**
  208. * This is the fast shmem pread path, which attempts to copy_from_user directly
  209. * from the backing pages of the object to the user's address space. On a
  210. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  211. */
  212. static int
  213. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  218. ssize_t remain;
  219. loff_t offset, page_base;
  220. char __user *user_data;
  221. int page_offset, page_length;
  222. int ret;
  223. user_data = (char __user *) (uintptr_t) args->data_ptr;
  224. remain = args->size;
  225. mutex_lock(&dev->struct_mutex);
  226. ret = i915_gem_object_get_pages(obj, 0);
  227. if (ret != 0)
  228. goto fail_unlock;
  229. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  230. args->size);
  231. if (ret != 0)
  232. goto fail_put_pages;
  233. obj_priv = to_intel_bo(obj);
  234. offset = args->offset;
  235. while (remain > 0) {
  236. /* Operation in this page
  237. *
  238. * page_base = page offset within aperture
  239. * page_offset = offset within page
  240. * page_length = bytes to copy for this page
  241. */
  242. page_base = (offset & ~(PAGE_SIZE-1));
  243. page_offset = offset & (PAGE_SIZE-1);
  244. page_length = remain;
  245. if ((page_offset + remain) > PAGE_SIZE)
  246. page_length = PAGE_SIZE - page_offset;
  247. ret = fast_shmem_read(obj_priv->pages,
  248. page_base, page_offset,
  249. user_data, page_length);
  250. if (ret)
  251. goto fail_put_pages;
  252. remain -= page_length;
  253. user_data += page_length;
  254. offset += page_length;
  255. }
  256. fail_put_pages:
  257. i915_gem_object_put_pages(obj);
  258. fail_unlock:
  259. mutex_unlock(&dev->struct_mutex);
  260. return ret;
  261. }
  262. static int
  263. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  264. {
  265. int ret;
  266. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  267. /* If we've insufficient memory to map in the pages, attempt
  268. * to make some space by throwing out some old buffers.
  269. */
  270. if (ret == -ENOMEM) {
  271. struct drm_device *dev = obj->dev;
  272. ret = i915_gem_evict_something(dev, obj->size,
  273. i915_gem_get_gtt_alignment(obj));
  274. if (ret)
  275. return ret;
  276. ret = i915_gem_object_get_pages(obj, 0);
  277. }
  278. return ret;
  279. }
  280. /**
  281. * This is the fallback shmem pread path, which allocates temporary storage
  282. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  283. * can copy out of the object's backing pages while holding the struct mutex
  284. * and not take page faults.
  285. */
  286. static int
  287. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  288. struct drm_i915_gem_pread *args,
  289. struct drm_file *file_priv)
  290. {
  291. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  292. struct mm_struct *mm = current->mm;
  293. struct page **user_pages;
  294. ssize_t remain;
  295. loff_t offset, pinned_pages, i;
  296. loff_t first_data_page, last_data_page, num_pages;
  297. int shmem_page_index, shmem_page_offset;
  298. int data_page_index, data_page_offset;
  299. int page_length;
  300. int ret;
  301. uint64_t data_ptr = args->data_ptr;
  302. int do_bit17_swizzling;
  303. remain = args->size;
  304. /* Pin the user pages containing the data. We can't fault while
  305. * holding the struct mutex, yet we want to hold it while
  306. * dereferencing the user data.
  307. */
  308. first_data_page = data_ptr / PAGE_SIZE;
  309. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  310. num_pages = last_data_page - first_data_page + 1;
  311. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  312. if (user_pages == NULL)
  313. return -ENOMEM;
  314. down_read(&mm->mmap_sem);
  315. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  316. num_pages, 1, 0, user_pages, NULL);
  317. up_read(&mm->mmap_sem);
  318. if (pinned_pages < num_pages) {
  319. ret = -EFAULT;
  320. goto fail_put_user_pages;
  321. }
  322. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  323. mutex_lock(&dev->struct_mutex);
  324. ret = i915_gem_object_get_pages_or_evict(obj);
  325. if (ret)
  326. goto fail_unlock;
  327. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  328. args->size);
  329. if (ret != 0)
  330. goto fail_put_pages;
  331. obj_priv = to_intel_bo(obj);
  332. offset = args->offset;
  333. while (remain > 0) {
  334. /* Operation in this page
  335. *
  336. * shmem_page_index = page number within shmem file
  337. * shmem_page_offset = offset within page in shmem file
  338. * data_page_index = page number in get_user_pages return
  339. * data_page_offset = offset with data_page_index page.
  340. * page_length = bytes to copy for this page
  341. */
  342. shmem_page_index = offset / PAGE_SIZE;
  343. shmem_page_offset = offset & ~PAGE_MASK;
  344. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  345. data_page_offset = data_ptr & ~PAGE_MASK;
  346. page_length = remain;
  347. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  348. page_length = PAGE_SIZE - shmem_page_offset;
  349. if ((data_page_offset + page_length) > PAGE_SIZE)
  350. page_length = PAGE_SIZE - data_page_offset;
  351. if (do_bit17_swizzling) {
  352. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  353. shmem_page_offset,
  354. user_pages[data_page_index],
  355. data_page_offset,
  356. page_length,
  357. 1);
  358. } else {
  359. slow_shmem_copy(user_pages[data_page_index],
  360. data_page_offset,
  361. obj_priv->pages[shmem_page_index],
  362. shmem_page_offset,
  363. page_length);
  364. }
  365. remain -= page_length;
  366. data_ptr += page_length;
  367. offset += page_length;
  368. }
  369. fail_put_pages:
  370. i915_gem_object_put_pages(obj);
  371. fail_unlock:
  372. mutex_unlock(&dev->struct_mutex);
  373. fail_put_user_pages:
  374. for (i = 0; i < pinned_pages; i++) {
  375. SetPageDirty(user_pages[i]);
  376. page_cache_release(user_pages[i]);
  377. }
  378. drm_free_large(user_pages);
  379. return ret;
  380. }
  381. /**
  382. * Reads data from the object referenced by handle.
  383. *
  384. * On error, the contents of *data are undefined.
  385. */
  386. int
  387. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  388. struct drm_file *file_priv)
  389. {
  390. struct drm_i915_gem_pread *args = data;
  391. struct drm_gem_object *obj;
  392. struct drm_i915_gem_object *obj_priv;
  393. int ret;
  394. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  395. if (obj == NULL)
  396. return -ENOENT;
  397. obj_priv = to_intel_bo(obj);
  398. /* Bounds check source.
  399. *
  400. * XXX: This could use review for overflow issues...
  401. */
  402. if (args->offset > obj->size || args->size > obj->size ||
  403. args->offset + args->size > obj->size) {
  404. drm_gem_object_unreference_unlocked(obj);
  405. return -EINVAL;
  406. }
  407. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  408. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  409. } else {
  410. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  411. if (ret != 0)
  412. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  413. file_priv);
  414. }
  415. drm_gem_object_unreference_unlocked(obj);
  416. return ret;
  417. }
  418. /* This is the fast write path which cannot handle
  419. * page faults in the source data
  420. */
  421. static inline int
  422. fast_user_write(struct io_mapping *mapping,
  423. loff_t page_base, int page_offset,
  424. char __user *user_data,
  425. int length)
  426. {
  427. char *vaddr_atomic;
  428. unsigned long unwritten;
  429. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  430. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  431. user_data, length);
  432. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  433. if (unwritten)
  434. return -EFAULT;
  435. return 0;
  436. }
  437. /* Here's the write path which can sleep for
  438. * page faults
  439. */
  440. static inline void
  441. slow_kernel_write(struct io_mapping *mapping,
  442. loff_t gtt_base, int gtt_offset,
  443. struct page *user_page, int user_offset,
  444. int length)
  445. {
  446. char __iomem *dst_vaddr;
  447. char *src_vaddr;
  448. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  449. src_vaddr = kmap(user_page);
  450. memcpy_toio(dst_vaddr + gtt_offset,
  451. src_vaddr + user_offset,
  452. length);
  453. kunmap(user_page);
  454. io_mapping_unmap(dst_vaddr);
  455. }
  456. static inline int
  457. fast_shmem_write(struct page **pages,
  458. loff_t page_base, int page_offset,
  459. char __user *data,
  460. int length)
  461. {
  462. char __iomem *vaddr;
  463. unsigned long unwritten;
  464. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  465. if (vaddr == NULL)
  466. return -ENOMEM;
  467. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  468. kunmap_atomic(vaddr, KM_USER0);
  469. if (unwritten)
  470. return -EFAULT;
  471. return 0;
  472. }
  473. /**
  474. * This is the fast pwrite path, where we copy the data directly from the
  475. * user into the GTT, uncached.
  476. */
  477. static int
  478. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  479. struct drm_i915_gem_pwrite *args,
  480. struct drm_file *file_priv)
  481. {
  482. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  483. drm_i915_private_t *dev_priv = dev->dev_private;
  484. ssize_t remain;
  485. loff_t offset, page_base;
  486. char __user *user_data;
  487. int page_offset, page_length;
  488. int ret;
  489. user_data = (char __user *) (uintptr_t) args->data_ptr;
  490. remain = args->size;
  491. if (!access_ok(VERIFY_READ, user_data, remain))
  492. return -EFAULT;
  493. mutex_lock(&dev->struct_mutex);
  494. ret = i915_gem_object_pin(obj, 0);
  495. if (ret) {
  496. mutex_unlock(&dev->struct_mutex);
  497. return ret;
  498. }
  499. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  500. if (ret)
  501. goto fail;
  502. obj_priv = to_intel_bo(obj);
  503. offset = obj_priv->gtt_offset + args->offset;
  504. while (remain > 0) {
  505. /* Operation in this page
  506. *
  507. * page_base = page offset within aperture
  508. * page_offset = offset within page
  509. * page_length = bytes to copy for this page
  510. */
  511. page_base = (offset & ~(PAGE_SIZE-1));
  512. page_offset = offset & (PAGE_SIZE-1);
  513. page_length = remain;
  514. if ((page_offset + remain) > PAGE_SIZE)
  515. page_length = PAGE_SIZE - page_offset;
  516. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  517. page_offset, user_data, page_length);
  518. /* If we get a fault while copying data, then (presumably) our
  519. * source page isn't available. Return the error and we'll
  520. * retry in the slow path.
  521. */
  522. if (ret)
  523. goto fail;
  524. remain -= page_length;
  525. user_data += page_length;
  526. offset += page_length;
  527. }
  528. fail:
  529. i915_gem_object_unpin(obj);
  530. mutex_unlock(&dev->struct_mutex);
  531. return ret;
  532. }
  533. /**
  534. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  535. * the memory and maps it using kmap_atomic for copying.
  536. *
  537. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  538. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  539. */
  540. static int
  541. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  542. struct drm_i915_gem_pwrite *args,
  543. struct drm_file *file_priv)
  544. {
  545. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  546. drm_i915_private_t *dev_priv = dev->dev_private;
  547. ssize_t remain;
  548. loff_t gtt_page_base, offset;
  549. loff_t first_data_page, last_data_page, num_pages;
  550. loff_t pinned_pages, i;
  551. struct page **user_pages;
  552. struct mm_struct *mm = current->mm;
  553. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  554. int ret;
  555. uint64_t data_ptr = args->data_ptr;
  556. remain = args->size;
  557. /* Pin the user pages containing the data. We can't fault while
  558. * holding the struct mutex, and all of the pwrite implementations
  559. * want to hold it while dereferencing the user data.
  560. */
  561. first_data_page = data_ptr / PAGE_SIZE;
  562. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  563. num_pages = last_data_page - first_data_page + 1;
  564. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  565. if (user_pages == NULL)
  566. return -ENOMEM;
  567. down_read(&mm->mmap_sem);
  568. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  569. num_pages, 0, 0, user_pages, NULL);
  570. up_read(&mm->mmap_sem);
  571. if (pinned_pages < num_pages) {
  572. ret = -EFAULT;
  573. goto out_unpin_pages;
  574. }
  575. mutex_lock(&dev->struct_mutex);
  576. ret = i915_gem_object_pin(obj, 0);
  577. if (ret)
  578. goto out_unlock;
  579. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  580. if (ret)
  581. goto out_unpin_object;
  582. obj_priv = to_intel_bo(obj);
  583. offset = obj_priv->gtt_offset + args->offset;
  584. while (remain > 0) {
  585. /* Operation in this page
  586. *
  587. * gtt_page_base = page offset within aperture
  588. * gtt_page_offset = offset within page in aperture
  589. * data_page_index = page number in get_user_pages return
  590. * data_page_offset = offset with data_page_index page.
  591. * page_length = bytes to copy for this page
  592. */
  593. gtt_page_base = offset & PAGE_MASK;
  594. gtt_page_offset = offset & ~PAGE_MASK;
  595. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  596. data_page_offset = data_ptr & ~PAGE_MASK;
  597. page_length = remain;
  598. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  599. page_length = PAGE_SIZE - gtt_page_offset;
  600. if ((data_page_offset + page_length) > PAGE_SIZE)
  601. page_length = PAGE_SIZE - data_page_offset;
  602. slow_kernel_write(dev_priv->mm.gtt_mapping,
  603. gtt_page_base, gtt_page_offset,
  604. user_pages[data_page_index],
  605. data_page_offset,
  606. page_length);
  607. remain -= page_length;
  608. offset += page_length;
  609. data_ptr += page_length;
  610. }
  611. out_unpin_object:
  612. i915_gem_object_unpin(obj);
  613. out_unlock:
  614. mutex_unlock(&dev->struct_mutex);
  615. out_unpin_pages:
  616. for (i = 0; i < pinned_pages; i++)
  617. page_cache_release(user_pages[i]);
  618. drm_free_large(user_pages);
  619. return ret;
  620. }
  621. /**
  622. * This is the fast shmem pwrite path, which attempts to directly
  623. * copy_from_user into the kmapped pages backing the object.
  624. */
  625. static int
  626. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  627. struct drm_i915_gem_pwrite *args,
  628. struct drm_file *file_priv)
  629. {
  630. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  631. ssize_t remain;
  632. loff_t offset, page_base;
  633. char __user *user_data;
  634. int page_offset, page_length;
  635. int ret;
  636. user_data = (char __user *) (uintptr_t) args->data_ptr;
  637. remain = args->size;
  638. mutex_lock(&dev->struct_mutex);
  639. ret = i915_gem_object_get_pages(obj, 0);
  640. if (ret != 0)
  641. goto fail_unlock;
  642. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  643. if (ret != 0)
  644. goto fail_put_pages;
  645. obj_priv = to_intel_bo(obj);
  646. offset = args->offset;
  647. obj_priv->dirty = 1;
  648. while (remain > 0) {
  649. /* Operation in this page
  650. *
  651. * page_base = page offset within aperture
  652. * page_offset = offset within page
  653. * page_length = bytes to copy for this page
  654. */
  655. page_base = (offset & ~(PAGE_SIZE-1));
  656. page_offset = offset & (PAGE_SIZE-1);
  657. page_length = remain;
  658. if ((page_offset + remain) > PAGE_SIZE)
  659. page_length = PAGE_SIZE - page_offset;
  660. ret = fast_shmem_write(obj_priv->pages,
  661. page_base, page_offset,
  662. user_data, page_length);
  663. if (ret)
  664. goto fail_put_pages;
  665. remain -= page_length;
  666. user_data += page_length;
  667. offset += page_length;
  668. }
  669. fail_put_pages:
  670. i915_gem_object_put_pages(obj);
  671. fail_unlock:
  672. mutex_unlock(&dev->struct_mutex);
  673. return ret;
  674. }
  675. /**
  676. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  677. * the memory and maps it using kmap_atomic for copying.
  678. *
  679. * This avoids taking mmap_sem for faulting on the user's address while the
  680. * struct_mutex is held.
  681. */
  682. static int
  683. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  684. struct drm_i915_gem_pwrite *args,
  685. struct drm_file *file_priv)
  686. {
  687. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  688. struct mm_struct *mm = current->mm;
  689. struct page **user_pages;
  690. ssize_t remain;
  691. loff_t offset, pinned_pages, i;
  692. loff_t first_data_page, last_data_page, num_pages;
  693. int shmem_page_index, shmem_page_offset;
  694. int data_page_index, data_page_offset;
  695. int page_length;
  696. int ret;
  697. uint64_t data_ptr = args->data_ptr;
  698. int do_bit17_swizzling;
  699. remain = args->size;
  700. /* Pin the user pages containing the data. We can't fault while
  701. * holding the struct mutex, and all of the pwrite implementations
  702. * want to hold it while dereferencing the user data.
  703. */
  704. first_data_page = data_ptr / PAGE_SIZE;
  705. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  706. num_pages = last_data_page - first_data_page + 1;
  707. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  708. if (user_pages == NULL)
  709. return -ENOMEM;
  710. down_read(&mm->mmap_sem);
  711. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  712. num_pages, 0, 0, user_pages, NULL);
  713. up_read(&mm->mmap_sem);
  714. if (pinned_pages < num_pages) {
  715. ret = -EFAULT;
  716. goto fail_put_user_pages;
  717. }
  718. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  719. mutex_lock(&dev->struct_mutex);
  720. ret = i915_gem_object_get_pages_or_evict(obj);
  721. if (ret)
  722. goto fail_unlock;
  723. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  724. if (ret != 0)
  725. goto fail_put_pages;
  726. obj_priv = to_intel_bo(obj);
  727. offset = args->offset;
  728. obj_priv->dirty = 1;
  729. while (remain > 0) {
  730. /* Operation in this page
  731. *
  732. * shmem_page_index = page number within shmem file
  733. * shmem_page_offset = offset within page in shmem file
  734. * data_page_index = page number in get_user_pages return
  735. * data_page_offset = offset with data_page_index page.
