exec.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mm.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/swap.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/pagemap.h>
  34. #include <linux/perf_event.h>
  35. #include <linux/highmem.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/key.h>
  38. #include <linux/personality.h>
  39. #include <linux/binfmts.h>
  40. #include <linux/utsname.h>
  41. #include <linux/pid_namespace.h>
  42. #include <linux/module.h>
  43. #include <linux/namei.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/mount.h>
  46. #include <linux/security.h>
  47. #include <linux/ima.h>
  48. #include <linux/syscalls.h>
  49. #include <linux/tsacct_kern.h>
  50. #include <linux/cn_proc.h>
  51. #include <linux/audit.h>
  52. #include <linux/tracehook.h>
  53. #include <linux/kmod.h>
  54. #include <linux/fsnotify.h>
  55. #include <linux/fs_struct.h>
  56. #include <linux/pipe_fs_i.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/mmu_context.h>
  59. #include <asm/tlb.h>
  60. #include "internal.h"
  61. int core_uses_pid;
  62. char core_pattern[CORENAME_MAX_SIZE] = "core";
  63. unsigned int core_pipe_limit;
  64. int suid_dumpable = 0;
  65. /* The maximal length of core_pattern is also specified in sysctl.c */
  66. static LIST_HEAD(formats);
  67. static DEFINE_RWLOCK(binfmt_lock);
  68. int __register_binfmt(struct linux_binfmt * fmt, int insert)
  69. {
  70. if (!fmt)
  71. return -EINVAL;
  72. write_lock(&binfmt_lock);
  73. insert ? list_add(&fmt->lh, &formats) :
  74. list_add_tail(&fmt->lh, &formats);
  75. write_unlock(&binfmt_lock);
  76. return 0;
  77. }
  78. EXPORT_SYMBOL(__register_binfmt);
  79. void unregister_binfmt(struct linux_binfmt * fmt)
  80. {
  81. write_lock(&binfmt_lock);
  82. list_del(&fmt->lh);
  83. write_unlock(&binfmt_lock);
  84. }
  85. EXPORT_SYMBOL(unregister_binfmt);
  86. static inline void put_binfmt(struct linux_binfmt * fmt)
  87. {
  88. module_put(fmt->module);
  89. }
  90. /*
  91. * Note that a shared library must be both readable and executable due to
  92. * security reasons.
  93. *
  94. * Also note that we take the address to load from from the file itself.
  95. */
  96. SYSCALL_DEFINE1(uselib, const char __user *, library)
  97. {
  98. struct file *file;
  99. char *tmp = getname(library);
  100. int error = PTR_ERR(tmp);
  101. if (IS_ERR(tmp))
  102. goto out;
  103. file = do_filp_open(AT_FDCWD, tmp,
  104. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  105. MAY_READ | MAY_EXEC | MAY_OPEN);
  106. putname(tmp);
  107. error = PTR_ERR(file);
  108. if (IS_ERR(file))
  109. goto out;
  110. error = -EINVAL;
  111. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  112. goto exit;
  113. error = -EACCES;
  114. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  115. goto exit;
  116. fsnotify_open(file->f_path.dentry);
  117. error = -ENOEXEC;
  118. if(file->f_op) {
  119. struct linux_binfmt * fmt;
  120. read_lock(&binfmt_lock);
  121. list_for_each_entry(fmt, &formats, lh) {
  122. if (!fmt->load_shlib)
  123. continue;
  124. if (!try_module_get(fmt->module))
  125. continue;
  126. read_unlock(&binfmt_lock);
  127. error = fmt->load_shlib(file);
  128. read_lock(&binfmt_lock);
  129. put_binfmt(fmt);
  130. if (error != -ENOEXEC)
  131. break;
  132. }
  133. read_unlock(&binfmt_lock);
  134. }
  135. exit:
  136. fput(file);
  137. out:
  138. return error;
  139. }
  140. #ifdef CONFIG_MMU
  141. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  142. int write)
  143. {
  144. struct page *page;
  145. int ret;
  146. #ifdef CONFIG_STACK_GROWSUP
  147. if (write) {
  148. ret = expand_stack_downwards(bprm->vma, pos);
  149. if (ret < 0)
  150. return NULL;
  151. }
  152. #endif
  153. ret = get_user_pages(current, bprm->mm, pos,
  154. 1, write, 1, &page, NULL);
  155. if (ret <= 0)
  156. return NULL;
  157. if (write) {
  158. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  159. struct rlimit *rlim;
  160. /*
  161. * We've historically supported up to 32 pages (ARG_MAX)
  162. * of argument strings even with small stacks
  163. */
  164. if (size <= ARG_MAX)
  165. return page;
  166. /*
  167. * Limit to 1/4-th the stack size for the argv+env strings.
  168. * This ensures that:
  169. * - the remaining binfmt code will not run out of stack space,
  170. * - the program will have a reasonable amount of stack left
  171. * to work from.
  172. */
  173. rlim = current->signal->rlim;
  174. if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
  175. put_page(page);
  176. return NULL;
  177. }
  178. }
  179. return page;
  180. }
  181. static void put_arg_page(struct page *page)
  182. {
  183. put_page(page);
  184. }
  185. static void free_arg_page(struct linux_binprm *bprm, int i)
  186. {
  187. }
  188. static void free_arg_pages(struct linux_binprm *bprm)
  189. {
  190. }
  191. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  192. struct page *page)
  193. {
  194. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  195. }
  196. static int __bprm_mm_init(struct linux_binprm *bprm)
  197. {
  198. int err;
  199. struct vm_area_struct *vma = NULL;
  200. struct mm_struct *mm = bprm->mm;
  201. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  202. if (!vma)
  203. return -ENOMEM;
  204. down_write(&mm->mmap_sem);
  205. vma->vm_mm = mm;
  206. /*
  207. * Place the stack at the largest stack address the architecture
  208. * supports. Later, we'll move this to an appropriate place. We don't
  209. * use STACK_TOP because that can depend on attributes which aren't
  210. * configured yet.
  211. */
  212. vma->vm_end = STACK_TOP_MAX;
  213. vma->vm_start = vma->vm_end - PAGE_SIZE;
  214. vma->vm_flags = VM_STACK_FLAGS;
  215. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  216. err = insert_vm_struct(mm, vma);
  217. if (err)
  218. goto err;
  219. mm->stack_vm = mm->total_vm = 1;
  220. up_write(&mm->mmap_sem);
  221. bprm->p = vma->vm_end - sizeof(void *);
  222. return 0;
  223. err:
  224. up_write(&mm->mmap_sem);
  225. bprm->vma = NULL;
  226. kmem_cache_free(vm_area_cachep, vma);
  227. return err;
  228. }
  229. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  230. {
  231. return len <= MAX_ARG_STRLEN;
  232. }
  233. #else
  234. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  235. int write)
  236. {
  237. struct page *page;
  238. page = bprm->page[pos / PAGE_SIZE];
  239. if (!page && write) {
  240. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  241. if (!page)
  242. return NULL;
  243. bprm->page[pos / PAGE_SIZE] = page;
  244. }
  245. return page;
  246. }
  247. static void put_arg_page(struct page *page)
  248. {
  249. }
  250. static void free_arg_page(struct linux_binprm *bprm, int i)
  251. {
  252. if (bprm->page[i]) {
  253. __free_page(bprm->page[i]);
  254. bprm->page[i] = NULL;
  255. }
  256. }
  257. static void free_arg_pages(struct linux_binprm *bprm)
  258. {
  259. int i;
  260. for (i = 0; i < MAX_ARG_PAGES; i++)
  261. free_arg_page(bprm, i);
  262. }
  263. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  264. struct page *page)
  265. {
  266. }
  267. static int __bprm_mm_init(struct linux_binprm *bprm)
  268. {
  269. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  270. return 0;
  271. }
  272. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  273. {
  274. return len <= bprm->p;
  275. }
  276. #endif /* CONFIG_MMU */
  277. /*
  278. * Create a new mm_struct and populate it with a temporary stack
  279. * vm_area_struct. We don't have enough context at this point to set the stack
  280. * flags, permissions, and offset, so we use temporary values. We'll update
  281. * them later in setup_arg_pages().
