kvm_main.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  64. */
  65. DEFINE_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static bool kvm_rebooting;
  75. static bool largepages_enabled = true;
  76. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  77. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  78. int assigned_dev_id)
  79. {
  80. struct list_head *ptr;
  81. struct kvm_assigned_dev_kernel *match;
  82. list_for_each(ptr, head) {
  83. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  84. if (match->assigned_dev_id == assigned_dev_id)
  85. return match;
  86. }
  87. return NULL;
  88. }
  89. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  90. *assigned_dev, int irq)
  91. {
  92. int i, index;
  93. struct msix_entry *host_msix_entries;
  94. host_msix_entries = assigned_dev->host_msix_entries;
  95. index = -1;
  96. for (i = 0; i < assigned_dev->entries_nr; i++)
  97. if (irq == host_msix_entries[i].vector) {
  98. index = i;
  99. break;
  100. }
  101. if (index < 0) {
  102. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  103. return 0;
  104. }
  105. return index;
  106. }
  107. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  108. {
  109. struct kvm_assigned_dev_kernel *assigned_dev;
  110. struct kvm *kvm;
  111. int i;
  112. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  113. interrupt_work);
  114. kvm = assigned_dev->kvm;
  115. mutex_lock(&kvm->irq_lock);
  116. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  117. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  118. struct kvm_guest_msix_entry *guest_entries =
  119. assigned_dev->guest_msix_entries;
  120. for (i = 0; i < assigned_dev->entries_nr; i++) {
  121. if (!(guest_entries[i].flags &
  122. KVM_ASSIGNED_MSIX_PENDING))
  123. continue;
  124. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  125. kvm_set_irq(assigned_dev->kvm,
  126. assigned_dev->irq_source_id,
  127. guest_entries[i].vector, 1);
  128. }
  129. } else
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  133. mutex_unlock(&assigned_dev->kvm->irq_lock);
  134. }
  135. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  136. {
  137. unsigned long flags;
  138. struct kvm_assigned_dev_kernel *assigned_dev =
  139. (struct kvm_assigned_dev_kernel *) dev_id;
  140. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  141. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  142. int index = find_index_from_host_irq(assigned_dev, irq);
  143. if (index < 0)
  144. goto out;
  145. assigned_dev->guest_msix_entries[index].flags |=
  146. KVM_ASSIGNED_MSIX_PENDING;
  147. }
  148. schedule_work(&assigned_dev->interrupt_work);
  149. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. }
  153. out:
  154. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  155. return IRQ_HANDLED;
  156. }
  157. /* Ack the irq line for an assigned device */
  158. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  159. {
  160. struct kvm_assigned_dev_kernel *dev;
  161. unsigned long flags;
  162. if (kian->gsi == -1)
  163. return;
  164. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  165. ack_notifier);
  166. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  167. /* The guest irq may be shared so this ack may be
  168. * from another device.
  169. */
  170. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  171. if (dev->host_irq_disabled) {
  172. enable_irq(dev->host_irq);
  173. dev->host_irq_disabled = false;
  174. }
  175. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  176. }
  177. static void deassign_guest_irq(struct kvm *kvm,
  178. struct kvm_assigned_dev_kernel *assigned_dev)
  179. {
  180. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  181. assigned_dev->ack_notifier.gsi = -1;
  182. if (assigned_dev->irq_source_id != -1)
  183. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  184. assigned_dev->irq_source_id = -1;
  185. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  186. }
  187. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  188. static void deassign_host_irq(struct kvm *kvm,
  189. struct kvm_assigned_dev_kernel *assigned_dev)
  190. {
  191. /*
  192. * In kvm_free_device_irq, cancel_work_sync return true if:
  193. * 1. work is scheduled, and then cancelled.
  194. * 2. work callback is executed.
  195. *
  196. * The first one ensured that the irq is disabled and no more events
  197. * would happen. But for the second one, the irq may be enabled (e.g.
  198. * for MSI). So we disable irq here to prevent further events.
  199. *
  200. * Notice this maybe result in nested disable if the interrupt type is
  201. * INTx, but it's OK for we are going to free it.
  202. *
  203. * If this function is a part of VM destroy, please ensure that till
  204. * now, the kvm state is still legal for probably we also have to wait
  205. * interrupt_work done.
  206. */
  207. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  208. int i;
  209. for (i = 0; i < assigned_dev->entries_nr; i++)
  210. disable_irq_nosync(assigned_dev->
  211. host_msix_entries[i].vector);
  212. cancel_work_sync(&assigned_dev->interrupt_work);
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. free_irq(assigned_dev->host_msix_entries[i].vector,
  215. (void *)assigned_dev);
  216. assigned_dev->entries_nr = 0;
  217. kfree(assigned_dev->host_msix_entries);
  218. kfree(assigned_dev->guest_msix_entries);
  219. pci_disable_msix(assigned_dev->dev);
  220. } else {
  221. /* Deal with MSI and INTx */
  222. disable_irq_nosync(assigned_dev->host_irq);
  223. cancel_work_sync(&assigned_dev->interrupt_work);
  224. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  225. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  226. pci_disable_msi(assigned_dev->dev);
  227. }
  228. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  229. }
  230. static int kvm_deassign_irq(struct kvm *kvm,
  231. struct kvm_assigned_dev_kernel *assigned_dev,
  232. unsigned long irq_requested_type)
  233. {
  234. unsigned long guest_irq_type, host_irq_type;
  235. if (!irqchip_in_kernel(kvm))
  236. return -EINVAL;
  237. /* no irq assignment to deassign */
  238. if (!assigned_dev->irq_requested_type)
  239. return -ENXIO;
  240. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  241. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  242. if (host_irq_type)
  243. deassign_host_irq(kvm, assigned_dev);
  244. if (guest_irq_type)
  245. deassign_guest_irq(kvm, assigned_dev);
  246. return 0;
  247. }
  248. static void kvm_free_assigned_irq(struct kvm *kvm,
  249. struct kvm_assigned_dev_kernel *assigned_dev)
  250. {
  251. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  252. }
  253. static void kvm_free_assigned_device(struct kvm *kvm,
  254. struct kvm_assigned_dev_kernel
  255. *assigned_dev)
  256. {
  257. kvm_free_assigned_irq(kvm, assigned_dev);
  258. pci_reset_function(assigned_dev->dev);
  259. pci_release_regions(assigned_dev->dev);
  260. pci_disable_device(assigned_dev->dev);
  261. pci_dev_put(assigned_dev->dev);
  262. list_del(&assigned_dev->list);
  263. kfree(assigned_dev);
  264. }
  265. void kvm_free_all_assigned_devices(struct kvm *kvm)
  266. {
  267. struct list_head *ptr, *ptr2;
  268. struct kvm_assigned_dev_kernel *assigned_dev;
  269. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  270. assigned_dev = list_entry(ptr,
  271. struct kvm_assigned_dev_kernel,
  272. list);
  273. kvm_free_assigned_device(kvm, assigned_dev);
  274. }
  275. }
  276. static int assigned_device_enable_host_intx(struct kvm *kvm,
  277. struct kvm_assigned_dev_kernel *dev)
  278. {
  279. dev->host_irq = dev->dev->irq;
  280. /* Even though this is PCI, we don't want to use shared
  281. * interrupts. Sharing host devices with guest-assigned devices
  282. * on the same interrupt line is not a happy situation: there
  283. * are going to be long delays in accepting, acking, etc.