  736. * page_length = bytes to copy for this page
  737. */
  738. shmem_page_index = offset / PAGE_SIZE;
  739. shmem_page_offset = offset & ~PAGE_MASK;
  740. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  741. data_page_offset = data_ptr & ~PAGE_MASK;
  742. page_length = remain;
  743. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  744. page_length = PAGE_SIZE - shmem_page_offset;
  745. if ((data_page_offset + page_length) > PAGE_SIZE)
  746. page_length = PAGE_SIZE - data_page_offset;
  747. if (do_bit17_swizzling) {
  748. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  749. shmem_page_offset,
  750. user_pages[data_page_index],
  751. data_page_offset,
  752. page_length,
  753. 0);
  754. } else {
  755. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  756. shmem_page_offset,
  757. user_pages[data_page_index],
  758. data_page_offset,
  759. page_length);
  760. }
  761. remain -= page_length;
  762. data_ptr += page_length;
  763. offset += page_length;
  764. }
  765. fail_put_pages:
  766. i915_gem_object_put_pages(obj);
  767. fail_unlock:
  768. mutex_unlock(&dev->struct_mutex);
  769. fail_put_user_pages:
  770. for (i = 0; i < pinned_pages; i++)
  771. page_cache_release(user_pages[i]);
  772. drm_free_large(user_pages);
  773. return ret;
  774. }
  775. /**
  776. * Writes data to the object referenced by handle.
  777. *
  778. * On error, the contents of the buffer that were to be modified are undefined.
  779. */
  780. int
  781. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  782. struct drm_file *file_priv)
  783. {
  784. struct drm_i915_gem_pwrite *args = data;
  785. struct drm_gem_object *obj;
  786. struct drm_i915_gem_object *obj_priv;
  787. int ret = 0;
  788. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  789. if (obj == NULL)
  790. return -ENOENT;
  791. obj_priv = to_intel_bo(obj);
  792. /* Bounds check destination.
  793. *
  794. * XXX: This could use review for overflow issues...
  795. */
  796. if (args->offset > obj->size || args->size > obj->size ||
  797. args->offset + args->size > obj->size) {
  798. drm_gem_object_unreference_unlocked(obj);
  799. return -EINVAL;
  800. }
  801. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  802. * it would end up going through the fenced access, and we'll get
  803. * different detiling behavior between reading and writing.
  804. * pread/pwrite currently are reading and writing from the CPU
  805. * perspective, requiring manual detiling by the client.
  806. */
  807. if (obj_priv->phys_obj)
  808. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  809. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  810. dev->gtt_total != 0 &&
  811. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  812. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  813. if (ret == -EFAULT) {
  814. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  815. file_priv);
  816. }
  817. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  818. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  819. } else {
  820. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  821. if (ret == -EFAULT) {
  822. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  823. file_priv);
  824. }
  825. }
  826. #if WATCH_PWRITE
  827. if (ret)
  828. DRM_INFO("pwrite failed %d\n", ret);
  829. #endif
  830. drm_gem_object_unreference_unlocked(obj);
  831. return ret;
  832. }
  833. /**
  834. * Called when user space prepares to use an object with the CPU, either
  835. * through the mmap ioctl's mapping or a GTT mapping.
  836. */
  837. int
  838. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  839. struct drm_file *file_priv)
  840. {
  841. struct drm_i915_private *dev_priv = dev->dev_private;
  842. struct drm_i915_gem_set_domain *args = data;
  843. struct drm_gem_object *obj;
  844. struct drm_i915_gem_object *obj_priv;
  845. uint32_t read_domains = args->read_domains;
  846. uint32_t write_domain = args->write_domain;
  847. int ret;
  848. if (!(dev->driver->driver_features & DRIVER_GEM))
  849. return -ENODEV;
  850. /* Only handle setting domains to types used by the CPU. */
  851. if (write_domain & I915_GEM_GPU_DOMAINS)
  852. return -EINVAL;
  853. if (read_domains & I915_GEM_GPU_DOMAINS)
  854. return -EINVAL;
  855. /* Having something in the write domain implies it's in the read
  856. * domain, and only that read domain. Enforce that in the request.
  857. */
  858. if (write_domain != 0 && read_domains != write_domain)
  859. return -EINVAL;
  860. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  861. if (obj == NULL)
  862. return -ENOENT;
  863. obj_priv = to_intel_bo(obj);
  864. mutex_lock(&dev->struct_mutex);
  865. intel_mark_busy(dev, obj);
  866. #if WATCH_BUF
  867. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  868. obj, obj->size, read_domains, write_domain);
  869. #endif
  870. if (read_domains & I915_GEM_DOMAIN_GTT) {
  871. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  872. /* Update the LRU on the fence for the CPU access that's
  873. * about to occur.
  874. */
  875. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  876. struct drm_i915_fence_reg *reg =
  877. &dev_priv->fence_regs[obj_priv->fence_reg];
  878. list_move_tail(&reg->lru_list,
  879. &dev_priv->mm.fence_list);
  880. }
  881. /* Silently promote "you're not bound, there was nothing to do"
  882. * to success, since the client was just asking us to
  883. * make sure everything was done.
  884. */
  885. if (ret == -EINVAL)
  886. ret = 0;
  887. } else {
  888. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  889. }
  890. /* Maintain LRU order of "inactive" objects */
  891. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  892. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  893. drm_gem_object_unreference(obj);
  894. mutex_unlock(&dev->struct_mutex);
  895. return ret;
  896. }
  897. /**
  898. * Called when user space has done writes to this buffer
  899. */
  900. int
  901. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  902. struct drm_file *file_priv)
  903. {
  904. struct drm_i915_gem_sw_finish *args = data;
  905. struct drm_gem_object *obj;
  906. struct drm_i915_gem_object *obj_priv;
  907. int ret = 0;
  908. if (!(dev->driver->driver_features & DRIVER_GEM))
  909. return -ENODEV;
  910. mutex_lock(&dev->struct_mutex);
  911. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  912. if (obj == NULL) {
  913. mutex_unlock(&dev->struct_mutex);
  914. return -ENOENT;
  915. }
  916. #if WATCH_BUF
  917. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  918. __func__, args->handle, obj, obj->size);
  919. #endif
  920. obj_priv = to_intel_bo(obj);
  921. /* Pinned buffers may be scanout, so flush the cache */
  922. if (obj_priv->pin_count)
  923. i915_gem_object_flush_cpu_write_domain(obj);
  924. drm_gem_object_unreference(obj);
  925. mutex_unlock(&dev->struct_mutex);
  926. return ret;
  927. }
  928. /**
  929. * Maps the contents of an object, returning the address it is mapped
  930. * into.
  931. *
  932. * While the mapping holds a reference on the contents of the object, it doesn't
  933. * imply a ref on the object itself.
  934. */
  935. int
  936. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  937. struct drm_file *file_priv)
  938. {
  939. struct drm_i915_gem_mmap *args = data;
  940. struct drm_gem_object *obj;
  941. loff_t offset;
  942. unsigned long addr;
  943. if (!(dev->driver->driver_features & DRIVER_GEM))
  944. return -ENODEV;
  945. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  946. if (obj == NULL)
  947. return -ENOENT;
  948. offset = args->offset;
  949. down_write(&current->mm->mmap_sem);
  950. addr = do_mmap(obj->filp, 0, args->size,
  951. PROT_READ | PROT_WRITE, MAP_SHARED,
  952. args->offset);
  953. up_write(&current->mm->mmap_sem);
  954. drm_gem_object_unreference_unlocked(obj);
  955. if (IS_ERR((void *)addr))
  956. return addr;
  957. args->addr_ptr = (uint64_t) addr;
  958. return 0;
  959. }
  960. /**
  961. * i915_gem_fault - fault a page into the GTT
  962. * vma: VMA in question
  963. * vmf: fault info
  964. *
  965. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  966. * from userspace. The fault handler takes care of binding the object to
  967. * the GTT (if needed), allocating and programming a fence register (again,
  968. * only if needed based on whether the old reg is still valid or the object
  969. * is tiled) and inserting a new PTE into the faulting process.
  970. *
  971. * Note that the faulting process may involve evicting existing objects
  972. * from the GTT and/or fence registers to make room. So performance may
  973. * suffer if the GTT working set is large or there are few fence registers
  974. * left.
  975. */
  976. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  977. {
  978. struct drm_gem_object *obj = vma->vm_private_data;
  979. struct drm_device *dev = obj->dev;
  980. drm_i915_private_t *dev_priv = dev->dev_private;
  981. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  982. pgoff_t page_offset;
  983. unsigned long pfn;
  984. int ret = 0;
  985. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  986. /* We don't use vmf->pgoff since that has the fake offset */
  987. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  988. PAGE_SHIFT;
  989. /* Now bind it into the GTT if needed */
  990. mutex_lock(&dev->struct_mutex);
  991. if (!obj_priv->gtt_space) {
  992. ret = i915_gem_object_bind_to_gtt(obj, 0);
  993. if (ret)
  994. goto unlock;
  995. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  996. if (ret)
  997. goto unlock;
  998. }
  999. /* Need a new fence register? */
  1000. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1001. ret = i915_gem_object_get_fence_reg(obj);
  1002. if (ret)
  1003. goto unlock;
  1004. }
  1005. if (i915_gem_object_is_inactive(obj_priv))
  1006. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1007. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1008. page_offset;
  1009. /* Finally, remap it using the new GTT offset */
  1010. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1011. unlock:
  1012. mutex_unlock(&dev->struct_mutex);
  1013. switch (ret) {
  1014. case 0:
  1015. case -ERESTARTSYS:
  1016. return VM_FAULT_NOPAGE;
  1017. case -ENOMEM:
  1018. case -EAGAIN:
  1019. return VM_FAULT_OOM;
  1020. default:
  1021. return VM_FAULT_SIGBUS;
  1022. }
  1023. }
  1024. /**
  1025. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1026. * @obj: obj in question
  1027. *
  1028. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1029. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1030. * up the object based on the offset and sets up the various memory mapping
  1031. * structures.
  1032. *
  1033. * This routine allocates and attaches a fake offset for @obj.
  1034. */
  1035. static int
  1036. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1037. {
  1038. struct drm_device *dev = obj->dev;
  1039. struct drm_gem_mm *mm = dev->mm_private;
  1040. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1041. struct drm_map_list *list;
  1042. struct drm_local_map *map;
  1043. int ret = 0;
  1044. /* Set the object up for mmap'ing */
  1045. list = &obj->map_list;
  1046. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1047. if (!list->map)
  1048. return -ENOMEM;
  1049. map = list->map;
  1050. map->type = _DRM_GEM;
  1051. map->size = obj->size;
  1052. map->handle = obj;
  1053. /* Get a DRM GEM mmap offset allocated... */
  1054. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1055. obj->size / PAGE_SIZE, 0, 0);
  1056. if (!list->file_offset_node) {
  1057. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1058. ret = -ENOMEM;
  1059. goto out_free_list;
  1060. }
  1061. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1062. obj->size / PAGE_SIZE, 0);
  1063. if (!list->file_offset_node) {
  1064. ret = -ENOMEM;
  1065. goto out_free_list;
  1066. }
  1067. list->hash.key = list->file_offset_node->start;
  1068. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1069. DRM_ERROR("failed to add to map hash\n");
  1070. ret = -ENOMEM;
  1071. goto out_free_mm;
  1072. }
  1073. /* By now we should be all set, any drm_mmap request on the offset
  1074. * below will get to our mmap & fault handler */
  1075. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1076. return 0;
  1077. out_free_mm:
  1078. drm_mm_put_block(list->file_offset_node);
  1079. out_free_list:
  1080. kfree(list->map);
  1081. return ret;
  1082. }
  1083. /**
  1084. * i915_gem_release_mmap - remove physical page mappings
  1085. * @obj: obj in question
  1086. *
  1087. * Preserve the reservation of the mmapping with the DRM core code, but
  1088. * relinquish ownership of the pages back to the system.
  1089. *
  1090. * It is vital that we remove the page mapping if we have mapped a tiled
  1091. * object through the GTT and then lose the fence register due to
  1092. * resource pressure. Similarly if the object has been moved out of the
  1093. * aperture, than pages mapped into userspace must be revoked. Removing the
  1094. * mapping will then trigger a page fault on the next user access, allowing
  1095. * fixup by i915_gem_fault().
  1096. */
  1097. void
  1098. i915_gem_release_mmap(struct drm_gem_object *obj)
  1099. {
  1100. struct drm_device *dev = obj->dev;
  1101. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1102. if (dev->dev_mapping)
  1103. unmap_mapping_range(dev->dev_mapping,
  1104. obj_priv->mmap_offset, obj->size, 1);
  1105. }
  1106. static void
  1107. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1108. {
  1109. struct drm_device *dev = obj->dev;
  1110. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1111. struct drm_gem_mm *mm = dev->mm_private;
  1112. struct drm_map_list *list;
  1113. list = &obj->map_list;
  1114. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1115. if (list->file_offset_node) {
  1116. drm_mm_put_block(list->file_offset_node);
  1117. list->file_offset_node = NULL;
  1118. }
  1119. if (list->map) {
  1120. kfree(list->map);
  1121. list->map = NULL;
  1122. }
  1123. obj_priv->mmap_offset = 0;
  1124. }
  1125. /**
  1126. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1127. * @obj: object to check
  1128. *
  1129. * Return the required GTT alignment for an object, taking into account
  1130. * potential fence register mapping if needed.
  1131. */
  1132. static uint32_t
  1133. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1134. {
  1135. struct drm_device *dev = obj->dev;
  1136. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1137. int start, i;
  1138. /*
  1139. * Minimum alignment is 4k (GTT page size), but might be greater
  1140. * if a fence register is needed for the object.
  1141. */
  1142. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1143. return 4096;
  1144. /*
  1145. * Previous chips need to be aligned to the size of the smallest
  1146. * fence register that can contain the object.
  1147. */
  1148. if (IS_I9XX(dev))
  1149. start = 1024*1024;
  1150. else
  1151. start = 512*1024;
  1152. for (i = start; i < obj->size; i <<= 1)
  1153. ;
  1154. return i;
  1155. }
  1156. /**
  1157. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1158. * @dev: DRM device
  1159. * @data: GTT mapping ioctl data
  1160. * @file_priv: GEM object info
  1161. *
  1162. * Simply returns the fake offset to userspace so it can mmap it.
  1163. * The mmap call will end up in drm_gem_mmap(), which will set things
  1164. * up so we can get faults in the handler above.
  1165. *
  1166. * The fault handler will take care of binding the object into the GTT
  1167. * (since it may have been evicted to make room for something), allocating
  1168. * a fence register, and mapping the appropriate aperture address into
  1169. * userspace.
  1170. */
  1171. int
  1172. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1173. struct drm_file *file_priv)
  1174. {
  1175. struct drm_i915_gem_mmap_gtt *args = data;
  1176. struct drm_gem_object *obj;
  1177. struct drm_i915_gem_object *obj_priv;
  1178. int ret;
  1179. if (!(dev->driver->driver_features & DRIVER_GEM))
  1180. return -ENODEV;
  1181. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1182. if (obj == NULL)
  1183. return -ENOENT;
  1184. mutex_lock(&dev->struct_mutex);
  1185. obj_priv = to_intel_bo(obj);
  1186. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1187. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1188. drm_gem_object_unreference(obj);
  1189. mutex_unlock(&dev->struct_mutex);
  1190. return -EINVAL;
  1191. }
  1192. if (!obj_priv->mmap_offset) {
  1193. ret = i915_gem_create_mmap_offset(obj);
  1194. if (ret) {
  1195. drm_gem_object_unreference(obj);
  1196. mutex_unlock(&dev->struct_mutex);
  1197. return ret;
  1198. }
  1199. }
  1200. args->offset = obj_priv->mmap_offset;
  1201. /*
  1202. * Pull it into the GTT so that we have a page list (makes the
  1203. * initial fault faster and any subsequent flushing possible).
  1204. */
  1205. if (!obj_priv->agp_mem) {
  1206. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1207. if (ret) {
  1208. drm_gem_object_unreference(obj);
  1209. mutex_unlock(&dev->struct_mutex);
  1210. return ret;
  1211. }
  1212. }
  1213. drm_gem_object_unreference(obj);
  1214. mutex_unlock(&dev->struct_mutex);
  1215. return 0;
  1216. }
  1217. void
  1218. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1219. {
  1220. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1221. int page_count = obj->size / PAGE_SIZE;
  1222. int i;
  1223. BUG_ON(obj_priv->pages_refcount == 0);
  1224. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1225. if (--obj_priv->pages_refcount != 0)
  1226. return;
  1227. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1228. i915_gem_object_save_bit_17_swizzle(obj);
  1229. if (obj_priv->madv == I915_MADV_DONTNEED)
  1230. obj_priv->dirty = 0;
  1231. for (i = 0; i < page_count; i++) {
  1232. if (obj_priv->dirty)
  1233. set_page_dirty(obj_priv->pages[i]);
  1234. if (obj_priv->madv == I915_MADV_WILLNEED)
  1235. mark_page_accessed(obj_priv->pages[i]);
  1236. page_cache_release(obj_priv->pages[i]);
  1237. }
  1238. obj_priv->dirty = 0;
  1239. drm_free_large(obj_priv->pages);
  1240. obj_priv->pages = NULL;
  1241. }
  1242. static void
  1243. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
  1244. struct intel_ring_buffer *ring)
  1245. {
  1246. struct drm_device *dev = obj->dev;
  1247. drm_i915_private_t *dev_priv = dev->dev_private;
  1248. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1249. BUG_ON(ring == NULL);
  1250. obj_priv->ring = ring;
  1251. /* Add a reference if we're newly entering the active list. */
  1252. if (!obj_priv->active) {
  1253. drm_gem_object_reference(obj);
  1254. obj_priv->active = 1;
  1255. }
  1256. /* Move from whatever list we were on to the tail of execution. */
  1257. spin_lock(&dev_priv->mm.active_list_lock);
  1258. list_move_tail(&obj_priv->list, &ring->active_list);
  1259. spin_unlock(&dev_priv->mm.active_list_lock);
  1260. obj_priv->last_rendering_seqno = seqno;
  1261. }
  1262. static void
  1263. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1264. {
  1265. struct drm_device *dev = obj->dev;
  1266. drm_i915_private_t *dev_priv = dev->dev_private;
  1267. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1268. BUG_ON(!obj_priv->active);
  1269. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1270. obj_priv->last_rendering_seqno = 0;
  1271. }
  1272. /* Immediately discard the backing storage */
  1273. static void
  1274. i915_gem_object_truncate(struct drm_gem_object *obj)
  1275. {
  1276. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1277. struct inode *inode;
  1278. /* Our goal here is to return as much of the memory as
  1279. * is possible back to the system as we are called from OOM.
