memory.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. unsigned long highest_memmap_pfn __read_mostly;
  99. /*
  100. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  101. */
  102. static int __init init_zero_pfn(void)
  103. {
  104. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  105. return 0;
  106. }
  107. core_initcall(init_zero_pfn);
  108. /*
  109. * If a p?d_bad entry is found while walking page tables, report
  110. * the error, before resetting entry to p?d_none. Usually (but
  111. * very seldom) called out from the p?d_none_or_clear_bad macros.
  112. */
  113. void pgd_clear_bad(pgd_t *pgd)
  114. {
  115. pgd_ERROR(*pgd);
  116. pgd_clear(pgd);
  117. }
  118. void pud_clear_bad(pud_t *pud)
  119. {
  120. pud_ERROR(*pud);
  121. pud_clear(pud);
  122. }
  123. void pmd_clear_bad(pmd_t *pmd)
  124. {
  125. pmd_ERROR(*pmd);
  126. pmd_clear(pmd);
  127. }
  128. /*
  129. * Note: this doesn't free the actual pages themselves. That
  130. * has been handled earlier when unmapping all the memory regions.
  131. */
  132. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  133. unsigned long addr)
  134. {
  135. pgtable_t token = pmd_pgtable(*pmd);
  136. pmd_clear(pmd);
  137. pte_free_tlb(tlb, token, addr);
  138. tlb->mm->nr_ptes--;
  139. }
  140. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  141. unsigned long addr, unsigned long end,
  142. unsigned long floor, unsigned long ceiling)
  143. {
  144. pmd_t *pmd;
  145. unsigned long next;
  146. unsigned long start;
  147. start = addr;
  148. pmd = pmd_offset(pud, addr);
  149. do {
  150. next = pmd_addr_end(addr, end);
  151. if (pmd_none_or_clear_bad(pmd))
  152. continue;
  153. free_pte_range(tlb, pmd, addr);
  154. } while (pmd++, addr = next, addr != end);
  155. start &= PUD_MASK;
  156. if (start < floor)
  157. return;
  158. if (ceiling) {
  159. ceiling &= PUD_MASK;
  160. if (!ceiling)
  161. return;
  162. }
  163. if (end - 1 > ceiling - 1)
  164. return;
  165. pmd = pmd_offset(pud, start);
  166. pud_clear(pud);
  167. pmd_free_tlb(tlb, pmd, start);
  168. }
  169. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  170. unsigned long addr, unsigned long end,
  171. unsigned long floor, unsigned long ceiling)
  172. {
  173. pud_t *pud;
  174. unsigned long next;
  175. unsigned long start;
  176. start = addr;
  177. pud = pud_offset(pgd, addr);
  178. do {
  179. next = pud_addr_end(addr, end);
  180. if (pud_none_or_clear_bad(pud))
  181. continue;
  182. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  183. } while (pud++, addr = next, addr != end);
  184. start &= PGDIR_MASK;
  185. if (start < floor)
  186. return;
  187. if (ceiling) {
  188. ceiling &= PGDIR_MASK;
  189. if (!ceiling)
  190. return;
  191. }
  192. if (end - 1 > ceiling - 1)
  193. return;
  194. pud = pud_offset(pgd, start);
  195. pgd_clear(pgd);
  196. pud_free_tlb(tlb, pud, start);
  197. }
  198. /*
  199. * This function frees user-level page tables of a process.
  200. *
  201. * Must be called with pagetable lock held.
  202. */
  203. void free_pgd_range(struct mmu_gather *tlb,
  204. unsigned long addr, unsigned long end,
  205. unsigned long floor, unsigned long ceiling)
  206. {
  207. pgd_t *pgd;
  208. unsigned long next;
  209. unsigned long start;
  210. /*
  211. * The next few lines have given us lots of grief...
  212. *
  213. * Why are we testing PMD* at this top level? Because often
  214. * there will be no work to do at all, and we'd prefer not to
  215. * go all the way down to the bottom just to discover that.
  216. *
  217. * Why all these "- 1"s? Because 0 represents both the bottom
  218. * of the address space and the top of it (using -1 for the
  219. * top wouldn't help much: the masks would do the wrong thing).
  220. * The rule is that addr 0 and floor 0 refer to the bottom of
  221. * the address space, but end 0 and ceiling 0 refer to the top
  222. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  223. * that end 0 case should be mythical).
  224. *
  225. * Wherever addr is brought up or ceiling brought down, we must
  226. * be careful to reject "the opposite 0" before it confuses the
  227. * subsequent tests. But what about where end is brought down
  228. * by PMD_SIZE below? no, end can't go down to 0 there.
  229. *
  230. * Whereas we round start (addr) and ceiling down, by different
  231. * masks at different levels, in order to test whether a table
  232. * now has no other vmas using it, so can be freed, we don't
  233. * bother to round floor or end up - the tests don't need that.
  234. */
  235. addr &= PMD_MASK;
  236. if (addr < floor) {
  237. addr += PMD_SIZE;
  238. if (!addr)
  239. return;
  240. }
  241. if (ceiling) {
  242. ceiling &= PMD_MASK;
  243. if (!ceiling)
  244. return;
  245. }
  246. if (end - 1 > ceiling - 1)
  247. end -= PMD_SIZE;
  248. if (addr > end - 1)
  249. return;
  250. start = addr;
  251. pgd = pgd_offset(tlb->mm, addr);
  252. do {
  253. next = pgd_addr_end(addr, end);
  254. if (pgd_none_or_clear_bad(pgd))
  255. continue;
  256. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  257. } while (pgd++, addr = next, addr != end);
  258. }
  259. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  260. unsigned long floor, unsigned long ceiling)
  261. {
  262. while (vma) {
  263. struct vm_area_struct *next = vma->vm_next;
  264. unsigned long addr = vma->vm_start;
  265. /*
  266. * Hide vma from rmap and truncate_pagecache before freeing
  267. * pgtables
  268. */
  269. anon_vma_unlink(vma);
  270. unlink_file_vma(vma);
  271. if (is_vm_hugetlb_page(vma)) {
  272. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  273. floor, next? next->vm_start: ceiling);
  274. } else {
  275. /*
  276. * Optimization: gather nearby vmas into one call down
  277. */
  278. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  279. && !is_vm_hugetlb_page(next)) {
  280. vma = next;
  281. next = vma->vm_next;
  282. anon_vma_unlink(vma);
  283. unlink_file_vma(vma);
  284. }
  285. free_pgd_range(tlb, addr, vma->vm_end,
  286. floor, next? next->vm_start: ceiling);
  287. }
  288. vma = next;
  289. }
  290. }
  291. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  292. {
  293. pgtable_t new = pte_alloc_one(mm, address);
  294. if (!new)
  295. return -ENOMEM;
  296. /*
  297. * Ensure all pte setup (eg. pte page lock and page clearing) are
  298. * visible before the pte is made visible to other CPUs by being
  299. * put into page tables.
  300. *
  301. * The other side of the story is the pointer chasing in the page
  302. * table walking code (when walking the page table without locking;
  303. * ie. most of the time). Fortunately, these data accesses consist
  304. * of a chain of data-dependent loads, meaning most CPUs (alpha
  305. * being the notable exception) will already guarantee loads are
  306. * seen in-order. See the alpha page table accessors for the
  307. * smp_read_barrier_depends() barriers in page table walking code.
  308. */
  309. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  310. spin_lock(&mm->page_table_lock);
  311. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  312. mm->nr_ptes++;
  313. pmd_populate(mm, pmd, new);
  314. new = NULL;
  315. }
  316. spin_unlock(&mm->page_table_lock);
  317. if (new)
  318. pte_free(mm, new);
  319. return 0;
  320. }
  321. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  322. {
  323. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  324. if (!new)
  325. return -ENOMEM;
  326. smp_wmb(); /* See comment in __pte_alloc */
  327. spin_lock(&init_mm.page_table_lock);
  328. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  329. pmd_populate_kernel(&init_mm, pmd, new);
  330. new = NULL;
  331. }
  332. spin_unlock(&init_mm.page_table_lock);
  333. if (new)
  334. pte_free_kernel(&init_mm, new);
  335. return 0;
  336. }
  337. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  338. {
  339. if (file_rss)
  340. add_mm_counter(mm, file_rss, file_rss);
  341. if (anon_rss)
  342. add_mm_counter(mm, anon_rss, anon_rss);
  343. }
  344. /*
  345. * This function is called to print an error when a bad pte
  346. * is found. For example, we might have a PFN-mapped pte in
  347. * a region that doesn't allow it.
  348. *
  349. * The calling function must still handle the error.
  350. */
  351. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  352. pte_t pte, struct page *page)
  353. {
  354. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  355. pud_t *pud = pud_offset(pgd, addr);
  356. pmd_t *pmd = pmd_offset(pud, addr);
  357. struct address_space *mapping;
  358. pgoff_t index;
  359. static unsigned long resume;
  360. static unsigned long nr_shown;
  361. static unsigned long nr_unshown;
  362. /*
  363. * Allow a burst of 60 reports, then keep quiet for that minute;
  364. * or allow a steady drip of one report per second.
  365. */
  366. if (nr_shown == 60) {
  367. if (time_before(jiffies, resume)) {
  368. nr_unshown++;
  369. return;
  370. }
  371. if (nr_unshown) {
  372. printk(KERN_ALERT
  373. "BUG: Bad page map: %lu messages suppressed\n",
  374. nr_unshown);
  375. nr_unshown = 0;
  376. }
  377. nr_shown = 0;
  378. }
  379. if (nr_shown++ == 0)
  380. resume = jiffies + 60 * HZ;
  381. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  382. index = linear_page_index(vma, addr);
  383. printk(KERN_ALERT
  384. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  385. current->comm,
  386. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  387. if (page) {
  388. printk(KERN_ALERT
  389. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  390. page, (void *)page->flags, page_count(page),
  391. page_mapcount(page), page->mapping, page->index);
  392. }
  393. printk(KERN_ALERT
  394. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  395. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  396. /*
  397. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  398. */
  399. if (vma->vm_ops)
  400. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  401. (unsigned long)vma->vm_ops->fault);
  402. if (vma->vm_file && vma->vm_file->f_op)
  403. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  404. (unsigned long)vma->vm_file->f_op->mmap);
  405. dump_stack();
  406. add_taint(TAINT_BAD_PAGE);
  407. }
  408. static inline int is_cow_mapping(unsigned int flags)
  409. {
  410. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  411. }
  412. #ifndef is_zero_pfn
  413. static inline int is_zero_pfn(unsigned long pfn)
  414. {
  415. return pfn == zero_pfn;
  416. }
  417. #endif
  418. #ifndef my_zero_pfn
  419. static inline unsigned long my_zero_pfn(unsigned long addr)
  420. {
  421. return zero_pfn;
  422. }
  423. #endif
  424. /*
  425. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  426. *
  427. * "Special" mappings do not wish to be associated with a "struct page" (either
  428. * it doesn't exist, or it exists but they don't want to touch it). In this
  429. * case, NULL is returned here. "Normal" mappings do have a struct page.
  430. *
  431. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  432. * pte bit, in which case this function is trivial. Secondly, an architecture
  433. * may not have a spare pte bit, which requires a more complicated scheme,
  434. * described below.
  435. *
  436. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  437. * special mapping (even if there are underlying and valid "struct pages").
  438. * COWed pages of a VM_PFNMAP are always normal.
  439. *
  440. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  441. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  442. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  443. * mapping will always honor the rule
  444. *
  445. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  446. *
  447. * And for normal mappings this is false.
  448. *
  449. * This restricts such mappings to be a linear translation from virtual address
  450. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  451. * as the vma is not a COW mapping; in that case, we know that all ptes are
  452. * special (because none can have been COWed).
  453. *
  454. *
  455. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  456. *
  457. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  458. * page" backing, however the difference is that _all_ pages with a struct
  459. * page (that is, those where pfn_valid is true) are refcounted and considered
  460. * normal pages by the VM. The disadvantage is that pages are refcounted
  461. * (which can be slower and simply not an option for some PFNMAP users). The
  462. * advantage is that we don't have to follow the strict linearity rule of
  463. * PFNMAP mappings in order to support COWable mappings.
  464. *
  465. */
  466. #ifdef __HAVE_ARCH_PTE_SPECIAL
  467. # define HAVE_PTE_SPECIAL 1
  468. #else
  469. # define HAVE_PTE_SPECIAL 0
  470. #endif
  471. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  472. pte_t pte)
  473. {
  474. unsigned long pfn = pte_pfn(pte);
  475. if (HAVE_PTE_SPECIAL) {
  476. if (likely(!pte_special(pte)))
  477. goto check_pfn;
  478. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  479. return NULL;
  480. if (!is_zero_pfn(pfn))
  481. print_bad_pte(vma, addr, pte, NULL);
  482. return NULL;
  483. }
  484. /* !HAVE_PTE_SPECIAL case follows: */
  485. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  486. if (vma->vm_flags & VM_MIXEDMAP) {
  487. if (!pfn_valid(pfn))
  488. return NULL;
  489. goto out;
  490. } else {
  491. unsigned long off;
  492. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  493. if (pfn == vma->vm_pgoff + off)
  494. return NULL;
  495. if (!is_cow_mapping(vma->vm_flags))
  496. return NULL;
  497. }
  498. }
  499. if (is_zero_pfn(pfn))
  500. return NULL;
  501. check_pfn:
  502. if (unlikely(pfn > highest_memmap_pfn)) {
  503. print_bad_pte(vma, addr, pte, NULL);
  504. return NULL;
  505. }
  506. /*
  507. * NOTE! We still have PageReserved() pages in the page tables.