  284. */
  285. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  286. 0, "kvm_assigned_intx_device", (void *)dev))
  287. return -EIO;
  288. return 0;
  289. }
  290. #ifdef __KVM_HAVE_MSI
  291. static int assigned_device_enable_host_msi(struct kvm *kvm,
  292. struct kvm_assigned_dev_kernel *dev)
  293. {
  294. int r;
  295. if (!dev->dev->msi_enabled) {
  296. r = pci_enable_msi(dev->dev);
  297. if (r)
  298. return r;
  299. }
  300. dev->host_irq = dev->dev->irq;
  301. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  302. "kvm_assigned_msi_device", (void *)dev)) {
  303. pci_disable_msi(dev->dev);
  304. return -EIO;
  305. }
  306. return 0;
  307. }
  308. #endif
  309. #ifdef __KVM_HAVE_MSIX
  310. static int assigned_device_enable_host_msix(struct kvm *kvm,
  311. struct kvm_assigned_dev_kernel *dev)
  312. {
  313. int i, r = -EINVAL;
  314. /* host_msix_entries and guest_msix_entries should have been
  315. * initialized */
  316. if (dev->entries_nr == 0)
  317. return r;
  318. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  319. if (r)
  320. return r;
  321. for (i = 0; i < dev->entries_nr; i++) {
  322. r = request_irq(dev->host_msix_entries[i].vector,
  323. kvm_assigned_dev_intr, 0,
  324. "kvm_assigned_msix_device",
  325. (void *)dev);
  326. /* FIXME: free requested_irq's on failure */
  327. if (r)
  328. return r;
  329. }
  330. return 0;
  331. }
  332. #endif
  333. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  334. struct kvm_assigned_dev_kernel *dev,
  335. struct kvm_assigned_irq *irq)
  336. {
  337. dev->guest_irq = irq->guest_irq;
  338. dev->ack_notifier.gsi = irq->guest_irq;
  339. return 0;
  340. }
  341. #ifdef __KVM_HAVE_MSI
  342. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  343. struct kvm_assigned_dev_kernel *dev,
  344. struct kvm_assigned_irq *irq)
  345. {
  346. dev->guest_irq = irq->guest_irq;
  347. dev->ack_notifier.gsi = -1;
  348. dev->host_irq_disabled = false;
  349. return 0;
  350. }
  351. #endif
  352. #ifdef __KVM_HAVE_MSIX
  353. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  354. struct kvm_assigned_dev_kernel *dev,
  355. struct kvm_assigned_irq *irq)
  356. {
  357. dev->guest_irq = irq->guest_irq;
  358. dev->ack_notifier.gsi = -1;
  359. dev->host_irq_disabled = false;
  360. return 0;
  361. }
  362. #endif
  363. static int assign_host_irq(struct kvm *kvm,
  364. struct kvm_assigned_dev_kernel *dev,
  365. __u32 host_irq_type)
  366. {
  367. int r = -EEXIST;
  368. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  369. return r;
  370. switch (host_irq_type) {
  371. case KVM_DEV_IRQ_HOST_INTX:
  372. r = assigned_device_enable_host_intx(kvm, dev);
  373. break;
  374. #ifdef __KVM_HAVE_MSI
  375. case KVM_DEV_IRQ_HOST_MSI:
  376. r = assigned_device_enable_host_msi(kvm, dev);
  377. break;
  378. #endif
  379. #ifdef __KVM_HAVE_MSIX
  380. case KVM_DEV_IRQ_HOST_MSIX:
  381. r = assigned_device_enable_host_msix(kvm, dev);
  382. break;
  383. #endif
  384. default:
  385. r = -EINVAL;
  386. }
  387. if (!r)
  388. dev->irq_requested_type |= host_irq_type;
  389. return r;
  390. }
  391. static int assign_guest_irq(struct kvm *kvm,
  392. struct kvm_assigned_dev_kernel *dev,
  393. struct kvm_assigned_irq *irq,
  394. unsigned long guest_irq_type)
  395. {
  396. int id;
  397. int r = -EEXIST;
  398. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  399. return r;
  400. id = kvm_request_irq_source_id(kvm);
  401. if (id < 0)
  402. return id;
  403. dev->irq_source_id = id;
  404. switch (guest_irq_type) {
  405. case KVM_DEV_IRQ_GUEST_INTX:
  406. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  407. break;
  408. #ifdef __KVM_HAVE_MSI
  409. case KVM_DEV_IRQ_GUEST_MSI:
  410. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  411. break;
  412. #endif
  413. #ifdef __KVM_HAVE_MSIX
  414. case KVM_DEV_IRQ_GUEST_MSIX:
  415. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  416. break;
  417. #endif
  418. default:
  419. r = -EINVAL;
  420. }
  421. if (!r) {
  422. dev->irq_requested_type |= guest_irq_type;
  423. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  424. } else
  425. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  426. return r;
  427. }
  428. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  429. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  430. struct kvm_assigned_irq *assigned_irq)
  431. {
  432. int r = -EINVAL;
  433. struct kvm_assigned_dev_kernel *match;
  434. unsigned long host_irq_type, guest_irq_type;
  435. if (!capable(CAP_SYS_RAWIO))
  436. return -EPERM;
  437. if (!irqchip_in_kernel(kvm))
  438. return r;
  439. mutex_lock(&kvm->lock);
  440. r = -ENODEV;
  441. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  442. assigned_irq->assigned_dev_id);
  443. if (!match)
  444. goto out;
  445. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  446. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  447. r = -EINVAL;
  448. /* can only assign one type at a time */
  449. if (hweight_long(host_irq_type) > 1)
  450. goto out;
  451. if (hweight_long(guest_irq_type) > 1)
  452. goto out;
  453. if (host_irq_type == 0 && guest_irq_type == 0)
  454. goto out;
  455. r = 0;
  456. if (host_irq_type)
  457. r = assign_host_irq(kvm, match, host_irq_type);
  458. if (r)
  459. goto out;
  460. if (guest_irq_type)
  461. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  462. out:
  463. mutex_unlock(&kvm->lock);
  464. return r;
  465. }
  466. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  467. struct kvm_assigned_irq
  468. *assigned_irq)
  469. {
  470. int r = -ENODEV;
  471. struct kvm_assigned_dev_kernel *match;
  472. mutex_lock(&kvm->lock);
  473. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  474. assigned_irq->assigned_dev_id);
  475. if (!match)
  476. goto out;
  477. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  478. out:
  479. mutex_unlock(&kvm->lock);
  480. return r;
  481. }
  482. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  483. struct kvm_assigned_pci_dev *assigned_dev)
  484. {
  485. int r = 0;
  486. struct kvm_assigned_dev_kernel *match;
  487. struct pci_dev *dev;
  488. down_read(&kvm->slots_lock);
  489. mutex_lock(&kvm->lock);
  490. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  491. assigned_dev->assigned_dev_id);
  492. if (match) {
  493. /* device already assigned */
  494. r = -EEXIST;
  495. goto out;
  496. }
  497. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  498. if (match == NULL) {
  499. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  500. __func__);
  501. r = -ENOMEM;
  502. goto out;
  503. }
  504. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  505. assigned_dev->devfn);
  506. if (!dev) {
  507. printk(KERN_INFO "%s: host device not found\n", __func__);
  508. r = -EINVAL;
  509. goto out_free;
  510. }
  511. if (pci_enable_device(dev)) {
  512. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  513. r = -EBUSY;
  514. goto out_put;
  515. }
  516. r = pci_request_regions(dev, "kvm_assigned_device");
  517. if (r) {
  518. printk(KERN_INFO "%s: Could not get access to device regions\n",
  519. __func__);
  520. goto out_disable;
  521. }
  522. pci_reset_function(dev);
  523. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  524. match->host_busnr = assigned_dev->busnr;
  525. match->host_devfn = assigned_dev->devfn;
  526. match->flags = assigned_dev->flags;
  527. match->dev = dev;
  528. spin_lock_init(&match->assigned_dev_lock);
  529. match->irq_source_id = -1;
  530. match->kvm = kvm;
  531. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  532. INIT_WORK(&match->interrupt_work,
  533. kvm_assigned_dev_interrupt_work_handler);
  534. list_add(&match->list, &kvm->arch.assigned_dev_head);
  535. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  536. if (!kvm->arch.iommu_domain) {
  537. r = kvm_iommu_map_guest(kvm);
  538. if (r)
  539. goto out_list_del;
  540. }
  541. r = kvm_assign_device(kvm, match);
  542. if (r)
  543. goto out_list_del;
  544. }
  545. out:
  546. mutex_unlock(&kvm->lock);
  547. up_read(&kvm->slots_lock);
  548. return r;
  549. out_list_del:
  550. list_del(&match->list);
  551. pci_release_regions(dev);
  552. out_disable:
  553. pci_disable_device(dev);
  554. out_put:
  555. pci_dev_put(dev);
  556. out_free:
  557. kfree(match);
  558. mutex_unlock(&kvm->lock);
  559. up_read(&kvm->slots_lock);
  560. return r;
  561. }
  562. #endif
  563. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  564. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  565. struct kvm_assigned_pci_dev *assigned_dev)
  566. {
  567. int r = 0;
  568. struct kvm_assigned_dev_kernel *match;
  569. mutex_lock(&kvm->lock);
  570. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  571. assigned_dev->assigned_dev_id);
  572. if (!match) {
  573. printk(KERN_INFO "%s: device hasn't been assigned before, "
  574. "so cannot be deassigned\n", __func__);
  575. r = -EINVAL;
  576. goto out;
  577. }
  578. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  579. kvm_deassign_device(kvm, match);
  580. kvm_free_assigned_device(kvm, match);
  581. out:
  582. mutex_unlock(&kvm->lock);
  583. return r;
  584. }
  585. #endif
  586. inline int kvm_is_mmio_pfn(pfn_t pfn)
  587. {
  588. if (pfn_valid(pfn)) {
  589. struct page *page = compound_head(pfn_to_page(pfn));
  590. return PageReserved(page);
  591. }
  592. return true;
  593. }
  594. /*
  595. * Switches to specified vcpu, until a matching vcpu_put()
  596. */
  597. void vcpu_load(struct kvm_vcpu *vcpu)
  598. {
  599. int cpu;
  600. mutex_lock(&vcpu->mutex);
  601. cpu = get_cpu();
  602. preempt_notifier_register(&vcpu->preempt_notifier);
  603. kvm_arch_vcpu_load(vcpu, cpu);
  604. put_cpu();
  605. }
  606. void vcpu_put(struct kvm_vcpu *vcpu)
  607. {
  608. preempt_disable();
  609. kvm_arch_vcpu_put(vcpu);
  610. preempt_notifier_unregister(&vcpu->preempt_notifier);
  611. preempt_enable();
  612. mutex_unlock(&vcpu->mutex);
  613. }
  614. static void ack_flush(void *_completed)
  615. {
  616. }
  617. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  618. {
  619. int i, cpu, me;
  620. cpumask_var_t cpus;
  621. bool called = true;
  622. struct kvm_vcpu *vcpu;
  623. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  624. spin_lock(&kvm->requests_lock);
  625. me = smp_processor_id();
  626. kvm_for_each_vcpu(i, vcpu, kvm) {
  627. if (test_and_set_bit(req, &vcpu->requests))
  628. continue;
  629. cpu = vcpu->cpu;
  630. if (cpus != NULL && cpu != -1 && cpu != me)
  631. cpumask_set_cpu(cpu, cpus);
  632. }
  633. if (unlikely(cpus == NULL))
  634. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  635. else if (!cpumask_empty(cpus))
  636. smp_call_function_many(cpus, ack_flush, NULL, 1);
  637. else
  638. called = false;
  639. spin_unlock(&kvm->requests_lock);
  640. free_cpumask_var(cpus);
  641. return called;
  642. }
  643. void kvm_flush_remote_tlbs(struct kvm *kvm)
  644. {
  645. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  646. ++kvm->stat.remote_tlb_flush;
  647. }
  648. void kvm_reload_remote_mmus(struct kvm *kvm)
  649. {
  650. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  651. }
  652. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  653. {
  654. struct page *page;
  655. int r;
  656. mutex_init(&vcpu->mutex);
  657. vcpu->cpu = -1;
  658. vcpu->kvm = kvm;
  659. vcpu->vcpu_id = id;
  660. init_waitqueue_head(&vcpu->wq);
  661. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  662. if (!page) {
  663. r = -ENOMEM;
  664. goto fail;
  665. }
  666. vcpu->run = page_address(page);
  667. r = kvm_arch_vcpu_init(vcpu);
  668. if (r < 0)
  669. goto fail_free_run;
  670. return 0;
  671. fail_free_run:
  672. free_page((unsigned long)vcpu->run);
  673. fail:
  674. return r;
  675. }
  676. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  677. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  678. {
  679. kvm_arch_vcpu_uninit(vcpu);
  680. free_page((unsigned long)vcpu->run);
  681. }
  682. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  683. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  684. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  685. {
  686. return container_of(mn, struct kvm, mmu_notifier);
  687. }
  688. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  689. struct mm_struct *mm,
  690. unsigned long address)
  691. {
  692. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  693. int need_tlb_flush;
  694. /*
  695. * When ->invalidate_page runs, the linux pte has been zapped
  696. * already but the page is still allocated until
  697. * ->invalidate_page returns. So if we increase the sequence
  698. * here the kvm page fault will notice if the spte can't be
  699. * established because the page is going to be freed. If
  700. * instead the kvm page fault establishes the spte before
  701. * ->invalidate_page runs, kvm_unmap_hva will release it
  702. * before returning.