  1280. * To do this we must instruct the shmfs to drop all of its
  1281. * backing pages, *now*. Here we mirror the actions taken
  1282. * when by shmem_delete_inode() to release the backing store.
  1283. */
  1284. inode = obj->filp->f_path.dentry->d_inode;
  1285. truncate_inode_pages(inode->i_mapping, 0);
  1286. if (inode->i_op->truncate_range)
  1287. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1288. obj_priv->madv = __I915_MADV_PURGED;
  1289. }
  1290. static inline int
  1291. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1292. {
  1293. return obj_priv->madv == I915_MADV_DONTNEED;
  1294. }
  1295. static void
  1296. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1297. {
  1298. struct drm_device *dev = obj->dev;
  1299. drm_i915_private_t *dev_priv = dev->dev_private;
  1300. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1301. i915_verify_inactive(dev, __FILE__, __LINE__);
  1302. if (obj_priv->pin_count != 0)
  1303. list_del_init(&obj_priv->list);
  1304. else
  1305. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1306. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1307. obj_priv->last_rendering_seqno = 0;
  1308. obj_priv->ring = NULL;
  1309. if (obj_priv->active) {
  1310. obj_priv->active = 0;
  1311. drm_gem_object_unreference(obj);
  1312. }
  1313. i915_verify_inactive(dev, __FILE__, __LINE__);
  1314. }
  1315. static void
  1316. i915_gem_process_flushing_list(struct drm_device *dev,
  1317. uint32_t flush_domains, uint32_t seqno,
  1318. struct intel_ring_buffer *ring)
  1319. {
  1320. drm_i915_private_t *dev_priv = dev->dev_private;
  1321. struct drm_i915_gem_object *obj_priv, *next;
  1322. list_for_each_entry_safe(obj_priv, next,
  1323. &dev_priv->mm.gpu_write_list,
  1324. gpu_write_list) {
  1325. struct drm_gem_object *obj = &obj_priv->base;
  1326. if ((obj->write_domain & flush_domains) ==
  1327. obj->write_domain &&
  1328. obj_priv->ring->ring_flag == ring->ring_flag) {
  1329. uint32_t old_write_domain = obj->write_domain;
  1330. obj->write_domain = 0;
  1331. list_del_init(&obj_priv->gpu_write_list);
  1332. i915_gem_object_move_to_active(obj, seqno, ring);
  1333. /* update the fence lru list */
  1334. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1335. struct drm_i915_fence_reg *reg =
  1336. &dev_priv->fence_regs[obj_priv->fence_reg];
  1337. list_move_tail(&reg->lru_list,
  1338. &dev_priv->mm.fence_list);
  1339. }
  1340. trace_i915_gem_object_change_domain(obj,
  1341. obj->read_domains,
  1342. old_write_domain);
  1343. }
  1344. }
  1345. }
  1346. uint32_t
  1347. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1348. uint32_t flush_domains, struct intel_ring_buffer *ring)
  1349. {
  1350. drm_i915_private_t *dev_priv = dev->dev_private;
  1351. struct drm_i915_file_private *i915_file_priv = NULL;
  1352. struct drm_i915_gem_request *request;
  1353. uint32_t seqno;
  1354. int was_empty;
  1355. if (file_priv != NULL)
  1356. i915_file_priv = file_priv->driver_priv;
  1357. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1358. if (request == NULL)
  1359. return 0;
  1360. seqno = ring->add_request(dev, ring, file_priv, flush_domains);
  1361. request->seqno = seqno;
  1362. request->ring = ring;
  1363. request->emitted_jiffies = jiffies;
  1364. was_empty = list_empty(&ring->request_list);
  1365. list_add_tail(&request->list, &ring->request_list);
  1366. if (i915_file_priv) {
  1367. list_add_tail(&request->client_list,
  1368. &i915_file_priv->mm.request_list);
  1369. } else {
  1370. INIT_LIST_HEAD(&request->client_list);
  1371. }
  1372. /* Associate any objects on the flushing list matching the write
  1373. * domain we're flushing with our flush.
  1374. */
  1375. if (flush_domains != 0)
  1376. i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
  1377. if (!dev_priv->mm.suspended) {
  1378. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1379. if (was_empty)
  1380. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1381. }
  1382. return seqno;
  1383. }
  1384. /**
  1385. * Command execution barrier
  1386. *
  1387. * Ensures that all commands in the ring are finished
  1388. * before signalling the CPU
  1389. */
  1390. static uint32_t
  1391. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1392. {
  1393. uint32_t flush_domains = 0;
  1394. /* The sampler always gets flushed on i965 (sigh) */
  1395. if (IS_I965G(dev))
  1396. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1397. ring->flush(dev, ring,
  1398. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1399. return flush_domains;
  1400. }
  1401. /**
  1402. * Moves buffers associated only with the given active seqno from the active
  1403. * to inactive list, potentially freeing them.
  1404. */
  1405. static void
  1406. i915_gem_retire_request(struct drm_device *dev,
  1407. struct drm_i915_gem_request *request)
  1408. {
  1409. drm_i915_private_t *dev_priv = dev->dev_private;
  1410. trace_i915_gem_request_retire(dev, request->seqno);
  1411. /* Move any buffers on the active list that are no longer referenced
  1412. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1413. */
  1414. spin_lock(&dev_priv->mm.active_list_lock);
  1415. while (!list_empty(&request->ring->active_list)) {
  1416. struct drm_gem_object *obj;
  1417. struct drm_i915_gem_object *obj_priv;
  1418. obj_priv = list_first_entry(&request->ring->active_list,
  1419. struct drm_i915_gem_object,
  1420. list);
  1421. obj = &obj_priv->base;
  1422. /* If the seqno being retired doesn't match the oldest in the
  1423. * list, then the oldest in the list must still be newer than
  1424. * this seqno.
  1425. */
  1426. if (obj_priv->last_rendering_seqno != request->seqno)
  1427. goto out;
  1428. #if WATCH_LRU
  1429. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1430. __func__, request->seqno, obj);
  1431. #endif
  1432. if (obj->write_domain != 0)
  1433. i915_gem_object_move_to_flushing(obj);
  1434. else {
  1435. /* Take a reference on the object so it won't be
  1436. * freed while the spinlock is held. The list
  1437. * protection for this spinlock is safe when breaking
  1438. * the lock like this since the next thing we do
  1439. * is just get the head of the list again.
  1440. */
  1441. drm_gem_object_reference(obj);
  1442. i915_gem_object_move_to_inactive(obj);
  1443. spin_unlock(&dev_priv->mm.active_list_lock);
  1444. drm_gem_object_unreference(obj);
  1445. spin_lock(&dev_priv->mm.active_list_lock);
  1446. }
  1447. }
  1448. out:
  1449. spin_unlock(&dev_priv->mm.active_list_lock);
  1450. }
  1451. /**
  1452. * Returns true if seq1 is later than seq2.
  1453. */
  1454. bool
  1455. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1456. {
  1457. return (int32_t)(seq1 - seq2) >= 0;
  1458. }
  1459. uint32_t
  1460. i915_get_gem_seqno(struct drm_device *dev,
  1461. struct intel_ring_buffer *ring)
  1462. {
  1463. return ring->get_gem_seqno(dev, ring);
  1464. }
  1465. /**
  1466. * This function clears the request list as sequence numbers are passed.
  1467. */
  1468. static void
  1469. i915_gem_retire_requests_ring(struct drm_device *dev,
  1470. struct intel_ring_buffer *ring)
  1471. {
  1472. drm_i915_private_t *dev_priv = dev->dev_private;
  1473. uint32_t seqno;
  1474. if (!ring->status_page.page_addr
  1475. || list_empty(&ring->request_list))
  1476. return;
  1477. seqno = i915_get_gem_seqno(dev, ring);
  1478. while (!list_empty(&ring->request_list)) {
  1479. struct drm_i915_gem_request *request;
  1480. uint32_t retiring_seqno;
  1481. request = list_first_entry(&ring->request_list,
  1482. struct drm_i915_gem_request,
  1483. list);
  1484. retiring_seqno = request->seqno;
  1485. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1486. atomic_read(&dev_priv->mm.wedged)) {
  1487. i915_gem_retire_request(dev, request);
  1488. list_del(&request->list);
  1489. list_del(&request->client_list);
  1490. kfree(request);
  1491. } else
  1492. break;
  1493. }
  1494. if (unlikely (dev_priv->trace_irq_seqno &&
  1495. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1496. ring->user_irq_put(dev, ring);
  1497. dev_priv->trace_irq_seqno = 0;
  1498. }
  1499. }
  1500. void
  1501. i915_gem_retire_requests(struct drm_device *dev)
  1502. {
  1503. drm_i915_private_t *dev_priv = dev->dev_private;
  1504. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1505. struct drm_i915_gem_object *obj_priv, *tmp;
  1506. /* We must be careful that during unbind() we do not
  1507. * accidentally infinitely recurse into retire requests.
  1508. * Currently:
  1509. * retire -> free -> unbind -> wait -> retire_ring
  1510. */
  1511. list_for_each_entry_safe(obj_priv, tmp,
  1512. &dev_priv->mm.deferred_free_list,
  1513. list)
  1514. i915_gem_free_object_tail(&obj_priv->base);
  1515. }
  1516. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1517. if (HAS_BSD(dev))
  1518. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1519. }
  1520. void
  1521. i915_gem_retire_work_handler(struct work_struct *work)
  1522. {
  1523. drm_i915_private_t *dev_priv;
  1524. struct drm_device *dev;
  1525. dev_priv = container_of(work, drm_i915_private_t,
  1526. mm.retire_work.work);
  1527. dev = dev_priv->dev;
  1528. mutex_lock(&dev->struct_mutex);
  1529. i915_gem_retire_requests(dev);
  1530. if (!dev_priv->mm.suspended &&
  1531. (!list_empty(&dev_priv->render_ring.request_list) ||
  1532. (HAS_BSD(dev) &&
  1533. !list_empty(&dev_priv->bsd_ring.request_list))))
  1534. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1535. mutex_unlock(&dev->struct_mutex);
  1536. }
  1537. int
  1538. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1539. int interruptible, struct intel_ring_buffer *ring)
  1540. {
  1541. drm_i915_private_t *dev_priv = dev->dev_private;
  1542. u32 ier;
  1543. int ret = 0;
  1544. BUG_ON(seqno == 0);
  1545. if (atomic_read(&dev_priv->mm.wedged))
  1546. return -EIO;
  1547. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1548. if (HAS_PCH_SPLIT(dev))
  1549. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1550. else
  1551. ier = I915_READ(IER);
  1552. if (!ier) {
  1553. DRM_ERROR("something (likely vbetool) disabled "
  1554. "interrupts, re-enabling\n");
  1555. i915_driver_irq_preinstall(dev);
  1556. i915_driver_irq_postinstall(dev);
  1557. }
  1558. trace_i915_gem_request_wait_begin(dev, seqno);
  1559. ring->waiting_gem_seqno = seqno;
  1560. ring->user_irq_get(dev, ring);
  1561. if (interruptible)
  1562. ret = wait_event_interruptible(ring->irq_queue,
  1563. i915_seqno_passed(
  1564. ring->get_gem_seqno(dev, ring), seqno)
  1565. || atomic_read(&dev_priv->mm.wedged));
  1566. else
  1567. wait_event(ring->irq_queue,
  1568. i915_seqno_passed(
  1569. ring->get_gem_seqno(dev, ring), seqno)
  1570. || atomic_read(&dev_priv->mm.wedged));
  1571. ring->user_irq_put(dev, ring);
  1572. ring->waiting_gem_seqno = 0;
  1573. trace_i915_gem_request_wait_end(dev, seqno);
  1574. }
  1575. if (atomic_read(&dev_priv->mm.wedged))
  1576. ret = -EIO;
  1577. if (ret && ret != -ERESTARTSYS)
  1578. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1579. __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
  1580. /* Directly dispatch request retiring. While we have the work queue
  1581. * to handle this, the waiter on a request often wants an associated
  1582. * buffer to have made it to the inactive list, and we would need
  1583. * a separate wait queue to handle that.
  1584. */
  1585. if (ret == 0)
  1586. i915_gem_retire_requests_ring(dev, ring);
  1587. return ret;
  1588. }
  1589. /**
  1590. * Waits for a sequence number to be signaled, and cleans up the
  1591. * request and object lists appropriately for that event.
  1592. */
  1593. static int
  1594. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1595. struct intel_ring_buffer *ring)
  1596. {
  1597. return i915_do_wait_request(dev, seqno, 1, ring);
  1598. }
  1599. static void
  1600. i915_gem_flush(struct drm_device *dev,
  1601. uint32_t invalidate_domains,
  1602. uint32_t flush_domains)
  1603. {
  1604. drm_i915_private_t *dev_priv = dev->dev_private;
  1605. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1606. drm_agp_chipset_flush(dev);
  1607. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1608. invalidate_domains,
  1609. flush_domains);
  1610. if (HAS_BSD(dev))
  1611. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1612. invalidate_domains,
  1613. flush_domains);
  1614. }
  1615. /**
  1616. * Ensures that all rendering to the object has completed and the object is
  1617. * safe to unbind from the GTT or access from the CPU.
  1618. */
  1619. static int
  1620. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1621. {
  1622. struct drm_device *dev = obj->dev;
  1623. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1624. int ret;
  1625. /* This function only exists to support waiting for existing rendering,
  1626. * not for emitting required flushes.
  1627. */
  1628. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1629. /* If there is rendering queued on the buffer being evicted, wait for
  1630. * it.
  1631. */
  1632. if (obj_priv->active) {
  1633. #if WATCH_BUF
  1634. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1635. __func__, obj, obj_priv->last_rendering_seqno);
  1636. #endif
  1637. ret = i915_wait_request(dev,
  1638. obj_priv->last_rendering_seqno, obj_priv->ring);
  1639. if (ret != 0)
  1640. return ret;
  1641. }
  1642. return 0;
  1643. }
  1644. /**
  1645. * Unbinds an object from the GTT aperture.
  1646. */
  1647. int
  1648. i915_gem_object_unbind(struct drm_gem_object *obj)
  1649. {
  1650. struct drm_device *dev = obj->dev;
  1651. drm_i915_private_t *dev_priv = dev->dev_private;
  1652. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1653. int ret = 0;
  1654. #if WATCH_BUF
  1655. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1656. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1657. #endif
  1658. if (obj_priv->gtt_space == NULL)
  1659. return 0;
  1660. if (obj_priv->pin_count != 0) {
  1661. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1662. return -EINVAL;
  1663. }
  1664. /* blow away mappings if mapped through GTT */
  1665. i915_gem_release_mmap(obj);
  1666. /* Move the object to the CPU domain to ensure that
  1667. * any possible CPU writes while it's not in the GTT
  1668. * are flushed when we go to remap it. This will
  1669. * also ensure that all pending GPU writes are finished
  1670. * before we unbind.
  1671. */
  1672. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1673. if (ret == -ERESTARTSYS)
  1674. return ret;
  1675. /* Continue on if we fail due to EIO, the GPU is hung so we
  1676. * should be safe and we need to cleanup or else we might
  1677. * cause memory corruption through use-after-free.
  1678. */
  1679. /* release the fence reg _after_ flushing */
  1680. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1681. i915_gem_clear_fence_reg(obj);
  1682. if (obj_priv->agp_mem != NULL) {
  1683. drm_unbind_agp(obj_priv->agp_mem);
  1684. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1685. obj_priv->agp_mem = NULL;
  1686. }
  1687. i915_gem_object_put_pages(obj);
  1688. BUG_ON(obj_priv->pages_refcount);
  1689. if (obj_priv->gtt_space) {
  1690. atomic_dec(&dev->gtt_count);
  1691. atomic_sub(obj->size, &dev->gtt_memory);
  1692. drm_mm_put_block(obj_priv->gtt_space);
  1693. obj_priv->gtt_space = NULL;
  1694. }
  1695. /* Remove ourselves from the LRU list if present. */
  1696. spin_lock(&dev_priv->mm.active_list_lock);
  1697. if (!list_empty(&obj_priv->list))
  1698. list_del_init(&obj_priv->list);
  1699. spin_unlock(&dev_priv->mm.active_list_lock);
  1700. if (i915_gem_object_is_purgeable(obj_priv))
  1701. i915_gem_object_truncate(obj);
  1702. trace_i915_gem_object_unbind(obj);
  1703. return ret;
  1704. }
  1705. int
  1706. i915_gpu_idle(struct drm_device *dev)
  1707. {
  1708. drm_i915_private_t *dev_priv = dev->dev_private;
  1709. bool lists_empty;
  1710. uint32_t seqno1, seqno2;
  1711. int ret;
  1712. spin_lock(&dev_priv->mm.active_list_lock);
  1713. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1714. list_empty(&dev_priv->render_ring.active_list) &&
  1715. (!HAS_BSD(dev) ||
  1716. list_empty(&dev_priv->bsd_ring.active_list)));
  1717. spin_unlock(&dev_priv->mm.active_list_lock);
  1718. if (lists_empty)
  1719. return 0;
  1720. /* Flush everything onto the inactive list. */
  1721. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1722. seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1723. &dev_priv->render_ring);
  1724. if (seqno1 == 0)
  1725. return -ENOMEM;
  1726. ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
  1727. if (HAS_BSD(dev)) {
  1728. seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1729. &dev_priv->bsd_ring);
  1730. if (seqno2 == 0)
  1731. return -ENOMEM;
  1732. ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
  1733. if (ret)
  1734. return ret;
  1735. }
  1736. return ret;
  1737. }
  1738. int
  1739. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1740. gfp_t gfpmask)
  1741. {
  1742. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1743. int page_count, i;
  1744. struct address_space *mapping;
  1745. struct inode *inode;
  1746. struct page *page;
  1747. BUG_ON(obj_priv->pages_refcount
  1748. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1749. if (obj_priv->pages_refcount++ != 0)
  1750. return 0;
  1751. /* Get the list of pages out of our struct file. They'll be pinned
  1752. * at this point until we release them.