  508. * eg. VDSO mappings can cause them to exist.
  509. */
  510. out:
  511. return pfn_to_page(pfn);
  512. }
  513. /*
  514. * copy one vm_area from one task to the other. Assumes the page tables
  515. * already present in the new task to be cleared in the whole range
  516. * covered by this vma.
  517. */
  518. static inline void
  519. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  520. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  521. unsigned long addr, int *rss)
  522. {
  523. unsigned long vm_flags = vma->vm_flags;
  524. pte_t pte = *src_pte;
  525. struct page *page;
  526. /* pte contains position in swap or file, so copy. */
  527. if (unlikely(!pte_present(pte))) {
  528. if (!pte_file(pte)) {
  529. swp_entry_t entry = pte_to_swp_entry(pte);
  530. swap_duplicate(entry);
  531. /* make sure dst_mm is on swapoff's mmlist. */
  532. if (unlikely(list_empty(&dst_mm->mmlist))) {
  533. spin_lock(&mmlist_lock);
  534. if (list_empty(&dst_mm->mmlist))
  535. list_add(&dst_mm->mmlist,
  536. &src_mm->mmlist);
  537. spin_unlock(&mmlist_lock);
  538. }
  539. if (is_write_migration_entry(entry) &&
  540. is_cow_mapping(vm_flags)) {
  541. /*
  542. * COW mappings require pages in both parent
  543. * and child to be set to read.
  544. */
  545. make_migration_entry_read(&entry);
  546. pte = swp_entry_to_pte(entry);
  547. set_pte_at(src_mm, addr, src_pte, pte);
  548. }
  549. }
  550. goto out_set_pte;
  551. }
  552. /*
  553. * If it's a COW mapping, write protect it both
  554. * in the parent and the child
  555. */
  556. if (is_cow_mapping(vm_flags)) {
  557. ptep_set_wrprotect(src_mm, addr, src_pte);
  558. pte = pte_wrprotect(pte);
  559. }
  560. /*
  561. * If it's a shared mapping, mark it clean in
  562. * the child
  563. */
  564. if (vm_flags & VM_SHARED)
  565. pte = pte_mkclean(pte);
  566. pte = pte_mkold(pte);
  567. page = vm_normal_page(vma, addr, pte);
  568. if (page) {
  569. get_page(page);
  570. page_dup_rmap(page);
  571. rss[PageAnon(page)]++;
  572. }
  573. out_set_pte:
  574. set_pte_at(dst_mm, addr, dst_pte, pte);
  575. }
  576. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  577. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  578. unsigned long addr, unsigned long end)
  579. {
  580. pte_t *src_pte, *dst_pte;
  581. spinlock_t *src_ptl, *dst_ptl;
  582. int progress = 0;
  583. int rss[2];
  584. again:
  585. rss[1] = rss[0] = 0;
  586. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  587. if (!dst_pte)
  588. return -ENOMEM;
  589. src_pte = pte_offset_map_nested(src_pmd, addr);
  590. src_ptl = pte_lockptr(src_mm, src_pmd);
  591. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  592. arch_enter_lazy_mmu_mode();
  593. do {
  594. /*
  595. * We are holding two locks at this point - either of them
  596. * could generate latencies in another task on another CPU.
  597. */
  598. if (progress >= 32) {
  599. progress = 0;
  600. if (need_resched() ||
  601. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  602. break;
  603. }
  604. if (pte_none(*src_pte)) {
  605. progress++;
  606. continue;
  607. }
  608. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  609. progress += 8;
  610. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  611. arch_leave_lazy_mmu_mode();
  612. spin_unlock(src_ptl);
  613. pte_unmap_nested(src_pte - 1);
  614. add_mm_rss(dst_mm, rss[0], rss[1]);
  615. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  616. cond_resched();
  617. if (addr != end)
  618. goto again;
  619. return 0;
  620. }
  621. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  622. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  623. unsigned long addr, unsigned long end)
  624. {
  625. pmd_t *src_pmd, *dst_pmd;
  626. unsigned long next;
  627. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  628. if (!dst_pmd)
  629. return -ENOMEM;
  630. src_pmd = pmd_offset(src_pud, addr);
  631. do {
  632. next = pmd_addr_end(addr, end);
  633. if (pmd_none_or_clear_bad(src_pmd))
  634. continue;
  635. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  636. vma, addr, next))
  637. return -ENOMEM;
  638. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  639. return 0;
  640. }
  641. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  642. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  643. unsigned long addr, unsigned long end)
  644. {
  645. pud_t *src_pud, *dst_pud;
  646. unsigned long next;
  647. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  648. if (!dst_pud)
  649. return -ENOMEM;
  650. src_pud = pud_offset(src_pgd, addr);
  651. do {
  652. next = pud_addr_end(addr, end);
  653. if (pud_none_or_clear_bad(src_pud))
  654. continue;
  655. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  656. vma, addr, next))
  657. return -ENOMEM;
  658. } while (dst_pud++, src_pud++, addr = next, addr != end);
  659. return 0;
  660. }
  661. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  662. struct vm_area_struct *vma)
  663. {
  664. pgd_t *src_pgd, *dst_pgd;
  665. unsigned long next;
  666. unsigned long addr = vma->vm_start;
  667. unsigned long end = vma->vm_end;
  668. int ret;
  669. /*
  670. * Don't copy ptes where a page fault will fill them correctly.
  671. * Fork becomes much lighter when there are big shared or private
  672. * readonly mappings. The tradeoff is that copy_page_range is more
  673. * efficient than faulting.
  674. */
  675. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  676. if (!vma->anon_vma)
  677. return 0;
  678. }
  679. if (is_vm_hugetlb_page(vma))
  680. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  681. if (unlikely(is_pfn_mapping(vma))) {
  682. /*
  683. * We do not free on error cases below as remove_vma
  684. * gets called on error from higher level routine
  685. */
  686. ret = track_pfn_vma_copy(vma);
  687. if (ret)
  688. return ret;
  689. }
  690. /*
  691. * We need to invalidate the secondary MMU mappings only when
  692. * there could be a permission downgrade on the ptes of the
  693. * parent mm. And a permission downgrade will only happen if
  694. * is_cow_mapping() returns true.
  695. */
  696. if (is_cow_mapping(vma->vm_flags))
  697. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  698. ret = 0;
  699. dst_pgd = pgd_offset(dst_mm, addr);
  700. src_pgd = pgd_offset(src_mm, addr);
  701. do {
  702. next = pgd_addr_end(addr, end);
  703. if (pgd_none_or_clear_bad(src_pgd))
  704. continue;
  705. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  706. vma, addr, next))) {
  707. ret = -ENOMEM;
  708. break;
  709. }
  710. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  711. if (is_cow_mapping(vma->vm_flags))
  712. mmu_notifier_invalidate_range_end(src_mm,
  713. vma->vm_start, end);
  714. return ret;
  715. }
  716. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  717. struct vm_area_struct *vma, pmd_t *pmd,
  718. unsigned long addr, unsigned long end,
  719. long *zap_work, struct zap_details *details)
  720. {
  721. struct mm_struct *mm = tlb->mm;
  722. pte_t *pte;
  723. spinlock_t *ptl;
  724. int file_rss = 0;
  725. int anon_rss = 0;
  726. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  727. arch_enter_lazy_mmu_mode();
  728. do {
  729. pte_t ptent = *pte;
  730. if (pte_none(ptent)) {
  731. (*zap_work)--;
  732. continue;
  733. }
  734. (*zap_work) -= PAGE_SIZE;
  735. if (pte_present(ptent)) {
  736. struct page *page;
  737. page = vm_normal_page(vma, addr, ptent);
  738. if (unlikely(details) && page) {
  739. /*
  740. * unmap_shared_mapping_pages() wants to
  741. * invalidate cache without truncating:
  742. * unmap shared but keep private pages.
  743. */
  744. if (details->check_mapping &&
  745. details->check_mapping != page->mapping)
  746. continue;
  747. /*
  748. * Each page->index must be checked when
  749. * invalidating or truncating nonlinear.
  750. */
  751. if (details->nonlinear_vma &&
  752. (page->index < details->first_index ||
  753. page->index > details->last_index))
  754. continue;
  755. }
  756. ptent = ptep_get_and_clear_full(mm, addr, pte,
  757. tlb->fullmm);
  758. tlb_remove_tlb_entry(tlb, pte, addr);
  759. if (unlikely(!page))
  760. continue;
  761. if (unlikely(details) && details->nonlinear_vma
  762. && linear_page_index(details->nonlinear_vma,
  763. addr) != page->index)
  764. set_pte_at(mm, addr, pte,
  765. pgoff_to_pte(page->index));
  766. if (PageAnon(page))
  767. anon_rss--;
  768. else {
  769. if (pte_dirty(ptent))
  770. set_page_dirty(page);
  771. if (pte_young(ptent) &&
  772. likely(!VM_SequentialReadHint(vma)))
  773. mark_page_accessed(page);
  774. file_rss--;
  775. }
  776. page_remove_rmap(page);
  777. if (unlikely(page_mapcount(page) < 0))
  778. print_bad_pte(vma, addr, ptent, page);
  779. tlb_remove_page(tlb, page);
  780. continue;
  781. }
  782. /*
  783. * If details->check_mapping, we leave swap entries;
  784. * if details->nonlinear_vma, we leave file entries.
  785. */
  786. if (unlikely(details))
  787. continue;
  788. if (pte_file(ptent)) {
  789. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  790. print_bad_pte(vma, addr, ptent, NULL);
  791. } else if
  792. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  793. print_bad_pte(vma, addr, ptent, NULL);
  794. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  795. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  796. add_mm_rss(mm, file_rss, anon_rss);
  797. arch_leave_lazy_mmu_mode();
  798. pte_unmap_unlock(pte - 1, ptl);
  799. return addr;
  800. }
  801. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  802. struct vm_area_struct *vma, pud_t *pud,
  803. unsigned long addr, unsigned long end,
  804. long *zap_work, struct zap_details *details)
  805. {
  806. pmd_t *pmd;
  807. unsigned long next;
  808. pmd = pmd_offset(pud, addr);
  809. do {
  810. next = pmd_addr_end(addr, end);
  811. if (pmd_none_or_clear_bad(pmd)) {
  812. (*zap_work)--;
  813. continue;
  814. }
  815. next = zap_pte_range(tlb, vma, pmd, addr, next,
  816. zap_work, details);
  817. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  818. return addr;
  819. }
  820. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  821. struct vm_area_struct *vma, pgd_t *pgd,
  822. unsigned long addr, unsigned long end,
  823. long *zap_work, struct zap_details *details)
  824. {
  825. pud_t *pud;
  826. unsigned long next;
  827. pud = pud_offset(pgd, addr);
  828. do {
  829. next = pud_addr_end(addr, end);
  830. if (pud_none_or_clear_bad(pud)) {
  831. (*zap_work)--;
  832. continue;
  833. }
  834. next = zap_pmd_range(tlb, vma, pud, addr, next,
  835. zap_work, details);
  836. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  837. return addr;
  838. }
  839. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  840. struct vm_area_struct *vma,
  841. unsigned long addr, unsigned long end,
  842. long *zap_work, struct zap_details *details)
  843. {
  844. pgd_t *pgd;
  845. unsigned long next;
  846. if (details && !details->check_mapping && !details->nonlinear_vma)
  847. details = NULL;
  848. BUG_ON(addr >= end);
  849. tlb_start_vma(tlb, vma);
  850. pgd = pgd_offset(vma->vm_mm, addr);
  851. do {
  852. next = pgd_addr_end(addr, end);
  853. if (pgd_none_or_clear_bad(pgd)) {
  854. (*zap_work)--;
  855. continue;
  856. }
  857. next = zap_pud_range(tlb, vma, pgd, addr, next,
  858. zap_work, details);
  859. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  860. tlb_end_vma(tlb, vma);
  861. return addr;
  862. }
  863. #ifdef CONFIG_PREEMPT
  864. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  865. #else
  866. /* No preempt: go for improved straight-line efficiency */
  867. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  868. #endif
  869. /**
  870. * unmap_vmas - unmap a range of memory covered by a list of vma's
  871. * @tlbp: address of the caller's struct mmu_gather
  872. * @vma: the starting vma
  873. * @start_addr: virtual address at which to start unmapping
  874. * @end_addr: virtual address at which to end unmapping
  875. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  876. * @details: details of nonlinear truncation or shared cache invalidation
  877. *
  878. * Returns the end address of the unmapping (restart addr if interrupted).
