memory-failure.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a 2bit ECC memory or cache
  11. * failure.
  12. *
  13. * Handles page cache pages in various states. The tricky part
  14. * here is that we can access any page asynchronous to other VM
  15. * users, because memory failures could happen anytime and anywhere,
  16. * possibly violating some of their assumptions. This is why this code
  17. * has to be extremely careful. Generally it tries to use normal locking
  18. * rules, as in get the standard locks, even if that means the
  19. * error handling takes potentially a long time.
  20. *
  21. * The operation to map back from RMAP chains to processes has to walk
  22. * the complete process list and has non linear complexity with the number
  23. * mappings. In short it can be quite slow. But since memory corruptions
  24. * are rare we hope to get away with this.
  25. */
  26. /*
  27. * Notebook:
  28. * - hugetlb needs more code
  29. * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
  30. * - pass bad pages to kdump next kernel
  31. */
  32. #define DEBUG 1 /* remove me in 2.6.34 */
  33. #include <linux/kernel.h>
  34. #include <linux/mm.h>
  35. #include <linux/page-flags.h>
  36. #include <linux/sched.h>
  37. #include <linux/rmap.h>
  38. #include <linux/pagemap.h>
  39. #include <linux/swap.h>
  40. #include <linux/backing-dev.h>
  41. #include "internal.h"
  42. int sysctl_memory_failure_early_kill __read_mostly = 0;
  43. int sysctl_memory_failure_recovery __read_mostly = 1;
  44. atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
  45. /*
  46. * Send all the processes who have the page mapped an ``action optional''
  47. * signal.
  48. */
  49. static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
  50. unsigned long pfn)
  51. {
  52. struct siginfo si;
  53. int ret;
  54. printk(KERN_ERR
  55. "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
  56. pfn, t->comm, t->pid);
  57. si.si_signo = SIGBUS;
  58. si.si_errno = 0;
  59. si.si_code = BUS_MCEERR_AO;
  60. si.si_addr = (void *)addr;
  61. #ifdef __ARCH_SI_TRAPNO
  62. si.si_trapno = trapno;
  63. #endif
  64. si.si_addr_lsb = PAGE_SHIFT;
  65. /*
  66. * Don't use force here, it's convenient if the signal
  67. * can be temporarily blocked.
  68. * This could cause a loop when the user sets SIGBUS
  69. * to SIG_IGN, but hopefully noone will do that?
  70. */
  71. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  72. if (ret < 0)
  73. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  74. t->comm, t->pid, ret);
  75. return ret;
  76. }
  77. /*
  78. * Kill all processes that have a poisoned page mapped and then isolate
  79. * the page.
  80. *
  81. * General strategy:
  82. * Find all processes having the page mapped and kill them.
  83. * But we keep a page reference around so that the page is not
  84. * actually freed yet.
  85. * Then stash the page away
  86. *
  87. * There's no convenient way to get back to mapped processes
  88. * from the VMAs. So do a brute-force search over all
  89. * running processes.
  90. *
  91. * Remember that machine checks are not common (or rather
  92. * if they are common you have other problems), so this shouldn't
  93. * be a performance issue.
  94. *
  95. * Also there are some races possible while we get from the
  96. * error detection to actually handle it.
  97. */
  98. struct to_kill {
  99. struct list_head nd;
  100. struct task_struct *tsk;
  101. unsigned long addr;
  102. unsigned addr_valid:1;
  103. };
  104. /*
  105. * Failure handling: if we can't find or can't kill a process there's
  106. * not much we can do. We just print a message and ignore otherwise.
  107. */
  108. /*
  109. * Schedule a process for later kill.
  110. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  111. * TBD would GFP_NOIO be enough?
  112. */
  113. static void add_to_kill(struct task_struct *tsk, struct page *p,
  114. struct vm_area_struct *vma,
  115. struct list_head *to_kill,
  116. struct to_kill **tkc)
  117. {
  118. struct to_kill *tk;
  119. if (*tkc) {
  120. tk = *tkc;
  121. *tkc = NULL;
  122. } else {
  123. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  124. if (!tk) {
  125. printk(KERN_ERR
  126. "MCE: Out of memory while machine check handling\n");
  127. return;
  128. }
  129. }
  130. tk->addr = page_address_in_vma(p, vma);
  131. tk->addr_valid = 1;
  132. /*
  133. * In theory we don't have to kill when the page was
  134. * munmaped. But it could be also a mremap. Since that's
  135. * likely very rare kill anyways just out of paranoia, but use
  136. * a SIGKILL because the error is not contained anymore.