  1753. */
  1754. page_count = obj->size / PAGE_SIZE;
  1755. BUG_ON(obj_priv->pages != NULL);
  1756. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1757. if (obj_priv->pages == NULL) {
  1758. obj_priv->pages_refcount--;
  1759. return -ENOMEM;
  1760. }
  1761. inode = obj->filp->f_path.dentry->d_inode;
  1762. mapping = inode->i_mapping;
  1763. for (i = 0; i < page_count; i++) {
  1764. page = read_cache_page_gfp(mapping, i,
  1765. GFP_HIGHUSER |
  1766. __GFP_COLD |
  1767. __GFP_RECLAIMABLE |
  1768. gfpmask);
  1769. if (IS_ERR(page))
  1770. goto err_pages;
  1771. obj_priv->pages[i] = page;
  1772. }
  1773. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1774. i915_gem_object_do_bit_17_swizzle(obj);
  1775. return 0;
  1776. err_pages:
  1777. while (i--)
  1778. page_cache_release(obj_priv->pages[i]);
  1779. drm_free_large(obj_priv->pages);
  1780. obj_priv->pages = NULL;
  1781. obj_priv->pages_refcount--;
  1782. return PTR_ERR(page);
  1783. }
  1784. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1785. {
  1786. struct drm_gem_object *obj = reg->obj;
  1787. struct drm_device *dev = obj->dev;
  1788. drm_i915_private_t *dev_priv = dev->dev_private;
  1789. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1790. int regnum = obj_priv->fence_reg;
  1791. uint64_t val;
  1792. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1793. 0xfffff000) << 32;
  1794. val |= obj_priv->gtt_offset & 0xfffff000;
  1795. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1796. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1797. if (obj_priv->tiling_mode == I915_TILING_Y)
  1798. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1799. val |= I965_FENCE_REG_VALID;
  1800. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1801. }
  1802. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1803. {
  1804. struct drm_gem_object *obj = reg->obj;
  1805. struct drm_device *dev = obj->dev;
  1806. drm_i915_private_t *dev_priv = dev->dev_private;
  1807. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1808. int regnum = obj_priv->fence_reg;
  1809. uint64_t val;
  1810. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1811. 0xfffff000) << 32;
  1812. val |= obj_priv->gtt_offset & 0xfffff000;
  1813. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1814. if (obj_priv->tiling_mode == I915_TILING_Y)
  1815. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1816. val |= I965_FENCE_REG_VALID;
  1817. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1818. }
  1819. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1820. {
  1821. struct drm_gem_object *obj = reg->obj;
  1822. struct drm_device *dev = obj->dev;
  1823. drm_i915_private_t *dev_priv = dev->dev_private;
  1824. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1825. int regnum = obj_priv->fence_reg;
  1826. int tile_width;
  1827. uint32_t fence_reg, val;
  1828. uint32_t pitch_val;
  1829. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1830. (obj_priv->gtt_offset & (obj->size - 1))) {
  1831. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1832. __func__, obj_priv->gtt_offset, obj->size);
  1833. return;
  1834. }
  1835. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1836. HAS_128_BYTE_Y_TILING(dev))
  1837. tile_width = 128;
  1838. else
  1839. tile_width = 512;
  1840. /* Note: pitch better be a power of two tile widths */
  1841. pitch_val = obj_priv->stride / tile_width;
  1842. pitch_val = ffs(pitch_val) - 1;
  1843. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1844. HAS_128_BYTE_Y_TILING(dev))
  1845. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1846. else
  1847. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1848. val = obj_priv->gtt_offset;
  1849. if (obj_priv->tiling_mode == I915_TILING_Y)
  1850. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1851. val |= I915_FENCE_SIZE_BITS(obj->size);
  1852. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1853. val |= I830_FENCE_REG_VALID;
  1854. if (regnum < 8)
  1855. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1856. else
  1857. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1858. I915_WRITE(fence_reg, val);
  1859. }
  1860. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1861. {
  1862. struct drm_gem_object *obj = reg->obj;
  1863. struct drm_device *dev = obj->dev;
  1864. drm_i915_private_t *dev_priv = dev->dev_private;
  1865. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1866. int regnum = obj_priv->fence_reg;
  1867. uint32_t val;
  1868. uint32_t pitch_val;
  1869. uint32_t fence_size_bits;
  1870. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1871. (obj_priv->gtt_offset & (obj->size - 1))) {
  1872. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1873. __func__, obj_priv->gtt_offset);
  1874. return;
  1875. }
  1876. pitch_val = obj_priv->stride / 128;
  1877. pitch_val = ffs(pitch_val) - 1;
  1878. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1879. val = obj_priv->gtt_offset;
  1880. if (obj_priv->tiling_mode == I915_TILING_Y)
  1881. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1882. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1883. WARN_ON(fence_size_bits & ~0x00000f00);
  1884. val |= fence_size_bits;
  1885. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1886. val |= I830_FENCE_REG_VALID;
  1887. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1888. }
  1889. static int i915_find_fence_reg(struct drm_device *dev)
  1890. {
  1891. struct drm_i915_fence_reg *reg = NULL;
  1892. struct drm_i915_gem_object *obj_priv = NULL;
  1893. struct drm_i915_private *dev_priv = dev->dev_private;
  1894. struct drm_gem_object *obj = NULL;
  1895. int i, avail, ret;
  1896. /* First try to find a free reg */
  1897. avail = 0;
  1898. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1899. reg = &dev_priv->fence_regs[i];
  1900. if (!reg->obj)
  1901. return i;
  1902. obj_priv = to_intel_bo(reg->obj);
  1903. if (!obj_priv->pin_count)
  1904. avail++;
  1905. }
  1906. if (avail == 0)
  1907. return -ENOSPC;
  1908. /* None available, try to steal one or wait for a user to finish */
  1909. i = I915_FENCE_REG_NONE;
  1910. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1911. lru_list) {
  1912. obj = reg->obj;
  1913. obj_priv = to_intel_bo(obj);
  1914. if (obj_priv->pin_count)
  1915. continue;
  1916. /* found one! */
  1917. i = obj_priv->fence_reg;
  1918. break;
  1919. }
  1920. BUG_ON(i == I915_FENCE_REG_NONE);
  1921. /* We only have a reference on obj from the active list. put_fence_reg
  1922. * might drop that one, causing a use-after-free in it. So hold a
  1923. * private reference to obj like the other callers of put_fence_reg
  1924. * (set_tiling ioctl) do. */
  1925. drm_gem_object_reference(obj);
  1926. ret = i915_gem_object_put_fence_reg(obj);
  1927. drm_gem_object_unreference(obj);
  1928. if (ret != 0)
  1929. return ret;
  1930. return i;
  1931. }
  1932. /**
  1933. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1934. * @obj: object to map through a fence reg
  1935. *
  1936. * When mapping objects through the GTT, userspace wants to be able to write
  1937. * to them without having to worry about swizzling if the object is tiled.
  1938. *
  1939. * This function walks the fence regs looking for a free one for @obj,
  1940. * stealing one if it can't find any.
  1941. *
  1942. * It then sets up the reg based on the object's properties: address, pitch
  1943. * and tiling format.
  1944. */
  1945. int
  1946. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1947. {
  1948. struct drm_device *dev = obj->dev;
  1949. struct drm_i915_private *dev_priv = dev->dev_private;
  1950. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1951. struct drm_i915_fence_reg *reg = NULL;
  1952. int ret;
  1953. /* Just update our place in the LRU if our fence is getting used. */
  1954. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1955. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1956. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1957. return 0;
  1958. }
  1959. switch (obj_priv->tiling_mode) {
  1960. case I915_TILING_NONE:
  1961. WARN(1, "allocating a fence for non-tiled object?\n");
  1962. break;
  1963. case I915_TILING_X:
  1964. if (!obj_priv->stride)
  1965. return -EINVAL;
  1966. WARN((obj_priv->stride & (512 - 1)),
  1967. "object 0x%08x is X tiled but has non-512B pitch\n",
  1968. obj_priv->gtt_offset);
  1969. break;
  1970. case I915_TILING_Y:
  1971. if (!obj_priv->stride)
  1972. return -EINVAL;
  1973. WARN((obj_priv->stride & (128 - 1)),
  1974. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1975. obj_priv->gtt_offset);
  1976. break;
  1977. }
  1978. ret = i915_find_fence_reg(dev);
  1979. if (ret < 0)
  1980. return ret;
  1981. obj_priv->fence_reg = ret;
  1982. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1983. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1984. reg->obj = obj;
  1985. switch (INTEL_INFO(dev)->gen) {
  1986. case 6:
  1987. sandybridge_write_fence_reg(reg);
  1988. break;
  1989. case 5:
  1990. case 4:
  1991. i965_write_fence_reg(reg);
  1992. break;
  1993. case 3:
  1994. i915_write_fence_reg(reg);
  1995. break;
  1996. case 2:
  1997. i830_write_fence_reg(reg);
  1998. break;
  1999. }
  2000. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2001. obj_priv->tiling_mode);
  2002. return 0;
  2003. }
  2004. /**
  2005. * i915_gem_clear_fence_reg - clear out fence register info
  2006. * @obj: object to clear
  2007. *
  2008. * Zeroes out the fence register itself and clears out the associated
  2009. * data structures in dev_priv and obj_priv.
  2010. */
  2011. static void
  2012. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2013. {
  2014. struct drm_device *dev = obj->dev;
  2015. drm_i915_private_t *dev_priv = dev->dev_private;
  2016. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2017. struct drm_i915_fence_reg *reg =
  2018. &dev_priv->fence_regs[obj_priv->fence_reg];
  2019. uint32_t fence_reg;
  2020. switch (INTEL_INFO(dev)->gen) {
  2021. case 6:
  2022. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2023. (obj_priv->fence_reg * 8), 0);
  2024. break;
  2025. case 5:
  2026. case 4:
  2027. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2028. break;
  2029. case 3:
  2030. if (obj_priv->fence_reg >= 8)
  2031. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2032. else
  2033. case 2:
  2034. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2035. I915_WRITE(fence_reg, 0);
  2036. break;
  2037. }
  2038. reg->obj = NULL;
  2039. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2040. list_del_init(&reg->lru_list);
  2041. }
  2042. /**
  2043. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2044. * to the buffer to finish, and then resets the fence register.
  2045. * @obj: tiled object holding a fence register.
  2046. *
  2047. * Zeroes out the fence register itself and clears out the associated
  2048. * data structures in dev_priv and obj_priv.
  2049. */
  2050. int
  2051. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2052. {
  2053. struct drm_device *dev = obj->dev;
  2054. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2055. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2056. return 0;
  2057. /* If we've changed tiling, GTT-mappings of the object
  2058. * need to re-fault to ensure that the correct fence register
  2059. * setup is in place.
  2060. */
  2061. i915_gem_release_mmap(obj);
  2062. /* On the i915, GPU access to tiled buffers is via a fence,
  2063. * therefore we must wait for any outstanding access to complete
  2064. * before clearing the fence.
  2065. */
  2066. if (!IS_I965G(dev)) {
  2067. int ret;
  2068. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2069. if (ret != 0)
  2070. return ret;
  2071. ret = i915_gem_object_wait_rendering(obj);
  2072. if (ret != 0)
  2073. return ret;
  2074. }
  2075. i915_gem_object_flush_gtt_write_domain(obj);
  2076. i915_gem_clear_fence_reg (obj);
  2077. return 0;
  2078. }
  2079. /**
  2080. * Finds free space in the GTT aperture and binds the object there.
  2081. */
  2082. static int
  2083. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2084. {
  2085. struct drm_device *dev = obj->dev;
  2086. drm_i915_private_t *dev_priv = dev->dev_private;
  2087. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2088. struct drm_mm_node *free_space;
  2089. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2090. int ret;
  2091. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2092. DRM_ERROR("Attempting to bind a purgeable object\n");
  2093. return -EINVAL;
  2094. }
  2095. if (alignment == 0)
  2096. alignment = i915_gem_get_gtt_alignment(obj);
  2097. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2098. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2099. return -EINVAL;
  2100. }
  2101. /* If the object is bigger than the entire aperture, reject it early
  2102. * before evicting everything in a vain attempt to find space.
  2103. */
  2104. if (obj->size > dev->gtt_total) {
  2105. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2106. return -E2BIG;
  2107. }
  2108. search_free:
  2109. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2110. obj->size, alignment, 0);
  2111. if (free_space != NULL) {
  2112. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2113. alignment);
  2114. if (obj_priv->gtt_space != NULL)
  2115. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2116. }
  2117. if (obj_priv->gtt_space == NULL) {
  2118. /* If the gtt is empty and we're still having trouble
  2119. * fitting our object in, we're out of memory.
  2120. */
  2121. #if WATCH_LRU
  2122. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2123. #endif
  2124. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2125. if (ret)
  2126. return ret;
  2127. goto search_free;
  2128. }
  2129. #if WATCH_BUF
  2130. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2131. obj->size, obj_priv->gtt_offset);
  2132. #endif
  2133. ret = i915_gem_object_get_pages(obj, gfpmask);
  2134. if (ret) {
  2135. drm_mm_put_block(obj_priv->gtt_space);
  2136. obj_priv->gtt_space = NULL;
  2137. if (ret == -ENOMEM) {
  2138. /* first try to clear up some space from the GTT */
  2139. ret = i915_gem_evict_something(dev, obj->size,
  2140. alignment);
  2141. if (ret) {
  2142. /* now try to shrink everyone else */
  2143. if (gfpmask) {
  2144. gfpmask = 0;
  2145. goto search_free;
  2146. }
  2147. return ret;
  2148. }
  2149. goto search_free;
  2150. }
  2151. return ret;
  2152. }
  2153. /* Create an AGP memory structure pointing at our pages, and bind it
  2154. * into the GTT.
  2155. */
  2156. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2157. obj_priv->pages,
  2158. obj->size >> PAGE_SHIFT,
  2159. obj_priv->gtt_offset,
  2160. obj_priv->agp_type);
  2161. if (obj_priv->agp_mem == NULL) {
  2162. i915_gem_object_put_pages(obj);
  2163. drm_mm_put_block(obj_priv->gtt_space);
  2164. obj_priv->gtt_space = NULL;
  2165. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2166. if (ret)
  2167. return ret;
  2168. goto search_free;
  2169. }
  2170. atomic_inc(&dev->gtt_count);
  2171. atomic_add(obj->size, &dev->gtt_memory);
  2172. /* keep track of bounds object by adding it to the inactive list */
  2173. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2174. /* Assert that the object is not currently in any GPU domain. As it
  2175. * wasn't in the GTT, there shouldn't be any way it could have been in
  2176. * a GPU cache
  2177. */
  2178. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2179. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2180. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2181. return 0;
  2182. }
  2183. void
  2184. i915_gem_clflush_object(struct drm_gem_object *obj)
  2185. {
  2186. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2187. /* If we don't have a page list set up, then we're not pinned
  2188. * to GPU, and we can ignore the cache flush because it'll happen
  2189. * again at bind time.
  2190. */
  2191. if (obj_priv->pages == NULL)
  2192. return;
  2193. trace_i915_gem_object_clflush(obj);
  2194. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2195. }
  2196. /** Flushes any GPU write domain for the object if it's dirty. */
  2197. static int
  2198. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2199. {
  2200. struct drm_device *dev = obj->dev;
  2201. uint32_t old_write_domain;
  2202. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2203. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2204. return 0;
  2205. /* Queue the GPU write cache flushing we need. */
  2206. old_write_domain = obj->write_domain;
  2207. i915_gem_flush(dev, 0, obj->write_domain);
  2208. if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
  2209. return -ENOMEM;
  2210. trace_i915_gem_object_change_domain(obj,
  2211. obj->read_domains,
  2212. old_write_domain);
  2213. return 0;
  2214. }
  2215. /** Flushes the GTT write domain for the object if it's dirty. */
  2216. static void
  2217. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2218. {
  2219. uint32_t old_write_domain;
  2220. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2221. return;
  2222. /* No actual flushing is required for the GTT write domain. Writes
  2223. * to it immediately go to main memory as far as we know, so there's
  2224. * no chipset flush. It also doesn't land in render cache.
  2225. */
  2226. old_write_domain = obj->write_domain;
  2227. obj->write_domain = 0;
  2228. trace_i915_gem_object_change_domain(obj,
  2229. obj->read_domains,
  2230. old_write_domain);
  2231. }
  2232. /** Flushes the CPU write domain for the object if it's dirty. */
  2233. static void
  2234. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2235. {
  2236. struct drm_device *dev = obj->dev;
  2237. uint32_t old_write_domain;
  2238. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2239. return;
  2240. i915_gem_clflush_object(obj);
  2241. drm_agp_chipset_flush(dev);
  2242. old_write_domain = obj->write_domain;
  2243. obj->write_domain = 0;
  2244. trace_i915_gem_object_change_domain(obj,
  2245. obj->read_domains,
  2246. old_write_domain);
  2247. }
  2248. int
  2249. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2250. {
  2251. int ret = 0;
  2252. switch (obj->write_domain) {
  2253. case I915_GEM_DOMAIN_GTT:
  2254. i915_gem_object_flush_gtt_write_domain(obj);
  2255. break;
  2256. case I915_GEM_DOMAIN_CPU:
  2257. i915_gem_object_flush_cpu_write_domain(obj);
  2258. break;
  2259. default:
  2260. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2261. break;
  2262. }
  2263. return ret;
  2264. }
  2265. /**
  2266. * Moves a single object to the GTT read, and possibly write domain.
  2267. *
  2268. * This function returns when the move is complete, including waiting on
  2269. * flushes to occur.