  282. */
  283. int bprm_mm_init(struct linux_binprm *bprm)
  284. {
  285. int err;
  286. struct mm_struct *mm = NULL;
  287. bprm->mm = mm = mm_alloc();
  288. err = -ENOMEM;
  289. if (!mm)
  290. goto err;
  291. err = init_new_context(current, mm);
  292. if (err)
  293. goto err;
  294. err = __bprm_mm_init(bprm);
  295. if (err)
  296. goto err;
  297. return 0;
  298. err:
  299. if (mm) {
  300. bprm->mm = NULL;
  301. mmdrop(mm);
  302. }
  303. return err;
  304. }
  305. /*
  306. * count() counts the number of strings in array ARGV.
  307. */
  308. static int count(char __user * __user * argv, int max)
  309. {
  310. int i = 0;
  311. if (argv != NULL) {
  312. for (;;) {
  313. char __user * p;
  314. if (get_user(p, argv))
  315. return -EFAULT;
  316. if (!p)
  317. break;
  318. argv++;
  319. if (i++ >= max)
  320. return -E2BIG;
  321. cond_resched();
  322. }
  323. }
  324. return i;
  325. }
  326. /*
  327. * 'copy_strings()' copies argument/environment strings from the old
  328. * processes's memory to the new process's stack. The call to get_user_pages()
  329. * ensures the destination page is created and not swapped out.
  330. */
  331. static int copy_strings(int argc, char __user * __user * argv,
  332. struct linux_binprm *bprm)
  333. {
  334. struct page *kmapped_page = NULL;
  335. char *kaddr = NULL;
  336. unsigned long kpos = 0;
  337. int ret;
  338. while (argc-- > 0) {
  339. char __user *str;
  340. int len;
  341. unsigned long pos;
  342. if (get_user(str, argv+argc) ||
  343. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  344. ret = -EFAULT;
  345. goto out;
  346. }
  347. if (!valid_arg_len(bprm, len)) {
  348. ret = -E2BIG;
  349. goto out;
  350. }
  351. /* We're going to work our way backwords. */
  352. pos = bprm->p;
  353. str += len;
  354. bprm->p -= len;
  355. while (len > 0) {
  356. int offset, bytes_to_copy;
  357. offset = pos % PAGE_SIZE;
  358. if (offset == 0)
  359. offset = PAGE_SIZE;
  360. bytes_to_copy = offset;
  361. if (bytes_to_copy > len)
  362. bytes_to_copy = len;
  363. offset -= bytes_to_copy;
  364. pos -= bytes_to_copy;
  365. str -= bytes_to_copy;
  366. len -= bytes_to_copy;
  367. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  368. struct page *page;
  369. page = get_arg_page(bprm, pos, 1);
  370. if (!page) {
  371. ret = -E2BIG;
  372. goto out;
  373. }
  374. if (kmapped_page) {
  375. flush_kernel_dcache_page(kmapped_page);
  376. kunmap(kmapped_page);
  377. put_arg_page(kmapped_page);
  378. }
  379. kmapped_page = page;
  380. kaddr = kmap(kmapped_page);
  381. kpos = pos & PAGE_MASK;
  382. flush_arg_page(bprm, kpos, kmapped_page);
  383. }
  384. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  385. ret = -EFAULT;
  386. goto out;
  387. }
  388. }
  389. }
  390. ret = 0;
  391. out:
  392. if (kmapped_page) {
  393. flush_kernel_dcache_page(kmapped_page);
  394. kunmap(kmapped_page);
  395. put_arg_page(kmapped_page);
  396. }
  397. return ret;
  398. }
  399. /*
  400. * Like copy_strings, but get argv and its values from kernel memory.
  401. */
  402. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  403. {
  404. int r;
  405. mm_segment_t oldfs = get_fs();
  406. set_fs(KERNEL_DS);
  407. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  408. set_fs(oldfs);
  409. return r;
  410. }
  411. EXPORT_SYMBOL(copy_strings_kernel);
  412. #ifdef CONFIG_MMU
  413. /*
  414. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  415. * the binfmt code determines where the new stack should reside, we shift it to
  416. * its final location. The process proceeds as follows:
  417. *
  418. * 1) Use shift to calculate the new vma endpoints.
  419. * 2) Extend vma to cover both the old and new ranges. This ensures the
  420. * arguments passed to subsequent functions are consistent.
  421. * 3) Move vma's page tables to the new range.
  422. * 4) Free up any cleared pgd range.
  423. * 5) Shrink the vma to cover only the new range.
  424. */
  425. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  426. {
  427. struct mm_struct *mm = vma->vm_mm;
  428. unsigned long old_start = vma->vm_start;
  429. unsigned long old_end = vma->vm_end;
  430. unsigned long length = old_end - old_start;
  431. unsigned long new_start = old_start - shift;
  432. unsigned long new_end = old_end - shift;
  433. struct mmu_gather *tlb;
  434. BUG_ON(new_start > new_end);
  435. /*
  436. * ensure there are no vmas between where we want to go
  437. * and where we are
  438. */
  439. if (vma != find_vma(mm, new_start))
  440. return -EFAULT;
  441. /*
  442. * cover the whole range: [new_start, old_end)
  443. */
  444. vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
  445. /*
  446. * move the page tables downwards, on failure we rely on
  447. * process cleanup to remove whatever mess we made.
  448. */
  449. if (length != move_page_tables(vma, old_start,
  450. vma, new_start, length))
  451. return -ENOMEM;
  452. lru_add_drain();
  453. tlb = tlb_gather_mmu(mm, 0);
  454. if (new_end > old_start) {
  455. /*
  456. * when the old and new regions overlap clear from new_end.
  457. */
  458. free_pgd_range(tlb, new_end, old_end, new_end,
  459. vma->vm_next ? vma->vm_next->vm_start : 0);
  460. } else {
  461. /*
  462. * otherwise, clean from old_start; this is done to not touch
  463. * the address space in [new_end, old_start) some architectures
  464. * have constraints on va-space that make this illegal (IA64) -
  465. * for the others its just a little faster.
  466. */
  467. free_pgd_range(tlb, old_start, old_end, new_end,
  468. vma->vm_next ? vma->vm_next->vm_start : 0);
  469. }
  470. tlb_finish_mmu(tlb, new_end, old_end);
  471. /*
  472. * shrink the vma to just the new range.
  473. */
  474. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  475. return 0;
  476. }
  477. #define EXTRA_STACK_VM_PAGES 20 /* random */
  478. /*
  479. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  480. * the stack is optionally relocated, and some extra space is added.