  879. *
  880. * Unmap all pages in the vma list.
  881. *
  882. * We aim to not hold locks for too long (for scheduling latency reasons).
  883. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  884. * return the ending mmu_gather to the caller.
  885. *
  886. * Only addresses between `start' and `end' will be unmapped.
  887. *
  888. * The VMA list must be sorted in ascending virtual address order.
  889. *
  890. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  891. * range after unmap_vmas() returns. So the only responsibility here is to
  892. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  893. * drops the lock and schedules.
  894. */
  895. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  896. struct vm_area_struct *vma, unsigned long start_addr,
  897. unsigned long end_addr, unsigned long *nr_accounted,
  898. struct zap_details *details)
  899. {
  900. long zap_work = ZAP_BLOCK_SIZE;
  901. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  902. int tlb_start_valid = 0;
  903. unsigned long start = start_addr;
  904. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  905. int fullmm = (*tlbp)->fullmm;
  906. struct mm_struct *mm = vma->vm_mm;
  907. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  908. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  909. unsigned long end;
  910. start = max(vma->vm_start, start_addr);
  911. if (start >= vma->vm_end)
  912. continue;
  913. end = min(vma->vm_end, end_addr);
  914. if (end <= vma->vm_start)
  915. continue;
  916. if (vma->vm_flags & VM_ACCOUNT)
  917. *nr_accounted += (end - start) >> PAGE_SHIFT;
  918. if (unlikely(is_pfn_mapping(vma)))
  919. untrack_pfn_vma(vma, 0, 0);
  920. while (start != end) {
  921. if (!tlb_start_valid) {
  922. tlb_start = start;
  923. tlb_start_valid = 1;
  924. }
  925. if (unlikely(is_vm_hugetlb_page(vma))) {
  926. /*
  927. * It is undesirable to test vma->vm_file as it
  928. * should be non-null for valid hugetlb area.
  929. * However, vm_file will be NULL in the error
  930. * cleanup path of do_mmap_pgoff. When
  931. * hugetlbfs ->mmap method fails,
  932. * do_mmap_pgoff() nullifies vma->vm_file
  933. * before calling this function to clean up.
  934. * Since no pte has actually been setup, it is
  935. * safe to do nothing in this case.
  936. */
  937. if (vma->vm_file) {
  938. unmap_hugepage_range(vma, start, end, NULL);
  939. zap_work -= (end - start) /
  940. pages_per_huge_page(hstate_vma(vma));
  941. }
  942. start = end;
  943. } else
  944. start = unmap_page_range(*tlbp, vma,
  945. start, end, &zap_work, details);
  946. if (zap_work > 0) {
  947. BUG_ON(start != end);
  948. break;
  949. }
  950. tlb_finish_mmu(*tlbp, tlb_start, start);
  951. if (need_resched() ||
  952. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  953. if (i_mmap_lock) {
  954. *tlbp = NULL;
  955. goto out;
  956. }
  957. cond_resched();
  958. }
  959. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  960. tlb_start_valid = 0;
  961. zap_work = ZAP_BLOCK_SIZE;
  962. }
  963. }
  964. out:
  965. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  966. return start; /* which is now the end (or restart) address */
  967. }
  968. /**
  969. * zap_page_range - remove user pages in a given range
  970. * @vma: vm_area_struct holding the applicable pages
  971. * @address: starting address of pages to zap
  972. * @size: number of bytes to zap
  973. * @details: details of nonlinear truncation or shared cache invalidation
  974. */
  975. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  976. unsigned long size, struct zap_details *details)
  977. {
  978. struct mm_struct *mm = vma->vm_mm;
  979. struct mmu_gather *tlb;
  980. unsigned long end = address + size;
  981. unsigned long nr_accounted = 0;
  982. lru_add_drain();
  983. tlb = tlb_gather_mmu(mm, 0);
  984. update_hiwater_rss(mm);
  985. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  986. if (tlb)
  987. tlb_finish_mmu(tlb, address, end);
  988. return end;
  989. }
  990. /**
  991. * zap_vma_ptes - remove ptes mapping the vma
  992. * @vma: vm_area_struct holding ptes to be zapped
  993. * @address: starting address of pages to zap
  994. * @size: number of bytes to zap
  995. *
  996. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  997. *
  998. * The entire address range must be fully contained within the vma.
  999. *
  1000. * Returns 0 if successful.
  1001. */
  1002. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1003. unsigned long size)
  1004. {
  1005. if (address < vma->vm_start || address + size > vma->vm_end ||
  1006. !(vma->vm_flags & VM_PFNMAP))
  1007. return -1;
  1008. zap_page_range(vma, address, size, NULL);
  1009. return 0;
  1010. }
  1011. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1012. /*
  1013. * Do a quick page-table lookup for a single page.
  1014. */
  1015. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1016. unsigned int flags)
  1017. {
  1018. pgd_t *pgd;
  1019. pud_t *pud;
  1020. pmd_t *pmd;
  1021. pte_t *ptep, pte;
  1022. spinlock_t *ptl;
  1023. struct page *page;
  1024. struct mm_struct *mm = vma->vm_mm;
  1025. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1026. if (!IS_ERR(page)) {
  1027. BUG_ON(flags & FOLL_GET);
  1028. goto out;
  1029. }
  1030. page = NULL;
  1031. pgd = pgd_offset(mm, address);
  1032. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1033. goto no_page_table;
  1034. pud = pud_offset(pgd, address);
  1035. if (pud_none(*pud))
  1036. goto no_page_table;
  1037. if (pud_huge(*pud)) {
  1038. BUG_ON(flags & FOLL_GET);
  1039. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1040. goto out;
  1041. }
  1042. if (unlikely(pud_bad(*pud)))
  1043. goto no_page_table;
  1044. pmd = pmd_offset(pud, address);
  1045. if (pmd_none(*pmd))
  1046. goto no_page_table;
  1047. if (pmd_huge(*pmd)) {
  1048. BUG_ON(flags & FOLL_GET);
  1049. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1050. goto out;
  1051. }
  1052. if (unlikely(pmd_bad(*pmd)))
  1053. goto no_page_table;
  1054. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1055. pte = *ptep;
  1056. if (!pte_present(pte))
  1057. goto no_page;
  1058. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1059. goto unlock;
  1060. page = vm_normal_page(vma, address, pte);
  1061. if (unlikely(!page)) {
  1062. if ((flags & FOLL_DUMP) ||
  1063. !is_zero_pfn(pte_pfn(pte)))
  1064. goto bad_page;
  1065. page = pte_page(pte);
  1066. }
  1067. if (flags & FOLL_GET)
  1068. get_page(page);
  1069. if (flags & FOLL_TOUCH) {
  1070. if ((flags & FOLL_WRITE) &&
  1071. !pte_dirty(pte) && !PageDirty(page))
  1072. set_page_dirty(page);
  1073. /*
  1074. * pte_mkyoung() would be more correct here, but atomic care
  1075. * is needed to avoid losing the dirty bit: it is easier to use
  1076. * mark_page_accessed().
  1077. */
  1078. mark_page_accessed(page);
  1079. }
  1080. unlock:
  1081. pte_unmap_unlock(ptep, ptl);
  1082. out:
  1083. return page;
  1084. bad_page:
  1085. pte_unmap_unlock(ptep, ptl);
  1086. return ERR_PTR(-EFAULT);
  1087. no_page:
  1088. pte_unmap_unlock(ptep, ptl);
  1089. if (!pte_none(pte))
  1090. return page;
  1091. no_page_table:
  1092. /*
  1093. * When core dumping an enormous anonymous area that nobody
  1094. * has touched so far, we don't want to allocate unnecessary pages or
  1095. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1096. * then get_dump_page() will return NULL to leave a hole in the dump.
  1097. * But we can only make this optimization where a hole would surely
  1098. * be zero-filled if handle_mm_fault() actually did handle it.
  1099. */
  1100. if ((flags & FOLL_DUMP) &&
  1101. (!vma->vm_ops || !vma->vm_ops->fault))
  1102. return ERR_PTR(-EFAULT);
  1103. return page;
  1104. }
  1105. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1106. unsigned long start, int nr_pages, unsigned int gup_flags,
  1107. struct page **pages, struct vm_area_struct **vmas)
  1108. {
  1109. int i;
  1110. unsigned long vm_flags;
  1111. if (nr_pages <= 0)
  1112. return 0;
  1113. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1114. /*
  1115. * Require read or write permissions.
  1116. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1117. */
  1118. vm_flags = (gup_flags & FOLL_WRITE) ?
  1119. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1120. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1121. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1122. i = 0;
  1123. do {
  1124. struct vm_area_struct *vma;
  1125. vma = find_extend_vma(mm, start);
  1126. if (!vma && in_gate_area(tsk, start)) {
  1127. unsigned long pg = start & PAGE_MASK;
  1128. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1129. pgd_t *pgd;
  1130. pud_t *pud;
  1131. pmd_t *pmd;
  1132. pte_t *pte;
  1133. /* user gate pages are read-only */
  1134. if (gup_flags & FOLL_WRITE)
  1135. return i ? : -EFAULT;
  1136. if (pg > TASK_SIZE)
  1137. pgd = pgd_offset_k(pg);
  1138. else
  1139. pgd = pgd_offset_gate(mm, pg);
  1140. BUG_ON(pgd_none(*pgd));
  1141. pud = pud_offset(pgd, pg);
  1142. BUG_ON(pud_none(*pud));
  1143. pmd = pmd_offset(pud, pg);
  1144. if (pmd_none(*pmd))
  1145. return i ? : -EFAULT;
  1146. pte = pte_offset_map(pmd, pg);
  1147. if (pte_none(*pte)) {
  1148. pte_unmap(pte);
  1149. return i ? : -EFAULT;
  1150. }
  1151. if (pages) {
  1152. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1153. pages[i] = page;
  1154. if (page)
  1155. get_page(page);
  1156. }
  1157. pte_unmap(pte);
  1158. if (vmas)
  1159. vmas[i] = gate_vma;
  1160. i++;
  1161. start += PAGE_SIZE;
  1162. nr_pages--;
  1163. continue;
  1164. }
  1165. if (!vma ||
  1166. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1167. !(vm_flags & vma->vm_flags))
  1168. return i ? : -EFAULT;
  1169. if (is_vm_hugetlb_page(vma)) {
  1170. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1171. &start, &nr_pages, i, gup_flags);
  1172. continue;
  1173. }
  1174. do {
  1175. struct page *page;
  1176. unsigned int foll_flags = gup_flags;
  1177. /*
  1178. * If we have a pending SIGKILL, don't keep faulting
  1179. * pages and potentially allocating memory.
  1180. */
  1181. if (unlikely(fatal_signal_pending(current)))
  1182. return i ? i : -ERESTARTSYS;
  1183. cond_resched();
  1184. while (!(page = follow_page(vma, start, foll_flags))) {
  1185. int ret;
  1186. ret = handle_mm_fault(mm, vma, start,
  1187. (foll_flags & FOLL_WRITE) ?
  1188. FAULT_FLAG_WRITE : 0);
  1189. if (ret & VM_FAULT_ERROR) {
  1190. if (ret & VM_FAULT_OOM)
  1191. return i ? i : -ENOMEM;
  1192. if (ret &
  1193. (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
  1194. return i ? i : -EFAULT;
  1195. BUG();
  1196. }
  1197. if (ret & VM_FAULT_MAJOR)
  1198. tsk->maj_flt++;
  1199. else
  1200. tsk->min_flt++;
  1201. /*
  1202. * The VM_FAULT_WRITE bit tells us that
  1203. * do_wp_page has broken COW when necessary,
  1204. * even if maybe_mkwrite decided not to set
  1205. * pte_write. We can thus safely do subsequent
  1206. * page lookups as if they were reads. But only
  1207. * do so when looping for pte_write is futile:
  1208. * in some cases userspace may also be wanting
  1209. * to write to the gotten user page, which a
  1210. * read fault here might prevent (a readonly
  1211. * page might get reCOWed by userspace write).
  1212. */
  1213. if ((ret & VM_FAULT_WRITE) &&
  1214. !(vma->vm_flags & VM_WRITE))
  1215. foll_flags &= ~FOLL_WRITE;
  1216. cond_resched();
  1217. }
  1218. if (IS_ERR(page))
  1219. return i ? i : PTR_ERR(page);
  1220. if (pages) {
  1221. pages[i] = page;
  1222. flush_anon_page(vma, page, start);
  1223. flush_dcache_page(page);
  1224. }
  1225. if (vmas)
  1226. vmas[i] = vma;
  1227. i++;
  1228. start += PAGE_SIZE;
  1229. nr_pages--;
  1230. } while (nr_pages && start < vma->vm_end);
  1231. } while (nr_pages);
  1232. return i;
  1233. }
  1234. /**
  1235. * get_user_pages() - pin user pages in memory
  1236. * @tsk: task_struct of target task
  1237. * @mm: mm_struct of target mm
  1238. * @start: starting user address
  1239. * @nr_pages: number of pages from start to pin
  1240. * @write: whether pages will be written to by the caller
  1241. * @force: whether to force write access even if user mapping is
  1242. * readonly. This will result in the page being COWed even
  1243. * in MAP_SHARED mappings. You do not want this.