  137. */
  138. if (tk->addr == -EFAULT) {
  139. pr_debug("MCE: Unable to find user space address %lx in %s\n",
  140. page_to_pfn(p), tsk->comm);
  141. tk->addr_valid = 0;
  142. }
  143. get_task_struct(tsk);
  144. tk->tsk = tsk;
  145. list_add_tail(&tk->nd, to_kill);
  146. }
  147. /*
  148. * Kill the processes that have been collected earlier.
  149. *
  150. * Only do anything when DOIT is set, otherwise just free the list
  151. * (this is used for clean pages which do not need killing)
  152. * Also when FAIL is set do a force kill because something went
  153. * wrong earlier.
  154. */
  155. static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
  156. int fail, unsigned long pfn)
  157. {
  158. struct to_kill *tk, *next;
  159. list_for_each_entry_safe (tk, next, to_kill, nd) {
  160. if (doit) {
  161. /*
  162. * In case something went wrong with munmaping
  163. * make sure the process doesn't catch the
  164. * signal and then access the memory. Just kill it.
  165. * the signal handlers
  166. */
  167. if (fail || tk->addr_valid == 0) {
  168. printk(KERN_ERR
  169. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  170. pfn, tk->tsk->comm, tk->tsk->pid);
  171. force_sig(SIGKILL, tk->tsk);
  172. }
  173. /*
  174. * In theory the process could have mapped
  175. * something else on the address in-between. We could
  176. * check for that, but we need to tell the
  177. * process anyways.
  178. */
  179. else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
  180. pfn) < 0)
  181. printk(KERN_ERR
  182. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  183. pfn, tk->tsk->comm, tk->tsk->pid);
  184. }
  185. put_task_struct(tk->tsk);
  186. kfree(tk);
  187. }
  188. }
  189. static int task_early_kill(struct task_struct *tsk)
  190. {
  191. if (!tsk->mm)
  192. return 0;
  193. if (tsk->flags & PF_MCE_PROCESS)
  194. return !!(tsk->flags & PF_MCE_EARLY);
  195. return sysctl_memory_failure_early_kill;
  196. }
  197. /*
  198. * Collect processes when the error hit an anonymous page.
  199. */
  200. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  201. struct to_kill **tkc)
  202. {
  203. struct vm_area_struct *vma;
  204. struct task_struct *tsk;
  205. struct anon_vma *av;
  206. read_lock(&tasklist_lock);
  207. av = page_lock_anon_vma(page);
  208. if (av == NULL) /* Not actually mapped anymore */
  209. goto out;
  210. for_each_process (tsk) {
  211. if (!task_early_kill(tsk))
  212. continue;
  213. list_for_each_entry (vma, &av->head, anon_vma_node) {
  214. if (!page_mapped_in_vma(page, vma))
  215. continue;
  216. if (vma->vm_mm == tsk->mm)
  217. add_to_kill(tsk, page, vma, to_kill, tkc);
  218. }
  219. }
  220. page_unlock_anon_vma(av);
  221. out:
  222. read_unlock(&tasklist_lock);
  223. }
  224. /*
  225. * Collect processes when the error hit a file mapped page.
  226. */
  227. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  228. struct to_kill **tkc)
  229. {
  230. struct vm_area_struct *vma;
  231. struct task_struct *tsk;
  232. struct prio_tree_iter iter;
  233. struct address_space *mapping = page->mapping;
  234. /*
  235. * A note on the locking order between the two locks.
  236. * We don't rely on this particular order.
  237. * If you have some other code that needs a different order
  238. * feel free to switch them around. Or add a reverse link
  239. * from mm_struct to task_struct, then this could be all
  240. * done without taking tasklist_lock and looping over all tasks.
  241. */
  242. read_lock(&tasklist_lock);
  243. spin_lock(&mapping->i_mmap_lock);
  244. for_each_process(tsk) {
  245. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  246. if (!task_early_kill(tsk))
  247. continue;
  248. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
  249. pgoff) {
  250. /*
  251. * Send early kill signal to tasks where a vma covers
  252. * the page but the corrupted page is not necessarily
  253. * mapped it in its pte.