  481. */
  482. int setup_arg_pages(struct linux_binprm *bprm,
  483. unsigned long stack_top,
  484. int executable_stack)
  485. {
  486. unsigned long ret;
  487. unsigned long stack_shift;
  488. struct mm_struct *mm = current->mm;
  489. struct vm_area_struct *vma = bprm->vma;
  490. struct vm_area_struct *prev = NULL;
  491. unsigned long vm_flags;
  492. unsigned long stack_base;
  493. #ifdef CONFIG_STACK_GROWSUP
  494. /* Limit stack size to 1GB */
  495. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  496. if (stack_base > (1 << 30))
  497. stack_base = 1 << 30;
  498. /* Make sure we didn't let the argument array grow too large. */
  499. if (vma->vm_end - vma->vm_start > stack_base)
  500. return -ENOMEM;
  501. stack_base = PAGE_ALIGN(stack_top - stack_base);
  502. stack_shift = vma->vm_start - stack_base;
  503. mm->arg_start = bprm->p - stack_shift;
  504. bprm->p = vma->vm_end - stack_shift;
  505. #else
  506. stack_top = arch_align_stack(stack_top);
  507. stack_top = PAGE_ALIGN(stack_top);
  508. stack_shift = vma->vm_end - stack_top;
  509. bprm->p -= stack_shift;
  510. mm->arg_start = bprm->p;
  511. #endif
  512. if (bprm->loader)
  513. bprm->loader -= stack_shift;
  514. bprm->exec -= stack_shift;
  515. down_write(&mm->mmap_sem);
  516. vm_flags = VM_STACK_FLAGS;
  517. /*
  518. * Adjust stack execute permissions; explicitly enable for
  519. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  520. * (arch default) otherwise.
  521. */
  522. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  523. vm_flags |= VM_EXEC;
  524. else if (executable_stack == EXSTACK_DISABLE_X)
  525. vm_flags &= ~VM_EXEC;
  526. vm_flags |= mm->def_flags;
  527. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  528. vm_flags);
  529. if (ret)
  530. goto out_unlock;
  531. BUG_ON(prev != vma);
  532. /* Move stack pages down in memory. */
  533. if (stack_shift) {
  534. ret = shift_arg_pages(vma, stack_shift);
  535. if (ret) {
  536. up_write(&mm->mmap_sem);
  537. return ret;
  538. }
  539. }
  540. #ifdef CONFIG_STACK_GROWSUP
  541. stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  542. #else
  543. stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  544. #endif
  545. ret = expand_stack(vma, stack_base);
  546. if (ret)
  547. ret = -EFAULT;
  548. out_unlock:
  549. up_write(&mm->mmap_sem);
  550. return 0;
  551. }
  552. EXPORT_SYMBOL(setup_arg_pages);
  553. #endif /* CONFIG_MMU */
  554. struct file *open_exec(const char *name)
  555. {
  556. struct file *file;
  557. int err;
  558. file = do_filp_open(AT_FDCWD, name,
  559. O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
  560. MAY_EXEC | MAY_OPEN);
  561. if (IS_ERR(file))
  562. goto out;
  563. err = -EACCES;
  564. if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
  565. goto exit;
  566. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
  567. goto exit;
  568. fsnotify_open(file->f_path.dentry);
  569. err = deny_write_access(file);
  570. if (err)
  571. goto exit;
  572. out:
  573. return file;
  574. exit:
  575. fput(file);
  576. return ERR_PTR(err);
  577. }
  578. EXPORT_SYMBOL(open_exec);
  579. int kernel_read(struct file *file, loff_t offset,
  580. char *addr, unsigned long count)
  581. {
  582. mm_segment_t old_fs;
  583. loff_t pos = offset;
  584. int result;
  585. old_fs = get_fs();
  586. set_fs(get_ds());
  587. /* The cast to a user pointer is valid due to the set_fs() */
  588. result = vfs_read(file, (void __user *)addr, count, &pos);
  589. set_fs(old_fs);
  590. return result;
  591. }
  592. EXPORT_SYMBOL(kernel_read);
  593. static int exec_mmap(struct mm_struct *mm)
  594. {
  595. struct task_struct *tsk;
  596. struct mm_struct * old_mm, *active_mm;
  597. /* Notify parent that we're no longer interested in the old VM */
  598. tsk = current;
  599. old_mm = current->mm;
  600. mm_release(tsk, old_mm);
  601. if (old_mm) {
  602. /*
  603. * Make sure that if there is a core dump in progress
  604. * for the old mm, we get out and die instead of going
  605. * through with the exec. We must hold mmap_sem around
  606. * checking core_state and changing tsk->mm.
  607. */
  608. down_read(&old_mm->mmap_sem);
  609. if (unlikely(old_mm->core_state)) {
  610. up_read(&old_mm->mmap_sem);
  611. return -EINTR;
  612. }
  613. }
  614. task_lock(tsk);
  615. active_mm = tsk->active_mm;
  616. tsk->mm = mm;
  617. tsk->active_mm = mm;
  618. activate_mm(active_mm, mm);
  619. task_unlock(tsk);
  620. arch_pick_mmap_layout(mm);
  621. if (old_mm) {
  622. up_read(&old_mm->mmap_sem);
  623. BUG_ON(active_mm != old_mm);
  624. mm_update_next_owner(old_mm);
  625. mmput(old_mm);
  626. return 0;
  627. }
  628. mmdrop(active_mm);
  629. return 0;
  630. }
  631. /*
  632. * This function makes sure the current process has its own signal table,
  633. * so that flush_signal_handlers can later reset the handlers without
  634. * disturbing other processes. (Other processes might share the signal
  635. * table via the CLONE_SIGHAND option to clone().)
  636. */
  637. static int de_thread(struct task_struct *tsk)
  638. {
  639. struct signal_struct *sig = tsk->signal;
  640. struct sighand_struct *oldsighand = tsk->sighand;
  641. spinlock_t *lock = &oldsighand->siglock;
  642. int count;
  643. if (thread_group_empty(tsk))
  644. goto no_thread_group;
  645. /*
  646. * Kill all other threads in the thread group.
  647. */
  648. spin_lock_irq(lock);
  649. if (signal_group_exit(sig)) {
  650. /*
  651. * Another group action in progress, just
  652. * return so that the signal is processed.
  653. */
  654. spin_unlock_irq(lock);
  655. return -EAGAIN;
  656. }
  657. sig->group_exit_task = tsk;
  658. zap_other_threads(tsk);
  659. /* Account for the thread group leader hanging around: */
  660. count = thread_group_leader(tsk) ? 1 : 2;
  661. sig->notify_count = count;
  662. while (atomic_read(&sig->count) > count) {
  663. __set_current_state(TASK_UNINTERRUPTIBLE);
  664. spin_unlock_irq(lock);
  665. schedule();
  666. spin_lock_irq(lock);
  667. }
  668. spin_unlock_irq(lock);
  669. /*
  670. * At this point all other threads have exited, all we have to
  671. * do is to wait for the thread group leader to become inactive,
  672. * and to assume its PID:
  673. */
  674. if (!thread_group_leader(tsk)) {
  675. struct task_struct *leader = tsk->group_leader;
  676. sig->notify_count = -1; /* for exit_notify() */
  677. for (;;) {
  678. write_lock_irq(&tasklist_lock);
  679. if (likely(leader->exit_state))
  680. break;
  681. __set_current_state(TASK_UNINTERRUPTIBLE);
  682. write_unlock_irq(&tasklist_lock);
  683. schedule();
  684. }
  685. /*
  686. * The only record we have of the real-time age of a
  687. * process, regardless of execs it's done, is start_time.