  1244. * @pages: array that receives pointers to the pages pinned.
  1245. * Should be at least nr_pages long. Or NULL, if caller
  1246. * only intends to ensure the pages are faulted in.
  1247. * @vmas: array of pointers to vmas corresponding to each page.
  1248. * Or NULL if the caller does not require them.
  1249. *
  1250. * Returns number of pages pinned. This may be fewer than the number
  1251. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1252. * were pinned, returns -errno. Each page returned must be released
  1253. * with a put_page() call when it is finished with. vmas will only
  1254. * remain valid while mmap_sem is held.
  1255. *
  1256. * Must be called with mmap_sem held for read or write.
  1257. *
  1258. * get_user_pages walks a process's page tables and takes a reference to
  1259. * each struct page that each user address corresponds to at a given
  1260. * instant. That is, it takes the page that would be accessed if a user
  1261. * thread accesses the given user virtual address at that instant.
  1262. *
  1263. * This does not guarantee that the page exists in the user mappings when
  1264. * get_user_pages returns, and there may even be a completely different
  1265. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1266. * and subsequently re faulted). However it does guarantee that the page
  1267. * won't be freed completely. And mostly callers simply care that the page
  1268. * contains data that was valid *at some point in time*. Typically, an IO
  1269. * or similar operation cannot guarantee anything stronger anyway because
  1270. * locks can't be held over the syscall boundary.
  1271. *
  1272. * If write=0, the page must not be written to. If the page is written to,
  1273. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1274. * after the page is finished with, and before put_page is called.
  1275. *
  1276. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1277. * handle on the memory by some means other than accesses via the user virtual
  1278. * addresses. The pages may be submitted for DMA to devices or accessed via
  1279. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1280. * use the correct cache flushing APIs.
  1281. *
  1282. * See also get_user_pages_fast, for performance critical applications.
  1283. */
  1284. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1285. unsigned long start, int nr_pages, int write, int force,
  1286. struct page **pages, struct vm_area_struct **vmas)
  1287. {
  1288. int flags = FOLL_TOUCH;
  1289. if (pages)
  1290. flags |= FOLL_GET;
  1291. if (write)
  1292. flags |= FOLL_WRITE;
  1293. if (force)
  1294. flags |= FOLL_FORCE;
  1295. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1296. }
  1297. EXPORT_SYMBOL(get_user_pages);
  1298. /**
  1299. * get_dump_page() - pin user page in memory while writing it to core dump
  1300. * @addr: user address
  1301. *
  1302. * Returns struct page pointer of user page pinned for dump,
  1303. * to be freed afterwards by page_cache_release() or put_page().
  1304. *
  1305. * Returns NULL on any kind of failure - a hole must then be inserted into
  1306. * the corefile, to preserve alignment with its headers; and also returns
  1307. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1308. * allowing a hole to be left in the corefile to save diskspace.
  1309. *
  1310. * Called without mmap_sem, but after all other threads have been killed.
  1311. */
  1312. #ifdef CONFIG_ELF_CORE
  1313. struct page *get_dump_page(unsigned long addr)
  1314. {
  1315. struct vm_area_struct *vma;
  1316. struct page *page;
  1317. if (__get_user_pages(current, current->mm, addr, 1,
  1318. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1319. return NULL;
  1320. flush_cache_page(vma, addr, page_to_pfn(page));
  1321. return page;
  1322. }
  1323. #endif /* CONFIG_ELF_CORE */
  1324. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1325. spinlock_t **ptl)
  1326. {
  1327. pgd_t * pgd = pgd_offset(mm, addr);
  1328. pud_t * pud = pud_alloc(mm, pgd, addr);
  1329. if (pud) {
  1330. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1331. if (pmd)
  1332. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1333. }
  1334. return NULL;
  1335. }
  1336. /*
  1337. * This is the old fallback for page remapping.
  1338. *
  1339. * For historical reasons, it only allows reserved pages. Only
  1340. * old drivers should use this, and they needed to mark their
  1341. * pages reserved for the old functions anyway.
  1342. */
  1343. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1344. struct page *page, pgprot_t prot)
  1345. {
  1346. struct mm_struct *mm = vma->vm_mm;
  1347. int retval;
  1348. pte_t *pte;
  1349. spinlock_t *ptl;
  1350. retval = -EINVAL;
  1351. if (PageAnon(page))
  1352. goto out;
  1353. retval = -ENOMEM;
  1354. flush_dcache_page(page);
  1355. pte = get_locked_pte(mm, addr, &ptl);
  1356. if (!pte)
  1357. goto out;
  1358. retval = -EBUSY;
  1359. if (!pte_none(*pte))
  1360. goto out_unlock;
  1361. /* Ok, finally just insert the thing.. */
  1362. get_page(page);
  1363. inc_mm_counter(mm, file_rss);
  1364. page_add_file_rmap(page);
  1365. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1366. retval = 0;
  1367. pte_unmap_unlock(pte, ptl);
  1368. return retval;
  1369. out_unlock:
  1370. pte_unmap_unlock(pte, ptl);
  1371. out:
  1372. return retval;
  1373. }
  1374. /**
  1375. * vm_insert_page - insert single page into user vma
  1376. * @vma: user vma to map to
  1377. * @addr: target user address of this page
  1378. * @page: source kernel page
  1379. *
  1380. * This allows drivers to insert individual pages they've allocated
  1381. * into a user vma.
  1382. *
  1383. * The page has to be a nice clean _individual_ kernel allocation.
  1384. * If you allocate a compound page, you need to have marked it as
  1385. * such (__GFP_COMP), or manually just split the page up yourself
  1386. * (see split_page()).
  1387. *
  1388. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1389. * took an arbitrary page protection parameter. This doesn't allow
  1390. * that. Your vma protection will have to be set up correctly, which
  1391. * means that if you want a shared writable mapping, you'd better
  1392. * ask for a shared writable mapping!
  1393. *
  1394. * The page does not need to be reserved.
  1395. */
  1396. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1397. struct page *page)
  1398. {
  1399. if (addr < vma->vm_start || addr >= vma->vm_end)
  1400. return -EFAULT;
  1401. if (!page_count(page))
  1402. return -EINVAL;
  1403. vma->vm_flags |= VM_INSERTPAGE;
  1404. return insert_page(vma, addr, page, vma->vm_page_prot);
  1405. }
  1406. EXPORT_SYMBOL(vm_insert_page);
  1407. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1408. unsigned long pfn, pgprot_t prot)
  1409. {
  1410. struct mm_struct *mm = vma->vm_mm;
  1411. int retval;
  1412. pte_t *pte, entry;
  1413. spinlock_t *ptl;
  1414. retval = -ENOMEM;
  1415. pte = get_locked_pte(mm, addr, &ptl);
  1416. if (!pte)
  1417. goto out;
  1418. retval = -EBUSY;
  1419. if (!pte_none(*pte))
  1420. goto out_unlock;
  1421. /* Ok, finally just insert the thing.. */
  1422. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1423. set_pte_at(mm, addr, pte, entry);
  1424. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1425. retval = 0;
  1426. out_unlock:
  1427. pte_unmap_unlock(pte, ptl);
  1428. out:
  1429. return retval;
  1430. }
  1431. /**
  1432. * vm_insert_pfn - insert single pfn into user vma
  1433. * @vma: user vma to map to
  1434. * @addr: target user address of this page
  1435. * @pfn: source kernel pfn
  1436. *
  1437. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1438. * they've allocated into a user vma. Same comments apply.
  1439. *
  1440. * This function should only be called from a vm_ops->fault handler, and
  1441. * in that case the handler should return NULL.
  1442. *
  1443. * vma cannot be a COW mapping.
  1444. *
  1445. * As this is called only for pages that do not currently exist, we
  1446. * do not need to flush old virtual caches or the TLB.
  1447. */
  1448. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1449. unsigned long pfn)
  1450. {
  1451. int ret;
  1452. pgprot_t pgprot = vma->vm_page_prot;
  1453. /*
  1454. * Technically, architectures with pte_special can avoid all these
  1455. * restrictions (same for remap_pfn_range). However we would like
  1456. * consistency in testing and feature parity among all, so we should
  1457. * try to keep these invariants in place for everybody.
  1458. */
  1459. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1460. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1461. (VM_PFNMAP|VM_MIXEDMAP));
  1462. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1463. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1464. if (addr < vma->vm_start || addr >= vma->vm_end)
  1465. return -EFAULT;
  1466. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1467. return -EINVAL;
  1468. ret = insert_pfn(vma, addr, pfn, pgprot);
  1469. if (ret)
  1470. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1471. return ret;
  1472. }
  1473. EXPORT_SYMBOL(vm_insert_pfn);
  1474. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1475. unsigned long pfn)
  1476. {
  1477. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1478. if (addr < vma->vm_start || addr >= vma->vm_end)
  1479. return -EFAULT;
  1480. /*
  1481. * If we don't have pte special, then we have to use the pfn_valid()
  1482. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1483. * refcount the page if pfn_valid is true (hence insert_page rather
  1484. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1485. * without pte special, it would there be refcounted as a normal page.
  1486. */
  1487. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1488. struct page *page;
  1489. page = pfn_to_page(pfn);
  1490. return insert_page(vma, addr, page, vma->vm_page_prot);
  1491. }
  1492. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1493. }
  1494. EXPORT_SYMBOL(vm_insert_mixed);
  1495. /*
  1496. * maps a range of physical memory into the requested pages. the old
  1497. * mappings are removed. any references to nonexistent pages results
  1498. * in null mappings (currently treated as "copy-on-access")
  1499. */
  1500. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1501. unsigned long addr, unsigned long end,
  1502. unsigned long pfn, pgprot_t prot)
  1503. {
  1504. pte_t *pte;
  1505. spinlock_t *ptl;
  1506. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1507. if (!pte)
  1508. return -ENOMEM;
  1509. arch_enter_lazy_mmu_mode();
  1510. do {
  1511. BUG_ON(!pte_none(*pte));
  1512. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1513. pfn++;
  1514. } while (pte++, addr += PAGE_SIZE, addr != end);
  1515. arch_leave_lazy_mmu_mode();
  1516. pte_unmap_unlock(pte - 1, ptl);
  1517. return 0;
  1518. }
  1519. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1520. unsigned long addr, unsigned long end,
  1521. unsigned long pfn, pgprot_t prot)
  1522. {
  1523. pmd_t *pmd;
  1524. unsigned long next;
  1525. pfn -= addr >> PAGE_SHIFT;
  1526. pmd = pmd_alloc(mm, pud, addr);
  1527. if (!pmd)
  1528. return -ENOMEM;
  1529. do {
  1530. next = pmd_addr_end(addr, end);
  1531. if (remap_pte_range(mm, pmd, addr, next,
  1532. pfn + (addr >> PAGE_SHIFT), prot))
  1533. return -ENOMEM;
  1534. } while (pmd++, addr = next, addr != end);
  1535. return 0;
  1536. }
  1537. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1538. unsigned long addr, unsigned long end,
  1539. unsigned long pfn, pgprot_t prot)
  1540. {
  1541. pud_t *pud;
  1542. unsigned long next;
  1543. pfn -= addr >> PAGE_SHIFT;
  1544. pud = pud_alloc(mm, pgd, addr);
  1545. if (!pud)
  1546. return -ENOMEM;
  1547. do {
  1548. next = pud_addr_end(addr, end);
  1549. if (remap_pmd_range(mm, pud, addr, next,
  1550. pfn + (addr >> PAGE_SHIFT), prot))
  1551. return -ENOMEM;
  1552. } while (pud++, addr = next, addr != end);
  1553. return 0;
  1554. }
  1555. /**
  1556. * remap_pfn_range - remap kernel memory to userspace
  1557. * @vma: user vma to map to
  1558. * @addr: target user address to start at
  1559. * @pfn: physical address of kernel memory
  1560. * @size: size of map area
  1561. * @prot: page protection flags for this mapping
  1562. *
  1563. * Note: this is only safe if the mm semaphore is held when called.
  1564. */
  1565. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1566. unsigned long pfn, unsigned long size, pgprot_t prot)
  1567. {
  1568. pgd_t *pgd;
  1569. unsigned long next;
  1570. unsigned long end = addr + PAGE_ALIGN(size);
  1571. struct mm_struct *mm = vma->vm_mm;
  1572. int err;
  1573. /*
  1574. * Physically remapped pages are special. Tell the
  1575. * rest of the world about it:
  1576. * VM_IO tells people not to look at these pages
  1577. * (accesses can have side effects).