  2270. */
  2271. int
  2272. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2273. {
  2274. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2275. uint32_t old_write_domain, old_read_domains;
  2276. int ret;
  2277. /* Not valid to be called on unbound objects. */
  2278. if (obj_priv->gtt_space == NULL)
  2279. return -EINVAL;
  2280. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2281. if (ret != 0)
  2282. return ret;
  2283. /* Wait on any GPU rendering and flushing to occur. */
  2284. ret = i915_gem_object_wait_rendering(obj);
  2285. if (ret != 0)
  2286. return ret;
  2287. old_write_domain = obj->write_domain;
  2288. old_read_domains = obj->read_domains;
  2289. /* If we're writing through the GTT domain, then CPU and GPU caches
  2290. * will need to be invalidated at next use.
  2291. */
  2292. if (write)
  2293. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2294. i915_gem_object_flush_cpu_write_domain(obj);
  2295. /* It should now be out of any other write domains, and we can update
  2296. * the domain values for our changes.
  2297. */
  2298. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2299. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2300. if (write) {
  2301. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2302. obj_priv->dirty = 1;
  2303. }
  2304. trace_i915_gem_object_change_domain(obj,
  2305. old_read_domains,
  2306. old_write_domain);
  2307. return 0;
  2308. }
  2309. /*
  2310. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2311. * wait, as in modesetting process we're not supposed to be interrupted.
  2312. */
  2313. int
  2314. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2315. {
  2316. struct drm_device *dev = obj->dev;
  2317. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2318. uint32_t old_write_domain, old_read_domains;
  2319. int ret;
  2320. /* Not valid to be called on unbound objects. */
  2321. if (obj_priv->gtt_space == NULL)
  2322. return -EINVAL;
  2323. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2324. if (ret)
  2325. return ret;
  2326. /* Wait on any GPU rendering and flushing to occur. */
  2327. if (obj_priv->active) {
  2328. #if WATCH_BUF
  2329. DRM_INFO("%s: object %p wait for seqno %08x\n",
  2330. __func__, obj, obj_priv->last_rendering_seqno);
  2331. #endif
  2332. ret = i915_do_wait_request(dev,
  2333. obj_priv->last_rendering_seqno,
  2334. 0,
  2335. obj_priv->ring);
  2336. if (ret != 0)
  2337. return ret;
  2338. }
  2339. i915_gem_object_flush_cpu_write_domain(obj);
  2340. old_write_domain = obj->write_domain;
  2341. old_read_domains = obj->read_domains;
  2342. /* It should now be out of any other write domains, and we can update
  2343. * the domain values for our changes.
  2344. */
  2345. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2346. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2347. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2348. obj_priv->dirty = 1;
  2349. trace_i915_gem_object_change_domain(obj,
  2350. old_read_domains,
  2351. old_write_domain);
  2352. return 0;
  2353. }
  2354. /**
  2355. * Moves a single object to the CPU read, and possibly write domain.
  2356. *
  2357. * This function returns when the move is complete, including waiting on
  2358. * flushes to occur.
  2359. */
  2360. static int
  2361. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2362. {
  2363. uint32_t old_write_domain, old_read_domains;
  2364. int ret;
  2365. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2366. if (ret)
  2367. return ret;
  2368. /* Wait on any GPU rendering and flushing to occur. */
  2369. ret = i915_gem_object_wait_rendering(obj);
  2370. if (ret != 0)
  2371. return ret;
  2372. i915_gem_object_flush_gtt_write_domain(obj);
  2373. /* If we have a partially-valid cache of the object in the CPU,
  2374. * finish invalidating it and free the per-page flags.
  2375. */
  2376. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2377. old_write_domain = obj->write_domain;
  2378. old_read_domains = obj->read_domains;
  2379. /* Flush the CPU cache if it's still invalid. */
  2380. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2381. i915_gem_clflush_object(obj);
  2382. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2383. }
  2384. /* It should now be out of any other write domains, and we can update
  2385. * the domain values for our changes.
  2386. */
  2387. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2388. /* If we're writing through the CPU, then the GPU read domains will
  2389. * need to be invalidated at next use.
  2390. */
  2391. if (write) {
  2392. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2393. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2394. }
  2395. trace_i915_gem_object_change_domain(obj,
  2396. old_read_domains,
  2397. old_write_domain);
  2398. return 0;
  2399. }
  2400. /*
  2401. * Set the next domain for the specified object. This
  2402. * may not actually perform the necessary flushing/invaliding though,
  2403. * as that may want to be batched with other set_domain operations
  2404. *
  2405. * This is (we hope) the only really tricky part of gem. The goal
  2406. * is fairly simple -- track which caches hold bits of the object
  2407. * and make sure they remain coherent. A few concrete examples may
  2408. * help to explain how it works. For shorthand, we use the notation
  2409. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2410. * a pair of read and write domain masks.
  2411. *
  2412. * Case 1: the batch buffer
  2413. *
  2414. * 1. Allocated
  2415. * 2. Written by CPU
  2416. * 3. Mapped to GTT
  2417. * 4. Read by GPU
  2418. * 5. Unmapped from GTT
  2419. * 6. Freed
  2420. *
  2421. * Let's take these a step at a time
  2422. *
  2423. * 1. Allocated
  2424. * Pages allocated from the kernel may still have
  2425. * cache contents, so we set them to (CPU, CPU) always.
  2426. * 2. Written by CPU (using pwrite)
  2427. * The pwrite function calls set_domain (CPU, CPU) and
  2428. * this function does nothing (as nothing changes)
  2429. * 3. Mapped by GTT
  2430. * This function asserts that the object is not
  2431. * currently in any GPU-based read or write domains
  2432. * 4. Read by GPU
  2433. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2434. * As write_domain is zero, this function adds in the
  2435. * current read domains (CPU+COMMAND, 0).
  2436. * flush_domains is set to CPU.
  2437. * invalidate_domains is set to COMMAND
  2438. * clflush is run to get data out of the CPU caches
  2439. * then i915_dev_set_domain calls i915_gem_flush to
  2440. * emit an MI_FLUSH and drm_agp_chipset_flush
  2441. * 5. Unmapped from GTT
  2442. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2443. * flush_domains and invalidate_domains end up both zero
  2444. * so no flushing/invalidating happens
  2445. * 6. Freed
  2446. * yay, done
  2447. *
  2448. * Case 2: The shared render buffer
  2449. *
  2450. * 1. Allocated
  2451. * 2. Mapped to GTT
  2452. * 3. Read/written by GPU
  2453. * 4. set_domain to (CPU,CPU)
  2454. * 5. Read/written by CPU
  2455. * 6. Read/written by GPU
  2456. *
  2457. * 1. Allocated
  2458. * Same as last example, (CPU, CPU)
  2459. * 2. Mapped to GTT
  2460. * Nothing changes (assertions find that it is not in the GPU)
  2461. * 3. Read/written by GPU
  2462. * execbuffer calls set_domain (RENDER, RENDER)
  2463. * flush_domains gets CPU
  2464. * invalidate_domains gets GPU
  2465. * clflush (obj)
  2466. * MI_FLUSH and drm_agp_chipset_flush
  2467. * 4. set_domain (CPU, CPU)
  2468. * flush_domains gets GPU
  2469. * invalidate_domains gets CPU
  2470. * wait_rendering (obj) to make sure all drawing is complete.
  2471. * This will include an MI_FLUSH to get the data from GPU
  2472. * to memory
  2473. * clflush (obj) to invalidate the CPU cache
  2474. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2475. * 5. Read/written by CPU
  2476. * cache lines are loaded and dirtied
  2477. * 6. Read written by GPU
  2478. * Same as last GPU access
  2479. *
  2480. * Case 3: The constant buffer
  2481. *
  2482. * 1. Allocated
  2483. * 2. Written by CPU
  2484. * 3. Read by GPU
  2485. * 4. Updated (written) by CPU again
  2486. * 5. Read by GPU
  2487. *
  2488. * 1. Allocated
  2489. * (CPU, CPU)
  2490. * 2. Written by CPU
  2491. * (CPU, CPU)
  2492. * 3. Read by GPU
  2493. * (CPU+RENDER, 0)
  2494. * flush_domains = CPU
  2495. * invalidate_domains = RENDER
  2496. * clflush (obj)
  2497. * MI_FLUSH
  2498. * drm_agp_chipset_flush
  2499. * 4. Updated (written) by CPU again
  2500. * (CPU, CPU)
  2501. * flush_domains = 0 (no previous write domain)
  2502. * invalidate_domains = 0 (no new read domains)
  2503. * 5. Read by GPU
  2504. * (CPU+RENDER, 0)
  2505. * flush_domains = CPU
  2506. * invalidate_domains = RENDER
  2507. * clflush (obj)
  2508. * MI_FLUSH
  2509. * drm_agp_chipset_flush
  2510. */
  2511. static void
  2512. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2513. {
  2514. struct drm_device *dev = obj->dev;
  2515. drm_i915_private_t *dev_priv = dev->dev_private;
  2516. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2517. uint32_t invalidate_domains = 0;
  2518. uint32_t flush_domains = 0;
  2519. uint32_t old_read_domains;
  2520. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2521. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2522. intel_mark_busy(dev, obj);
  2523. #if WATCH_BUF
  2524. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2525. __func__, obj,
  2526. obj->read_domains, obj->pending_read_domains,
  2527. obj->write_domain, obj->pending_write_domain);
  2528. #endif
  2529. /*
  2530. * If the object isn't moving to a new write domain,
  2531. * let the object stay in multiple read domains
  2532. */
  2533. if (obj->pending_write_domain == 0)
  2534. obj->pending_read_domains |= obj->read_domains;
  2535. else
  2536. obj_priv->dirty = 1;
  2537. /*
  2538. * Flush the current write domain if
  2539. * the new read domains don't match. Invalidate
  2540. * any read domains which differ from the old
  2541. * write domain
  2542. */
  2543. if (obj->write_domain &&
  2544. obj->write_domain != obj->pending_read_domains) {
  2545. flush_domains |= obj->write_domain;
  2546. invalidate_domains |=
  2547. obj->pending_read_domains & ~obj->write_domain;
  2548. }
  2549. /*
  2550. * Invalidate any read caches which may have
  2551. * stale data. That is, any new read domains.
  2552. */
  2553. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2554. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2555. #if WATCH_BUF
  2556. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2557. __func__, flush_domains, invalidate_domains);
  2558. #endif
  2559. i915_gem_clflush_object(obj);
  2560. }
  2561. old_read_domains = obj->read_domains;
  2562. /* The actual obj->write_domain will be updated with
  2563. * pending_write_domain after we emit the accumulated flush for all
  2564. * of our domain changes in execbuffers (which clears objects'
  2565. * write_domains). So if we have a current write domain that we
  2566. * aren't changing, set pending_write_domain to that.
  2567. */
  2568. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2569. obj->pending_write_domain = obj->write_domain;
  2570. obj->read_domains = obj->pending_read_domains;
  2571. if (flush_domains & I915_GEM_GPU_DOMAINS) {
  2572. if (obj_priv->ring == &dev_priv->render_ring)
  2573. dev_priv->flush_rings |= FLUSH_RENDER_RING;
  2574. else if (obj_priv->ring == &dev_priv->bsd_ring)
  2575. dev_priv->flush_rings |= FLUSH_BSD_RING;
  2576. }
  2577. dev->invalidate_domains |= invalidate_domains;
  2578. dev->flush_domains |= flush_domains;
  2579. #if WATCH_BUF
  2580. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2581. __func__,
  2582. obj->read_domains, obj->write_domain,
  2583. dev->invalidate_domains, dev->flush_domains);
  2584. #endif
  2585. trace_i915_gem_object_change_domain(obj,
  2586. old_read_domains,
  2587. obj->write_domain);
  2588. }
  2589. /**
  2590. * Moves the object from a partially CPU read to a full one.
  2591. *
  2592. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2593. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2594. */
  2595. static void
  2596. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2597. {
  2598. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2599. if (!obj_priv->page_cpu_valid)
  2600. return;
  2601. /* If we're partially in the CPU read domain, finish moving it in.
  2602. */
  2603. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2604. int i;
  2605. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2606. if (obj_priv->page_cpu_valid[i])
  2607. continue;
  2608. drm_clflush_pages(obj_priv->pages + i, 1);
  2609. }
  2610. }
  2611. /* Free the page_cpu_valid mappings which are now stale, whether
  2612. * or not we've got I915_GEM_DOMAIN_CPU.
  2613. */
  2614. kfree(obj_priv->page_cpu_valid);
  2615. obj_priv->page_cpu_valid = NULL;
  2616. }
  2617. /**
  2618. * Set the CPU read domain on a range of the object.
  2619. *
  2620. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2621. * not entirely valid. The page_cpu_valid member of the object flags which
  2622. * pages have been flushed, and will be respected by
  2623. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2624. * of the whole object.
  2625. *
  2626. * This function returns when the move is complete, including waiting on
  2627. * flushes to occur.
  2628. */
  2629. static int
  2630. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2631. uint64_t offset, uint64_t size)
  2632. {
  2633. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2634. uint32_t old_read_domains;
  2635. int i, ret;
  2636. if (offset == 0 && size == obj->size)
  2637. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2638. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2639. if (ret)
  2640. return ret;
  2641. /* Wait on any GPU rendering and flushing to occur. */
  2642. ret = i915_gem_object_wait_rendering(obj);
  2643. if (ret != 0)
  2644. return ret;
  2645. i915_gem_object_flush_gtt_write_domain(obj);
  2646. /* If we're already fully in the CPU read domain, we're done. */
  2647. if (obj_priv->page_cpu_valid == NULL &&
  2648. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2649. return 0;
  2650. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2651. * newly adding I915_GEM_DOMAIN_CPU
  2652. */
  2653. if (obj_priv->page_cpu_valid == NULL) {
  2654. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2655. GFP_KERNEL);
  2656. if (obj_priv->page_cpu_valid == NULL)
  2657. return -ENOMEM;
  2658. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2659. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2660. /* Flush the cache on any pages that are still invalid from the CPU's
  2661. * perspective.
  2662. */
  2663. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2664. i++) {
  2665. if (obj_priv->page_cpu_valid[i])
  2666. continue;
  2667. drm_clflush_pages(obj_priv->pages + i, 1);
  2668. obj_priv->page_cpu_valid[i] = 1;
  2669. }
  2670. /* It should now be out of any other write domains, and we can update
  2671. * the domain values for our changes.
  2672. */
  2673. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2674. old_read_domains = obj->read_domains;
  2675. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2676. trace_i915_gem_object_change_domain(obj,
  2677. old_read_domains,
  2678. obj->write_domain);
  2679. return 0;
  2680. }
  2681. /**
  2682. * Pin an object to the GTT and evaluate the relocations landing in it.
  2683. */
  2684. static int
  2685. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2686. struct drm_file *file_priv,
  2687. struct drm_i915_gem_exec_object2 *entry,
  2688. struct drm_i915_gem_relocation_entry *relocs)
  2689. {
  2690. struct drm_device *dev = obj->dev;
  2691. drm_i915_private_t *dev_priv = dev->dev_private;
  2692. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2693. int i, ret;
  2694. void __iomem *reloc_page;
  2695. bool need_fence;
  2696. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2697. obj_priv->tiling_mode != I915_TILING_NONE;
  2698. /* Check fence reg constraints and rebind if necessary */
  2699. if (need_fence &&
  2700. !i915_gem_object_fence_offset_ok(obj,
  2701. obj_priv->tiling_mode)) {
  2702. ret = i915_gem_object_unbind(obj);
  2703. if (ret)
  2704. return ret;
  2705. }
  2706. /* Choose the GTT offset for our buffer and put it there. */
  2707. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2708. if (ret)
  2709. return ret;
  2710. /*
  2711. * Pre-965 chips need a fence register set up in order to
  2712. * properly handle blits to/from tiled surfaces.
  2713. */
  2714. if (need_fence) {
  2715. ret = i915_gem_object_get_fence_reg(obj);
  2716. if (ret != 0) {
  2717. i915_gem_object_unpin(obj);
  2718. return ret;
  2719. }
  2720. }
  2721. entry->offset = obj_priv->gtt_offset;
  2722. /* Apply the relocations, using the GTT aperture to avoid cache
  2723. * flushing requirements.
  2724. */
  2725. for (i = 0; i < entry->relocation_count; i++) {
  2726. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2727. struct drm_gem_object *target_obj;
  2728. struct drm_i915_gem_object *target_obj_priv;
  2729. uint32_t reloc_val, reloc_offset;
  2730. uint32_t __iomem *reloc_entry;
  2731. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2732. reloc->target_handle);
  2733. if (target_obj == NULL) {
  2734. i915_gem_object_unpin(obj);
  2735. return -ENOENT;
  2736. }
  2737. target_obj_priv = to_intel_bo(target_obj);
  2738. #if WATCH_RELOC
  2739. DRM_INFO("%s: obj %p offset %08x target %d "
  2740. "read %08x write %08x gtt %08x "
  2741. "presumed %08x delta %08x\n",
  2742. __func__,
  2743. obj,
  2744. (int) reloc->offset,
  2745. (int) reloc->target_handle,
  2746. (int) reloc->read_domains,
  2747. (int) reloc->write_domain,
  2748. (int) target_obj_priv->gtt_offset,
  2749. (int) reloc->presumed_offset,
  2750. reloc->delta);
  2751. #endif
  2752. /* The target buffer should have appeared before us in the
  2753. * exec_object list, so it should have a GTT space bound by now.