  688. * All the past CPU time is accumulated in signal_struct
  689. * from sister threads now dead. But in this non-leader
  690. * exec, nothing survives from the original leader thread,
  691. * whose birth marks the true age of this process now.
  692. * When we take on its identity by switching to its PID, we
  693. * also take its birthdate (always earlier than our own).
  694. */
  695. tsk->start_time = leader->start_time;
  696. BUG_ON(!same_thread_group(leader, tsk));
  697. BUG_ON(has_group_leader_pid(tsk));
  698. /*
  699. * An exec() starts a new thread group with the
  700. * TGID of the previous thread group. Rehash the
  701. * two threads with a switched PID, and release
  702. * the former thread group leader:
  703. */
  704. /* Become a process group leader with the old leader's pid.
  705. * The old leader becomes a thread of the this thread group.
  706. * Note: The old leader also uses this pid until release_task
  707. * is called. Odd but simple and correct.
  708. */
  709. detach_pid(tsk, PIDTYPE_PID);
  710. tsk->pid = leader->pid;
  711. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  712. transfer_pid(leader, tsk, PIDTYPE_PGID);
  713. transfer_pid(leader, tsk, PIDTYPE_SID);
  714. list_replace_rcu(&leader->tasks, &tsk->tasks);
  715. tsk->group_leader = tsk;
  716. leader->group_leader = tsk;
  717. tsk->exit_signal = SIGCHLD;
  718. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  719. leader->exit_state = EXIT_DEAD;
  720. write_unlock_irq(&tasklist_lock);
  721. release_task(leader);
  722. }
  723. sig->group_exit_task = NULL;
  724. sig->notify_count = 0;
  725. no_thread_group:
  726. if (current->mm)
  727. setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
  728. exit_itimers(sig);
  729. flush_itimer_signals();
  730. if (atomic_read(&oldsighand->count) != 1) {
  731. struct sighand_struct *newsighand;
  732. /*
  733. * This ->sighand is shared with the CLONE_SIGHAND
  734. * but not CLONE_THREAD task, switch to the new one.
  735. */
  736. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  737. if (!newsighand)
  738. return -ENOMEM;
  739. atomic_set(&newsighand->count, 1);
  740. memcpy(newsighand->action, oldsighand->action,
  741. sizeof(newsighand->action));
  742. write_lock_irq(&tasklist_lock);
  743. spin_lock(&oldsighand->siglock);
  744. rcu_assign_pointer(tsk->sighand, newsighand);
  745. spin_unlock(&oldsighand->siglock);
  746. write_unlock_irq(&tasklist_lock);
  747. __cleanup_sighand(oldsighand);
  748. }
  749. BUG_ON(!thread_group_leader(tsk));
  750. return 0;
  751. }
  752. /*
  753. * These functions flushes out all traces of the currently running executable
  754. * so that a new one can be started
  755. */
  756. static void flush_old_files(struct files_struct * files)
  757. {
  758. long j = -1;
  759. struct fdtable *fdt;
  760. spin_lock(&files->file_lock);
  761. for (;;) {
  762. unsigned long set, i;
  763. j++;
  764. i = j * __NFDBITS;
  765. fdt = files_fdtable(files);
  766. if (i >= fdt->max_fds)
  767. break;
  768. set = fdt->close_on_exec->fds_bits[j];
  769. if (!set)
  770. continue;
  771. fdt->close_on_exec->fds_bits[j] = 0;
  772. spin_unlock(&files->file_lock);
  773. for ( ; set ; i++,set >>= 1) {
  774. if (set & 1) {
  775. sys_close(i);
  776. }
  777. }
  778. spin_lock(&files->file_lock);
  779. }
  780. spin_unlock(&files->file_lock);
  781. }
  782. char *get_task_comm(char *buf, struct task_struct *tsk)
  783. {
  784. /* buf must be at least sizeof(tsk->comm) in size */
  785. task_lock(tsk);
  786. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  787. task_unlock(tsk);
  788. return buf;
  789. }
  790. void set_task_comm(struct task_struct *tsk, char *buf)
  791. {
  792. task_lock(tsk);
  793. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  794. task_unlock(tsk);
  795. perf_event_comm(tsk);
  796. }
  797. int flush_old_exec(struct linux_binprm * bprm)
  798. {
  799. char * name;
  800. int i, ch, retval;
  801. char tcomm[sizeof(current->comm)];
  802. /*
  803. * Make sure we have a private signal table and that
  804. * we are unassociated from the previous thread group.
  805. */
  806. retval = de_thread(current);
  807. if (retval)
  808. goto out;
  809. set_mm_exe_file(bprm->mm, bprm->file);
  810. /*
  811. * Release all of the old mmap stuff
  812. */
  813. retval = exec_mmap(bprm->mm);
  814. if (retval)
  815. goto out;
  816. bprm->mm = NULL; /* We're using it now */
  817. /* This is the point of no return */
  818. current->sas_ss_sp = current->sas_ss_size = 0;
  819. if (current_euid() == current_uid() && current_egid() == current_gid())
  820. set_dumpable(current->mm, 1);
  821. else
  822. set_dumpable(current->mm, suid_dumpable);
  823. name = bprm->filename;
  824. /* Copies the binary name from after last slash */
  825. for (i=0; (ch = *(name++)) != '\0';) {
  826. if (ch == '/')
  827. i = 0; /* overwrite what we wrote */
  828. else
  829. if (i < (sizeof(tcomm) - 1))
  830. tcomm[i++] = ch;
  831. }
  832. tcomm[i] = '\0';
  833. set_task_comm(current, tcomm);
  834. current->flags &= ~PF_RANDOMIZE;
  835. flush_thread();
  836. /* Set the new mm task size. We have to do that late because it may
  837. * depend on TIF_32BIT which is only updated in flush_thread() on
  838. * some architectures like powerpc
  839. */
  840. current->mm->task_size = TASK_SIZE;
  841. /* install the new credentials */
  842. if (bprm->cred->uid != current_euid() ||
  843. bprm->cred->gid != current_egid()) {
  844. current->pdeath_signal = 0;
  845. } else if (file_permission(bprm->file, MAY_READ) ||
  846. bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
  847. set_dumpable(current->mm, suid_dumpable);
  848. }
  849. current->personality &= ~bprm->per_clear;
  850. /*
  851. * Flush performance counters when crossing a
  852. * security domain:
  853. */
  854. if (!get_dumpable(current->mm))
  855. perf_event_exit_task(current);
  856. /* An exec changes our domain. We are no longer part of the thread
  857. group */
  858. current->self_exec_id++;
  859. flush_signal_handlers(current, 0);
  860. flush_old_files(current->files);
  861. return 0;
  862. out:
  863. return retval;
  864. }
  865. EXPORT_SYMBOL(flush_old_exec);
  866. /*
  867. * Prepare credentials and lock ->cred_guard_mutex.
  868. * install_exec_creds() commits the new creds and drops the lock.
  869. * Or, if exec fails before, free_bprm() should release ->cred and
  870. * and unlock.