  1578. * VM_RESERVED is specified all over the place, because
  1579. * in 2.4 it kept swapout's vma scan off this vma; but
  1580. * in 2.6 the LRU scan won't even find its pages, so this
  1581. * flag means no more than count its pages in reserved_vm,
  1582. * and omit it from core dump, even when VM_IO turned off.
  1583. * VM_PFNMAP tells the core MM that the base pages are just
  1584. * raw PFN mappings, and do not have a "struct page" associated
  1585. * with them.
  1586. *
  1587. * There's a horrible special case to handle copy-on-write
  1588. * behaviour that some programs depend on. We mark the "original"
  1589. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1590. */
  1591. if (addr == vma->vm_start && end == vma->vm_end) {
  1592. vma->vm_pgoff = pfn;
  1593. vma->vm_flags |= VM_PFN_AT_MMAP;
  1594. } else if (is_cow_mapping(vma->vm_flags))
  1595. return -EINVAL;
  1596. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1597. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1598. if (err) {
  1599. /*
  1600. * To indicate that track_pfn related cleanup is not
  1601. * needed from higher level routine calling unmap_vmas
  1602. */
  1603. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1604. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1605. return -EINVAL;
  1606. }
  1607. BUG_ON(addr >= end);
  1608. pfn -= addr >> PAGE_SHIFT;
  1609. pgd = pgd_offset(mm, addr);
  1610. flush_cache_range(vma, addr, end);
  1611. do {
  1612. next = pgd_addr_end(addr, end);
  1613. err = remap_pud_range(mm, pgd, addr, next,
  1614. pfn + (addr >> PAGE_SHIFT), prot);
  1615. if (err)
  1616. break;
  1617. } while (pgd++, addr = next, addr != end);
  1618. if (err)
  1619. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1620. return err;
  1621. }
  1622. EXPORT_SYMBOL(remap_pfn_range);
  1623. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1624. unsigned long addr, unsigned long end,
  1625. pte_fn_t fn, void *data)
  1626. {
  1627. pte_t *pte;
  1628. int err;
  1629. pgtable_t token;
  1630. spinlock_t *uninitialized_var(ptl);
  1631. pte = (mm == &init_mm) ?
  1632. pte_alloc_kernel(pmd, addr) :
  1633. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1634. if (!pte)
  1635. return -ENOMEM;
  1636. BUG_ON(pmd_huge(*pmd));
  1637. arch_enter_lazy_mmu_mode();
  1638. token = pmd_pgtable(*pmd);
  1639. do {
  1640. err = fn(pte, token, addr, data);
  1641. if (err)
  1642. break;
  1643. } while (pte++, addr += PAGE_SIZE, addr != end);
  1644. arch_leave_lazy_mmu_mode();
  1645. if (mm != &init_mm)
  1646. pte_unmap_unlock(pte-1, ptl);
  1647. return err;
  1648. }
  1649. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1650. unsigned long addr, unsigned long end,
  1651. pte_fn_t fn, void *data)
  1652. {
  1653. pmd_t *pmd;
  1654. unsigned long next;
  1655. int err;
  1656. BUG_ON(pud_huge(*pud));
  1657. pmd = pmd_alloc(mm, pud, addr);
  1658. if (!pmd)
  1659. return -ENOMEM;
  1660. do {
  1661. next = pmd_addr_end(addr, end);
  1662. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1663. if (err)
  1664. break;
  1665. } while (pmd++, addr = next, addr != end);
  1666. return err;
  1667. }
  1668. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1669. unsigned long addr, unsigned long end,
  1670. pte_fn_t fn, void *data)
  1671. {
  1672. pud_t *pud;
  1673. unsigned long next;
  1674. int err;
  1675. pud = pud_alloc(mm, pgd, addr);
  1676. if (!pud)
  1677. return -ENOMEM;
  1678. do {
  1679. next = pud_addr_end(addr, end);
  1680. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1681. if (err)
  1682. break;
  1683. } while (pud++, addr = next, addr != end);
  1684. return err;
  1685. }
  1686. /*
  1687. * Scan a region of virtual memory, filling in page tables as necessary
  1688. * and calling a provided function on each leaf page table.
  1689. */
  1690. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1691. unsigned long size, pte_fn_t fn, void *data)
  1692. {
  1693. pgd_t *pgd;
  1694. unsigned long next;
  1695. unsigned long start = addr, end = addr + size;
  1696. int err;
  1697. BUG_ON(addr >= end);
  1698. mmu_notifier_invalidate_range_start(mm, start, end);
  1699. pgd = pgd_offset(mm, addr);
  1700. do {
  1701. next = pgd_addr_end(addr, end);
  1702. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1703. if (err)
  1704. break;
  1705. } while (pgd++, addr = next, addr != end);
  1706. mmu_notifier_invalidate_range_end(mm, start, end);
  1707. return err;
  1708. }
  1709. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1710. /*
  1711. * handle_pte_fault chooses page fault handler according to an entry
  1712. * which was read non-atomically. Before making any commitment, on
  1713. * those architectures or configurations (e.g. i386 with PAE) which
  1714. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1715. * must check under lock before unmapping the pte and proceeding
  1716. * (but do_wp_page is only called after already making such a check;
  1717. * and do_anonymous_page and do_no_page can safely check later on).
  1718. */
  1719. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1720. pte_t *page_table, pte_t orig_pte)
  1721. {
  1722. int same = 1;
  1723. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1724. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1725. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1726. spin_lock(ptl);
  1727. same = pte_same(*page_table, orig_pte);
  1728. spin_unlock(ptl);
  1729. }
  1730. #endif
  1731. pte_unmap(page_table);
  1732. return same;
  1733. }
  1734. /*
  1735. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1736. * servicing faults for write access. In the normal case, do always want
  1737. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1738. * that do not have writing enabled, when used by access_process_vm.
  1739. */
  1740. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1741. {
  1742. if (likely(vma->vm_flags & VM_WRITE))
  1743. pte = pte_mkwrite(pte);
  1744. return pte;
  1745. }
  1746. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1747. {
  1748. /*
  1749. * If the source page was a PFN mapping, we don't have
  1750. * a "struct page" for it. We do a best-effort copy by
  1751. * just copying from the original user address. If that
  1752. * fails, we just zero-fill it. Live with it.
  1753. */
  1754. if (unlikely(!src)) {
  1755. void *kaddr = kmap_atomic(dst, KM_USER0);
  1756. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1757. /*
  1758. * This really shouldn't fail, because the page is there
  1759. * in the page tables. But it might just be unreadable,
  1760. * in which case we just give up and fill the result with
  1761. * zeroes.
  1762. */
  1763. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1764. memset(kaddr, 0, PAGE_SIZE);
  1765. kunmap_atomic(kaddr, KM_USER0);
  1766. flush_dcache_page(dst);
  1767. } else
  1768. copy_user_highpage(dst, src, va, vma);
  1769. }
  1770. /*
  1771. * This routine handles present pages, when users try to write
  1772. * to a shared page. It is done by copying the page to a new address
  1773. * and decrementing the shared-page counter for the old page.
  1774. *
  1775. * Note that this routine assumes that the protection checks have been
  1776. * done by the caller (the low-level page fault routine in most cases).
  1777. * Thus we can safely just mark it writable once we've done any necessary
  1778. * COW.
  1779. *
  1780. * We also mark the page dirty at this point even though the page will
  1781. * change only once the write actually happens. This avoids a few races,
  1782. * and potentially makes it more efficient.
  1783. *
  1784. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1785. * but allow concurrent faults), with pte both mapped and locked.
  1786. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1787. */
  1788. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1789. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1790. spinlock_t *ptl, pte_t orig_pte)
  1791. {
  1792. struct page *old_page, *new_page;
  1793. pte_t entry;
  1794. int reuse = 0, ret = 0;
  1795. int page_mkwrite = 0;
  1796. struct page *dirty_page = NULL;
  1797. old_page = vm_normal_page(vma, address, orig_pte);
  1798. if (!old_page) {
  1799. /*
  1800. * VM_MIXEDMAP !pfn_valid() case
  1801. *
  1802. * We should not cow pages in a shared writeable mapping.
  1803. * Just mark the pages writable as we can't do any dirty
  1804. * accounting on raw pfn maps.
  1805. */
  1806. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1807. (VM_WRITE|VM_SHARED))
  1808. goto reuse;
  1809. goto gotten;
  1810. }
  1811. /*
  1812. * Take out anonymous pages first, anonymous shared vmas are
  1813. * not dirty accountable.
  1814. */
  1815. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1816. if (!trylock_page(old_page)) {
  1817. page_cache_get(old_page);
  1818. pte_unmap_unlock(page_table, ptl);
  1819. lock_page(old_page);
  1820. page_table = pte_offset_map_lock(mm, pmd, address,
  1821. &ptl);
  1822. if (!pte_same(*page_table, orig_pte)) {
  1823. unlock_page(old_page);
  1824. page_cache_release(old_page);
  1825. goto unlock;
  1826. }
  1827. page_cache_release(old_page);
  1828. }
  1829. reuse = reuse_swap_page(old_page);
  1830. unlock_page(old_page);
  1831. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1832. (VM_WRITE|VM_SHARED))) {
  1833. /*
  1834. * Only catch write-faults on shared writable pages,
  1835. * read-only shared pages can get COWed by
  1836. * get_user_pages(.write=1, .force=1).
  1837. */
  1838. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1839. struct vm_fault vmf;
  1840. int tmp;
  1841. vmf.virtual_address = (void __user *)(address &
  1842. PAGE_MASK);
  1843. vmf.pgoff = old_page->index;
  1844. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1845. vmf.page = old_page;
  1846. /*
  1847. * Notify the address space that the page is about to
  1848. * become writable so that it can prohibit this or wait
  1849. * for the page to get into an appropriate state.
  1850. *
  1851. * We do this without the lock held, so that it can
  1852. * sleep if it needs to.
  1853. */
  1854. page_cache_get(old_page);
  1855. pte_unmap_unlock(page_table, ptl);
  1856. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1857. if (unlikely(tmp &
  1858. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1859. ret = tmp;
  1860. goto unwritable_page;
  1861. }
  1862. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1863. lock_page(old_page);
  1864. if (!old_page->mapping) {
  1865. ret = 0; /* retry the fault */
  1866. unlock_page(old_page);
  1867. goto unwritable_page;
  1868. }
  1869. } else
  1870. VM_BUG_ON(!PageLocked(old_page));
  1871. /*
  1872. * Since we dropped the lock we need to revalidate
  1873. * the PTE as someone else may have changed it. If
  1874. * they did, we just return, as we can count on the
  1875. * MMU to tell us if they didn't also make it writable.
  1876. */
  1877. page_table = pte_offset_map_lock(mm, pmd, address,
  1878. &ptl);
  1879. if (!pte_same(*page_table, orig_pte)) {
  1880. unlock_page(old_page);
  1881. page_cache_release(old_page);
  1882. goto unlock;
  1883. }
  1884. page_mkwrite = 1;
  1885. }
  1886. dirty_page = old_page;
  1887. get_page(dirty_page);
  1888. reuse = 1;
  1889. }
  1890. if (reuse) {
  1891. reuse:
  1892. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1893. entry = pte_mkyoung(orig_pte);
  1894. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1895. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1896. update_mmu_cache(vma, address, entry);
  1897. ret |= VM_FAULT_WRITE;
  1898. goto unlock;
  1899. }
  1900. /*
  1901. * Ok, we need to copy. Oh, well..
  1902. */
  1903. page_cache_get(old_page);
  1904. gotten:
  1905. pte_unmap_unlock(page_table, ptl);
  1906. if (unlikely(anon_vma_prepare(vma)))
  1907. goto oom;
  1908. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1909. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1910. if (!new_page)
  1911. goto oom;
  1912. } else {
  1913. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1914. if (!new_page)
  1915. goto oom;
  1916. cow_user_page(new_page, old_page, address, vma);
  1917. }
  1918. __SetPageUptodate(new_page);
  1919. /*
  1920. * Don't let another task, with possibly unlocked vma,
  1921. * keep the mlocked page.
  1922. */
  1923. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1924. lock_page(old_page); /* for LRU manipulation */
  1925. clear_page_mlock(old_page);
  1926. unlock_page(old_page);
  1927. }
  1928. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1929. goto oom_free_new;
  1930. /*
  1931. * Re-check the pte - we dropped the lock
  1932. */
  1933. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1934. if (likely(pte_same(*page_table, orig_pte))) {
  1935. if (old_page) {
  1936. if (!PageAnon(old_page)) {
  1937. dec_mm_counter(mm, file_rss);
  1938. inc_mm_counter(mm, anon_rss);
  1939. }
  1940. } else
  1941. inc_mm_counter(mm, anon_rss);
  1942. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1943. entry = mk_pte(new_page, vma->vm_page_prot);
  1944. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1945. /*
  1946. * Clear the pte entry and flush it first, before updating the
  1947. * pte with the new entry. This will avoid a race condition
  1948. * seen in the presence of one thread doing SMC and another
  1949. * thread doing COW.