  2754. */
  2755. if (target_obj_priv->gtt_space == NULL) {
  2756. DRM_ERROR("No GTT space found for object %d\n",
  2757. reloc->target_handle);
  2758. drm_gem_object_unreference(target_obj);
  2759. i915_gem_object_unpin(obj);
  2760. return -EINVAL;
  2761. }
  2762. /* Validate that the target is in a valid r/w GPU domain */
  2763. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2764. DRM_ERROR("reloc with multiple write domains: "
  2765. "obj %p target %d offset %d "
  2766. "read %08x write %08x",
  2767. obj, reloc->target_handle,
  2768. (int) reloc->offset,
  2769. reloc->read_domains,
  2770. reloc->write_domain);
  2771. return -EINVAL;
  2772. }
  2773. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2774. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2775. DRM_ERROR("reloc with read/write CPU domains: "
  2776. "obj %p target %d offset %d "
  2777. "read %08x write %08x",
  2778. obj, reloc->target_handle,
  2779. (int) reloc->offset,
  2780. reloc->read_domains,
  2781. reloc->write_domain);
  2782. drm_gem_object_unreference(target_obj);
  2783. i915_gem_object_unpin(obj);
  2784. return -EINVAL;
  2785. }
  2786. if (reloc->write_domain && target_obj->pending_write_domain &&
  2787. reloc->write_domain != target_obj->pending_write_domain) {
  2788. DRM_ERROR("Write domain conflict: "
  2789. "obj %p target %d offset %d "
  2790. "new %08x old %08x\n",
  2791. obj, reloc->target_handle,
  2792. (int) reloc->offset,
  2793. reloc->write_domain,
  2794. target_obj->pending_write_domain);
  2795. drm_gem_object_unreference(target_obj);
  2796. i915_gem_object_unpin(obj);
  2797. return -EINVAL;
  2798. }
  2799. target_obj->pending_read_domains |= reloc->read_domains;
  2800. target_obj->pending_write_domain |= reloc->write_domain;
  2801. /* If the relocation already has the right value in it, no
  2802. * more work needs to be done.
  2803. */
  2804. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2805. drm_gem_object_unreference(target_obj);
  2806. continue;
  2807. }
  2808. /* Check that the relocation address is valid... */
  2809. if (reloc->offset > obj->size - 4) {
  2810. DRM_ERROR("Relocation beyond object bounds: "
  2811. "obj %p target %d offset %d size %d.\n",
  2812. obj, reloc->target_handle,
  2813. (int) reloc->offset, (int) obj->size);
  2814. drm_gem_object_unreference(target_obj);
  2815. i915_gem_object_unpin(obj);
  2816. return -EINVAL;
  2817. }
  2818. if (reloc->offset & 3) {
  2819. DRM_ERROR("Relocation not 4-byte aligned: "
  2820. "obj %p target %d offset %d.\n",
  2821. obj, reloc->target_handle,
  2822. (int) reloc->offset);
  2823. drm_gem_object_unreference(target_obj);
  2824. i915_gem_object_unpin(obj);
  2825. return -EINVAL;
  2826. }
  2827. /* and points to somewhere within the target object. */
  2828. if (reloc->delta >= target_obj->size) {
  2829. DRM_ERROR("Relocation beyond target object bounds: "
  2830. "obj %p target %d delta %d size %d.\n",
  2831. obj, reloc->target_handle,
  2832. (int) reloc->delta, (int) target_obj->size);
  2833. drm_gem_object_unreference(target_obj);
  2834. i915_gem_object_unpin(obj);
  2835. return -EINVAL;
  2836. }
  2837. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2838. if (ret != 0) {
  2839. drm_gem_object_unreference(target_obj);
  2840. i915_gem_object_unpin(obj);
  2841. return -EINVAL;
  2842. }
  2843. /* Map the page containing the relocation we're going to
  2844. * perform.
  2845. */
  2846. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2847. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2848. (reloc_offset &
  2849. ~(PAGE_SIZE - 1)),
  2850. KM_USER0);
  2851. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2852. (reloc_offset & (PAGE_SIZE - 1)));
  2853. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2854. #if WATCH_BUF
  2855. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2856. obj, (unsigned int) reloc->offset,
  2857. readl(reloc_entry), reloc_val);
  2858. #endif
  2859. writel(reloc_val, reloc_entry);
  2860. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2861. /* The updated presumed offset for this entry will be
  2862. * copied back out to the user.
  2863. */
  2864. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2865. drm_gem_object_unreference(target_obj);
  2866. }
  2867. #if WATCH_BUF
  2868. if (0)
  2869. i915_gem_dump_object(obj, 128, __func__, ~0);
  2870. #endif
  2871. return 0;
  2872. }
  2873. /* Throttle our rendering by waiting until the ring has completed our requests
  2874. * emitted over 20 msec ago.
  2875. *
  2876. * Note that if we were to use the current jiffies each time around the loop,
  2877. * we wouldn't escape the function with any frames outstanding if the time to
  2878. * render a frame was over 20ms.
  2879. *
  2880. * This should get us reasonable parallelism between CPU and GPU but also
  2881. * relatively low latency when blocking on a particular request to finish.
  2882. */
  2883. static int
  2884. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2885. {
  2886. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2887. int ret = 0;
  2888. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2889. mutex_lock(&dev->struct_mutex);
  2890. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2891. struct drm_i915_gem_request *request;
  2892. request = list_first_entry(&i915_file_priv->mm.request_list,
  2893. struct drm_i915_gem_request,
  2894. client_list);
  2895. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2896. break;
  2897. ret = i915_wait_request(dev, request->seqno, request->ring);
  2898. if (ret != 0)
  2899. break;
  2900. }
  2901. mutex_unlock(&dev->struct_mutex);
  2902. return ret;
  2903. }
  2904. static int
  2905. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2906. uint32_t buffer_count,
  2907. struct drm_i915_gem_relocation_entry **relocs)
  2908. {
  2909. uint32_t reloc_count = 0, reloc_index = 0, i;
  2910. int ret;
  2911. *relocs = NULL;
  2912. for (i = 0; i < buffer_count; i++) {
  2913. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2914. return -EINVAL;
  2915. reloc_count += exec_list[i].relocation_count;
  2916. }
  2917. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2918. if (*relocs == NULL) {
  2919. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2920. return -ENOMEM;
  2921. }
  2922. for (i = 0; i < buffer_count; i++) {
  2923. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2924. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2925. ret = copy_from_user(&(*relocs)[reloc_index],
  2926. user_relocs,
  2927. exec_list[i].relocation_count *
  2928. sizeof(**relocs));
  2929. if (ret != 0) {
  2930. drm_free_large(*relocs);
  2931. *relocs = NULL;
  2932. return -EFAULT;
  2933. }
  2934. reloc_index += exec_list[i].relocation_count;
  2935. }
  2936. return 0;
  2937. }
  2938. static int
  2939. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2940. uint32_t buffer_count,
  2941. struct drm_i915_gem_relocation_entry *relocs)
  2942. {
  2943. uint32_t reloc_count = 0, i;
  2944. int ret = 0;
  2945. if (relocs == NULL)
  2946. return 0;
  2947. for (i = 0; i < buffer_count; i++) {
  2948. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2949. int unwritten;
  2950. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2951. unwritten = copy_to_user(user_relocs,
  2952. &relocs[reloc_count],
  2953. exec_list[i].relocation_count *
  2954. sizeof(*relocs));
  2955. if (unwritten) {
  2956. ret = -EFAULT;
  2957. goto err;
  2958. }
  2959. reloc_count += exec_list[i].relocation_count;
  2960. }
  2961. err:
  2962. drm_free_large(relocs);
  2963. return ret;
  2964. }
  2965. static int
  2966. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2967. uint64_t exec_offset)
  2968. {
  2969. uint32_t exec_start, exec_len;
  2970. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2971. exec_len = (uint32_t) exec->batch_len;
  2972. if ((exec_start | exec_len) & 0x7)
  2973. return -EINVAL;
  2974. if (!exec_start)
  2975. return -EINVAL;
  2976. return 0;
  2977. }
  2978. static int
  2979. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2980. struct drm_gem_object **object_list,
  2981. int count)
  2982. {
  2983. drm_i915_private_t *dev_priv = dev->dev_private;
  2984. struct drm_i915_gem_object *obj_priv;
  2985. DEFINE_WAIT(wait);
  2986. int i, ret = 0;
  2987. for (;;) {
  2988. prepare_to_wait(&dev_priv->pending_flip_queue,
  2989. &wait, TASK_INTERRUPTIBLE);
  2990. for (i = 0; i < count; i++) {
  2991. obj_priv = to_intel_bo(object_list[i]);
  2992. if (atomic_read(&obj_priv->pending_flip) > 0)
  2993. break;
  2994. }
  2995. if (i == count)
  2996. break;
  2997. if (!signal_pending(current)) {
  2998. mutex_unlock(&dev->struct_mutex);
  2999. schedule();
  3000. mutex_lock(&dev->struct_mutex);
  3001. continue;
  3002. }
  3003. ret = -ERESTARTSYS;
  3004. break;
  3005. }
  3006. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3007. return ret;
  3008. }
  3009. int
  3010. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3011. struct drm_file *file_priv,
  3012. struct drm_i915_gem_execbuffer2 *args,
  3013. struct drm_i915_gem_exec_object2 *exec_list)
  3014. {
  3015. drm_i915_private_t *dev_priv = dev->dev_private;
  3016. struct drm_gem_object **object_list = NULL;
  3017. struct drm_gem_object *batch_obj;
  3018. struct drm_i915_gem_object *obj_priv;
  3019. struct drm_clip_rect *cliprects = NULL;
  3020. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3021. int ret = 0, ret2, i, pinned = 0;
  3022. uint64_t exec_offset;
  3023. uint32_t seqno, flush_domains, reloc_index;
  3024. int pin_tries, flips;
  3025. struct intel_ring_buffer *ring = NULL;
  3026. #if WATCH_EXEC
  3027. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3028. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3029. #endif
  3030. if (args->flags & I915_EXEC_BSD) {
  3031. if (!HAS_BSD(dev)) {
  3032. DRM_ERROR("execbuf with wrong flag\n");
  3033. return -EINVAL;
  3034. }
  3035. ring = &dev_priv->bsd_ring;
  3036. } else {
  3037. ring = &dev_priv->render_ring;
  3038. }
  3039. if (args->buffer_count < 1) {
  3040. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3041. return -EINVAL;
  3042. }
  3043. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3044. if (object_list == NULL) {
  3045. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3046. args->buffer_count);
  3047. ret = -ENOMEM;
  3048. goto pre_mutex_err;
  3049. }
  3050. if (args->num_cliprects != 0) {
  3051. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3052. GFP_KERNEL);
  3053. if (cliprects == NULL) {
  3054. ret = -ENOMEM;
  3055. goto pre_mutex_err;
  3056. }
  3057. ret = copy_from_user(cliprects,
  3058. (struct drm_clip_rect __user *)
  3059. (uintptr_t) args->cliprects_ptr,
  3060. sizeof(*cliprects) * args->num_cliprects);
  3061. if (ret != 0) {
  3062. DRM_ERROR("copy %d cliprects failed: %d\n",
  3063. args->num_cliprects, ret);
  3064. ret = -EFAULT;
  3065. goto pre_mutex_err;
  3066. }
  3067. }
  3068. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3069. &relocs);
  3070. if (ret != 0)
  3071. goto pre_mutex_err;
  3072. mutex_lock(&dev->struct_mutex);
  3073. i915_verify_inactive(dev, __FILE__, __LINE__);
  3074. if (atomic_read(&dev_priv->mm.wedged)) {
  3075. mutex_unlock(&dev->struct_mutex);
  3076. ret = -EIO;
  3077. goto pre_mutex_err;
  3078. }
  3079. if (dev_priv->mm.suspended) {
  3080. mutex_unlock(&dev->struct_mutex);
  3081. ret = -EBUSY;
  3082. goto pre_mutex_err;
  3083. }
  3084. /* Look up object handles */
  3085. flips = 0;
  3086. for (i = 0; i < args->buffer_count; i++) {
  3087. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3088. exec_list[i].handle);
  3089. if (object_list[i] == NULL) {
  3090. DRM_ERROR("Invalid object handle %d at index %d\n",
  3091. exec_list[i].handle, i);
  3092. /* prevent error path from reading uninitialized data */
  3093. args->buffer_count = i + 1;
  3094. ret = -ENOENT;
  3095. goto err;
  3096. }
  3097. obj_priv = to_intel_bo(object_list[i]);
  3098. if (obj_priv->in_execbuffer) {
  3099. DRM_ERROR("Object %p appears more than once in object list\n",
  3100. object_list[i]);
  3101. /* prevent error path from reading uninitialized data */
  3102. args->buffer_count = i + 1;
  3103. ret = -EINVAL;
  3104. goto err;
  3105. }
  3106. obj_priv->in_execbuffer = true;
  3107. flips += atomic_read(&obj_priv->pending_flip);
  3108. }
  3109. if (flips > 0) {
  3110. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3111. args->buffer_count);
  3112. if (ret)
  3113. goto err;
  3114. }
  3115. /* Pin and relocate */
  3116. for (pin_tries = 0; ; pin_tries++) {
  3117. ret = 0;
  3118. reloc_index = 0;
  3119. for (i = 0; i < args->buffer_count; i++) {
  3120. object_list[i]->pending_read_domains = 0;
  3121. object_list[i]->pending_write_domain = 0;
  3122. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3123. file_priv,
  3124. &exec_list[i],
  3125. &relocs[reloc_index]);
  3126. if (ret)
  3127. break;
  3128. pinned = i + 1;
  3129. reloc_index += exec_list[i].relocation_count;
  3130. }
  3131. /* success */
  3132. if (ret == 0)
  3133. break;
  3134. /* error other than GTT full, or we've already tried again */
  3135. if (ret != -ENOSPC || pin_tries >= 1) {
  3136. if (ret != -ERESTARTSYS) {
  3137. unsigned long long total_size = 0;
  3138. int num_fences = 0;
  3139. for (i = 0; i < args->buffer_count; i++) {
  3140. obj_priv = to_intel_bo(object_list[i]);
  3141. total_size += object_list[i]->size;
  3142. num_fences +=
  3143. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3144. obj_priv->tiling_mode != I915_TILING_NONE;
  3145. }
  3146. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3147. pinned+1, args->buffer_count,
  3148. total_size, num_fences,
  3149. ret);
  3150. DRM_ERROR("%d objects [%d pinned], "
  3151. "%d object bytes [%d pinned], "
  3152. "%d/%d gtt bytes\n",
  3153. atomic_read(&dev->object_count),
  3154. atomic_read(&dev->pin_count),
  3155. atomic_read(&dev->object_memory),
  3156. atomic_read(&dev->pin_memory),
  3157. atomic_read(&dev->gtt_memory),
  3158. dev->gtt_total);
  3159. }
  3160. goto err;
  3161. }
  3162. /* unpin all of our buffers */
  3163. for (i = 0; i < pinned; i++)
  3164. i915_gem_object_unpin(object_list[i]);
  3165. pinned = 0;
  3166. /* evict everyone we can from the aperture */
  3167. ret = i915_gem_evict_everything(dev);
  3168. if (ret && ret != -ENOSPC)
  3169. goto err;
  3170. }
  3171. /* Set the pending read domains for the batch buffer to COMMAND */
  3172. batch_obj = object_list[args->buffer_count-1];
  3173. if (batch_obj->pending_write_domain) {
  3174. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3175. ret = -EINVAL;
  3176. goto err;
  3177. }
  3178. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3179. /* Sanity check the batch buffer, prior to moving objects */
  3180. exec_offset = exec_list[args->buffer_count - 1].offset;
  3181. ret = i915_gem_check_execbuffer (args, exec_offset);
  3182. if (ret != 0) {
  3183. DRM_ERROR("execbuf with invalid offset/length\n");
  3184. goto err;
  3185. }
  3186. i915_verify_inactive(dev, __FILE__, __LINE__);
  3187. /* Zero the global flush/invalidate flags. These
  3188. * will be modified as new domains are computed
  3189. * for each object
  3190. */
  3191. dev->invalidate_domains = 0;
  3192. dev->flush_domains = 0;
  3193. dev_priv->flush_rings = 0;
  3194. for (i = 0; i < args->buffer_count; i++) {
  3195. struct drm_gem_object *obj = object_list[i];
  3196. /* Compute new gpu domains and update invalidate/flush */
  3197. i915_gem_object_set_to_gpu_domain(obj);
  3198. }
  3199. i915_verify_inactive(dev, __FILE__, __LINE__);
  3200. if (dev->invalidate_domains | dev->flush_domains) {
  3201. #if WATCH_EXEC
  3202. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3203. __func__,
  3204. dev->invalidate_domains,
  3205. dev->flush_domains);
  3206. #endif
  3207. i915_gem_flush(dev,
  3208. dev->invalidate_domains,
  3209. dev->flush_domains);
  3210. if (dev_priv->flush_rings & FLUSH_RENDER_RING)
  3211. (void)i915_add_request(dev, file_priv,
  3212. dev->flush_domains,
  3213. &dev_priv->render_ring);
  3214. if (dev_priv->flush_rings & FLUSH_BSD_RING)
  3215. (void)i915_add_request(dev, file_priv,
  3216. dev->flush_domains,
  3217. &dev_priv->bsd_ring);
  3218. }
  3219. for (i = 0; i < args->buffer_count; i++) {
  3220. struct drm_gem_object *obj = object_list[i];
  3221. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3222. uint32_t old_write_domain = obj->write_domain;
  3223. obj->write_domain = obj->pending_write_domain;
  3224. if (obj->write_domain)
  3225. list_move_tail(&obj_priv->gpu_write_list,
  3226. &dev_priv->mm.gpu_write_list);
  3227. else
  3228. list_del_init(&obj_priv->gpu_write_list);
  3229. trace_i915_gem_object_change_domain(obj,
  3230. obj->read_domains,
  3231. old_write_domain);
  3232. }
  3233. i915_verify_inactive(dev, __FILE__, __LINE__);
  3234. #if WATCH_COHERENCY
  3235. for (i = 0; i < args->buffer_count; i++) {
  3236. i915_gem_object_check_coherency(object_list[i],
  3237. exec_list[i].handle);
  3238. }
  3239. #endif
  3240. #if WATCH_EXEC
  3241. i915_gem_dump_object(batch_obj,
  3242. args->batch_len,
  3243. __func__,
  3244. ~0);
  3245. #endif
  3246. /* Exec the batchbuffer */
  3247. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3248. cliprects, exec_offset);
  3249. if (ret) {
  3250. DRM_ERROR("dispatch failed %d\n", ret);
  3251. goto err;
  3252. }
  3253. /*
  3254. * Ensure that the commands in the batch buffer are
  3255. * finished before the interrupt fires
  3256. */
  3257. flush_domains = i915_retire_commands(dev, ring);
  3258. i915_verify_inactive(dev, __FILE__, __LINE__);
  3259. /*
  3260. * Get a seqno representing the execution of the current buffer,
  3261. * which we can wait on. We would like to mitigate these interrupts,
  3262. * likely by only creating seqnos occasionally (so that we have
  3263. * *some* interrupts representing completion of buffers that we can
  3264. * wait on when trying to clear up gtt space).