  871. */
  872. int prepare_bprm_creds(struct linux_binprm *bprm)
  873. {
  874. if (mutex_lock_interruptible(&current->cred_guard_mutex))
  875. return -ERESTARTNOINTR;
  876. bprm->cred = prepare_exec_creds();
  877. if (likely(bprm->cred))
  878. return 0;
  879. mutex_unlock(&current->cred_guard_mutex);
  880. return -ENOMEM;
  881. }
  882. void free_bprm(struct linux_binprm *bprm)
  883. {
  884. free_arg_pages(bprm);
  885. if (bprm->cred) {
  886. mutex_unlock(&current->cred_guard_mutex);
  887. abort_creds(bprm->cred);
  888. }
  889. kfree(bprm);
  890. }
  891. /*
  892. * install the new credentials for this executable
  893. */
  894. void install_exec_creds(struct linux_binprm *bprm)
  895. {
  896. security_bprm_committing_creds(bprm);
  897. commit_creds(bprm->cred);
  898. bprm->cred = NULL;
  899. /*
  900. * cred_guard_mutex must be held at least to this point to prevent
  901. * ptrace_attach() from altering our determination of the task's
  902. * credentials; any time after this it may be unlocked.
  903. */
  904. security_bprm_committed_creds(bprm);
  905. mutex_unlock(&current->cred_guard_mutex);
  906. }
  907. EXPORT_SYMBOL(install_exec_creds);
  908. /*
  909. * determine how safe it is to execute the proposed program
  910. * - the caller must hold current->cred_guard_mutex to protect against
  911. * PTRACE_ATTACH
  912. */
  913. int check_unsafe_exec(struct linux_binprm *bprm)
  914. {
  915. struct task_struct *p = current, *t;
  916. unsigned n_fs;
  917. int res = 0;
  918. bprm->unsafe = tracehook_unsafe_exec(p);
  919. n_fs = 1;
  920. write_lock(&p->fs->lock);
  921. rcu_read_lock();
  922. for (t = next_thread(p); t != p; t = next_thread(t)) {
  923. if (t->fs == p->fs)
  924. n_fs++;
  925. }
  926. rcu_read_unlock();
  927. if (p->fs->users > n_fs) {
  928. bprm->unsafe |= LSM_UNSAFE_SHARE;
  929. } else {
  930. res = -EAGAIN;
  931. if (!p->fs->in_exec) {
  932. p->fs->in_exec = 1;
  933. res = 1;
  934. }
  935. }
  936. write_unlock(&p->fs->lock);
  937. return res;
  938. }
  939. /*
  940. * Fill the binprm structure from the inode.
  941. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  942. *
  943. * This may be called multiple times for binary chains (scripts for example).
  944. */
  945. int prepare_binprm(struct linux_binprm *bprm)
  946. {
  947. umode_t mode;
  948. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  949. int retval;
  950. mode = inode->i_mode;
  951. if (bprm->file->f_op == NULL)
  952. return -EACCES;
  953. /* clear any previous set[ug]id data from a previous binary */
  954. bprm->cred->euid = current_euid();
  955. bprm->cred->egid = current_egid();
  956. if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  957. /* Set-uid? */
  958. if (mode & S_ISUID) {
  959. bprm->per_clear |= PER_CLEAR_ON_SETID;
  960. bprm->cred->euid = inode->i_uid;
  961. }
  962. /* Set-gid? */
  963. /*
  964. * If setgid is set but no group execute bit then this
  965. * is a candidate for mandatory locking, not a setgid
  966. * executable.
  967. */
  968. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  969. bprm->per_clear |= PER_CLEAR_ON_SETID;
  970. bprm->cred->egid = inode->i_gid;
  971. }
  972. }
  973. /* fill in binprm security blob */
  974. retval = security_bprm_set_creds(bprm);
  975. if (retval)
  976. return retval;
  977. bprm->cred_prepared = 1;
  978. memset(bprm->buf, 0, BINPRM_BUF_SIZE);
  979. return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
  980. }
  981. EXPORT_SYMBOL(prepare_binprm);
  982. /*
  983. * Arguments are '\0' separated strings found at the location bprm->p
  984. * points to; chop off the first by relocating brpm->p to right after
  985. * the first '\0' encountered.
  986. */
  987. int remove_arg_zero(struct linux_binprm *bprm)
  988. {
  989. int ret = 0;
  990. unsigned long offset;
  991. char *kaddr;
  992. struct page *page;
  993. if (!bprm->argc)
  994. return 0;
  995. do {
  996. offset = bprm->p & ~PAGE_MASK;
  997. page = get_arg_page(bprm, bprm->p, 0);
  998. if (!page) {
  999. ret = -EFAULT;
  1000. goto out;
  1001. }
  1002. kaddr = kmap_atomic(page, KM_USER0);
  1003. for (; offset < PAGE_SIZE && kaddr[offset];
  1004. offset++, bprm->p++)
  1005. ;
  1006. kunmap_atomic(kaddr, KM_USER0);
  1007. put_arg_page(page);
  1008. if (offset == PAGE_SIZE)
  1009. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  1010. } while (offset == PAGE_SIZE);
  1011. bprm->p++;
  1012. bprm->argc--;
  1013. ret = 0;
  1014. out:
  1015. return ret;
  1016. }
  1017. EXPORT_SYMBOL(remove_arg_zero);
  1018. /*
  1019. * cycle the list of binary formats handler, until one recognizes the image
  1020. */
  1021. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  1022. {
  1023. unsigned int depth = bprm->recursion_depth;
  1024. int try,retval;
  1025. struct linux_binfmt *fmt;
  1026. retval = security_bprm_check(bprm);
  1027. if (retval)
  1028. return retval;
  1029. retval = ima_bprm_check(bprm);
  1030. if (retval)
  1031. return retval;
  1032. /* kernel module loader fixup */
  1033. /* so we don't try to load run modprobe in kernel space. */
  1034. set_fs(USER_DS);
  1035. retval = audit_bprm(bprm);
  1036. if (retval)
  1037. return retval;
  1038. retval = -ENOENT;
  1039. for (try=0; try<2; try++) {
  1040. read_lock(&binfmt_lock);
  1041. list_for_each_entry(fmt, &formats, lh) {
  1042. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1043. if (!fn)
  1044. continue;
  1045. if (!try_module_get(fmt->module))
  1046. continue;
  1047. read_unlock(&binfmt_lock);
  1048. retval = fn(bprm, regs);
  1049. /*
  1050. * Restore the depth counter to its starting value
  1051. * in this call, so we don't have to rely on every
  1052. * load_binary function to restore it on return.
  1053. */
  1054. bprm->recursion_depth = depth;
  1055. if (retval >= 0) {
  1056. if (depth == 0)
  1057. tracehook_report_exec(fmt, bprm, regs);
  1058. put_binfmt(fmt);
  1059. allow_write_access(bprm->file);
  1060. if (bprm->file)
  1061. fput(bprm->file);
  1062. bprm->file = NULL;
  1063. current->did_exec = 1;
  1064. proc_exec_connector(current);
  1065. return retval;
  1066. }
  1067. read_lock(&binfmt_lock);
  1068. put_binfmt(fmt);
  1069. if (retval != -ENOEXEC || bprm->mm == NULL)
  1070. break;
  1071. if (!bprm->file) {
  1072. read_unlock(&binfmt_lock);
  1073. return retval;
  1074. }
  1075. }
  1076. read_unlock(&binfmt_lock);
  1077. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1078. break;
  1079. #ifdef CONFIG_MODULES
  1080. } else {
  1081. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1082. if (printable(bprm->buf[0]) &&
  1083. printable(bprm->buf[1]) &&
  1084. printable(bprm->buf[2]) &&
  1085. printable(bprm->buf[3]))
  1086. break; /* -ENOEXEC */
  1087. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1088. #endif
  1089. }
  1090. }
  1091. return retval;
  1092. }
  1093. EXPORT_SYMBOL(search_binary_handler);
  1094. /*
  1095. * sys_execve() executes a new program.