  1950. */
  1951. ptep_clear_flush(vma, address, page_table);
  1952. page_add_new_anon_rmap(new_page, vma, address);
  1953. /*
  1954. * We call the notify macro here because, when using secondary
  1955. * mmu page tables (such as kvm shadow page tables), we want the
  1956. * new page to be mapped directly into the secondary page table.
  1957. */
  1958. set_pte_at_notify(mm, address, page_table, entry);
  1959. update_mmu_cache(vma, address, entry);
  1960. if (old_page) {
  1961. /*
  1962. * Only after switching the pte to the new page may
  1963. * we remove the mapcount here. Otherwise another
  1964. * process may come and find the rmap count decremented
  1965. * before the pte is switched to the new page, and
  1966. * "reuse" the old page writing into it while our pte
  1967. * here still points into it and can be read by other
  1968. * threads.
  1969. *
  1970. * The critical issue is to order this
  1971. * page_remove_rmap with the ptp_clear_flush above.
  1972. * Those stores are ordered by (if nothing else,)
  1973. * the barrier present in the atomic_add_negative
  1974. * in page_remove_rmap.
  1975. *
  1976. * Then the TLB flush in ptep_clear_flush ensures that
  1977. * no process can access the old page before the
  1978. * decremented mapcount is visible. And the old page
  1979. * cannot be reused until after the decremented
  1980. * mapcount is visible. So transitively, TLBs to
  1981. * old page will be flushed before it can be reused.
  1982. */
  1983. page_remove_rmap(old_page);
  1984. }
  1985. /* Free the old page.. */
  1986. new_page = old_page;
  1987. ret |= VM_FAULT_WRITE;
  1988. } else
  1989. mem_cgroup_uncharge_page(new_page);
  1990. if (new_page)
  1991. page_cache_release(new_page);
  1992. if (old_page)
  1993. page_cache_release(old_page);
  1994. unlock:
  1995. pte_unmap_unlock(page_table, ptl);
  1996. if (dirty_page) {
  1997. /*
  1998. * Yes, Virginia, this is actually required to prevent a race
  1999. * with clear_page_dirty_for_io() from clearing the page dirty
  2000. * bit after it clear all dirty ptes, but before a racing
  2001. * do_wp_page installs a dirty pte.
  2002. *
  2003. * do_no_page is protected similarly.
  2004. */
  2005. if (!page_mkwrite) {
  2006. wait_on_page_locked(dirty_page);
  2007. set_page_dirty_balance(dirty_page, page_mkwrite);
  2008. }
  2009. put_page(dirty_page);
  2010. if (page_mkwrite) {
  2011. struct address_space *mapping = dirty_page->mapping;
  2012. set_page_dirty(dirty_page);
  2013. unlock_page(dirty_page);
  2014. page_cache_release(dirty_page);
  2015. if (mapping) {
  2016. /*
  2017. * Some device drivers do not set page.mapping
  2018. * but still dirty their pages
  2019. */
  2020. balance_dirty_pages_ratelimited(mapping);
  2021. }
  2022. }
  2023. /* file_update_time outside page_lock */
  2024. if (vma->vm_file)
  2025. file_update_time(vma->vm_file);
  2026. }
  2027. return ret;
  2028. oom_free_new:
  2029. page_cache_release(new_page);
  2030. oom:
  2031. if (old_page) {
  2032. if (page_mkwrite) {
  2033. unlock_page(old_page);
  2034. page_cache_release(old_page);
  2035. }
  2036. page_cache_release(old_page);
  2037. }
  2038. return VM_FAULT_OOM;
  2039. unwritable_page:
  2040. page_cache_release(old_page);
  2041. return ret;
  2042. }
  2043. /*
  2044. * Helper functions for unmap_mapping_range().
  2045. *
  2046. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2047. *
  2048. * We have to restart searching the prio_tree whenever we drop the lock,
  2049. * since the iterator is only valid while the lock is held, and anyway
  2050. * a later vma might be split and reinserted earlier while lock dropped.
  2051. *
  2052. * The list of nonlinear vmas could be handled more efficiently, using
  2053. * a placeholder, but handle it in the same way until a need is shown.
  2054. * It is important to search the prio_tree before nonlinear list: a vma
  2055. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2056. * while the lock is dropped; but never shifted from list to prio_tree.
  2057. *
  2058. * In order to make forward progress despite restarting the search,
  2059. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2060. * quickly skip it next time around. Since the prio_tree search only
  2061. * shows us those vmas affected by unmapping the range in question, we
  2062. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2063. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2064. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2065. * i_mmap_lock.
  2066. *
  2067. * In order to make forward progress despite repeatedly restarting some
  2068. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2069. * and restart from that address when we reach that vma again. It might
  2070. * have been split or merged, shrunk or extended, but never shifted: so
  2071. * restart_addr remains valid so long as it remains in the vma's range.
  2072. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2073. * values so we can save vma's restart_addr in its truncate_count field.
  2074. */
  2075. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2076. static void reset_vma_truncate_counts(struct address_space *mapping)
  2077. {
  2078. struct vm_area_struct *vma;
  2079. struct prio_tree_iter iter;
  2080. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2081. vma->vm_truncate_count = 0;
  2082. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2083. vma->vm_truncate_count = 0;
  2084. }
  2085. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2086. unsigned long start_addr, unsigned long end_addr,
  2087. struct zap_details *details)
  2088. {
  2089. unsigned long restart_addr;
  2090. int need_break;
  2091. /*
  2092. * files that support invalidating or truncating portions of the
  2093. * file from under mmaped areas must have their ->fault function
  2094. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2095. * This provides synchronisation against concurrent unmapping here.
  2096. */
  2097. again:
  2098. restart_addr = vma->vm_truncate_count;
  2099. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2100. start_addr = restart_addr;
  2101. if (start_addr >= end_addr) {
  2102. /* Top of vma has been split off since last time */
  2103. vma->vm_truncate_count = details->truncate_count;
  2104. return 0;
  2105. }
  2106. }
  2107. restart_addr = zap_page_range(vma, start_addr,
  2108. end_addr - start_addr, details);
  2109. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2110. if (restart_addr >= end_addr) {
  2111. /* We have now completed this vma: mark it so */
  2112. vma->vm_truncate_count = details->truncate_count;
  2113. if (!need_break)
  2114. return 0;
  2115. } else {
  2116. /* Note restart_addr in vma's truncate_count field */
  2117. vma->vm_truncate_count = restart_addr;
  2118. if (!need_break)
  2119. goto again;
  2120. }
  2121. spin_unlock(details->i_mmap_lock);
  2122. cond_resched();
  2123. spin_lock(details->i_mmap_lock);
  2124. return -EINTR;
  2125. }
  2126. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2127. struct zap_details *details)
  2128. {
  2129. struct vm_area_struct *vma;
  2130. struct prio_tree_iter iter;
  2131. pgoff_t vba, vea, zba, zea;
  2132. restart:
  2133. vma_prio_tree_foreach(vma, &iter, root,
  2134. details->first_index, details->last_index) {
  2135. /* Skip quickly over those we have already dealt with */
  2136. if (vma->vm_truncate_count == details->truncate_count)
  2137. continue;
  2138. vba = vma->vm_pgoff;
  2139. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2140. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2141. zba = details->first_index;
  2142. if (zba < vba)
  2143. zba = vba;
  2144. zea = details->last_index;
  2145. if (zea > vea)
  2146. zea = vea;
  2147. if (unmap_mapping_range_vma(vma,
  2148. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2149. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2150. details) < 0)
  2151. goto restart;
  2152. }
  2153. }
  2154. static inline void unmap_mapping_range_list(struct list_head *head,
  2155. struct zap_details *details)
  2156. {
  2157. struct vm_area_struct *vma;
  2158. /*
  2159. * In nonlinear VMAs there is no correspondence between virtual address
  2160. * offset and file offset. So we must perform an exhaustive search
  2161. * across *all* the pages in each nonlinear VMA, not just the pages
  2162. * whose virtual address lies outside the file truncation point.
  2163. */
  2164. restart:
  2165. list_for_each_entry(vma, head, shared.vm_set.list) {
  2166. /* Skip quickly over those we have already dealt with */
  2167. if (vma->vm_truncate_count == details->truncate_count)
  2168. continue;
  2169. details->nonlinear_vma = vma;
  2170. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2171. vma->vm_end, details) < 0)
  2172. goto restart;
  2173. }
  2174. }
  2175. /**
  2176. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2177. * @mapping: the address space containing mmaps to be unmapped.
  2178. * @holebegin: byte in first page to unmap, relative to the start of
  2179. * the underlying file. This will be rounded down to a PAGE_SIZE
  2180. * boundary. Note that this is different from truncate_pagecache(), which
  2181. * must keep the partial page. In contrast, we must get rid of
  2182. * partial pages.
  2183. * @holelen: size of prospective hole in bytes. This will be rounded
  2184. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2185. * end of the file.
  2186. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2187. * but 0 when invalidating pagecache, don't throw away private data.
  2188. */
  2189. void unmap_mapping_range(struct address_space *mapping,
  2190. loff_t const holebegin, loff_t const holelen, int even_cows)
  2191. {
  2192. struct zap_details details;
  2193. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2194. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2195. /* Check for overflow. */
  2196. if (sizeof(holelen) > sizeof(hlen)) {
  2197. long long holeend =
  2198. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2199. if (holeend & ~(long long)ULONG_MAX)
  2200. hlen = ULONG_MAX - hba + 1;
  2201. }
  2202. details.check_mapping = even_cows? NULL: mapping;
  2203. details.nonlinear_vma = NULL;
  2204. details.first_index = hba;
  2205. details.last_index = hba + hlen - 1;
  2206. if (details.last_index < details.first_index)
  2207. details.last_index = ULONG_MAX;
  2208. details.i_mmap_lock = &mapping->i_mmap_lock;
  2209. spin_lock(&mapping->i_mmap_lock);
  2210. /* Protect against endless unmapping loops */
  2211. mapping->truncate_count++;
  2212. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2213. if (mapping->truncate_count == 0)
  2214. reset_vma_truncate_counts(mapping);
  2215. mapping->truncate_count++;
  2216. }
  2217. details.truncate_count = mapping->truncate_count;
  2218. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2219. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2220. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2221. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2222. spin_unlock(&mapping->i_mmap_lock);
  2223. }
  2224. EXPORT_SYMBOL(unmap_mapping_range);
  2225. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2226. {
  2227. struct address_space *mapping = inode->i_mapping;
  2228. /*
  2229. * If the underlying filesystem is not going to provide
  2230. * a way to truncate a range of blocks (punch a hole) -
  2231. * we should return failure right now.
  2232. */
  2233. if (!inode->i_op->truncate_range)
  2234. return -ENOSYS;
  2235. mutex_lock(&inode->i_mutex);
  2236. down_write(&inode->i_alloc_sem);
  2237. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2238. truncate_inode_pages_range(mapping, offset, end);
  2239. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2240. inode->i_op->truncate_range(inode, offset, end);
  2241. up_write(&inode->i_alloc_sem);
  2242. mutex_unlock(&inode->i_mutex);
  2243. return 0;
  2244. }
  2245. /*
  2246. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2247. * but allow concurrent faults), and pte mapped but not yet locked.
  2248. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2249. */
  2250. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2251. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2252. unsigned int flags, pte_t orig_pte)
  2253. {
  2254. spinlock_t *ptl;
  2255. struct page *page;
  2256. swp_entry_t entry;
  2257. pte_t pte;
  2258. struct mem_cgroup *ptr = NULL;
  2259. int ret = 0;
  2260. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2261. goto out;
  2262. entry = pte_to_swp_entry(orig_pte);
  2263. if (unlikely(non_swap_entry(entry))) {
  2264. if (is_migration_entry(entry)) {
  2265. migration_entry_wait(mm, pmd, address);
  2266. } else if (is_hwpoison_entry(entry)) {
  2267. ret = VM_FAULT_HWPOISON;
  2268. } else {
  2269. print_bad_pte(vma, address, orig_pte, NULL);
  2270. ret = VM_FAULT_OOM;
  2271. }
  2272. goto out;
  2273. }
  2274. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2275. page = lookup_swap_cache(entry);
  2276. if (!page) {
  2277. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2278. page = swapin_readahead(entry,
  2279. GFP_HIGHUSER_MOVABLE, vma, address);
  2280. if (!page) {
  2281. /*
  2282. * Back out if somebody else faulted in this pte
  2283. * while we released the pte lock.
  2284. */
  2285. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2286. if (likely(pte_same(*page_table, orig_pte)))
  2287. ret = VM_FAULT_OOM;
  2288. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2289. goto unlock;
  2290. }
  2291. /* Had to read the page from swap area: Major fault */
  2292. ret = VM_FAULT_MAJOR;
  2293. count_vm_event(PGMAJFAULT);
  2294. } else if (PageHWPoison(page)) {
  2295. ret = VM_FAULT_HWPOISON;
  2296. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2297. goto out;
  2298. }
  2299. lock_page(page);
  2300. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2301. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2302. ret = VM_FAULT_OOM;
  2303. goto out_page;
  2304. }
  2305. /*
  2306. * Back out if somebody else already faulted in this pte.