  703. *
  704. * The sequence increase only need to be seen at spin_unlock
  705. * time, and not at spin_lock time.
  706. *
  707. * Increasing the sequence after the spin_unlock would be
  708. * unsafe because the kvm page fault could then establish the
  709. * pte after kvm_unmap_hva returned, without noticing the page
  710. * is going to be freed.
  711. */
  712. spin_lock(&kvm->mmu_lock);
  713. kvm->mmu_notifier_seq++;
  714. need_tlb_flush = kvm_unmap_hva(kvm, address);
  715. spin_unlock(&kvm->mmu_lock);
  716. /* we've to flush the tlb before the pages can be freed */
  717. if (need_tlb_flush)
  718. kvm_flush_remote_tlbs(kvm);
  719. }
  720. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  721. struct mm_struct *mm,
  722. unsigned long start,
  723. unsigned long end)
  724. {
  725. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  726. int need_tlb_flush = 0;
  727. spin_lock(&kvm->mmu_lock);
  728. /*
  729. * The count increase must become visible at unlock time as no
  730. * spte can be established without taking the mmu_lock and
  731. * count is also read inside the mmu_lock critical section.
  732. */
  733. kvm->mmu_notifier_count++;
  734. for (; start < end; start += PAGE_SIZE)
  735. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  736. spin_unlock(&kvm->mmu_lock);
  737. /* we've to flush the tlb before the pages can be freed */
  738. if (need_tlb_flush)
  739. kvm_flush_remote_tlbs(kvm);
  740. }
  741. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  742. struct mm_struct *mm,
  743. unsigned long start,
  744. unsigned long end)
  745. {
  746. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  747. spin_lock(&kvm->mmu_lock);
  748. /*
  749. * This sequence increase will notify the kvm page fault that
  750. * the page that is going to be mapped in the spte could have
  751. * been freed.
  752. */
  753. kvm->mmu_notifier_seq++;
  754. /*
  755. * The above sequence increase must be visible before the
  756. * below count decrease but both values are read by the kvm
  757. * page fault under mmu_lock spinlock so we don't need to add
  758. * a smb_wmb() here in between the two.
  759. */
  760. kvm->mmu_notifier_count--;
  761. spin_unlock(&kvm->mmu_lock);
  762. BUG_ON(kvm->mmu_notifier_count < 0);
  763. }
  764. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  765. struct mm_struct *mm,
  766. unsigned long address)
  767. {
  768. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  769. int young;
  770. spin_lock(&kvm->mmu_lock);
  771. young = kvm_age_hva(kvm, address);
  772. spin_unlock(&kvm->mmu_lock);
  773. if (young)
  774. kvm_flush_remote_tlbs(kvm);
  775. return young;
  776. }
  777. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  778. struct mm_struct *mm)
  779. {
  780. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  781. kvm_arch_flush_shadow(kvm);
  782. }
  783. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  784. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  785. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  786. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  787. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  788. .release = kvm_mmu_notifier_release,
  789. };
  790. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  791. static struct kvm *kvm_create_vm(void)
  792. {
  793. struct kvm *kvm = kvm_arch_create_vm();
  794. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  795. struct page *page;
  796. #endif
  797. if (IS_ERR(kvm))
  798. goto out;
  799. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  800. INIT_LIST_HEAD(&kvm->irq_routing);
  801. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  802. #endif
  803. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  804. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  805. if (!page) {
  806. kfree(kvm);
  807. return ERR_PTR(-ENOMEM);
  808. }
  809. kvm->coalesced_mmio_ring =
  810. (struct kvm_coalesced_mmio_ring *)page_address(page);
  811. #endif
  812. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  813. {
  814. int err;
  815. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  816. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  817. if (err) {
  818. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  819. put_page(page);
  820. #endif
  821. kfree(kvm);
  822. return ERR_PTR(err);
  823. }
  824. }
  825. #endif
  826. kvm->mm = current->mm;
  827. atomic_inc(&kvm->mm->mm_count);
  828. spin_lock_init(&kvm->mmu_lock);
  829. spin_lock_init(&kvm->requests_lock);
  830. kvm_io_bus_init(&kvm->pio_bus);
  831. kvm_eventfd_init(kvm);
  832. mutex_init(&kvm->lock);
  833. mutex_init(&kvm->irq_lock);
  834. kvm_io_bus_init(&kvm->mmio_bus);
  835. init_rwsem(&kvm->slots_lock);
  836. atomic_set(&kvm->users_count, 1);
  837. spin_lock(&kvm_lock);
  838. list_add(&kvm->vm_list, &vm_list);
  839. spin_unlock(&kvm_lock);
  840. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  841. kvm_coalesced_mmio_init(kvm);
  842. #endif
  843. out:
  844. return kvm;
  845. }
  846. /*
  847. * Free any memory in @free but not in @dont.
  848. */
  849. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  850. struct kvm_memory_slot *dont)
  851. {
  852. int i;
  853. if (!dont || free->rmap != dont->rmap)
  854. vfree(free->rmap);
  855. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  856. vfree(free->dirty_bitmap);
  857. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  858. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  859. vfree(free->lpage_info[i]);
  860. free->lpage_info[i] = NULL;
  861. }
  862. }
  863. free->npages = 0;
  864. free->dirty_bitmap = NULL;
  865. free->rmap = NULL;
  866. }
  867. void kvm_free_physmem(struct kvm *kvm)
  868. {
  869. int i;
  870. for (i = 0; i < kvm->nmemslots; ++i)
  871. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  872. }
  873. static void kvm_destroy_vm(struct kvm *kvm)
  874. {
  875. struct mm_struct *mm = kvm->mm;
  876. kvm_arch_sync_events(kvm);
  877. spin_lock(&kvm_lock);
  878. list_del(&kvm->vm_list);
  879. spin_unlock(&kvm_lock);
  880. kvm_free_irq_routing(kvm);
  881. kvm_io_bus_destroy(&kvm->pio_bus);
  882. kvm_io_bus_destroy(&kvm->mmio_bus);
  883. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  884. if (kvm->coalesced_mmio_ring != NULL)
  885. free_page((unsigned long)kvm->coalesced_mmio_ring);
  886. #endif
  887. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  888. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  889. #else
  890. kvm_arch_flush_shadow(kvm);
  891. #endif
  892. kvm_arch_destroy_vm(kvm);
  893. mmdrop(mm);
  894. }
  895. void kvm_get_kvm(struct kvm *kvm)
  896. {
  897. atomic_inc(&kvm->users_count);
  898. }
  899. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  900. void kvm_put_kvm(struct kvm *kvm)
  901. {
  902. if (atomic_dec_and_test(&kvm->users_count))
  903. kvm_destroy_vm(kvm);
  904. }
  905. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  906. static int kvm_vm_release(struct inode *inode, struct file *filp)
  907. {
  908. struct kvm *kvm = filp->private_data;
  909. kvm_irqfd_release(kvm);
  910. kvm_put_kvm(kvm);
  911. return 0;
  912. }
  913. /*
  914. * Allocate some memory and give it an address in the guest physical address
  915. * space.
  916. *
  917. * Discontiguous memory is allowed, mostly for framebuffers.
  918. *
  919. * Must be called holding mmap_sem for write.