  254. * Assume applications who requested early kill want
  255. * to be informed of all such data corruptions.
  256. */
  257. if (vma->vm_mm == tsk->mm)
  258. add_to_kill(tsk, page, vma, to_kill, tkc);
  259. }
  260. }
  261. spin_unlock(&mapping->i_mmap_lock);
  262. read_unlock(&tasklist_lock);
  263. }
  264. /*
  265. * Collect the processes who have the corrupted page mapped to kill.
  266. * This is done in two steps for locking reasons.
  267. * First preallocate one tokill structure outside the spin locks,
  268. * so that we can kill at least one process reasonably reliable.
  269. */
  270. static void collect_procs(struct page *page, struct list_head *tokill)
  271. {
  272. struct to_kill *tk;
  273. if (!page->mapping)
  274. return;
  275. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  276. if (!tk)
  277. return;
  278. if (PageAnon(page))
  279. collect_procs_anon(page, tokill, &tk);
  280. else
  281. collect_procs_file(page, tokill, &tk);
  282. kfree(tk);
  283. }
  284. /*
  285. * Error handlers for various types of pages.
  286. */
  287. enum outcome {
  288. FAILED, /* Error handling failed */
  289. DELAYED, /* Will be handled later */
  290. IGNORED, /* Error safely ignored */
  291. RECOVERED, /* Successfully recovered */
  292. };
  293. static const char *action_name[] = {
  294. [FAILED] = "Failed",
  295. [DELAYED] = "Delayed",
  296. [IGNORED] = "Ignored",
  297. [RECOVERED] = "Recovered",
  298. };
  299. /*
  300. * Error hit kernel page.
  301. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  302. * could be more sophisticated.
  303. */
  304. static int me_kernel(struct page *p, unsigned long pfn)
  305. {
  306. return DELAYED;
  307. }
  308. /*
  309. * Already poisoned page.
  310. */
  311. static int me_ignore(struct page *p, unsigned long pfn)
  312. {
  313. return IGNORED;
  314. }
  315. /*
  316. * Page in unknown state. Do nothing.
  317. */
  318. static int me_unknown(struct page *p, unsigned long pfn)
  319. {
  320. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  321. return FAILED;
  322. }
  323. /*
  324. * Free memory
  325. */
  326. static int me_free(struct page *p, unsigned long pfn)
  327. {
  328. return DELAYED;
  329. }
  330. /*
  331. * Clean (or cleaned) page cache page.
  332. */
  333. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  334. {
  335. int err;
  336. int ret = FAILED;
  337. struct address_space *mapping;
  338. if (!isolate_lru_page(p))
  339. page_cache_release(p);
  340. /*
  341. * For anonymous pages we're done the only reference left
  342. * should be the one m_f() holds.
  343. */
  344. if (PageAnon(p))
  345. return RECOVERED;
  346. /*
  347. * Now truncate the page in the page cache. This is really
  348. * more like a "temporary hole punch"
  349. * Don't do this for block devices when someone else
  350. * has a reference, because it could be file system metadata
  351. * and that's not safe to truncate.
  352. */
  353. mapping = page_mapping(p);
  354. if (!mapping) {
  355. /*
  356. * Page has been teared down in the meanwhile
  357. */
  358. return FAILED;
  359. }
  360. /*
  361. * Truncation is a bit tricky. Enable it per file system for now.
  362. *
  363. * Open: to take i_mutex or not for this? Right now we don't.
  364. */
  365. if (mapping->a_ops->error_remove_page) {
  366. err = mapping->a_ops->error_remove_page(mapping, p);
  367. if (err != 0) {
  368. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  369. pfn, err);
  370. } else if (page_has_private(p) &&
  371. !try_to_release_page(p, GFP_NOIO)) {
  372. pr_debug("MCE %#lx: failed to release buffers\n", pfn);
  373. } else {
  374. ret = RECOVERED;
  375. }
  376. } else {
  377. /*
  378. * If the file system doesn't support it just invalidate
  379. * This fails on dirty or anything with private pages
  380. */
  381. if (invalidate_inode_page(p))
  382. ret = RECOVERED;
  383. else
  384. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  385. pfn);
  386. }
  387. return ret;
  388. }
  389. /*
  390. * Dirty cache page page
  391. * Issues: when the error hit a hole page the error is not properly
  392. * propagated.