  1096. */
  1097. int do_execve(char * filename,
  1098. char __user *__user *argv,
  1099. char __user *__user *envp,
  1100. struct pt_regs * regs)
  1101. {
  1102. struct linux_binprm *bprm;
  1103. struct file *file;
  1104. struct files_struct *displaced;
  1105. bool clear_in_exec;
  1106. int retval;
  1107. retval = unshare_files(&displaced);
  1108. if (retval)
  1109. goto out_ret;
  1110. retval = -ENOMEM;
  1111. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1112. if (!bprm)
  1113. goto out_files;
  1114. retval = prepare_bprm_creds(bprm);
  1115. if (retval)
  1116. goto out_free;
  1117. retval = check_unsafe_exec(bprm);
  1118. if (retval < 0)
  1119. goto out_free;
  1120. clear_in_exec = retval;
  1121. current->in_execve = 1;
  1122. file = open_exec(filename);
  1123. retval = PTR_ERR(file);
  1124. if (IS_ERR(file))
  1125. goto out_unmark;
  1126. sched_exec();
  1127. bprm->file = file;
  1128. bprm->filename = filename;
  1129. bprm->interp = filename;
  1130. retval = bprm_mm_init(bprm);
  1131. if (retval)
  1132. goto out_file;
  1133. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1134. if ((retval = bprm->argc) < 0)
  1135. goto out;
  1136. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1137. if ((retval = bprm->envc) < 0)
  1138. goto out;
  1139. retval = prepare_binprm(bprm);
  1140. if (retval < 0)
  1141. goto out;
  1142. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1143. if (retval < 0)
  1144. goto out;
  1145. bprm->exec = bprm->p;
  1146. retval = copy_strings(bprm->envc, envp, bprm);
  1147. if (retval < 0)
  1148. goto out;
  1149. retval = copy_strings(bprm->argc, argv, bprm);
  1150. if (retval < 0)
  1151. goto out;
  1152. current->flags &= ~PF_KTHREAD;
  1153. retval = search_binary_handler(bprm,regs);
  1154. if (retval < 0)
  1155. goto out;
  1156. current->stack_start = current->mm->start_stack;
  1157. /* execve succeeded */
  1158. current->fs->in_exec = 0;
  1159. current->in_execve = 0;
  1160. acct_update_integrals(current);
  1161. free_bprm(bprm);
  1162. if (displaced)
  1163. put_files_struct(displaced);
  1164. return retval;
  1165. out:
  1166. if (bprm->mm)
  1167. mmput (bprm->mm);
  1168. out_file:
  1169. if (bprm->file) {
  1170. allow_write_access(bprm->file);
  1171. fput(bprm->file);
  1172. }
  1173. out_unmark:
  1174. if (clear_in_exec)
  1175. current->fs->in_exec = 0;
  1176. current->in_execve = 0;
  1177. out_free:
  1178. free_bprm(bprm);
  1179. out_files:
  1180. if (displaced)
  1181. reset_files_struct(displaced);
  1182. out_ret:
  1183. return retval;
  1184. }
  1185. void set_binfmt(struct linux_binfmt *new)
  1186. {
  1187. struct mm_struct *mm = current->mm;
  1188. if (mm->binfmt)
  1189. module_put(mm->binfmt->module);
  1190. mm->binfmt = new;
  1191. if (new)
  1192. __module_get(new->module);
  1193. }
  1194. EXPORT_SYMBOL(set_binfmt);
  1195. /* format_corename will inspect the pattern parameter, and output a
  1196. * name into corename, which must have space for at least
  1197. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1198. */
  1199. static int format_corename(char *corename, long signr)
  1200. {
  1201. const struct cred *cred = current_cred();
  1202. const char *pat_ptr = core_pattern;
  1203. int ispipe = (*pat_ptr == '|');
  1204. char *out_ptr = corename;
  1205. char *const out_end = corename + CORENAME_MAX_SIZE;
  1206. int rc;
  1207. int pid_in_pattern = 0;
  1208. /* Repeat as long as we have more pattern to process and more output
  1209. space */
  1210. while (*pat_ptr) {
  1211. if (*pat_ptr != '%') {
  1212. if (out_ptr == out_end)
  1213. goto out;
  1214. *out_ptr++ = *pat_ptr++;
  1215. } else {
  1216. switch (*++pat_ptr) {
  1217. case 0:
  1218. goto out;
  1219. /* Double percent, output one percent */
  1220. case '%':
  1221. if (out_ptr == out_end)
  1222. goto out;
  1223. *out_ptr++ = '%';
  1224. break;
  1225. /* pid */
  1226. case 'p':
  1227. pid_in_pattern = 1;
  1228. rc = snprintf(out_ptr, out_end - out_ptr,
  1229. "%d", task_tgid_vnr(current));
  1230. if (rc > out_end - out_ptr)
  1231. goto out;
  1232. out_ptr += rc;
  1233. break;
  1234. /* uid */
  1235. case 'u':
  1236. rc = snprintf(out_ptr, out_end - out_ptr,
  1237. "%d", cred->uid);
  1238. if (rc > out_end - out_ptr)
  1239. goto out;
  1240. out_ptr += rc;
  1241. break;
  1242. /* gid */
  1243. case 'g':
  1244. rc = snprintf(out_ptr, out_end - out_ptr,
  1245. "%d", cred->gid);
  1246. if (rc > out_end - out_ptr)
  1247. goto out;
  1248. out_ptr += rc;
  1249. break;
  1250. /* signal that caused the coredump */
  1251. case 's':
  1252. rc = snprintf(out_ptr, out_end - out_ptr,
  1253. "%ld", signr);
  1254. if (rc > out_end - out_ptr)
  1255. goto out;
  1256. out_ptr += rc;
  1257. break;
  1258. /* UNIX time of coredump */
  1259. case 't': {
  1260. struct timeval tv;
  1261. do_gettimeofday(&tv);
  1262. rc = snprintf(out_ptr, out_end - out_ptr,
  1263. "%lu", tv.tv_sec);
  1264. if (rc > out_end - out_ptr)
  1265. goto out;
  1266. out_ptr += rc;
  1267. break;
  1268. }
  1269. /* hostname */
  1270. case 'h':
  1271. down_read(&uts_sem);
  1272. rc = snprintf(out_ptr, out_end - out_ptr,
  1273. "%s", utsname()->nodename);
  1274. up_read(&uts_sem);
  1275. if (rc > out_end - out_ptr)
  1276. goto out;
  1277. out_ptr += rc;
  1278. break;
  1279. /* executable */
  1280. case 'e':
  1281. rc = snprintf(out_ptr, out_end - out_ptr,
  1282. "%s", current->comm);
  1283. if (rc > out_end - out_ptr)
  1284. goto out;
  1285. out_ptr += rc;
  1286. break;
  1287. /* core limit size */
  1288. case 'c':
  1289. rc = snprintf(out_ptr, out_end - out_ptr,
  1290. "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
  1291. if (rc > out_end - out_ptr)
  1292. goto out;
  1293. out_ptr += rc;
  1294. break;
  1295. default:
  1296. break;
  1297. }
  1298. ++pat_ptr;
  1299. }
  1300. }
  1301. /* Backward compatibility with core_uses_pid:
  1302. *
  1303. * If core_pattern does not include a %p (as is the default)
  1304. * and core_uses_pid is set, then .%pid will be appended to
  1305. * the filename. Do not do this for piped commands. */
  1306. if (!ispipe && !pid_in_pattern && core_uses_pid) {
  1307. rc = snprintf(out_ptr, out_end - out_ptr,
  1308. ".%d", task_tgid_vnr(current));
  1309. if (rc > out_end - out_ptr)
  1310. goto out;
  1311. out_ptr += rc;
  1312. }
  1313. out:
  1314. *out_ptr = 0;
  1315. return ispipe;
  1316. }
  1317. static int zap_process(struct task_struct *start)
  1318. {
  1319. struct task_struct *t;
  1320. int nr = 0;
  1321. start->signal->flags = SIGNAL_GROUP_EXIT;
  1322. start->signal->group_stop_count = 0;
  1323. t = start;
  1324. do {
  1325. if (t != current && t->mm) {
  1326. sigaddset(&t->pending.signal, SIGKILL);
  1327. signal_wake_up(t, 1);
  1328. nr++;
  1329. }
  1330. } while_each_thread(start, t);
  1331. return nr;
  1332. }
  1333. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1334. struct core_state *core_state, int exit_code)
  1335. {
  1336. struct task_struct *g, *p;
  1337. unsigned long flags;
  1338. int nr = -EAGAIN;
  1339. spin_lock_irq(&tsk->sighand->siglock);
  1340. if (!signal_group_exit(tsk->signal)) {
  1341. mm->core_state = core_state;
  1342. tsk->signal->group_exit_code = exit_code;
  1343. nr = zap_process(tsk);
  1344. }
  1345. spin_unlock_irq(&tsk->sighand->siglock);
  1346. if (unlikely(nr < 0))
  1347. return nr;
  1348. if (atomic_read(&mm->mm_users) == nr + 1)
  1349. goto done;
  1350. /*
  1351. * We should find and kill all tasks which use this mm, and we should
  1352. * count them correctly into ->nr_threads. We don't take tasklist
  1353. * lock, but this is safe wrt:
  1354. *
  1355. * fork:
  1356. * None of sub-threads can fork after zap_process(leader). All
  1357. * processes which were created before this point should be
  1358. * visible to zap_threads() because copy_process() adds the new
  1359. * process to the tail of init_task.tasks list, and lock/unlock
  1360. * of ->siglock provides a memory barrier.
  1361. *
  1362. * do_exit:
  1363. * The caller holds mm->mmap_sem. This means that the task which
  1364. * uses this mm can't pass exit_mm(), so it can't exit or clear
  1365. * its ->mm.
  1366. *
  1367. * de_thread:
  1368. * It does list_replace_rcu(&leader->tasks, &current->tasks),
  1369. * we must see either old or new leader, this does not matter.
  1370. * However, it can change p->sighand, so lock_task_sighand(p)
  1371. * must be used. Since p->mm != NULL and we hold ->mmap_sem
  1372. * it can't fail.
  1373. *
  1374. * Note also that "g" can be the old leader with ->mm == NULL
  1375. * and already unhashed and thus removed from ->thread_group.
  1376. * This is OK, __unhash_process()->list_del_rcu() does not
  1377. * clear the ->next pointer, we will find the new leader via
  1378. * next_thread().
  1379. */
  1380. rcu_read_lock();
  1381. for_each_process(g) {
  1382. if (g == tsk->group_leader)
  1383. continue;
  1384. if (g->flags & PF_KTHREAD)
  1385. continue;
  1386. p = g;
  1387. do {
  1388. if (p->mm) {
  1389. if (unlikely(p->mm == mm)) {
  1390. lock_task_sighand(p, &flags);
  1391. nr += zap_process(p);
  1392. unlock_task_sighand(p, &flags);
  1393. }
  1394. break;
  1395. }
  1396. } while_each_thread(g, p);
  1397. }
  1398. rcu_read_unlock();
  1399. done:
  1400. atomic_set(&core_state->nr_threads, nr);
  1401. return nr;
  1402. }
  1403. static int coredump_wait(int exit_code, struct core_state *core_state)
  1404. {
  1405. struct task_struct *tsk = current;
  1406. struct mm_struct *mm = tsk->mm;
  1407. struct completion *vfork_done;
  1408. int core_waiters;
  1409. init_completion(&core_state->startup);
  1410. core_state->dumper.task = tsk;
  1411. core_state->dumper.next = NULL;
  1412. core_waiters = zap_threads(tsk, mm, core_state, exit_code);
  1413. up_write(&mm->mmap_sem);
  1414. if (unlikely(core_waiters < 0))
  1415. goto fail;
  1416. /*
  1417. * Make sure nobody is waiting for us to release the VM,
  1418. * otherwise we can deadlock when we wait on each other
  1419. */
  1420. vfork_done = tsk->vfork_done;
  1421. if (vfork_done) {
  1422. tsk->vfork_done = NULL;
  1423. complete(vfork_done);
  1424. }
  1425. if (core_waiters)
  1426. wait_for_completion(&core_state->startup);
  1427. fail:
  1428. return core_waiters;
  1429. }
  1430. static void coredump_finish(struct mm_struct *mm)
  1431. {
  1432. struct core_thread *curr, *next;
  1433. struct task_struct *task;
  1434. next = mm->core_state->dumper.next;
  1435. while ((curr = next) != NULL) {
  1436. next = curr->next;
  1437. task = curr->task;
  1438. /*
  1439. * see exit_mm(), curr->task must not see
  1440. * ->task == NULL before we read ->next.
  1441. */
  1442. smp_mb();
  1443. curr->task = NULL;
  1444. wake_up_process(task);
  1445. }
  1446. mm->core_state = NULL;
  1447. }
  1448. /*
  1449. * set_dumpable converts traditional three-value dumpable to two flags and
  1450. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1451. * these bits are not changed atomically. So get_dumpable can observe the
  1452. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1453. * return either old dumpable or new one by paying attention to the order of
  1454. * modifying the bits.
  1455. *
  1456. * dumpable | mm->flags (binary)
  1457. * old new | initial interim final
  1458. * ---------+-----------------------
  1459. * 0 1 | 00 01 01
  1460. * 0 2 | 00 10(*) 11
  1461. * 1 0 | 01 00 00
  1462. * 1 2 | 01 11 11
  1463. * 2 0 | 11 10(*) 00
  1464. * 2 1 | 11 11 01
  1465. *
  1466. * (*) get_dumpable regards interim value of 10 as 11.