  920. */
  921. int __kvm_set_memory_region(struct kvm *kvm,
  922. struct kvm_userspace_memory_region *mem,
  923. int user_alloc)
  924. {
  925. int r;
  926. gfn_t base_gfn;
  927. unsigned long npages;
  928. unsigned long i;
  929. struct kvm_memory_slot *memslot;
  930. struct kvm_memory_slot old, new;
  931. r = -EINVAL;
  932. /* General sanity checks */
  933. if (mem->memory_size & (PAGE_SIZE - 1))
  934. goto out;
  935. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  936. goto out;
  937. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  938. goto out;
  939. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  940. goto out;
  941. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  942. goto out;
  943. memslot = &kvm->memslots[mem->slot];
  944. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  945. npages = mem->memory_size >> PAGE_SHIFT;
  946. if (!npages)
  947. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  948. new = old = *memslot;
  949. new.base_gfn = base_gfn;
  950. new.npages = npages;
  951. new.flags = mem->flags;
  952. /* Disallow changing a memory slot's size. */
  953. r = -EINVAL;
  954. if (npages && old.npages && npages != old.npages)
  955. goto out_free;
  956. /* Check for overlaps */
  957. r = -EEXIST;
  958. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  959. struct kvm_memory_slot *s = &kvm->memslots[i];
  960. if (s == memslot || !s->npages)
  961. continue;
  962. if (!((base_gfn + npages <= s->base_gfn) ||
  963. (base_gfn >= s->base_gfn + s->npages)))
  964. goto out_free;
  965. }
  966. /* Free page dirty bitmap if unneeded */
  967. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  968. new.dirty_bitmap = NULL;
  969. r = -ENOMEM;
  970. /* Allocate if a slot is being created */
  971. #ifndef CONFIG_S390
  972. if (npages && !new.rmap) {
  973. new.rmap = vmalloc(npages * sizeof(struct page *));
  974. if (!new.rmap)
  975. goto out_free;
  976. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  977. new.user_alloc = user_alloc;
  978. /*
  979. * hva_to_rmmap() serialzies with the mmu_lock and to be
  980. * safe it has to ignore memslots with !user_alloc &&
  981. * !userspace_addr.
  982. */
  983. if (user_alloc)
  984. new.userspace_addr = mem->userspace_addr;
  985. else
  986. new.userspace_addr = 0;
  987. }
  988. if (!npages)
  989. goto skip_lpage;
  990. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  991. unsigned long ugfn;
  992. unsigned long j;
  993. int lpages;
  994. int level = i + 2;
  995. /* Avoid unused variable warning if no large pages */
  996. (void)level;
  997. if (new.lpage_info[i])
  998. continue;
  999. lpages = 1 + (base_gfn + npages - 1) /
  1000. KVM_PAGES_PER_HPAGE(level);
  1001. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  1002. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  1003. if (!new.lpage_info[i])
  1004. goto out_free;
  1005. memset(new.lpage_info[i], 0,
  1006. lpages * sizeof(*new.lpage_info[i]));
  1007. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  1008. new.lpage_info[i][0].write_count = 1;
  1009. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  1010. new.lpage_info[i][lpages - 1].write_count = 1;
  1011. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1012. /*
  1013. * If the gfn and userspace address are not aligned wrt each
  1014. * other, or if explicitly asked to, disable large page
  1015. * support for this slot
  1016. */
  1017. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  1018. !largepages_enabled)
  1019. for (j = 0; j < lpages; ++j)
  1020. new.lpage_info[i][j].write_count = 1;
  1021. }
  1022. skip_lpage:
  1023. /* Allocate page dirty bitmap if needed */
  1024. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1025. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1026. new.dirty_bitmap = vmalloc(dirty_bytes);
  1027. if (!new.dirty_bitmap)
  1028. goto out_free;
  1029. memset(new.dirty_bitmap, 0, dirty_bytes);
  1030. if (old.npages)
  1031. kvm_arch_flush_shadow(kvm);
  1032. }
  1033. #else /* not defined CONFIG_S390 */
  1034. new.user_alloc = user_alloc;
  1035. if (user_alloc)
  1036. new.userspace_addr = mem->userspace_addr;
  1037. #endif /* not defined CONFIG_S390 */
  1038. if (!npages)
  1039. kvm_arch_flush_shadow(kvm);
  1040. spin_lock(&kvm->mmu_lock);
  1041. if (mem->slot >= kvm->nmemslots)
  1042. kvm->nmemslots = mem->slot + 1;
  1043. *memslot = new;
  1044. spin_unlock(&kvm->mmu_lock);
  1045. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1046. if (r) {
  1047. spin_lock(&kvm->mmu_lock);
  1048. *memslot = old;
  1049. spin_unlock(&kvm->mmu_lock);
  1050. goto out_free;
  1051. }
  1052. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1053. /* Slot deletion case: we have to update the current slot */
  1054. spin_lock(&kvm->mmu_lock);
  1055. if (!npages)
  1056. *memslot = old;
  1057. spin_unlock(&kvm->mmu_lock);
  1058. #ifdef CONFIG_DMAR
  1059. /* map the pages in iommu page table */
  1060. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1061. if (r)
  1062. goto out;
  1063. #endif
  1064. return 0;
  1065. out_free:
  1066. kvm_free_physmem_slot(&new, &old);
  1067. out:
  1068. return r;
  1069. }
  1070. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1071. int kvm_set_memory_region(struct kvm *kvm,
  1072. struct kvm_userspace_memory_region *mem,
  1073. int user_alloc)
  1074. {
  1075. int r;
  1076. down_write(&kvm->slots_lock);
  1077. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1078. up_write(&kvm->slots_lock);
  1079. return r;
  1080. }
  1081. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1082. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1083. struct
  1084. kvm_userspace_memory_region *mem,
  1085. int user_alloc)
  1086. {
  1087. if (mem->slot >= KVM_MEMORY_SLOTS)
  1088. return -EINVAL;
  1089. return kvm_set_memory_region(kvm, mem, user_alloc);
  1090. }
  1091. int kvm_get_dirty_log(struct kvm *kvm,
  1092. struct kvm_dirty_log *log, int *is_dirty)
  1093. {
  1094. struct kvm_memory_slot *memslot;
  1095. int r, i;
  1096. int n;
  1097. unsigned long any = 0;
  1098. r = -EINVAL;
  1099. if (log->slot >= KVM_MEMORY_SLOTS)
  1100. goto out;
  1101. memslot = &kvm->memslots[log->slot];
  1102. r = -ENOENT;
  1103. if (!memslot->dirty_bitmap)
  1104. goto out;
  1105. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1106. for (i = 0; !any && i < n/sizeof(long); ++i)
  1107. any = memslot->dirty_bitmap[i];
  1108. r = -EFAULT;
  1109. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1110. goto out;
  1111. if (any)
  1112. *is_dirty = 1;
  1113. r = 0;
  1114. out:
  1115. return r;
  1116. }
  1117. void kvm_disable_largepages(void)
  1118. {
  1119. largepages_enabled = false;
  1120. }
  1121. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  1122. int is_error_page(struct page *page)
  1123. {
  1124. return page == bad_page;
  1125. }
  1126. EXPORT_SYMBOL_GPL(is_error_page);
  1127. int is_error_pfn(pfn_t pfn)
  1128. {
  1129. return pfn == bad_pfn;
  1130. }
  1131. EXPORT_SYMBOL_GPL(is_error_pfn);
  1132. static inline unsigned long bad_hva(void)
  1133. {
  1134. return PAGE_OFFSET;
  1135. }
  1136. int kvm_is_error_hva(unsigned long addr)
  1137. {
  1138. return addr == bad_hva();
  1139. }
  1140. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1141. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1142. {
  1143. int i;
  1144. for (i = 0; i < kvm->nmemslots; ++i) {
  1145. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1146. if (gfn >= memslot->base_gfn
  1147. && gfn < memslot->base_gfn + memslot->npages)
  1148. return memslot;
  1149. }
  1150. return NULL;
  1151. }
  1152. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1153. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1154. {
  1155. gfn = unalias_gfn(kvm, gfn);
  1156. return gfn_to_memslot_unaliased(kvm, gfn);
  1157. }
  1158. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1159. {
  1160. int i;
  1161. gfn = unalias_gfn(kvm, gfn);
  1162. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1163. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1164. if (gfn >= memslot->base_gfn
  1165. && gfn < memslot->base_gfn + memslot->npages)
  1166. return 1;
  1167. }
  1168. return 0;
  1169. }
  1170. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1171. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1172. {
  1173. struct kvm_memory_slot *slot;
  1174. gfn = unalias_gfn(kvm, gfn);
  1175. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1176. if (!slot)
  1177. return bad_hva();
  1178. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1179. }
  1180. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1181. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1182. {
  1183. struct page *page[1];
  1184. unsigned long addr;
  1185. int npages;
  1186. pfn_t pfn;
  1187. might_sleep();