  393. */
  394. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  395. {
  396. struct address_space *mapping = page_mapping(p);
  397. SetPageError(p);
  398. /* TBD: print more information about the file. */
  399. if (mapping) {
  400. /*
  401. * IO error will be reported by write(), fsync(), etc.
  402. * who check the mapping.
  403. * This way the application knows that something went
  404. * wrong with its dirty file data.
  405. *
  406. * There's one open issue:
  407. *
  408. * The EIO will be only reported on the next IO
  409. * operation and then cleared through the IO map.
  410. * Normally Linux has two mechanisms to pass IO error
  411. * first through the AS_EIO flag in the address space
  412. * and then through the PageError flag in the page.
  413. * Since we drop pages on memory failure handling the
  414. * only mechanism open to use is through AS_AIO.
  415. *
  416. * This has the disadvantage that it gets cleared on
  417. * the first operation that returns an error, while
  418. * the PageError bit is more sticky and only cleared
  419. * when the page is reread or dropped. If an
  420. * application assumes it will always get error on
  421. * fsync, but does other operations on the fd before
  422. * and the page is dropped inbetween then the error
  423. * will not be properly reported.
  424. *
  425. * This can already happen even without hwpoisoned
  426. * pages: first on metadata IO errors (which only
  427. * report through AS_EIO) or when the page is dropped
  428. * at the wrong time.
  429. *
  430. * So right now we assume that the application DTRT on
  431. * the first EIO, but we're not worse than other parts
  432. * of the kernel.
  433. */
  434. mapping_set_error(mapping, EIO);
  435. }
  436. return me_pagecache_clean(p, pfn);
  437. }
  438. /*
  439. * Clean and dirty swap cache.
  440. *
  441. * Dirty swap cache page is tricky to handle. The page could live both in page
  442. * cache and swap cache(ie. page is freshly swapped in). So it could be
  443. * referenced concurrently by 2 types of PTEs:
  444. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  445. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  446. * and then
  447. * - clear dirty bit to prevent IO
  448. * - remove from LRU
  449. * - but keep in the swap cache, so that when we return to it on
  450. * a later page fault, we know the application is accessing
  451. * corrupted data and shall be killed (we installed simple
  452. * interception code in do_swap_page to catch it).
  453. *
  454. * Clean swap cache pages can be directly isolated. A later page fault will
  455. * bring in the known good data from disk.
  456. */
  457. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  458. {
  459. int ret = FAILED;
  460. ClearPageDirty(p);
  461. /* Trigger EIO in shmem: */
  462. ClearPageUptodate(p);
  463. if (!isolate_lru_page(p)) {
  464. page_cache_release(p);
  465. ret = DELAYED;
  466. }
  467. return ret;
  468. }
  469. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  470. {
  471. int ret = FAILED;
  472. if (!isolate_lru_page(p)) {
  473. page_cache_release(p);
  474. ret = RECOVERED;
  475. }
  476. delete_from_swap_cache(p);
  477. return ret;
  478. }
  479. /*
  480. * Huge pages. Needs work.
  481. * Issues:
  482. * No rmap support so we cannot find the original mapper. In theory could walk
  483. * all MMs and look for the mappings, but that would be non atomic and racy.
  484. * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
  485. * like just walking the current process and hoping it has it mapped (that
  486. * should be usually true for the common "shared database cache" case)
  487. * Should handle free huge pages and dequeue them too, but this needs to
  488. * handle huge page accounting correctly.
  489. */
  490. static int me_huge_page(struct page *p, unsigned long pfn)
  491. {
  492. return FAILED;
  493. }
  494. /*
  495. * Various page states we can handle.
  496. *
  497. * A page state is defined by its current page->flags bits.
  498. * The table matches them in order and calls the right handler.
  499. *
  500. * This is quite tricky because we can access page at any time
  501. * in its live cycle, so all accesses have to be extremly careful.
  502. *
  503. * This is not complete. More states could be added.
  504. * For any missing state don't attempt recovery.