  1467. */
  1468. void set_dumpable(struct mm_struct *mm, int value)
  1469. {
  1470. switch (value) {
  1471. case 0:
  1472. clear_bit(MMF_DUMPABLE, &mm->flags);
  1473. smp_wmb();
  1474. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1475. break;
  1476. case 1:
  1477. set_bit(MMF_DUMPABLE, &mm->flags);
  1478. smp_wmb();
  1479. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1480. break;
  1481. case 2:
  1482. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1483. smp_wmb();
  1484. set_bit(MMF_DUMPABLE, &mm->flags);
  1485. break;
  1486. }
  1487. }
  1488. int get_dumpable(struct mm_struct *mm)
  1489. {
  1490. int ret;
  1491. ret = mm->flags & 0x3;
  1492. return (ret >= 2) ? 2 : ret;
  1493. }
  1494. static void wait_for_dump_helpers(struct file *file)
  1495. {
  1496. struct pipe_inode_info *pipe;
  1497. pipe = file->f_path.dentry->d_inode->i_pipe;
  1498. pipe_lock(pipe);
  1499. pipe->readers++;
  1500. pipe->writers--;
  1501. while ((pipe->readers > 1) && (!signal_pending(current))) {
  1502. wake_up_interruptible_sync(&pipe->wait);
  1503. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  1504. pipe_wait(pipe);
  1505. }
  1506. pipe->readers--;
  1507. pipe->writers++;
  1508. pipe_unlock(pipe);
  1509. }
  1510. void do_coredump(long signr, int exit_code, struct pt_regs *regs)
  1511. {
  1512. struct core_state core_state;
  1513. char corename[CORENAME_MAX_SIZE + 1];
  1514. struct mm_struct *mm = current->mm;
  1515. struct linux_binfmt * binfmt;
  1516. struct inode * inode;
  1517. struct file * file;
  1518. const struct cred *old_cred;
  1519. struct cred *cred;
  1520. int retval = 0;
  1521. int flag = 0;
  1522. int ispipe = 0;
  1523. unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
  1524. char **helper_argv = NULL;
  1525. int helper_argc = 0;
  1526. int dump_count = 0;
  1527. static atomic_t core_dump_count = ATOMIC_INIT(0);
  1528. audit_core_dumps(signr);
  1529. binfmt = mm->binfmt;
  1530. if (!binfmt || !binfmt->core_dump)
  1531. goto fail;
  1532. cred = prepare_creds();
  1533. if (!cred) {
  1534. retval = -ENOMEM;
  1535. goto fail;
  1536. }
  1537. down_write(&mm->mmap_sem);
  1538. /*
  1539. * If another thread got here first, or we are not dumpable, bail out.
  1540. */
  1541. if (mm->core_state || !get_dumpable(mm)) {
  1542. up_write(&mm->mmap_sem);
  1543. put_cred(cred);
  1544. goto fail;
  1545. }
  1546. /*
  1547. * We cannot trust fsuid as being the "true" uid of the
  1548. * process nor do we know its entire history. We only know it
  1549. * was tainted so we dump it as root in mode 2.
  1550. */
  1551. if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
  1552. flag = O_EXCL; /* Stop rewrite attacks */
  1553. cred->fsuid = 0; /* Dump root private */
  1554. }
  1555. retval = coredump_wait(exit_code, &core_state);
  1556. if (retval < 0) {
  1557. put_cred(cred);
  1558. goto fail;
  1559. }
  1560. old_cred = override_creds(cred);
  1561. /*
  1562. * Clear any false indication of pending signals that might
  1563. * be seen by the filesystem code called to write the core file.
  1564. */
  1565. clear_thread_flag(TIF_SIGPENDING);
  1566. /*
  1567. * lock_kernel() because format_corename() is controlled by sysctl, which
  1568. * uses lock_kernel()
  1569. */
  1570. lock_kernel();
  1571. ispipe = format_corename(corename, signr);
  1572. unlock_kernel();
  1573. if ((!ispipe) && (core_limit < binfmt->min_coredump))
  1574. goto fail_unlock;
  1575. if (ispipe) {
  1576. if (core_limit == 0) {
  1577. /*
  1578. * Normally core limits are irrelevant to pipes, since
  1579. * we're not writing to the file system, but we use
  1580. * core_limit of 0 here as a speacial value. Any
  1581. * non-zero limit gets set to RLIM_INFINITY below, but
  1582. * a limit of 0 skips the dump. This is a consistent
  1583. * way to catch recursive crashes. We can still crash
  1584. * if the core_pattern binary sets RLIM_CORE = !0
  1585. * but it runs as root, and can do lots of stupid things
  1586. * Note that we use task_tgid_vnr here to grab the pid
  1587. * of the process group leader. That way we get the
  1588. * right pid if a thread in a multi-threaded
  1589. * core_pattern process dies.
  1590. */
  1591. printk(KERN_WARNING
  1592. "Process %d(%s) has RLIMIT_CORE set to 0\n",
  1593. task_tgid_vnr(current), current->comm);
  1594. printk(KERN_WARNING "Aborting core\n");
  1595. goto fail_unlock;
  1596. }
  1597. dump_count = atomic_inc_return(&core_dump_count);
  1598. if (core_pipe_limit && (core_pipe_limit < dump_count)) {
  1599. printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
  1600. task_tgid_vnr(current), current->comm);
  1601. printk(KERN_WARNING "Skipping core dump\n");
  1602. goto fail_dropcount;
  1603. }
  1604. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1605. if (!helper_argv) {
  1606. printk(KERN_WARNING "%s failed to allocate memory\n",
  1607. __func__);
  1608. goto fail_dropcount;
  1609. }
  1610. core_limit = RLIM_INFINITY;
  1611. /* SIGPIPE can happen, but it's just never processed */
  1612. if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
  1613. &file)) {
  1614. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1615. corename);
  1616. goto fail_dropcount;
  1617. }
  1618. } else
  1619. file = filp_open(corename,
  1620. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1621. 0600);
  1622. if (IS_ERR(file))
  1623. goto fail_dropcount;
  1624. inode = file->f_path.dentry->d_inode;
  1625. if (inode->i_nlink > 1)
  1626. goto close_fail; /* multiple links - don't dump */
  1627. if (!ispipe && d_unhashed(file->f_path.dentry))
  1628. goto close_fail;
  1629. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1630. but keep the previous behaviour for now. */
  1631. if (!ispipe && !S_ISREG(inode->i_mode))
  1632. goto close_fail;
  1633. /*
  1634. * Dont allow local users get cute and trick others to coredump
  1635. * into their pre-created files:
  1636. */
  1637. if (inode->i_uid != current_fsuid())
  1638. goto close_fail;
  1639. if (!file->f_op)
  1640. goto close_fail;
  1641. if (!file->f_op->write)
  1642. goto close_fail;
  1643. if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
  1644. goto close_fail;
  1645. retval = binfmt->core_dump(signr, regs, file, core_limit);
  1646. if (retval)
  1647. current->signal->group_exit_code |= 0x80;
  1648. close_fail:
  1649. if (ispipe && core_pipe_limit)
  1650. wait_for_dump_helpers(file);
  1651. filp_close(file, NULL);
  1652. fail_dropcount:
  1653. if (dump_count)
  1654. atomic_dec(&core_dump_count);
  1655. fail_unlock:
  1656. if (helper_argv)
  1657. argv_free(helper_argv);
  1658. revert_creds(old_cred);
  1659. put_cred(cred);
  1660. coredump_finish(mm);
  1661. fail:
  1662. return;
  1663. }