  1188. addr = gfn_to_hva(kvm, gfn);
  1189. if (kvm_is_error_hva(addr)) {
  1190. get_page(bad_page);
  1191. return page_to_pfn(bad_page);
  1192. }
  1193. npages = get_user_pages_fast(addr, 1, 1, page);
  1194. if (unlikely(npages != 1)) {
  1195. struct vm_area_struct *vma;
  1196. down_read(&current->mm->mmap_sem);
  1197. vma = find_vma(current->mm, addr);
  1198. if (vma == NULL || addr < vma->vm_start ||
  1199. !(vma->vm_flags & VM_PFNMAP)) {
  1200. up_read(&current->mm->mmap_sem);
  1201. get_page(bad_page);
  1202. return page_to_pfn(bad_page);
  1203. }
  1204. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1205. up_read(&current->mm->mmap_sem);
  1206. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1207. } else
  1208. pfn = page_to_pfn(page[0]);
  1209. return pfn;
  1210. }
  1211. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1212. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1213. {
  1214. pfn_t pfn;
  1215. pfn = gfn_to_pfn(kvm, gfn);
  1216. if (!kvm_is_mmio_pfn(pfn))
  1217. return pfn_to_page(pfn);
  1218. WARN_ON(kvm_is_mmio_pfn(pfn));
  1219. get_page(bad_page);
  1220. return bad_page;
  1221. }
  1222. EXPORT_SYMBOL_GPL(gfn_to_page);
  1223. void kvm_release_page_clean(struct page *page)
  1224. {
  1225. kvm_release_pfn_clean(page_to_pfn(page));
  1226. }
  1227. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1228. void kvm_release_pfn_clean(pfn_t pfn)
  1229. {
  1230. if (!kvm_is_mmio_pfn(pfn))
  1231. put_page(pfn_to_page(pfn));
  1232. }
  1233. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1234. void kvm_release_page_dirty(struct page *page)
  1235. {
  1236. kvm_release_pfn_dirty(page_to_pfn(page));
  1237. }
  1238. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1239. void kvm_release_pfn_dirty(pfn_t pfn)
  1240. {
  1241. kvm_set_pfn_dirty(pfn);
  1242. kvm_release_pfn_clean(pfn);
  1243. }
  1244. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1245. void kvm_set_page_dirty(struct page *page)
  1246. {
  1247. kvm_set_pfn_dirty(page_to_pfn(page));
  1248. }
  1249. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1250. void kvm_set_pfn_dirty(pfn_t pfn)
  1251. {
  1252. if (!kvm_is_mmio_pfn(pfn)) {
  1253. struct page *page = pfn_to_page(pfn);
  1254. if (!PageReserved(page))
  1255. SetPageDirty(page);
  1256. }
  1257. }
  1258. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1259. void kvm_set_pfn_accessed(pfn_t pfn)
  1260. {
  1261. if (!kvm_is_mmio_pfn(pfn))
  1262. mark_page_accessed(pfn_to_page(pfn));
  1263. }
  1264. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1265. void kvm_get_pfn(pfn_t pfn)
  1266. {
  1267. if (!kvm_is_mmio_pfn(pfn))
  1268. get_page(pfn_to_page(pfn));
  1269. }
  1270. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1271. static int next_segment(unsigned long len, int offset)
  1272. {
  1273. if (len > PAGE_SIZE - offset)
  1274. return PAGE_SIZE - offset;
  1275. else
  1276. return len;
  1277. }
  1278. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1279. int len)
  1280. {
  1281. int r;
  1282. unsigned long addr;
  1283. addr = gfn_to_hva(kvm, gfn);
  1284. if (kvm_is_error_hva(addr))
  1285. return -EFAULT;
  1286. r = copy_from_user(data, (void __user *)addr + offset, len);
  1287. if (r)
  1288. return -EFAULT;
  1289. return 0;
  1290. }
  1291. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1292. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1293. {
  1294. gfn_t gfn = gpa >> PAGE_SHIFT;
  1295. int seg;
  1296. int offset = offset_in_page(gpa);
  1297. int ret;
  1298. while ((seg = next_segment(len, offset)) != 0) {
  1299. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1300. if (ret < 0)
  1301. return ret;
  1302. offset = 0;
  1303. len -= seg;
  1304. data += seg;
  1305. ++gfn;
  1306. }
  1307. return 0;
  1308. }
  1309. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1310. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1311. unsigned long len)
  1312. {
  1313. int r;
  1314. unsigned long addr;
  1315. gfn_t gfn = gpa >> PAGE_SHIFT;
  1316. int offset = offset_in_page(gpa);
  1317. addr = gfn_to_hva(kvm, gfn);
  1318. if (kvm_is_error_hva(addr))
  1319. return -EFAULT;
  1320. pagefault_disable();
  1321. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1322. pagefault_enable();
  1323. if (r)
  1324. return -EFAULT;
  1325. return 0;
  1326. }
  1327. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1328. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1329. int offset, int len)
  1330. {
  1331. int r;
  1332. unsigned long addr;
  1333. addr = gfn_to_hva(kvm, gfn);
  1334. if (kvm_is_error_hva(addr))
  1335. return -EFAULT;
  1336. r = copy_to_user((void __user *)addr + offset, data, len);
  1337. if (r)
  1338. return -EFAULT;
  1339. mark_page_dirty(kvm, gfn);
  1340. return 0;
  1341. }
  1342. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1343. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1344. unsigned long len)
  1345. {
  1346. gfn_t gfn = gpa >> PAGE_SHIFT;
  1347. int seg;
  1348. int offset = offset_in_page(gpa);
  1349. int ret;
  1350. while ((seg = next_segment(len, offset)) != 0) {
  1351. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1352. if (ret < 0)
  1353. return ret;
  1354. offset = 0;
  1355. len -= seg;
  1356. data += seg;
  1357. ++gfn;
  1358. }
  1359. return 0;
  1360. }
  1361. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1362. {
  1363. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1364. }
  1365. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1366. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1367. {
  1368. gfn_t gfn = gpa >> PAGE_SHIFT;
  1369. int seg;
  1370. int offset = offset_in_page(gpa);
  1371. int ret;
  1372. while ((seg = next_segment(len, offset)) != 0) {
  1373. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1374. if (ret < 0)
  1375. return ret;
  1376. offset = 0;
  1377. len -= seg;
  1378. ++gfn;
  1379. }
  1380. return 0;
  1381. }
  1382. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1383. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1384. {
  1385. struct kvm_memory_slot *memslot;
  1386. gfn = unalias_gfn(kvm, gfn);
  1387. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1388. if (memslot && memslot->dirty_bitmap) {
  1389. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1390. /* avoid RMW */
  1391. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1392. set_bit(rel_gfn, memslot->dirty_bitmap);
  1393. }
  1394. }
  1395. /*
  1396. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1397. */
  1398. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1399. {
  1400. DEFINE_WAIT(wait);
  1401. for (;;) {
  1402. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1403. if (kvm_arch_vcpu_runnable(vcpu)) {
  1404. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1405. break;
  1406. }
  1407. if (kvm_cpu_has_pending_timer(vcpu))
  1408. break;
  1409. if (signal_pending(current))
  1410. break;
  1411. vcpu_put(vcpu);
  1412. schedule();
  1413. vcpu_load(vcpu);
  1414. }
  1415. finish_wait(&vcpu->wq, &wait);
  1416. }
  1417. void kvm_resched(struct kvm_vcpu *vcpu)
  1418. {
  1419. if (!need_resched())
  1420. return;
  1421. cond_resched();
  1422. }
  1423. EXPORT_SYMBOL_GPL(kvm_resched);
  1424. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1425. {
  1426. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1427. struct page *page;
  1428. if (vmf->pgoff == 0)
  1429. page = virt_to_page(vcpu->run);
  1430. #ifdef CONFIG_X86
  1431. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1432. page = virt_to_page(vcpu->arch.pio_data);
  1433. #endif
  1434. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1435. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1436. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1437. #endif
  1438. else
  1439. return VM_FAULT_SIGBUS;
  1440. get_page(page);
  1441. vmf->page = page;
  1442. return 0;
  1443. }
  1444. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1445. .fault = kvm_vcpu_fault,
  1446. };
  1447. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1448. {
  1449. vma->vm_ops = &kvm_vcpu_vm_ops;
  1450. return 0;
  1451. }
  1452. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1453. {
  1454. struct kvm_vcpu *vcpu = filp->private_data;
  1455. kvm_put_kvm(vcpu->kvm);
  1456. return 0;
  1457. }
  1458. static struct file_operations kvm_vcpu_fops = {
  1459. .release = kvm_vcpu_release,
  1460. .unlocked_ioctl = kvm_vcpu_ioctl,
  1461. .compat_ioctl = kvm_vcpu_ioctl,
  1462. .mmap = kvm_vcpu_mmap,
  1463. };
  1464. /*
  1465. * Allocates an inode for the vcpu.
  1466. */
  1467. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1468. {
  1469. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1470. }
  1471. /*
  1472. * Creates some virtual cpus. Good luck creating more than one.