  2307. */
  2308. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2309. if (unlikely(!pte_same(*page_table, orig_pte)))
  2310. goto out_nomap;
  2311. if (unlikely(!PageUptodate(page))) {
  2312. ret = VM_FAULT_SIGBUS;
  2313. goto out_nomap;
  2314. }
  2315. /*
  2316. * The page isn't present yet, go ahead with the fault.
  2317. *
  2318. * Be careful about the sequence of operations here.
  2319. * To get its accounting right, reuse_swap_page() must be called
  2320. * while the page is counted on swap but not yet in mapcount i.e.
  2321. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2322. * must be called after the swap_free(), or it will never succeed.
  2323. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2324. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2325. * in page->private. In this case, a record in swap_cgroup is silently
  2326. * discarded at swap_free().
  2327. */
  2328. inc_mm_counter(mm, anon_rss);
  2329. pte = mk_pte(page, vma->vm_page_prot);
  2330. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2331. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2332. flags &= ~FAULT_FLAG_WRITE;
  2333. }
  2334. flush_icache_page(vma, page);
  2335. set_pte_at(mm, address, page_table, pte);
  2336. page_add_anon_rmap(page, vma, address);
  2337. /* It's better to call commit-charge after rmap is established */
  2338. mem_cgroup_commit_charge_swapin(page, ptr);
  2339. swap_free(entry);
  2340. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2341. try_to_free_swap(page);
  2342. unlock_page(page);
  2343. if (flags & FAULT_FLAG_WRITE) {
  2344. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2345. if (ret & VM_FAULT_ERROR)
  2346. ret &= VM_FAULT_ERROR;
  2347. goto out;
  2348. }
  2349. /* No need to invalidate - it was non-present before */
  2350. update_mmu_cache(vma, address, pte);
  2351. unlock:
  2352. pte_unmap_unlock(page_table, ptl);
  2353. out:
  2354. return ret;
  2355. out_nomap:
  2356. mem_cgroup_cancel_charge_swapin(ptr);
  2357. pte_unmap_unlock(page_table, ptl);
  2358. out_page:
  2359. unlock_page(page);
  2360. page_cache_release(page);
  2361. return ret;
  2362. }
  2363. /*
  2364. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2365. * but allow concurrent faults), and pte mapped but not yet locked.
  2366. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2367. */
  2368. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2369. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2370. unsigned int flags)
  2371. {
  2372. struct page *page;
  2373. spinlock_t *ptl;
  2374. pte_t entry;
  2375. if (!(flags & FAULT_FLAG_WRITE)) {
  2376. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2377. vma->vm_page_prot));
  2378. ptl = pte_lockptr(mm, pmd);
  2379. spin_lock(ptl);
  2380. if (!pte_none(*page_table))
  2381. goto unlock;
  2382. goto setpte;
  2383. }
  2384. /* Allocate our own private page. */
  2385. pte_unmap(page_table);
  2386. if (unlikely(anon_vma_prepare(vma)))
  2387. goto oom;
  2388. page = alloc_zeroed_user_highpage_movable(vma, address);
  2389. if (!page)
  2390. goto oom;
  2391. __SetPageUptodate(page);
  2392. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2393. goto oom_free_page;
  2394. entry = mk_pte(page, vma->vm_page_prot);
  2395. if (vma->vm_flags & VM_WRITE)
  2396. entry = pte_mkwrite(pte_mkdirty(entry));
  2397. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2398. if (!pte_none(*page_table))
  2399. goto release;
  2400. inc_mm_counter(mm, anon_rss);
  2401. page_add_new_anon_rmap(page, vma, address);
  2402. setpte:
  2403. set_pte_at(mm, address, page_table, entry);
  2404. /* No need to invalidate - it was non-present before */
  2405. update_mmu_cache(vma, address, entry);
  2406. unlock:
  2407. pte_unmap_unlock(page_table, ptl);
  2408. return 0;
  2409. release:
  2410. mem_cgroup_uncharge_page(page);
  2411. page_cache_release(page);
  2412. goto unlock;
  2413. oom_free_page:
  2414. page_cache_release(page);
  2415. oom:
  2416. return VM_FAULT_OOM;
  2417. }
  2418. /*
  2419. * __do_fault() tries to create a new page mapping. It aggressively
  2420. * tries to share with existing pages, but makes a separate copy if
  2421. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2422. * the next page fault.
  2423. *
  2424. * As this is called only for pages that do not currently exist, we
  2425. * do not need to flush old virtual caches or the TLB.
  2426. *
  2427. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2428. * but allow concurrent faults), and pte neither mapped nor locked.
  2429. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2430. */
  2431. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2432. unsigned long address, pmd_t *pmd,
  2433. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2434. {
  2435. pte_t *page_table;
  2436. spinlock_t *ptl;
  2437. struct page *page;
  2438. pte_t entry;
  2439. int anon = 0;
  2440. int charged = 0;
  2441. struct page *dirty_page = NULL;
  2442. struct vm_fault vmf;
  2443. int ret;
  2444. int page_mkwrite = 0;
  2445. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2446. vmf.pgoff = pgoff;
  2447. vmf.flags = flags;
  2448. vmf.page = NULL;
  2449. ret = vma->vm_ops->fault(vma, &vmf);
  2450. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2451. return ret;
  2452. if (unlikely(PageHWPoison(vmf.page))) {
  2453. if (ret & VM_FAULT_LOCKED)
  2454. unlock_page(vmf.page);
  2455. return VM_FAULT_HWPOISON;
  2456. }
  2457. /*
  2458. * For consistency in subsequent calls, make the faulted page always
  2459. * locked.
  2460. */
  2461. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2462. lock_page(vmf.page);
  2463. else
  2464. VM_BUG_ON(!PageLocked(vmf.page));
  2465. /*
  2466. * Should we do an early C-O-W break?
  2467. */
  2468. page = vmf.page;
  2469. if (flags & FAULT_FLAG_WRITE) {
  2470. if (!(vma->vm_flags & VM_SHARED)) {
  2471. anon = 1;
  2472. if (unlikely(anon_vma_prepare(vma))) {
  2473. ret = VM_FAULT_OOM;
  2474. goto out;
  2475. }
  2476. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2477. vma, address);
  2478. if (!page) {
  2479. ret = VM_FAULT_OOM;
  2480. goto out;
  2481. }
  2482. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2483. ret = VM_FAULT_OOM;
  2484. page_cache_release(page);
  2485. goto out;
  2486. }
  2487. charged = 1;
  2488. /*
  2489. * Don't let another task, with possibly unlocked vma,
  2490. * keep the mlocked page.
  2491. */
  2492. if (vma->vm_flags & VM_LOCKED)
  2493. clear_page_mlock(vmf.page);
  2494. copy_user_highpage(page, vmf.page, address, vma);
  2495. __SetPageUptodate(page);
  2496. } else {
  2497. /*
  2498. * If the page will be shareable, see if the backing
  2499. * address space wants to know that the page is about
  2500. * to become writable
  2501. */
  2502. if (vma->vm_ops->page_mkwrite) {
  2503. int tmp;
  2504. unlock_page(page);
  2505. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2506. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2507. if (unlikely(tmp &
  2508. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2509. ret = tmp;
  2510. goto unwritable_page;
  2511. }
  2512. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2513. lock_page(page);
  2514. if (!page->mapping) {
  2515. ret = 0; /* retry the fault */
  2516. unlock_page(page);
  2517. goto unwritable_page;
  2518. }
  2519. } else
  2520. VM_BUG_ON(!PageLocked(page));
  2521. page_mkwrite = 1;
  2522. }
  2523. }
  2524. }
  2525. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2526. /*
  2527. * This silly early PAGE_DIRTY setting removes a race
  2528. * due to the bad i386 page protection. But it's valid
  2529. * for other architectures too.
  2530. *
  2531. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2532. * an exclusive copy of the page, or this is a shared mapping,
  2533. * so we can make it writable and dirty to avoid having to
  2534. * handle that later.
  2535. */
  2536. /* Only go through if we didn't race with anybody else... */
  2537. if (likely(pte_same(*page_table, orig_pte))) {
  2538. flush_icache_page(vma, page);
  2539. entry = mk_pte(page, vma->vm_page_prot);
  2540. if (flags & FAULT_FLAG_WRITE)
  2541. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2542. if (anon) {
  2543. inc_mm_counter(mm, anon_rss);
  2544. page_add_new_anon_rmap(page, vma, address);
  2545. } else {
  2546. inc_mm_counter(mm, file_rss);
  2547. page_add_file_rmap(page);
  2548. if (flags & FAULT_FLAG_WRITE) {
  2549. dirty_page = page;
  2550. get_page(dirty_page);
  2551. }
  2552. }
  2553. set_pte_at(mm, address, page_table, entry);
  2554. /* no need to invalidate: a not-present page won't be cached */
  2555. update_mmu_cache(vma, address, entry);
  2556. } else {
  2557. if (charged)
  2558. mem_cgroup_uncharge_page(page);
  2559. if (anon)
  2560. page_cache_release(page);
  2561. else
  2562. anon = 1; /* no anon but release faulted_page */
  2563. }
  2564. pte_unmap_unlock(page_table, ptl);
  2565. out:
  2566. if (dirty_page) {
  2567. struct address_space *mapping = page->mapping;
  2568. if (set_page_dirty(dirty_page))
  2569. page_mkwrite = 1;
  2570. unlock_page(dirty_page);
  2571. put_page(dirty_page);
  2572. if (page_mkwrite && mapping) {
  2573. /*
  2574. * Some device drivers do not set page.mapping but still
  2575. * dirty their pages
  2576. */
  2577. balance_dirty_pages_ratelimited(mapping);
  2578. }
  2579. /* file_update_time outside page_lock */
  2580. if (vma->vm_file)
  2581. file_update_time(vma->vm_file);
  2582. } else {
  2583. unlock_page(vmf.page);
  2584. if (anon)
  2585. page_cache_release(vmf.page);
  2586. }
  2587. return ret;
  2588. unwritable_page:
  2589. page_cache_release(page);
  2590. return ret;
  2591. }
  2592. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2593. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2594. unsigned int flags, pte_t orig_pte)
  2595. {
  2596. pgoff_t pgoff = (((address & PAGE_MASK)
  2597. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2598. pte_unmap(page_table);
  2599. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2600. }
  2601. /*
  2602. * Fault of a previously existing named mapping. Repopulate the pte
  2603. * from the encoded file_pte if possible. This enables swappable
  2604. * nonlinear vmas.
  2605. *
  2606. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2607. * but allow concurrent faults), and pte mapped but not yet locked.
  2608. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2609. */
  2610. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2611. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2612. unsigned int flags, pte_t orig_pte)
  2613. {
  2614. pgoff_t pgoff;
  2615. flags |= FAULT_FLAG_NONLINEAR;
  2616. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2617. return 0;
  2618. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2619. /*
  2620. * Page table corrupted: show pte and kill process.
  2621. */
  2622. print_bad_pte(vma, address, orig_pte, NULL);
  2623. return VM_FAULT_OOM;
  2624. }
  2625. pgoff = pte_to_pgoff(orig_pte);
  2626. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2627. }
  2628. /*
  2629. * These routines also need to handle stuff like marking pages dirty
  2630. * and/or accessed for architectures that don't do it in hardware (most
  2631. * RISC architectures). The early dirtying is also good on the i386.
  2632. *
  2633. * There is also a hook called "update_mmu_cache()" that architectures
  2634. * with external mmu caches can use to update those (ie the Sparc or
  2635. * PowerPC hashed page tables that act as extended TLBs).
  2636. *
  2637. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2638. * but allow concurrent faults), and pte mapped but not yet locked.
  2639. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2640. */
  2641. static inline int handle_pte_fault(struct mm_struct *mm,
  2642. struct vm_area_struct *vma, unsigned long address,
  2643. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2644. {
  2645. pte_t entry;
  2646. spinlock_t *ptl;
  2647. entry = *pte;
  2648. if (!pte_present(entry)) {
  2649. if (pte_none(entry)) {
  2650. if (vma->vm_ops) {
  2651. if (likely(vma->vm_ops->fault))
  2652. return do_linear_fault(mm, vma, address,
  2653. pte, pmd, flags, entry);
  2654. }
  2655. return do_anonymous_page(mm, vma, address,
  2656. pte, pmd, flags);
  2657. }
  2658. if (pte_file(entry))
  2659. return do_nonlinear_fault(mm, vma, address,
  2660. pte, pmd, flags, entry);
  2661. return do_swap_page(mm, vma, address,
  2662. pte, pmd, flags, entry);
  2663. }
  2664. ptl = pte_lockptr(mm, pmd);
  2665. spin_lock(ptl);
  2666. if (unlikely(!pte_same(*pte, entry)))
  2667. goto unlock;
  2668. if (flags & FAULT_FLAG_WRITE) {
  2669. if (!pte_write(entry))
  2670. return do_wp_page(mm, vma, address,
  2671. pte, pmd, ptl, entry);
  2672. entry = pte_mkdirty(entry);
  2673. }
  2674. entry = pte_mkyoung(entry);
  2675. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2676. update_mmu_cache(vma, address, entry);
  2677. } else {
  2678. /*
  2679. * This is needed only for protection faults but the arch code
  2680. * is not yet telling us if this is a protection fault or not.