  505. */
  506. #define dirty (1UL << PG_dirty)
  507. #define sc (1UL << PG_swapcache)
  508. #define unevict (1UL << PG_unevictable)
  509. #define mlock (1UL << PG_mlocked)
  510. #define writeback (1UL << PG_writeback)
  511. #define lru (1UL << PG_lru)
  512. #define swapbacked (1UL << PG_swapbacked)
  513. #define head (1UL << PG_head)
  514. #define tail (1UL << PG_tail)
  515. #define compound (1UL << PG_compound)
  516. #define slab (1UL << PG_slab)
  517. #define buddy (1UL << PG_buddy)
  518. #define reserved (1UL << PG_reserved)
  519. static struct page_state {
  520. unsigned long mask;
  521. unsigned long res;
  522. char *msg;
  523. int (*action)(struct page *p, unsigned long pfn);
  524. } error_states[] = {
  525. { reserved, reserved, "reserved kernel", me_ignore },
  526. { buddy, buddy, "free kernel", me_free },
  527. /*
  528. * Could in theory check if slab page is free or if we can drop
  529. * currently unused objects without touching them. But just
  530. * treat it as standard kernel for now.
  531. */
  532. { slab, slab, "kernel slab", me_kernel },
  533. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  534. { head, head, "huge", me_huge_page },
  535. { tail, tail, "huge", me_huge_page },
  536. #else
  537. { compound, compound, "huge", me_huge_page },
  538. #endif
  539. { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
  540. { sc|dirty, sc, "swapcache", me_swapcache_clean },
  541. { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
  542. { unevict, unevict, "unevictable LRU", me_pagecache_clean},
  543. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  544. { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
  545. { mlock, mlock, "mlocked LRU", me_pagecache_clean },
  546. #endif
  547. { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
  548. { lru|dirty, lru, "clean LRU", me_pagecache_clean },
  549. { swapbacked, swapbacked, "anonymous", me_pagecache_clean },
  550. /*
  551. * Catchall entry: must be at end.
  552. */
  553. { 0, 0, "unknown page state", me_unknown },
  554. };
  555. #undef lru
  556. static void action_result(unsigned long pfn, char *msg, int result)
  557. {
  558. struct page *page = NULL;
  559. if (pfn_valid(pfn))
  560. page = pfn_to_page(pfn);
  561. printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
  562. pfn,
  563. page && PageDirty(page) ? "dirty " : "",
  564. msg, action_name[result]);
  565. }
  566. static int page_action(struct page_state *ps, struct page *p,
  567. unsigned long pfn, int ref)
  568. {
  569. int result;
  570. result = ps->action(p, pfn);
  571. action_result(pfn, ps->msg, result);
  572. if (page_count(p) != 1 + ref)
  573. printk(KERN_ERR
  574. "MCE %#lx: %s page still referenced by %d users\n",
  575. pfn, ps->msg, page_count(p) - 1);
  576. /* Could do more checks here if page looks ok */
  577. /*
  578. * Could adjust zone counters here to correct for the missing page.
  579. */
  580. return result == RECOVERED ? 0 : -EBUSY;
  581. }
  582. #define N_UNMAP_TRIES 5
  583. /*
  584. * Do all that is necessary to remove user space mappings. Unmap
  585. * the pages and send SIGBUS to the processes if the data was dirty.
  586. */
  587. static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
  588. int trapno)
  589. {
  590. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  591. struct address_space *mapping;
  592. LIST_HEAD(tokill);
  593. int ret;
  594. int i;
  595. int kill = 1;
  596. if (PageReserved(p) || PageCompound(p) || PageSlab(p))
  597. return;
  598. if (!PageLRU(p))
  599. lru_add_drain_all();
  600. /*
  601. * This check implies we don't kill processes if their pages
  602. * are in the swap cache early. Those are always late kills.
  603. */
  604. if (!page_mapped(p))
  605. return;
  606. if (PageSwapCache(p)) {
  607. printk(KERN_ERR
  608. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  609. ttu |= TTU_IGNORE_HWPOISON;
  610. }
  611. /*
  612. * Propagate the dirty bit from PTEs to struct page first, because we
  613. * need this to decide if we should kill or just drop the page.
  614. */
  615. mapping = page_mapping(p);
  616. if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
  617. if (page_mkclean(p)) {
  618. SetPageDirty(p);
  619. } else {
  620. kill = 0;
  621. ttu |= TTU_IGNORE_HWPOISON;
  622. printk(KERN_INFO
  623. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  624. pfn);
  625. }
  626. }
  627. /*
  628. * First collect all the processes that have the page
  629. * mapped in dirty form. This has to be done before try_to_unmap,
  630. * because ttu takes the rmap data structures down.