  3265. */
  3266. seqno = i915_add_request(dev, file_priv, flush_domains, ring);
  3267. BUG_ON(seqno == 0);
  3268. for (i = 0; i < args->buffer_count; i++) {
  3269. struct drm_gem_object *obj = object_list[i];
  3270. obj_priv = to_intel_bo(obj);
  3271. i915_gem_object_move_to_active(obj, seqno, ring);
  3272. #if WATCH_LRU
  3273. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3274. #endif
  3275. }
  3276. #if WATCH_LRU
  3277. i915_dump_lru(dev, __func__);
  3278. #endif
  3279. i915_verify_inactive(dev, __FILE__, __LINE__);
  3280. err:
  3281. for (i = 0; i < pinned; i++)
  3282. i915_gem_object_unpin(object_list[i]);
  3283. for (i = 0; i < args->buffer_count; i++) {
  3284. if (object_list[i]) {
  3285. obj_priv = to_intel_bo(object_list[i]);
  3286. obj_priv->in_execbuffer = false;
  3287. }
  3288. drm_gem_object_unreference(object_list[i]);
  3289. }
  3290. mutex_unlock(&dev->struct_mutex);
  3291. pre_mutex_err:
  3292. /* Copy the updated relocations out regardless of current error
  3293. * state. Failure to update the relocs would mean that the next
  3294. * time userland calls execbuf, it would do so with presumed offset
  3295. * state that didn't match the actual object state.
  3296. */
  3297. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3298. relocs);
  3299. if (ret2 != 0) {
  3300. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3301. if (ret == 0)
  3302. ret = ret2;
  3303. }
  3304. drm_free_large(object_list);
  3305. kfree(cliprects);
  3306. return ret;
  3307. }
  3308. /*
  3309. * Legacy execbuffer just creates an exec2 list from the original exec object
  3310. * list array and passes it to the real function.
  3311. */
  3312. int
  3313. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3314. struct drm_file *file_priv)
  3315. {
  3316. struct drm_i915_gem_execbuffer *args = data;
  3317. struct drm_i915_gem_execbuffer2 exec2;
  3318. struct drm_i915_gem_exec_object *exec_list = NULL;
  3319. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3320. int ret, i;
  3321. #if WATCH_EXEC
  3322. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3323. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3324. #endif
  3325. if (args->buffer_count < 1) {
  3326. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3327. return -EINVAL;
  3328. }
  3329. /* Copy in the exec list from userland */
  3330. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3331. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3332. if (exec_list == NULL || exec2_list == NULL) {
  3333. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3334. args->buffer_count);
  3335. drm_free_large(exec_list);
  3336. drm_free_large(exec2_list);
  3337. return -ENOMEM;
  3338. }
  3339. ret = copy_from_user(exec_list,
  3340. (struct drm_i915_relocation_entry __user *)
  3341. (uintptr_t) args->buffers_ptr,
  3342. sizeof(*exec_list) * args->buffer_count);
  3343. if (ret != 0) {
  3344. DRM_ERROR("copy %d exec entries failed %d\n",
  3345. args->buffer_count, ret);
  3346. drm_free_large(exec_list);
  3347. drm_free_large(exec2_list);
  3348. return -EFAULT;
  3349. }
  3350. for (i = 0; i < args->buffer_count; i++) {
  3351. exec2_list[i].handle = exec_list[i].handle;
  3352. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3353. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3354. exec2_list[i].alignment = exec_list[i].alignment;
  3355. exec2_list[i].offset = exec_list[i].offset;
  3356. if (!IS_I965G(dev))
  3357. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3358. else
  3359. exec2_list[i].flags = 0;
  3360. }
  3361. exec2.buffers_ptr = args->buffers_ptr;
  3362. exec2.buffer_count = args->buffer_count;
  3363. exec2.batch_start_offset = args->batch_start_offset;
  3364. exec2.batch_len = args->batch_len;
  3365. exec2.DR1 = args->DR1;
  3366. exec2.DR4 = args->DR4;
  3367. exec2.num_cliprects = args->num_cliprects;
  3368. exec2.cliprects_ptr = args->cliprects_ptr;
  3369. exec2.flags = I915_EXEC_RENDER;
  3370. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3371. if (!ret) {
  3372. /* Copy the new buffer offsets back to the user's exec list. */
  3373. for (i = 0; i < args->buffer_count; i++)
  3374. exec_list[i].offset = exec2_list[i].offset;
  3375. /* ... and back out to userspace */
  3376. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3377. (uintptr_t) args->buffers_ptr,
  3378. exec_list,
  3379. sizeof(*exec_list) * args->buffer_count);
  3380. if (ret) {
  3381. ret = -EFAULT;
  3382. DRM_ERROR("failed to copy %d exec entries "
  3383. "back to user (%d)\n",
  3384. args->buffer_count, ret);
  3385. }
  3386. }
  3387. drm_free_large(exec_list);
  3388. drm_free_large(exec2_list);
  3389. return ret;
  3390. }
  3391. int
  3392. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3393. struct drm_file *file_priv)
  3394. {
  3395. struct drm_i915_gem_execbuffer2 *args = data;
  3396. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3397. int ret;
  3398. #if WATCH_EXEC
  3399. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3400. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3401. #endif
  3402. if (args->buffer_count < 1) {
  3403. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3404. return -EINVAL;
  3405. }
  3406. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3407. if (exec2_list == NULL) {
  3408. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3409. args->buffer_count);
  3410. return -ENOMEM;
  3411. }
  3412. ret = copy_from_user(exec2_list,
  3413. (struct drm_i915_relocation_entry __user *)
  3414. (uintptr_t) args->buffers_ptr,
  3415. sizeof(*exec2_list) * args->buffer_count);
  3416. if (ret != 0) {
  3417. DRM_ERROR("copy %d exec entries failed %d\n",
  3418. args->buffer_count, ret);
  3419. drm_free_large(exec2_list);
  3420. return -EFAULT;
  3421. }
  3422. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3423. if (!ret) {
  3424. /* Copy the new buffer offsets back to the user's exec list. */
  3425. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3426. (uintptr_t) args->buffers_ptr,
  3427. exec2_list,
  3428. sizeof(*exec2_list) * args->buffer_count);
  3429. if (ret) {
  3430. ret = -EFAULT;
  3431. DRM_ERROR("failed to copy %d exec entries "
  3432. "back to user (%d)\n",
  3433. args->buffer_count, ret);
  3434. }
  3435. }
  3436. drm_free_large(exec2_list);
  3437. return ret;
  3438. }
  3439. int
  3440. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3441. {
  3442. struct drm_device *dev = obj->dev;
  3443. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3444. int ret;
  3445. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3446. i915_verify_inactive(dev, __FILE__, __LINE__);
  3447. if (obj_priv->gtt_space != NULL) {
  3448. if (alignment == 0)
  3449. alignment = i915_gem_get_gtt_alignment(obj);
  3450. if (obj_priv->gtt_offset & (alignment - 1)) {
  3451. WARN(obj_priv->pin_count,
  3452. "bo is already pinned with incorrect alignment:"
  3453. " offset=%x, req.alignment=%x\n",
  3454. obj_priv->gtt_offset, alignment);
  3455. ret = i915_gem_object_unbind(obj);
  3456. if (ret)
  3457. return ret;
  3458. }
  3459. }
  3460. if (obj_priv->gtt_space == NULL) {
  3461. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3462. if (ret)
  3463. return ret;
  3464. }
  3465. obj_priv->pin_count++;
  3466. /* If the object is not active and not pending a flush,
  3467. * remove it from the inactive list
  3468. */
  3469. if (obj_priv->pin_count == 1) {
  3470. atomic_inc(&dev->pin_count);
  3471. atomic_add(obj->size, &dev->pin_memory);
  3472. if (!obj_priv->active &&
  3473. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3474. list_del_init(&obj_priv->list);
  3475. }
  3476. i915_verify_inactive(dev, __FILE__, __LINE__);
  3477. return 0;
  3478. }
  3479. void
  3480. i915_gem_object_unpin(struct drm_gem_object *obj)
  3481. {
  3482. struct drm_device *dev = obj->dev;
  3483. drm_i915_private_t *dev_priv = dev->dev_private;
  3484. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3485. i915_verify_inactive(dev, __FILE__, __LINE__);
  3486. obj_priv->pin_count--;
  3487. BUG_ON(obj_priv->pin_count < 0);
  3488. BUG_ON(obj_priv->gtt_space == NULL);
  3489. /* If the object is no longer pinned, and is
  3490. * neither active nor being flushed, then stick it on
  3491. * the inactive list
  3492. */
  3493. if (obj_priv->pin_count == 0) {
  3494. if (!obj_priv->active &&
  3495. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3496. list_move_tail(&obj_priv->list,
  3497. &dev_priv->mm.inactive_list);
  3498. atomic_dec(&dev->pin_count);
  3499. atomic_sub(obj->size, &dev->pin_memory);
  3500. }
  3501. i915_verify_inactive(dev, __FILE__, __LINE__);
  3502. }
  3503. int
  3504. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3505. struct drm_file *file_priv)
  3506. {
  3507. struct drm_i915_gem_pin *args = data;
  3508. struct drm_gem_object *obj;
  3509. struct drm_i915_gem_object *obj_priv;
  3510. int ret;
  3511. mutex_lock(&dev->struct_mutex);
  3512. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3513. if (obj == NULL) {
  3514. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3515. args->handle);
  3516. mutex_unlock(&dev->struct_mutex);
  3517. return -ENOENT;
  3518. }
  3519. obj_priv = to_intel_bo(obj);
  3520. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3521. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3522. drm_gem_object_unreference(obj);
  3523. mutex_unlock(&dev->struct_mutex);
  3524. return -EINVAL;
  3525. }
  3526. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3527. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3528. args->handle);
  3529. drm_gem_object_unreference(obj);
  3530. mutex_unlock(&dev->struct_mutex);
  3531. return -EINVAL;
  3532. }
  3533. obj_priv->user_pin_count++;
  3534. obj_priv->pin_filp = file_priv;
  3535. if (obj_priv->user_pin_count == 1) {
  3536. ret = i915_gem_object_pin(obj, args->alignment);
  3537. if (ret != 0) {
  3538. drm_gem_object_unreference(obj);
  3539. mutex_unlock(&dev->struct_mutex);
  3540. return ret;
  3541. }
  3542. }
  3543. /* XXX - flush the CPU caches for pinned objects
  3544. * as the X server doesn't manage domains yet
  3545. */
  3546. i915_gem_object_flush_cpu_write_domain(obj);
  3547. args->offset = obj_priv->gtt_offset;
  3548. drm_gem_object_unreference(obj);
  3549. mutex_unlock(&dev->struct_mutex);
  3550. return 0;
  3551. }
  3552. int
  3553. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3554. struct drm_file *file_priv)
  3555. {
  3556. struct drm_i915_gem_pin *args = data;
  3557. struct drm_gem_object *obj;
  3558. struct drm_i915_gem_object *obj_priv;
  3559. mutex_lock(&dev->struct_mutex);
  3560. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3561. if (obj == NULL) {
  3562. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3563. args->handle);
  3564. mutex_unlock(&dev->struct_mutex);
  3565. return -ENOENT;
  3566. }
  3567. obj_priv = to_intel_bo(obj);
  3568. if (obj_priv->pin_filp != file_priv) {
  3569. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3570. args->handle);
  3571. drm_gem_object_unreference(obj);
  3572. mutex_unlock(&dev->struct_mutex);
  3573. return -EINVAL;
  3574. }
  3575. obj_priv->user_pin_count--;
  3576. if (obj_priv->user_pin_count == 0) {
  3577. obj_priv->pin_filp = NULL;
  3578. i915_gem_object_unpin(obj);
  3579. }
  3580. drm_gem_object_unreference(obj);
  3581. mutex_unlock(&dev->struct_mutex);
  3582. return 0;
  3583. }
  3584. int
  3585. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3586. struct drm_file *file_priv)
  3587. {
  3588. struct drm_i915_gem_busy *args = data;
  3589. struct drm_gem_object *obj;
  3590. struct drm_i915_gem_object *obj_priv;
  3591. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3592. if (obj == NULL) {
  3593. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3594. args->handle);
  3595. return -ENOENT;
  3596. }
  3597. mutex_lock(&dev->struct_mutex);
  3598. /* Count all active objects as busy, even if they are currently not used
  3599. * by the gpu. Users of this interface expect objects to eventually
  3600. * become non-busy without any further actions, therefore emit any
  3601. * necessary flushes here.
  3602. */
  3603. obj_priv = to_intel_bo(obj);
  3604. args->busy = obj_priv->active;
  3605. if (args->busy) {
  3606. /* Unconditionally flush objects, even when the gpu still uses this
  3607. * object. Userspace calling this function indicates that it wants to
  3608. * use this buffer rather sooner than later, so issuing the required
  3609. * flush earlier is beneficial.
  3610. */
  3611. if (obj->write_domain) {
  3612. i915_gem_flush(dev, 0, obj->write_domain);
  3613. (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
  3614. }
  3615. /* Update the active list for the hardware's current position.
  3616. * Otherwise this only updates on a delayed timer or when irqs
  3617. * are actually unmasked, and our working set ends up being
  3618. * larger than required.
  3619. */
  3620. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3621. args->busy = obj_priv->active;
  3622. }
  3623. drm_gem_object_unreference(obj);
  3624. mutex_unlock(&dev->struct_mutex);
  3625. return 0;
  3626. }
  3627. int
  3628. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3629. struct drm_file *file_priv)
  3630. {
  3631. return i915_gem_ring_throttle(dev, file_priv);
  3632. }
  3633. int
  3634. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3635. struct drm_file *file_priv)
  3636. {
  3637. struct drm_i915_gem_madvise *args = data;
  3638. struct drm_gem_object *obj;
  3639. struct drm_i915_gem_object *obj_priv;
  3640. switch (args->madv) {
  3641. case I915_MADV_DONTNEED:
  3642. case I915_MADV_WILLNEED:
  3643. break;
  3644. default:
  3645. return -EINVAL;
  3646. }
  3647. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3648. if (obj == NULL) {
  3649. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3650. args->handle);
  3651. return -ENOENT;
  3652. }
  3653. mutex_lock(&dev->struct_mutex);
  3654. obj_priv = to_intel_bo(obj);
  3655. if (obj_priv->pin_count) {
  3656. drm_gem_object_unreference(obj);
  3657. mutex_unlock(&dev->struct_mutex);
  3658. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3659. return -EINVAL;
  3660. }
  3661. if (obj_priv->madv != __I915_MADV_PURGED)
  3662. obj_priv->madv = args->madv;
  3663. /* if the object is no longer bound, discard its backing storage */
  3664. if (i915_gem_object_is_purgeable(obj_priv) &&
  3665. obj_priv->gtt_space == NULL)
  3666. i915_gem_object_truncate(obj);
  3667. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3668. drm_gem_object_unreference(obj);
  3669. mutex_unlock(&dev->struct_mutex);
  3670. return 0;
  3671. }
  3672. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3673. size_t size)
  3674. {
  3675. struct drm_i915_gem_object *obj;
  3676. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3677. if (obj == NULL)
  3678. return NULL;
  3679. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3680. kfree(obj);
  3681. return NULL;
  3682. }
  3683. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3684. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3685. obj->agp_type = AGP_USER_MEMORY;
  3686. obj->base.driver_private = NULL;
  3687. obj->fence_reg = I915_FENCE_REG_NONE;
  3688. INIT_LIST_HEAD(&obj->list);
  3689. INIT_LIST_HEAD(&obj->gpu_write_list);
  3690. obj->madv = I915_MADV_WILLNEED;
  3691. trace_i915_gem_object_create(&obj->base);
  3692. return &obj->base;
  3693. }
  3694. int i915_gem_init_object(struct drm_gem_object *obj)
  3695. {
  3696. BUG();
  3697. return 0;
  3698. }
  3699. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3700. {
  3701. struct drm_device *dev = obj->dev;
  3702. drm_i915_private_t *dev_priv = dev->dev_private;
  3703. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3704. int ret;
  3705. ret = i915_gem_object_unbind(obj);
  3706. if (ret == -ERESTARTSYS) {
  3707. list_move(&obj_priv->list,
  3708. &dev_priv->mm.deferred_free_list);
  3709. return;
  3710. }
  3711. if (obj_priv->mmap_offset)
  3712. i915_gem_free_mmap_offset(obj);
  3713. drm_gem_object_release(obj);
  3714. kfree(obj_priv->page_cpu_valid);
  3715. kfree(obj_priv->bit_17);
  3716. kfree(obj_priv);
  3717. }
  3718. void i915_gem_free_object(struct drm_gem_object *obj)
  3719. {
  3720. struct drm_device *dev = obj->dev;
  3721. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3722. trace_i915_gem_object_destroy(obj);
  3723. while (obj_priv->pin_count > 0)
  3724. i915_gem_object_unpin(obj);
  3725. if (obj_priv->phys_obj)
  3726. i915_gem_detach_phys_object(dev, obj);
  3727. i915_gem_free_object_tail(obj);
  3728. }
  3729. int
  3730. i915_gem_idle(struct drm_device *dev)
  3731. {
  3732. drm_i915_private_t *dev_priv = dev->dev_private;
  3733. int ret;
  3734. mutex_lock(&dev->struct_mutex);
  3735. if (dev_priv->mm.suspended ||
  3736. (dev_priv->render_ring.gem_object == NULL) ||
  3737. (HAS_BSD(dev) &&
  3738. dev_priv->bsd_ring.gem_object == NULL)) {
  3739. mutex_unlock(&dev->struct_mutex);
  3740. return 0;
  3741. }
  3742. ret = i915_gpu_idle(dev);
  3743. if (ret) {
  3744. mutex_unlock(&dev->struct_mutex);
  3745. return ret;
  3746. }
  3747. /* Under UMS, be paranoid and evict. */
  3748. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3749. ret = i915_gem_evict_inactive(dev);
  3750. if (ret) {
  3751. mutex_unlock(&dev->struct_mutex);
  3752. return ret;
  3753. }
  3754. }
  3755. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3756. * We need to replace this with a semaphore, or something.