  2681. * This still avoids useless tlb flushes for .text page faults
  2682. * with threads.
  2683. */
  2684. if (flags & FAULT_FLAG_WRITE)
  2685. flush_tlb_page(vma, address);
  2686. }
  2687. unlock:
  2688. pte_unmap_unlock(pte, ptl);
  2689. return 0;
  2690. }
  2691. /*
  2692. * By the time we get here, we already hold the mm semaphore
  2693. */
  2694. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2695. unsigned long address, unsigned int flags)
  2696. {
  2697. pgd_t *pgd;
  2698. pud_t *pud;
  2699. pmd_t *pmd;
  2700. pte_t *pte;
  2701. __set_current_state(TASK_RUNNING);
  2702. count_vm_event(PGFAULT);
  2703. if (unlikely(is_vm_hugetlb_page(vma)))
  2704. return hugetlb_fault(mm, vma, address, flags);
  2705. pgd = pgd_offset(mm, address);
  2706. pud = pud_alloc(mm, pgd, address);
  2707. if (!pud)
  2708. return VM_FAULT_OOM;
  2709. pmd = pmd_alloc(mm, pud, address);
  2710. if (!pmd)
  2711. return VM_FAULT_OOM;
  2712. pte = pte_alloc_map(mm, pmd, address);
  2713. if (!pte)
  2714. return VM_FAULT_OOM;
  2715. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2716. }
  2717. #ifndef __PAGETABLE_PUD_FOLDED
  2718. /*
  2719. * Allocate page upper directory.
  2720. * We've already handled the fast-path in-line.
  2721. */
  2722. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2723. {
  2724. pud_t *new = pud_alloc_one(mm, address);
  2725. if (!new)
  2726. return -ENOMEM;
  2727. smp_wmb(); /* See comment in __pte_alloc */
  2728. spin_lock(&mm->page_table_lock);
  2729. if (pgd_present(*pgd)) /* Another has populated it */
  2730. pud_free(mm, new);
  2731. else
  2732. pgd_populate(mm, pgd, new);
  2733. spin_unlock(&mm->page_table_lock);
  2734. return 0;
  2735. }
  2736. #endif /* __PAGETABLE_PUD_FOLDED */
  2737. #ifndef __PAGETABLE_PMD_FOLDED
  2738. /*
  2739. * Allocate page middle directory.
  2740. * We've already handled the fast-path in-line.
  2741. */
  2742. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2743. {
  2744. pmd_t *new = pmd_alloc_one(mm, address);
  2745. if (!new)
  2746. return -ENOMEM;
  2747. smp_wmb(); /* See comment in __pte_alloc */
  2748. spin_lock(&mm->page_table_lock);
  2749. #ifndef __ARCH_HAS_4LEVEL_HACK
  2750. if (pud_present(*pud)) /* Another has populated it */
  2751. pmd_free(mm, new);
  2752. else
  2753. pud_populate(mm, pud, new);
  2754. #else
  2755. if (pgd_present(*pud)) /* Another has populated it */
  2756. pmd_free(mm, new);
  2757. else
  2758. pgd_populate(mm, pud, new);
  2759. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2760. spin_unlock(&mm->page_table_lock);
  2761. return 0;
  2762. }
  2763. #endif /* __PAGETABLE_PMD_FOLDED */
  2764. int make_pages_present(unsigned long addr, unsigned long end)
  2765. {
  2766. int ret, len, write;
  2767. struct vm_area_struct * vma;
  2768. vma = find_vma(current->mm, addr);
  2769. if (!vma)
  2770. return -ENOMEM;
  2771. write = (vma->vm_flags & VM_WRITE) != 0;
  2772. BUG_ON(addr >= end);
  2773. BUG_ON(end > vma->vm_end);
  2774. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2775. ret = get_user_pages(current, current->mm, addr,
  2776. len, write, 0, NULL, NULL);
  2777. if (ret < 0)
  2778. return ret;
  2779. return ret == len ? 0 : -EFAULT;
  2780. }
  2781. #if !defined(__HAVE_ARCH_GATE_AREA)
  2782. #if defined(AT_SYSINFO_EHDR)
  2783. static struct vm_area_struct gate_vma;
  2784. static int __init gate_vma_init(void)
  2785. {
  2786. gate_vma.vm_mm = NULL;
  2787. gate_vma.vm_start = FIXADDR_USER_START;
  2788. gate_vma.vm_end = FIXADDR_USER_END;
  2789. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2790. gate_vma.vm_page_prot = __P101;
  2791. /*
  2792. * Make sure the vDSO gets into every core dump.
  2793. * Dumping its contents makes post-mortem fully interpretable later
  2794. * without matching up the same kernel and hardware config to see
  2795. * what PC values meant.
  2796. */
  2797. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2798. return 0;
  2799. }
  2800. __initcall(gate_vma_init);
  2801. #endif
  2802. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2803. {
  2804. #ifdef AT_SYSINFO_EHDR
  2805. return &gate_vma;
  2806. #else
  2807. return NULL;
  2808. #endif
  2809. }
  2810. int in_gate_area_no_task(unsigned long addr)
  2811. {
  2812. #ifdef AT_SYSINFO_EHDR
  2813. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2814. return 1;
  2815. #endif
  2816. return 0;
  2817. }
  2818. #endif /* __HAVE_ARCH_GATE_AREA */
  2819. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2820. pte_t **ptepp, spinlock_t **ptlp)
  2821. {
  2822. pgd_t *pgd;
  2823. pud_t *pud;
  2824. pmd_t *pmd;
  2825. pte_t *ptep;
  2826. pgd = pgd_offset(mm, address);
  2827. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2828. goto out;
  2829. pud = pud_offset(pgd, address);
  2830. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2831. goto out;
  2832. pmd = pmd_offset(pud, address);
  2833. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2834. goto out;
  2835. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2836. if (pmd_huge(*pmd))
  2837. goto out;
  2838. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2839. if (!ptep)
  2840. goto out;
  2841. if (!pte_present(*ptep))
  2842. goto unlock;
  2843. *ptepp = ptep;
  2844. return 0;
  2845. unlock:
  2846. pte_unmap_unlock(ptep, *ptlp);
  2847. out:
  2848. return -EINVAL;
  2849. }
  2850. /**
  2851. * follow_pfn - look up PFN at a user virtual address
  2852. * @vma: memory mapping
  2853. * @address: user virtual address
  2854. * @pfn: location to store found PFN
  2855. *
  2856. * Only IO mappings and raw PFN mappings are allowed.
  2857. *
  2858. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2859. */
  2860. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2861. unsigned long *pfn)
  2862. {
  2863. int ret = -EINVAL;
  2864. spinlock_t *ptl;
  2865. pte_t *ptep;
  2866. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2867. return ret;
  2868. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2869. if (ret)
  2870. return ret;
  2871. *pfn = pte_pfn(*ptep);
  2872. pte_unmap_unlock(ptep, ptl);
  2873. return 0;
  2874. }
  2875. EXPORT_SYMBOL(follow_pfn);
  2876. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2877. int follow_phys(struct vm_area_struct *vma,
  2878. unsigned long address, unsigned int flags,
  2879. unsigned long *prot, resource_size_t *phys)
  2880. {
  2881. int ret = -EINVAL;
  2882. pte_t *ptep, pte;
  2883. spinlock_t *ptl;
  2884. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2885. goto out;
  2886. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2887. goto out;
  2888. pte = *ptep;
  2889. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2890. goto unlock;
  2891. *prot = pgprot_val(pte_pgprot(pte));
  2892. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2893. ret = 0;
  2894. unlock:
  2895. pte_unmap_unlock(ptep, ptl);
  2896. out:
  2897. return ret;
  2898. }
  2899. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2900. void *buf, int len, int write)
  2901. {
  2902. resource_size_t phys_addr;
  2903. unsigned long prot = 0;
  2904. void __iomem *maddr;
  2905. int offset = addr & (PAGE_SIZE-1);
  2906. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2907. return -EINVAL;
  2908. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2909. if (write)
  2910. memcpy_toio(maddr + offset, buf, len);
  2911. else
  2912. memcpy_fromio(buf, maddr + offset, len);
  2913. iounmap(maddr);
  2914. return len;
  2915. }
  2916. #endif
  2917. /*
  2918. * Access another process' address space.
  2919. * Source/target buffer must be kernel space,
  2920. * Do not walk the page table directly, use get_user_pages
  2921. */
  2922. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2923. {
  2924. struct mm_struct *mm;
  2925. struct vm_area_struct *vma;
  2926. void *old_buf = buf;
  2927. mm = get_task_mm(tsk);
  2928. if (!mm)
  2929. return 0;
  2930. down_read(&mm->mmap_sem);
  2931. /* ignore errors, just check how much was successfully transferred */
  2932. while (len) {
  2933. int bytes, ret, offset;
  2934. void *maddr;
  2935. struct page *page = NULL;
  2936. ret = get_user_pages(tsk, mm, addr, 1,
  2937. write, 1, &page, &vma);
  2938. if (ret <= 0) {
  2939. /*
  2940. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2941. * we can access using slightly different code.
  2942. */
  2943. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2944. vma = find_vma(mm, addr);
  2945. if (!vma)
  2946. break;
  2947. if (vma->vm_ops && vma->vm_ops->access)
  2948. ret = vma->vm_ops->access(vma, addr, buf,
  2949. len, write);
  2950. if (ret <= 0)
  2951. #endif
  2952. break;
  2953. bytes = ret;
  2954. } else {
  2955. bytes = len;
  2956. offset = addr & (PAGE_SIZE-1);
  2957. if (bytes > PAGE_SIZE-offset)
  2958. bytes = PAGE_SIZE-offset;
  2959. maddr = kmap(page);
  2960. if (write) {
  2961. copy_to_user_page(vma, page, addr,
  2962. maddr + offset, buf, bytes);
  2963. set_page_dirty_lock(page);
  2964. } else {
  2965. copy_from_user_page(vma, page, addr,
  2966. buf, maddr + offset, bytes);
  2967. }
  2968. kunmap(page);
  2969. page_cache_release(page);
  2970. }
  2971. len -= bytes;
  2972. buf += bytes;
  2973. addr += bytes;
  2974. }
  2975. up_read(&mm->mmap_sem);
  2976. mmput(mm);
  2977. return buf - old_buf;
  2978. }
  2979. /*
  2980. * Print the name of a VMA.
  2981. */
  2982. void print_vma_addr(char *prefix, unsigned long ip)
  2983. {
  2984. struct mm_struct *mm = current->mm;
  2985. struct vm_area_struct *vma;
  2986. /*
  2987. * Do not print if we are in atomic
  2988. * contexts (in exception stacks, etc.):
  2989. */
  2990. if (preempt_count())
  2991. return;
  2992. down_read(&mm->mmap_sem);
  2993. vma = find_vma(mm, ip);
  2994. if (vma && vma->vm_file) {
  2995. struct file *f = vma->vm_file;
  2996. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2997. if (buf) {
  2998. char *p, *s;
  2999. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3000. if (IS_ERR(p))
  3001. p = "?";
  3002. s = strrchr(p, '/');
  3003. if (s)
  3004. p = s+1;
  3005. printk("%s%s[%lx+%lx]", prefix, p,
  3006. vma->vm_start,
  3007. vma->vm_end - vma->vm_start);
  3008. free_page((unsigned long)buf);
  3009. }
  3010. }
  3011. up_read(&current->mm->mmap_sem);
  3012. }
  3013. #ifdef CONFIG_PROVE_LOCKING
  3014. void might_fault(void)
  3015. {
  3016. /*
  3017. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3018. * holding the mmap_sem, this is safe because kernel memory doesn't
  3019. * get paged out, therefore we'll never actually fault, and the
  3020. * below annotations will generate false positives.
  3021. */
  3022. if (segment_eq(get_fs(), KERNEL_DS))
  3023. return;
  3024. might_sleep();
  3025. /*
  3026. * it would be nicer only to annotate paths which are not under
  3027. * pagefault_disable, however that requires a larger audit and
  3028. * providing helpers like get_user_atomic.
  3029. */
  3030. if (!in_atomic() && current->mm)
  3031. might_lock_read(&current->mm->mmap_sem);
  3032. }
  3033. EXPORT_SYMBOL(might_fault);
  3034. #endif