  1473. */
  1474. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1475. {
  1476. int r;
  1477. struct kvm_vcpu *vcpu, *v;
  1478. vcpu = kvm_arch_vcpu_create(kvm, id);
  1479. if (IS_ERR(vcpu))
  1480. return PTR_ERR(vcpu);
  1481. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1482. r = kvm_arch_vcpu_setup(vcpu);
  1483. if (r)
  1484. return r;
  1485. mutex_lock(&kvm->lock);
  1486. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1487. r = -EINVAL;
  1488. goto vcpu_destroy;
  1489. }
  1490. kvm_for_each_vcpu(r, v, kvm)
  1491. if (v->vcpu_id == id) {
  1492. r = -EEXIST;
  1493. goto vcpu_destroy;
  1494. }
  1495. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1496. /* Now it's all set up, let userspace reach it */
  1497. kvm_get_kvm(kvm);
  1498. r = create_vcpu_fd(vcpu);
  1499. if (r < 0) {
  1500. kvm_put_kvm(kvm);
  1501. goto vcpu_destroy;
  1502. }
  1503. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1504. smp_wmb();
  1505. atomic_inc(&kvm->online_vcpus);
  1506. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1507. if (kvm->bsp_vcpu_id == id)
  1508. kvm->bsp_vcpu = vcpu;
  1509. #endif
  1510. mutex_unlock(&kvm->lock);
  1511. return r;
  1512. vcpu_destroy:
  1513. mutex_unlock(&kvm->lock);
  1514. kvm_arch_vcpu_destroy(vcpu);
  1515. return r;
  1516. }
  1517. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1518. {
  1519. if (sigset) {
  1520. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1521. vcpu->sigset_active = 1;
  1522. vcpu->sigset = *sigset;
  1523. } else
  1524. vcpu->sigset_active = 0;
  1525. return 0;
  1526. }
  1527. #ifdef __KVM_HAVE_MSIX
  1528. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1529. struct kvm_assigned_msix_nr *entry_nr)
  1530. {
  1531. int r = 0;
  1532. struct kvm_assigned_dev_kernel *adev;
  1533. mutex_lock(&kvm->lock);
  1534. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1535. entry_nr->assigned_dev_id);
  1536. if (!adev) {
  1537. r = -EINVAL;
  1538. goto msix_nr_out;
  1539. }
  1540. if (adev->entries_nr == 0) {
  1541. adev->entries_nr = entry_nr->entry_nr;
  1542. if (adev->entries_nr == 0 ||
  1543. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1544. r = -EINVAL;
  1545. goto msix_nr_out;
  1546. }
  1547. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1548. entry_nr->entry_nr,
  1549. GFP_KERNEL);
  1550. if (!adev->host_msix_entries) {
  1551. r = -ENOMEM;
  1552. goto msix_nr_out;
  1553. }
  1554. adev->guest_msix_entries = kzalloc(
  1555. sizeof(struct kvm_guest_msix_entry) *
  1556. entry_nr->entry_nr, GFP_KERNEL);
  1557. if (!adev->guest_msix_entries) {
  1558. kfree(adev->host_msix_entries);
  1559. r = -ENOMEM;
  1560. goto msix_nr_out;
  1561. }
  1562. } else /* Not allowed set MSI-X number twice */
  1563. r = -EINVAL;
  1564. msix_nr_out:
  1565. mutex_unlock(&kvm->lock);
  1566. return r;
  1567. }
  1568. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1569. struct kvm_assigned_msix_entry *entry)
  1570. {
  1571. int r = 0, i;
  1572. struct kvm_assigned_dev_kernel *adev;
  1573. mutex_lock(&kvm->lock);
  1574. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1575. entry->assigned_dev_id);
  1576. if (!adev) {
  1577. r = -EINVAL;
  1578. goto msix_entry_out;
  1579. }
  1580. for (i = 0; i < adev->entries_nr; i++)
  1581. if (adev->guest_msix_entries[i].vector == 0 ||
  1582. adev->guest_msix_entries[i].entry == entry->entry) {
  1583. adev->guest_msix_entries[i].entry = entry->entry;
  1584. adev->guest_msix_entries[i].vector = entry->gsi;
  1585. adev->host_msix_entries[i].entry = entry->entry;
  1586. break;
  1587. }
  1588. if (i == adev->entries_nr) {
  1589. r = -ENOSPC;
  1590. goto msix_entry_out;
  1591. }
  1592. msix_entry_out:
  1593. mutex_unlock(&kvm->lock);
  1594. return r;
  1595. }
  1596. #endif
  1597. static long kvm_vcpu_ioctl(struct file *filp,
  1598. unsigned int ioctl, unsigned long arg)
  1599. {
  1600. struct kvm_vcpu *vcpu = filp->private_data;
  1601. void __user *argp = (void __user *)arg;
  1602. int r;
  1603. struct kvm_fpu *fpu = NULL;
  1604. struct kvm_sregs *kvm_sregs = NULL;
  1605. if (vcpu->kvm->mm != current->mm)
  1606. return -EIO;
  1607. switch (ioctl) {
  1608. case KVM_RUN:
  1609. r = -EINVAL;
  1610. if (arg)
  1611. goto out;
  1612. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1613. break;
  1614. case KVM_GET_REGS: {
  1615. struct kvm_regs *kvm_regs;
  1616. r = -ENOMEM;
  1617. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1618. if (!kvm_regs)
  1619. goto out;
  1620. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1621. if (r)
  1622. goto out_free1;
  1623. r = -EFAULT;
  1624. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1625. goto out_free1;
  1626. r = 0;
  1627. out_free1:
  1628. kfree(kvm_regs);
  1629. break;
  1630. }
  1631. case KVM_SET_REGS: {
  1632. struct kvm_regs *kvm_regs;
  1633. r = -ENOMEM;
  1634. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1635. if (!kvm_regs)
  1636. goto out;
  1637. r = -EFAULT;
  1638. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1639. goto out_free2;
  1640. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1641. if (r)
  1642. goto out_free2;
  1643. r = 0;
  1644. out_free2:
  1645. kfree(kvm_regs);
  1646. break;
  1647. }
  1648. case KVM_GET_SREGS: {
  1649. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1650. r = -ENOMEM;
  1651. if (!kvm_sregs)
  1652. goto out;
  1653. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1654. if (r)
  1655. goto out;
  1656. r = -EFAULT;
  1657. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1658. goto out;
  1659. r = 0;
  1660. break;
  1661. }
  1662. case KVM_SET_SREGS: {
  1663. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1664. r = -ENOMEM;
  1665. if (!kvm_sregs)
  1666. goto out;
  1667. r = -EFAULT;
  1668. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1669. goto out;
  1670. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1671. if (r)
  1672. goto out;
  1673. r = 0;
  1674. break;
  1675. }
  1676. case KVM_GET_MP_STATE: {
  1677. struct kvm_mp_state mp_state;
  1678. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1679. if (r)
  1680. goto out;
  1681. r = -EFAULT;
  1682. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1683. goto out;
  1684. r = 0;
  1685. break;
  1686. }
  1687. case KVM_SET_MP_STATE: {
  1688. struct kvm_mp_state mp_state;
  1689. r = -EFAULT;
  1690. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1691. goto out;
  1692. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1693. if (r)
  1694. goto out;
  1695. r = 0;
  1696. break;
  1697. }
  1698. case KVM_TRANSLATE: {
  1699. struct kvm_translation tr;
  1700. r = -EFAULT;
  1701. if (copy_from_user(&tr, argp, sizeof tr))
  1702. goto out;
  1703. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1704. if (r)
  1705. goto out;
  1706. r = -EFAULT;
  1707. if (copy_to_user(argp, &tr, sizeof tr))
  1708. goto out;
  1709. r = 0;
  1710. break;
  1711. }
  1712. case KVM_SET_GUEST_DEBUG: {
  1713. struct kvm_guest_debug dbg;
  1714. r = -EFAULT;
  1715. if (copy_from_user(&dbg, argp, sizeof dbg))
  1716. goto out;
  1717. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1718. if (r)
  1719. goto out;
  1720. r = 0;
  1721. break;
  1722. }
  1723. case KVM_SET_SIGNAL_MASK: {
  1724. struct kvm_signal_mask __user *sigmask_arg = argp;
  1725. struct kvm_signal_mask kvm_sigmask;
  1726. sigset_t sigset, *p;
  1727. p = NULL;
  1728. if (argp) {
  1729. r = -EFAULT;
  1730. if (copy_from_user(&kvm_sigmask, argp,
  1731. sizeof kvm_sigmask))
  1732. goto out;
  1733. r = -EINVAL;
  1734. if (kvm_sigmask.len != sizeof sigset)
  1735. goto out;
  1736. r = -EFAULT;
  1737. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1738. sizeof sigset))
  1739. goto out;
  1740. p = &sigset;
  1741. }
  1742. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1743. break;
  1744. }
  1745. case KVM_GET_FPU: {
  1746. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1747. r = -ENOMEM;
  1748. if (!fpu)
  1749. goto out;
  1750. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1751. if (r)
  1752. goto out;
  1753. r = -EFAULT;
  1754. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1755. goto out;
  1756. r = 0;
  1757. break;
  1758. }
  1759. case KVM_SET_FPU: {
  1760. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1761. r = -ENOMEM;
  1762. if (!fpu)
  1763. goto out;
  1764. r = -EFAULT;
  1765. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1766. goto out;
  1767. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1768. if (r)
  1769. goto out;
  1770. r = 0;
  1771. break;
  1772. }
  1773. default:
  1774. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1775. }
  1776. out:
  1777. kfree(fpu);
  1778. kfree(kvm_sregs);
  1779. return r;
  1780. }
  1781. static long kvm_vm_ioctl(struct file *filp,
  1782. unsigned int ioctl, unsigned long arg)
  1783. {
  1784. struct kvm *kvm = filp->private_data;
  1785. void __user *argp = (void __user *)arg;
  1786. int r;
  1787. if (kvm->mm != current->mm)
  1788. return -EIO;
  1789. switch (ioctl) {
  1790. case KVM_CREATE_VCPU:
  1791. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1792. if (r < 0)
  1793. goto out;
  1794. break;
  1795. case KVM_SET_USER_MEMORY_REGION: {
  1796. struct kvm_userspace_memory_region kvm_userspace_mem;
  1797. r = -EFAULT;
  1798. if (copy_from_user(&kvm_userspace_mem, argp,
  1799. sizeof kvm_userspace_mem))
  1800. goto out;
  1801. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1802. if (r)
  1803. goto out;
  1804. break;
  1805. }
  1806. case KVM_GET_DIRTY_LOG: {
  1807. struct kvm_dirty_log log;
  1808. r = -EFAULT;
  1809. if (copy_from_user(&log, argp, sizeof log))
  1810. goto out;
  1811. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1812. if (r)
  1813. goto out;
  1814. break;