  3757. * And not confound mm.suspended!
  3758. */
  3759. dev_priv->mm.suspended = 1;
  3760. del_timer(&dev_priv->hangcheck_timer);
  3761. i915_kernel_lost_context(dev);
  3762. i915_gem_cleanup_ringbuffer(dev);
  3763. mutex_unlock(&dev->struct_mutex);
  3764. /* Cancel the retire work handler, which should be idle now. */
  3765. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3766. return 0;
  3767. }
  3768. /*
  3769. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3770. * over cache flushing.
  3771. */
  3772. static int
  3773. i915_gem_init_pipe_control(struct drm_device *dev)
  3774. {
  3775. drm_i915_private_t *dev_priv = dev->dev_private;
  3776. struct drm_gem_object *obj;
  3777. struct drm_i915_gem_object *obj_priv;
  3778. int ret;
  3779. obj = i915_gem_alloc_object(dev, 4096);
  3780. if (obj == NULL) {
  3781. DRM_ERROR("Failed to allocate seqno page\n");
  3782. ret = -ENOMEM;
  3783. goto err;
  3784. }
  3785. obj_priv = to_intel_bo(obj);
  3786. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3787. ret = i915_gem_object_pin(obj, 4096);
  3788. if (ret)
  3789. goto err_unref;
  3790. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3791. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3792. if (dev_priv->seqno_page == NULL)
  3793. goto err_unpin;
  3794. dev_priv->seqno_obj = obj;
  3795. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3796. return 0;
  3797. err_unpin:
  3798. i915_gem_object_unpin(obj);
  3799. err_unref:
  3800. drm_gem_object_unreference(obj);
  3801. err:
  3802. return ret;
  3803. }
  3804. static void
  3805. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3806. {
  3807. drm_i915_private_t *dev_priv = dev->dev_private;
  3808. struct drm_gem_object *obj;
  3809. struct drm_i915_gem_object *obj_priv;
  3810. obj = dev_priv->seqno_obj;
  3811. obj_priv = to_intel_bo(obj);
  3812. kunmap(obj_priv->pages[0]);
  3813. i915_gem_object_unpin(obj);
  3814. drm_gem_object_unreference(obj);
  3815. dev_priv->seqno_obj = NULL;
  3816. dev_priv->seqno_page = NULL;
  3817. }
  3818. int
  3819. i915_gem_init_ringbuffer(struct drm_device *dev)
  3820. {
  3821. drm_i915_private_t *dev_priv = dev->dev_private;
  3822. int ret;
  3823. dev_priv->render_ring = render_ring;
  3824. if (!I915_NEED_GFX_HWS(dev)) {
  3825. dev_priv->render_ring.status_page.page_addr
  3826. = dev_priv->status_page_dmah->vaddr;
  3827. memset(dev_priv->render_ring.status_page.page_addr,
  3828. 0, PAGE_SIZE);
  3829. }
  3830. if (HAS_PIPE_CONTROL(dev)) {
  3831. ret = i915_gem_init_pipe_control(dev);
  3832. if (ret)
  3833. return ret;
  3834. }
  3835. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3836. if (ret)
  3837. goto cleanup_pipe_control;
  3838. if (HAS_BSD(dev)) {
  3839. dev_priv->bsd_ring = bsd_ring;
  3840. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3841. if (ret)
  3842. goto cleanup_render_ring;
  3843. }
  3844. dev_priv->next_seqno = 1;
  3845. return 0;
  3846. cleanup_render_ring:
  3847. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3848. cleanup_pipe_control:
  3849. if (HAS_PIPE_CONTROL(dev))
  3850. i915_gem_cleanup_pipe_control(dev);
  3851. return ret;
  3852. }
  3853. void
  3854. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3855. {
  3856. drm_i915_private_t *dev_priv = dev->dev_private;
  3857. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3858. if (HAS_BSD(dev))
  3859. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3860. if (HAS_PIPE_CONTROL(dev))
  3861. i915_gem_cleanup_pipe_control(dev);
  3862. }
  3863. int
  3864. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3865. struct drm_file *file_priv)
  3866. {
  3867. drm_i915_private_t *dev_priv = dev->dev_private;
  3868. int ret;
  3869. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3870. return 0;
  3871. if (atomic_read(&dev_priv->mm.wedged)) {
  3872. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3873. atomic_set(&dev_priv->mm.wedged, 0);
  3874. }
  3875. mutex_lock(&dev->struct_mutex);
  3876. dev_priv->mm.suspended = 0;
  3877. ret = i915_gem_init_ringbuffer(dev);
  3878. if (ret != 0) {
  3879. mutex_unlock(&dev->struct_mutex);
  3880. return ret;
  3881. }
  3882. spin_lock(&dev_priv->mm.active_list_lock);
  3883. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3884. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3885. spin_unlock(&dev_priv->mm.active_list_lock);
  3886. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3887. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3888. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3889. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3890. mutex_unlock(&dev->struct_mutex);
  3891. ret = drm_irq_install(dev);
  3892. if (ret)
  3893. goto cleanup_ringbuffer;
  3894. return 0;
  3895. cleanup_ringbuffer:
  3896. mutex_lock(&dev->struct_mutex);
  3897. i915_gem_cleanup_ringbuffer(dev);
  3898. dev_priv->mm.suspended = 1;
  3899. mutex_unlock(&dev->struct_mutex);
  3900. return ret;
  3901. }
  3902. int
  3903. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3904. struct drm_file *file_priv)
  3905. {
  3906. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3907. return 0;
  3908. drm_irq_uninstall(dev);
  3909. return i915_gem_idle(dev);
  3910. }
  3911. void
  3912. i915_gem_lastclose(struct drm_device *dev)
  3913. {
  3914. int ret;
  3915. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3916. return;
  3917. ret = i915_gem_idle(dev);
  3918. if (ret)
  3919. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3920. }
  3921. void
  3922. i915_gem_load(struct drm_device *dev)
  3923. {
  3924. int i;
  3925. drm_i915_private_t *dev_priv = dev->dev_private;
  3926. spin_lock_init(&dev_priv->mm.active_list_lock);
  3927. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3928. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3929. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3930. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3931. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3932. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3933. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3934. if (HAS_BSD(dev)) {
  3935. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3936. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3937. }
  3938. for (i = 0; i < 16; i++)
  3939. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3940. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3941. i915_gem_retire_work_handler);
  3942. spin_lock(&shrink_list_lock);
  3943. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3944. spin_unlock(&shrink_list_lock);
  3945. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3946. if (IS_GEN3(dev)) {
  3947. u32 tmp = I915_READ(MI_ARB_STATE);
  3948. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3949. /* arb state is a masked write, so set bit + bit in mask */
  3950. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3951. I915_WRITE(MI_ARB_STATE, tmp);
  3952. }
  3953. }
  3954. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3955. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3956. dev_priv->fence_reg_start = 3;
  3957. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3958. dev_priv->num_fence_regs = 16;
  3959. else
  3960. dev_priv->num_fence_regs = 8;
  3961. /* Initialize fence registers to zero */
  3962. if (IS_I965G(dev)) {
  3963. for (i = 0; i < 16; i++)
  3964. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3965. } else {
  3966. for (i = 0; i < 8; i++)
  3967. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3968. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3969. for (i = 0; i < 8; i++)
  3970. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3971. }
  3972. i915_gem_detect_bit_6_swizzle(dev);
  3973. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3974. }
  3975. /*
  3976. * Create a physically contiguous memory object for this object
  3977. * e.g. for cursor + overlay regs
  3978. */
  3979. int i915_gem_init_phys_object(struct drm_device *dev,
  3980. int id, int size, int align)
  3981. {
  3982. drm_i915_private_t *dev_priv = dev->dev_private;
  3983. struct drm_i915_gem_phys_object *phys_obj;
  3984. int ret;
  3985. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3986. return 0;
  3987. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3988. if (!phys_obj)
  3989. return -ENOMEM;
  3990. phys_obj->id = id;
  3991. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3992. if (!phys_obj->handle) {
  3993. ret = -ENOMEM;
  3994. goto kfree_obj;
  3995. }
  3996. #ifdef CONFIG_X86
  3997. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3998. #endif
  3999. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4000. return 0;
  4001. kfree_obj:
  4002. kfree(phys_obj);
  4003. return ret;
  4004. }
  4005. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4006. {
  4007. drm_i915_private_t *dev_priv = dev->dev_private;
  4008. struct drm_i915_gem_phys_object *phys_obj;
  4009. if (!dev_priv->mm.phys_objs[id - 1])
  4010. return;
  4011. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4012. if (phys_obj->cur_obj) {
  4013. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4014. }
  4015. #ifdef CONFIG_X86
  4016. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4017. #endif
  4018. drm_pci_free(dev, phys_obj->handle);
  4019. kfree(phys_obj);
  4020. dev_priv->mm.phys_objs[id - 1] = NULL;
  4021. }
  4022. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4023. {
  4024. int i;
  4025. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4026. i915_gem_free_phys_object(dev, i);
  4027. }
  4028. void i915_gem_detach_phys_object(struct drm_device *dev,
  4029. struct drm_gem_object *obj)
  4030. {
  4031. struct drm_i915_gem_object *obj_priv;
  4032. int i;
  4033. int ret;
  4034. int page_count;
  4035. obj_priv = to_intel_bo(obj);
  4036. if (!obj_priv->phys_obj)
  4037. return;
  4038. ret = i915_gem_object_get_pages(obj, 0);
  4039. if (ret)
  4040. goto out;
  4041. page_count = obj->size / PAGE_SIZE;
  4042. for (i = 0; i < page_count; i++) {
  4043. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4044. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4045. memcpy(dst, src, PAGE_SIZE);
  4046. kunmap_atomic(dst, KM_USER0);
  4047. }
  4048. drm_clflush_pages(obj_priv->pages, page_count);
  4049. drm_agp_chipset_flush(dev);
  4050. i915_gem_object_put_pages(obj);
  4051. out:
  4052. obj_priv->phys_obj->cur_obj = NULL;
  4053. obj_priv->phys_obj = NULL;
  4054. }
  4055. int
  4056. i915_gem_attach_phys_object(struct drm_device *dev,
  4057. struct drm_gem_object *obj,
  4058. int id,
  4059. int align)
  4060. {
  4061. drm_i915_private_t *dev_priv = dev->dev_private;
  4062. struct drm_i915_gem_object *obj_priv;
  4063. int ret = 0;
  4064. int page_count;
  4065. int i;
  4066. if (id > I915_MAX_PHYS_OBJECT)
  4067. return -EINVAL;
  4068. obj_priv = to_intel_bo(obj);
  4069. if (obj_priv->phys_obj) {
  4070. if (obj_priv->phys_obj->id == id)
  4071. return 0;
  4072. i915_gem_detach_phys_object(dev, obj);
  4073. }
  4074. /* create a new object */
  4075. if (!dev_priv->mm.phys_objs[id - 1]) {
  4076. ret = i915_gem_init_phys_object(dev, id,
  4077. obj->size, align);
  4078. if (ret) {
  4079. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4080. goto out;
  4081. }
  4082. }
  4083. /* bind to the object */
  4084. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4085. obj_priv->phys_obj->cur_obj = obj;
  4086. ret = i915_gem_object_get_pages(obj, 0);
  4087. if (ret) {
  4088. DRM_ERROR("failed to get page list\n");
  4089. goto out;
  4090. }
  4091. page_count = obj->size / PAGE_SIZE;
  4092. for (i = 0; i < page_count; i++) {
  4093. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4094. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4095. memcpy(dst, src, PAGE_SIZE);
  4096. kunmap_atomic(src, KM_USER0);
  4097. }
  4098. i915_gem_object_put_pages(obj);
  4099. return 0;
  4100. out:
  4101. return ret;
  4102. }
  4103. static int
  4104. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4105. struct drm_i915_gem_pwrite *args,
  4106. struct drm_file *file_priv)
  4107. {
  4108. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4109. void *obj_addr;
  4110. int ret;
  4111. char __user *user_data;
  4112. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4113. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4114. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4115. ret = copy_from_user(obj_addr, user_data, args->size);
  4116. if (ret)
  4117. return -EFAULT;
  4118. drm_agp_chipset_flush(dev);
  4119. return 0;
  4120. }
  4121. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4122. {
  4123. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4124. /* Clean up our request list when the client is going away, so that
  4125. * later retire_requests won't dereference our soon-to-be-gone
  4126. * file_priv.
  4127. */
  4128. mutex_lock(&dev->struct_mutex);
  4129. while (!list_empty(&i915_file_priv->mm.request_list))
  4130. list_del_init(i915_file_priv->mm.request_list.next);
  4131. mutex_unlock(&dev->struct_mutex);
  4132. }
  4133. static int
  4134. i915_gpu_is_active(struct drm_device *dev)
  4135. {
  4136. drm_i915_private_t *dev_priv = dev->dev_private;
  4137. int lists_empty;
  4138. spin_lock(&dev_priv->mm.active_list_lock);
  4139. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4140. list_empty(&dev_priv->render_ring.active_list);
  4141. if (HAS_BSD(dev))
  4142. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4143. spin_unlock(&dev_priv->mm.active_list_lock);
  4144. return !lists_empty;
  4145. }
  4146. static int
  4147. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4148. {
  4149. drm_i915_private_t *dev_priv, *next_dev;
  4150. struct drm_i915_gem_object *obj_priv, *next_obj;
  4151. int cnt = 0;
  4152. int would_deadlock = 1;
  4153. /* "fast-path" to count number of available objects */
  4154. if (nr_to_scan == 0) {
  4155. spin_lock(&shrink_list_lock);
  4156. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4157. struct drm_device *dev = dev_priv->dev;
  4158. if (mutex_trylock(&dev->struct_mutex)) {
  4159. list_for_each_entry(obj_priv,
  4160. &dev_priv->mm.inactive_list,
  4161. list)
  4162. cnt++;
  4163. mutex_unlock(&dev->struct_mutex);
  4164. }
  4165. }
  4166. spin_unlock(&shrink_list_lock);
  4167. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4168. }
  4169. spin_lock(&shrink_list_lock);
  4170. rescan:
  4171. /* first scan for clean buffers */
  4172. list_for_each_entry_safe(dev_priv, next_dev,
  4173. &shrink_list, mm.shrink_list) {
  4174. struct drm_device *dev = dev_priv->dev;
  4175. if (! mutex_trylock(&dev->struct_mutex))
  4176. continue;
  4177. spin_unlock(&shrink_list_lock);
  4178. i915_gem_retire_requests(dev);
  4179. list_for_each_entry_safe(obj_priv, next_obj,
  4180. &dev_priv->mm.inactive_list,
  4181. list) {
  4182. if (i915_gem_object_is_purgeable(obj_priv)) {
  4183. i915_gem_object_unbind(&obj_priv->base);
  4184. if (--nr_to_scan <= 0)
  4185. break;
  4186. }
  4187. }
  4188. spin_lock(&shrink_list_lock);
  4189. mutex_unlock(&dev->struct_mutex);
  4190. would_deadlock = 0;
  4191. if (nr_to_scan <= 0)
  4192. break;
  4193. }
  4194. /* second pass, evict/count anything still on the inactive list */
  4195. list_for_each_entry_safe(dev_priv, next_dev,
  4196. &shrink_list, mm.shrink_list) {
  4197. struct drm_device *dev = dev_priv->dev;
  4198. if (! mutex_trylock(&dev->struct_mutex))
  4199. continue;
  4200. spin_unlock(&shrink_list_lock);
  4201. list_for_each_entry_safe(obj_priv, next_obj,
  4202. &dev_priv->mm.inactive_list,
  4203. list) {
  4204. if (nr_to_scan > 0) {
  4205. i915_gem_object_unbind(&obj_priv->base);
  4206. nr_to_scan--;
  4207. } else
  4208. cnt++;
  4209. }
  4210. spin_lock(&shrink_list_lock);
  4211. mutex_unlock(&dev->struct_mutex);
  4212. would_deadlock = 0;
  4213. }
  4214. if (nr_to_scan) {
  4215. int active = 0;
  4216. /*
  4217. * We are desperate for pages, so as a last resort, wait
  4218. * for the GPU to finish and discard whatever we can.
  4219. * This has a dramatic impact to reduce the number of
  4220. * OOM-killer events whilst running the GPU aggressively.
  4221. */
  4222. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4223. struct drm_device *dev = dev_priv->dev;
  4224. if (!mutex_trylock(&dev->struct_mutex))
  4225. continue;
  4226. spin_unlock(&shrink_list_lock);
  4227. if (i915_gpu_is_active(dev)) {
  4228. i915_gpu_idle(dev);
  4229. active++;
  4230. }
  4231. spin_lock(&shrink_list_lock);
  4232. mutex_unlock(&dev->struct_mutex);
  4233. }
  4234. if (active)
  4235. goto rescan;
  4236. }
  4237. spin_unlock(&shrink_list_lock);
  4238. if (would_deadlock)
  4239. return -1;
  4240. else if (cnt > 0)
  4241. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4242. else
  4243. return 0;
  4244. }
  4245. static struct shrinker shrinker = {
  4246. .shrink = i915_gem_shrink,
  4247. .seeks = DEFAULT_SEEKS,
  4248. };
  4249. __init void
  4250. i915_gem_shrinker_init(void)
  4251. {
  4252. register_shrinker(&shrinker);
  4253. }
  4254. __exit void
  4255. i915_gem_shrinker_exit(void)
  4256. {
  4257. unregister_shrinker(&shrinker);
  4258. }