  631. *
  632. * Error handling: We ignore errors here because
  633. * there's nothing that can be done.
  634. */
  635. if (kill)
  636. collect_procs(p, &tokill);
  637. /*
  638. * try_to_unmap can fail temporarily due to races.
  639. * Try a few times (RED-PEN better strategy?)
  640. */
  641. for (i = 0; i < N_UNMAP_TRIES; i++) {
  642. ret = try_to_unmap(p, ttu);
  643. if (ret == SWAP_SUCCESS)
  644. break;
  645. pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
  646. }
  647. if (ret != SWAP_SUCCESS)
  648. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  649. pfn, page_mapcount(p));
  650. /*
  651. * Now that the dirty bit has been propagated to the
  652. * struct page and all unmaps done we can decide if
  653. * killing is needed or not. Only kill when the page
  654. * was dirty, otherwise the tokill list is merely
  655. * freed. When there was a problem unmapping earlier
  656. * use a more force-full uncatchable kill to prevent
  657. * any accesses to the poisoned memory.
  658. */
  659. kill_procs_ao(&tokill, !!PageDirty(p), trapno,
  660. ret != SWAP_SUCCESS, pfn);
  661. }
  662. int __memory_failure(unsigned long pfn, int trapno, int ref)
  663. {
  664. struct page_state *ps;
  665. struct page *p;
  666. int res;
  667. if (!sysctl_memory_failure_recovery)
  668. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  669. if (!pfn_valid(pfn)) {
  670. action_result(pfn, "memory outside kernel control", IGNORED);
  671. return -EIO;
  672. }
  673. p = pfn_to_page(pfn);
  674. if (TestSetPageHWPoison(p)) {
  675. action_result(pfn, "already hardware poisoned", IGNORED);
  676. return 0;
  677. }
  678. atomic_long_add(1, &mce_bad_pages);
  679. /*
  680. * We need/can do nothing about count=0 pages.
  681. * 1) it's a free page, and therefore in safe hand:
  682. * prep_new_page() will be the gate keeper.
  683. * 2) it's part of a non-compound high order page.
  684. * Implies some kernel user: cannot stop them from
  685. * R/W the page; let's pray that the page has been
  686. * used and will be freed some time later.
  687. * In fact it's dangerous to directly bump up page count from 0,
  688. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  689. */
  690. if (!get_page_unless_zero(compound_head(p))) {
  691. action_result(pfn, "free or high order kernel", IGNORED);
  692. return PageBuddy(compound_head(p)) ? 0 : -EBUSY;
  693. }
  694. /*
  695. * Lock the page and wait for writeback to finish.
  696. * It's very difficult to mess with pages currently under IO
  697. * and in many cases impossible, so we just avoid it here.
  698. */
  699. lock_page_nosync(p);
  700. wait_on_page_writeback(p);
  701. /*
  702. * Now take care of user space mappings.
  703. */
  704. hwpoison_user_mappings(p, pfn, trapno);
  705. /*
  706. * Torn down by someone else?
  707. */
  708. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  709. action_result(pfn, "already truncated LRU", IGNORED);
  710. res = 0;
  711. goto out;
  712. }
  713. res = -EBUSY;
  714. for (ps = error_states;; ps++) {
  715. if ((p->flags & ps->mask) == ps->res) {
  716. res = page_action(ps, p, pfn, ref);
  717. break;
  718. }
  719. }
  720. out:
  721. unlock_page(p);
  722. return res;
  723. }
  724. EXPORT_SYMBOL_GPL(__memory_failure);
  725. /**
  726. * memory_failure - Handle memory failure of a page.
  727. * @pfn: Page Number of the corrupted page
  728. * @trapno: Trap number reported in the signal to user space.
  729. *
  730. * This function is called by the low level machine check code
  731. * of an architecture when it detects hardware memory corruption
  732. * of a page. It tries its best to recover, which includes
  733. * dropping pages, killing processes etc.
  734. *
  735. * The function is primarily of use for corruptions that
  736. * happen outside the current execution context (e.g. when
  737. * detected by a background scrubber)
  738. *
  739. * Must run in process context (e.g. a work queue) with interrupts
  740. * enabled and no spinlocks hold.
  741. */
  742. void memory_failure(unsigned long pfn, int trapno)
  743. {
  744. __memory_failure(pfn, trapno, 0);
  745. }