  1815. }
  1816. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1817. case KVM_REGISTER_COALESCED_MMIO: {
  1818. struct kvm_coalesced_mmio_zone zone;
  1819. r = -EFAULT;
  1820. if (copy_from_user(&zone, argp, sizeof zone))
  1821. goto out;
  1822. r = -ENXIO;
  1823. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1824. if (r)
  1825. goto out;
  1826. r = 0;
  1827. break;
  1828. }
  1829. case KVM_UNREGISTER_COALESCED_MMIO: {
  1830. struct kvm_coalesced_mmio_zone zone;
  1831. r = -EFAULT;
  1832. if (copy_from_user(&zone, argp, sizeof zone))
  1833. goto out;
  1834. r = -ENXIO;
  1835. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1836. if (r)
  1837. goto out;
  1838. r = 0;
  1839. break;
  1840. }
  1841. #endif
  1842. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1843. case KVM_ASSIGN_PCI_DEVICE: {
  1844. struct kvm_assigned_pci_dev assigned_dev;
  1845. r = -EFAULT;
  1846. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1847. goto out;
  1848. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1849. if (r)
  1850. goto out;
  1851. break;
  1852. }
  1853. case KVM_ASSIGN_IRQ: {
  1854. r = -EOPNOTSUPP;
  1855. break;
  1856. }
  1857. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1858. case KVM_ASSIGN_DEV_IRQ: {
  1859. struct kvm_assigned_irq assigned_irq;
  1860. r = -EFAULT;
  1861. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1862. goto out;
  1863. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1864. if (r)
  1865. goto out;
  1866. break;
  1867. }
  1868. case KVM_DEASSIGN_DEV_IRQ: {
  1869. struct kvm_assigned_irq assigned_irq;
  1870. r = -EFAULT;
  1871. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1872. goto out;
  1873. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1874. if (r)
  1875. goto out;
  1876. break;
  1877. }
  1878. #endif
  1879. #endif
  1880. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1881. case KVM_DEASSIGN_PCI_DEVICE: {
  1882. struct kvm_assigned_pci_dev assigned_dev;
  1883. r = -EFAULT;
  1884. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1885. goto out;
  1886. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1887. if (r)
  1888. goto out;
  1889. break;
  1890. }
  1891. #endif
  1892. #ifdef KVM_CAP_IRQ_ROUTING
  1893. case KVM_SET_GSI_ROUTING: {
  1894. struct kvm_irq_routing routing;
  1895. struct kvm_irq_routing __user *urouting;
  1896. struct kvm_irq_routing_entry *entries;
  1897. r = -EFAULT;
  1898. if (copy_from_user(&routing, argp, sizeof(routing)))
  1899. goto out;
  1900. r = -EINVAL;
  1901. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1902. goto out;
  1903. if (routing.flags)
  1904. goto out;
  1905. r = -ENOMEM;
  1906. entries = vmalloc(routing.nr * sizeof(*entries));
  1907. if (!entries)
  1908. goto out;
  1909. r = -EFAULT;
  1910. urouting = argp;
  1911. if (copy_from_user(entries, urouting->entries,
  1912. routing.nr * sizeof(*entries)))
  1913. goto out_free_irq_routing;
  1914. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1915. routing.flags);
  1916. out_free_irq_routing:
  1917. vfree(entries);
  1918. break;
  1919. }
  1920. #endif /* KVM_CAP_IRQ_ROUTING */
  1921. #ifdef __KVM_HAVE_MSIX
  1922. case KVM_ASSIGN_SET_MSIX_NR: {
  1923. struct kvm_assigned_msix_nr entry_nr;
  1924. r = -EFAULT;
  1925. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1926. goto out;
  1927. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1928. if (r)
  1929. goto out;
  1930. break;
  1931. }
  1932. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1933. struct kvm_assigned_msix_entry entry;
  1934. r = -EFAULT;
  1935. if (copy_from_user(&entry, argp, sizeof entry))
  1936. goto out;
  1937. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1938. if (r)
  1939. goto out;
  1940. break;
  1941. }
  1942. #endif
  1943. case KVM_IRQFD: {
  1944. struct kvm_irqfd data;
  1945. r = -EFAULT;
  1946. if (copy_from_user(&data, argp, sizeof data))
  1947. goto out;
  1948. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1949. break;
  1950. }
  1951. case KVM_IOEVENTFD: {
  1952. struct kvm_ioeventfd data;
  1953. r = -EFAULT;
  1954. if (copy_from_user(&data, argp, sizeof data))
  1955. goto out;
  1956. r = kvm_ioeventfd(kvm, &data);
  1957. break;
  1958. }
  1959. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1960. case KVM_SET_BOOT_CPU_ID:
  1961. r = 0;
  1962. mutex_lock(&kvm->lock);
  1963. if (atomic_read(&kvm->online_vcpus) != 0)
  1964. r = -EBUSY;
  1965. else
  1966. kvm->bsp_vcpu_id = arg;
  1967. mutex_unlock(&kvm->lock);
  1968. break;
  1969. #endif
  1970. default:
  1971. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1972. }
  1973. out:
  1974. return r;
  1975. }
  1976. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1977. {
  1978. struct page *page[1];
  1979. unsigned long addr;
  1980. int npages;
  1981. gfn_t gfn = vmf->pgoff;
  1982. struct kvm *kvm = vma->vm_file->private_data;
  1983. addr = gfn_to_hva(kvm, gfn);
  1984. if (kvm_is_error_hva(addr))
  1985. return VM_FAULT_SIGBUS;
  1986. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1987. NULL);
  1988. if (unlikely(npages != 1))
  1989. return VM_FAULT_SIGBUS;
  1990. vmf->page = page[0];
  1991. return 0;
  1992. }
  1993. static struct vm_operations_struct kvm_vm_vm_ops = {
  1994. .fault = kvm_vm_fault,
  1995. };
  1996. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1997. {
  1998. vma->vm_ops = &kvm_vm_vm_ops;
  1999. return 0;
  2000. }
  2001. static struct file_operations kvm_vm_fops = {
  2002. .release = kvm_vm_release,
  2003. .unlocked_ioctl = kvm_vm_ioctl,
  2004. .compat_ioctl = kvm_vm_ioctl,
  2005. .mmap = kvm_vm_mmap,
  2006. };
  2007. static int kvm_dev_ioctl_create_vm(void)
  2008. {
  2009. int fd;
  2010. struct kvm *kvm;
  2011. kvm = kvm_create_vm();
  2012. if (IS_ERR(kvm))
  2013. return PTR_ERR(kvm);
  2014. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  2015. if (fd < 0)
  2016. kvm_put_kvm(kvm);
  2017. return fd;
  2018. }
  2019. static long kvm_dev_ioctl_check_extension_generic(long arg)
  2020. {
  2021. switch (arg) {
  2022. case KVM_CAP_USER_MEMORY:
  2023. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2024. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2025. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  2026. case KVM_CAP_SET_BOOT_CPU_ID:
  2027. #endif
  2028. return 1;
  2029. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  2030. case KVM_CAP_IRQ_ROUTING:
  2031. return KVM_MAX_IRQ_ROUTES;
  2032. #endif
  2033. default:
  2034. break;
  2035. }
  2036. return kvm_dev_ioctl_check_extension(arg);
  2037. }
  2038. static long kvm_dev_ioctl(struct file *filp,
  2039. unsigned int ioctl, unsigned long arg)
  2040. {
  2041. long r = -EINVAL;
  2042. switch (ioctl) {
  2043. case KVM_GET_API_VERSION:
  2044. r = -EINVAL;
  2045. if (arg)
  2046. goto out;
  2047. r = KVM_API_VERSION;
  2048. break;
  2049. case KVM_CREATE_VM:
  2050. r = -EINVAL;
  2051. if (arg)
  2052. goto out;
  2053. r = kvm_dev_ioctl_create_vm();
  2054. break;
  2055. case KVM_CHECK_EXTENSION:
  2056. r = kvm_dev_ioctl_check_extension_generic(arg);
  2057. break;
  2058. case KVM_GET_VCPU_MMAP_SIZE:
  2059. r = -EINVAL;
  2060. if (arg)
  2061. goto out;
  2062. r = PAGE_SIZE; /* struct kvm_run */
  2063. #ifdef CONFIG_X86
  2064. r += PAGE_SIZE; /* pio data page */
  2065. #endif
  2066. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2067. r += PAGE_SIZE; /* coalesced mmio ring page */
  2068. #endif
  2069. break;
  2070. case KVM_TRACE_ENABLE:
  2071. case KVM_TRACE_PAUSE:
  2072. case KVM_TRACE_DISABLE:
  2073. r = -EOPNOTSUPP;
  2074. break;
  2075. default:
  2076. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2077. }
  2078. out:
  2079. return r;
  2080. }
  2081. static struct file_operations kvm_chardev_ops = {
  2082. .unlocked_ioctl = kvm_dev_ioctl,
  2083. .compat_ioctl = kvm_dev_ioctl,
  2084. };
  2085. static struct miscdevice kvm_dev = {
  2086. KVM_MINOR,
  2087. "kvm",
  2088. &kvm_chardev_ops,
  2089. };
  2090. static void hardware_enable(void *junk)
  2091. {
  2092. int cpu = raw_smp_processor_id();
  2093. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2094. return;
  2095. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2096. kvm_arch_hardware_enable(NULL);
  2097. }
  2098. static void hardware_disable(void *junk)
  2099. {
  2100. int cpu = raw_smp_processor_id();
  2101. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2102. return;
  2103. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2104. kvm_arch_hardware_disable(NULL);
  2105. }
  2106. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2107. void *v)
  2108. {
  2109. int cpu = (long)v;
  2110. val &= ~CPU_TASKS_FROZEN;
  2111. switch (val) {
  2112. case CPU_DYING:
  2113. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2114. cpu);
  2115. hardware_disable(NULL);
  2116. break;
  2117. case CPU_UP_CANCELED:
  2118. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2119. cpu);
  2120. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2121. break;
  2122. case CPU_ONLINE:
  2123. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2124. cpu);
  2125. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2126. break;
  2127. }
  2128. return NOTIFY_OK;
  2129. }
  2130. asmlinkage void kvm_handle_fault_on_reboot(void)
  2131. {
  2132. if (kvm_rebooting)
  2133. /* spin while reset goes on */
  2134. while (true)
  2135. ;
  2136. /* Fault while not rebooting. We want the trace. */
  2137. BUG();
  2138. }
  2139. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2140. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2141. void *v)
  2142. {
  2143. /*
  2144. * Some (well, at least mine) BIOSes hang on reboot if
  2145. * in vmx root mode.
  2146. *
  2147. * And Intel TXT required VMX off for all cpu when system shutdown.
  2148. */
  2149. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2150. kvm_rebooting = true;
  2151. on_each_cpu(hardware_disable, NULL, 1);
  2152. return NOTIFY_OK;
  2153. }
  2154. static struct notifier_block kvm_reboot_notifier = {
  2155. .notifier_call = kvm_reboot,
  2156. .priority = 0,
  2157. };
  2158. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2159. {
  2160. memset(bus, 0, sizeof(*bus));
  2161. }
  2162. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2163. {
  2164. int i;
  2165. for (i = 0; i < bus->dev_count; i++) {
  2166. struct kvm_io_device *pos = bus->devs[i];
  2167. kvm_iodevice_destructor(pos);
  2168. }
  2169. }
  2170. /* kvm_io_bus_write - called under kvm->slots_lock */
  2171. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  2172. int len, const void *val)
  2173. {
  2174. int i;
  2175. for (i = 0; i < bus->dev_count; i++)
  2176. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  2177. return 0;
  2178. return -EOPNOTSUPP;
  2179. }
  2180. /* kvm_io_bus_read - called under kvm->slots_lock */
  2181. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  2182. {
  2183. int i;
  2184. for (i = 0; i < bus->dev_count; i++)
  2185. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  2186. return 0;
  2187. return -EOPNOTSUPP;
  2188. }
  2189. int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  2190. struct kvm_io_device *dev)
  2191. {
  2192. int ret;
  2193. down_write(&kvm->slots_lock);
  2194. ret = __kvm_io_bus_register_dev(bus, dev);
  2195. up_write(&kvm->slots_lock);
  2196. return ret;
  2197. }
  2198. /* An unlocked version. Caller must have write lock on slots_lock. */
  2199. int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  2200. struct kvm_io_device *dev)
  2201. {
  2202. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2203. return -ENOSPC;
  2204. bus->devs[bus->dev_count++] = dev;
  2205. return 0;
  2206. }
  2207. void kvm_io_bus_unregister_dev(struct kvm *kvm,
  2208. struct kvm_io_bus *bus,
  2209. struct kvm_io_device *dev)
  2210. {
  2211. down_write(&kvm->slots_lock);
  2212. __kvm_io_bus_unregister_dev(bus, dev);
  2213. up_write(&kvm->slots_lock);
  2214. }
  2215. /* An unlocked version. Caller must have write lock on slots_lock. */
  2216. void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
  2217. struct kvm_io_device *dev)
  2218. {
  2219. int i;
  2220. for (i = 0; i < bus->dev_count; i++)
  2221. if (bus->devs[i] == dev) {
  2222. bus->devs[i] = bus->devs[--bus->dev_count];
  2223. break;
  2224. }
  2225. }
  2226. static struct notifier_block kvm_cpu_notifier = {
  2227. .notifier_call = kvm_cpu_hotplug,
  2228. .priority = 20, /* must be > scheduler priority */
  2229. };
  2230. static int vm_stat_get(void *_offset, u64 *val)
  2231. {
  2232. unsigned offset = (long)_offset;
  2233. struct kvm *kvm;
  2234. *val = 0;
  2235. spin_lock(&kvm_lock);
  2236. list_for_each_entry(kvm, &vm_list, vm_list)
  2237. *val += *(u32 *)((void *)kvm + offset);
  2238. spin_unlock(&kvm_lock);
  2239. return 0;
  2240. }
  2241. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2242. static int vcpu_stat_get(void *_offset, u64 *val)
  2243. {
  2244. unsigned offset = (long)_offset;
  2245. struct kvm *kvm;
  2246. struct kvm_vcpu *vcpu;
  2247. int i;
  2248. *val = 0;
  2249. spin_lock(&kvm_lock);
  2250. list_for_each_entry(kvm, &vm_list, vm_list)
  2251. kvm_for_each_vcpu(i, vcpu, kvm)
  2252. *val += *(u32 *)((void *)vcpu + offset);
  2253. spin_unlock(&kvm_lock);
  2254. return 0;
  2255. }
  2256. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2257. static struct file_operations *stat_fops[] = {
  2258. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2259. [KVM_STAT_VM] = &vm_stat_fops,
  2260. };
  2261. static void kvm_init_debug(void)
  2262. {
  2263. struct kvm_stats_debugfs_item *p;
  2264. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2265. for (p = debugfs_entries; p->name; ++p)
  2266. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2267. (void *)(long)p->offset,
  2268. stat_fops[p->kind]);
  2269. }
  2270. static void kvm_exit_debug(void)
  2271. {
  2272. struct kvm_stats_debugfs_item *p;
  2273. for (p = debugfs_entries; p->name; ++p)
  2274. debugfs_remove(p->dentry);
  2275. debugfs_remove(kvm_debugfs_dir);
  2276. }
  2277. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2278. {
  2279. hardware_disable(NULL);
  2280. return 0;
  2281. }
  2282. static int kvm_resume(struct sys_device *dev)
  2283. {
  2284. hardware_enable(NULL);
  2285. return 0;
  2286. }
  2287. static struct sysdev_class kvm_sysdev_class = {
  2288. .name = "kvm",
  2289. .suspend = kvm_suspend,
  2290. .resume = kvm_resume,
  2291. };
  2292. static struct sys_device kvm_sysdev = {
  2293. .id = 0,
  2294. .cls = &kvm_sysdev_class,
  2295. };
  2296. struct page *bad_page;
  2297. pfn_t bad_pfn;
  2298. static inline
  2299. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2300. {
  2301. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2302. }
  2303. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2304. {
  2305. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2306. kvm_arch_vcpu_load(vcpu, cpu);
  2307. }
  2308. static void kvm_sched_out(struct preempt_notifier *pn,
  2309. struct task_struct *next)
  2310. {
  2311. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2312. kvm_arch_vcpu_put(vcpu);
  2313. }
  2314. int kvm_init(void *opaque, unsigned int vcpu_size,
  2315. struct module *module)
  2316. {
  2317. int r;
  2318. int cpu;
  2319. kvm_init_debug();
  2320. r = kvm_arch_init(opaque);
  2321. if (r)
  2322. goto out_fail;
  2323. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2324. if (bad_page == NULL) {
  2325. r = -ENOMEM;
  2326. goto out;
  2327. }
  2328. bad_pfn = page_to_pfn(bad_page);
  2329. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2330. r = -ENOMEM;
  2331. goto out_free_0;
  2332. }
  2333. r = kvm_arch_hardware_setup();
  2334. if (r < 0)
  2335. goto out_free_0a;
  2336. for_each_online_cpu(cpu) {
  2337. smp_call_function_single(cpu,
  2338. kvm_arch_check_processor_compat,
  2339. &r, 1);
  2340. if (r < 0)
  2341. goto out_free_1;
  2342. }
  2343. on_each_cpu(hardware_enable, NULL, 1);
  2344. r = register_cpu_notifier(&kvm_cpu_notifier);
  2345. if (r)
  2346. goto out_free_2;
  2347. register_reboot_notifier(&kvm_reboot_notifier);
  2348. r = sysdev_class_register(&kvm_sysdev_class);
  2349. if (r)
  2350. goto out_free_3;
  2351. r = sysdev_register(&kvm_sysdev);
  2352. if (r)
  2353. goto out_free_4;
  2354. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2355. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2356. __alignof__(struct kvm_vcpu),
  2357. 0, NULL);
  2358. if (!kvm_vcpu_cache) {
  2359. r = -ENOMEM;
  2360. goto out_free_5;
  2361. }
  2362. kvm_chardev_ops.owner = module;
  2363. kvm_vm_fops.owner = module;
  2364. kvm_vcpu_fops.owner = module;
  2365. r = misc_register(&kvm_dev);
  2366. if (r) {
  2367. printk(KERN_ERR "kvm: misc device register failed\n");
  2368. goto out_free;
  2369. }
  2370. kvm_preempt_ops.sched_in = kvm_sched_in;
  2371. kvm_preempt_ops.sched_out = kvm_sched_out;
  2372. return 0;
  2373. out_free:
  2374. kmem_cache_destroy(kvm_vcpu_cache);
  2375. out_free_5:
  2376. sysdev_unregister(&kvm_sysdev);
  2377. out_free_4:
  2378. sysdev_class_unregister(&kvm_sysdev_class);
  2379. out_free_3:
  2380. unregister_reboot_notifier(&kvm_reboot_notifier);
  2381. unregister_cpu_notifier(&kvm_cpu_notifier);
  2382. out_free_2:
  2383. on_each_cpu(hardware_disable, NULL, 1);
  2384. out_free_1:
  2385. kvm_arch_hardware_unsetup();
  2386. out_free_0a:
  2387. free_cpumask_var(cpus_hardware_enabled);
  2388. out_free_0:
  2389. __free_page(bad_page);
  2390. out:
  2391. kvm_arch_exit();
  2392. out_fail:
  2393. kvm_exit_debug();
  2394. return r;
  2395. }
  2396. EXPORT_SYMBOL_GPL(kvm_init);
  2397. void kvm_exit(void)
  2398. {
  2399. tracepoint_synchronize_unregister();
  2400. misc_deregister(&kvm_dev);
  2401. kmem_cache_destroy(kvm_vcpu_cache);
  2402. sysdev_unregister(&kvm_sysdev);
  2403. sysdev_class_unregister(&kvm_sysdev_class);
  2404. unregister_reboot_notifier(&kvm_reboot_notifier);
  2405. unregister_cpu_notifier(&kvm_cpu_notifier);
  2406. on_each_cpu(hardware_disable, NULL, 1);
  2407. kvm_arch_hardware_unsetup();
  2408. kvm_arch_exit();
  2409. kvm_exit_debug();
  2410. free_cpumask_var(cpus_hardware_enabled);
  2411. __free_page(bad_page);
  2412. }
  2413. EXPORT_SYMBOL_GPL(kvm_exit);