volumes.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/bio.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/random.h>
  23. #include <linux/iocontext.h>
  24. #include <asm/div64.h>
  25. #include "compat.h"
  26. #include "ctree.h"
  27. #include "extent_map.h"
  28. #include "disk-io.h"
  29. #include "transaction.h"
  30. #include "print-tree.h"
  31. #include "volumes.h"
  32. #include "async-thread.h"
  33. struct map_lookup {
  34. u64 type;
  35. int io_align;
  36. int io_width;
  37. int stripe_len;
  38. int sector_size;
  39. int num_stripes;
  40. int sub_stripes;
  41. struct btrfs_bio_stripe stripes[];
  42. };
  43. static int init_first_rw_device(struct btrfs_trans_handle *trans,
  44. struct btrfs_root *root,
  45. struct btrfs_device *device);
  46. static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
  47. #define map_lookup_size(n) (sizeof(struct map_lookup) + \
  48. (sizeof(struct btrfs_bio_stripe) * (n)))
  49. static DEFINE_MUTEX(uuid_mutex);
  50. static LIST_HEAD(fs_uuids);
  51. void btrfs_lock_volumes(void)
  52. {
  53. mutex_lock(&uuid_mutex);
  54. }
  55. void btrfs_unlock_volumes(void)
  56. {
  57. mutex_unlock(&uuid_mutex);
  58. }
  59. static void lock_chunks(struct btrfs_root *root)
  60. {
  61. mutex_lock(&root->fs_info->chunk_mutex);
  62. }
  63. static void unlock_chunks(struct btrfs_root *root)
  64. {
  65. mutex_unlock(&root->fs_info->chunk_mutex);
  66. }
  67. static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
  68. {
  69. struct btrfs_device *device;
  70. WARN_ON(fs_devices->opened);
  71. while (!list_empty(&fs_devices->devices)) {
  72. device = list_entry(fs_devices->devices.next,
  73. struct btrfs_device, dev_list);
  74. list_del(&device->dev_list);
  75. kfree(device->name);
  76. kfree(device);
  77. }
  78. kfree(fs_devices);
  79. }
  80. int btrfs_cleanup_fs_uuids(void)
  81. {
  82. struct btrfs_fs_devices *fs_devices;
  83. while (!list_empty(&fs_uuids)) {
  84. fs_devices = list_entry(fs_uuids.next,
  85. struct btrfs_fs_devices, list);
  86. list_del(&fs_devices->list);
  87. free_fs_devices(fs_devices);
  88. }
  89. return 0;
  90. }
  91. static noinline struct btrfs_device *__find_device(struct list_head *head,
  92. u64 devid, u8 *uuid)
  93. {
  94. struct btrfs_device *dev;
  95. list_for_each_entry(dev, head, dev_list) {
  96. if (dev->devid == devid &&
  97. (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
  98. return dev;
  99. }
  100. }
  101. return NULL;
  102. }
  103. static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
  104. {
  105. struct btrfs_fs_devices *fs_devices;
  106. list_for_each_entry(fs_devices, &fs_uuids, list) {
  107. if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
  108. return fs_devices;
  109. }
  110. return NULL;
  111. }
  112. static void requeue_list(struct btrfs_pending_bios *pending_bios,
  113. struct bio *head, struct bio *tail)
  114. {
  115. struct bio *old_head;
  116. old_head = pending_bios->head;
  117. pending_bios->head = head;
  118. if (pending_bios->tail)
  119. tail->bi_next = old_head;
  120. else
  121. pending_bios->tail = tail;
  122. }
  123. /*
  124. * we try to collect pending bios for a device so we don't get a large
  125. * number of procs sending bios down to the same device. This greatly
  126. * improves the schedulers ability to collect and merge the bios.
  127. *
  128. * But, it also turns into a long list of bios to process and that is sure
  129. * to eventually make the worker thread block. The solution here is to
  130. * make some progress and then put this work struct back at the end of
  131. * the list if the block device is congested. This way, multiple devices
  132. * can make progress from a single worker thread.
  133. */
  134. static noinline int run_scheduled_bios(struct btrfs_device *device)
  135. {
  136. struct bio *pending;
  137. struct backing_dev_info *bdi;
  138. struct btrfs_fs_info *fs_info;
  139. struct btrfs_pending_bios *pending_bios;
  140. struct bio *tail;
  141. struct bio *cur;
  142. int again = 0;
  143. unsigned long num_run;
  144. unsigned long num_sync_run;
  145. unsigned long batch_run = 0;
  146. unsigned long limit;
  147. unsigned long last_waited = 0;
  148. int force_reg = 0;
  149. bdi = blk_get_backing_dev_info(device->bdev);
  150. fs_info = device->dev_root->fs_info;
  151. limit = btrfs_async_submit_limit(fs_info);
  152. limit = limit * 2 / 3;
  153. /* we want to make sure that every time we switch from the sync
  154. * list to the normal list, we unplug
  155. */
  156. num_sync_run = 0;
  157. loop:
  158. spin_lock(&device->io_lock);
  159. loop_lock:
  160. num_run = 0;
  161. /* take all the bios off the list at once and process them
  162. * later on (without the lock held). But, remember the
  163. * tail and other pointers so the bios can be properly reinserted
  164. * into the list if we hit congestion
  165. */
  166. if (!force_reg && device->pending_sync_bios.head) {
  167. pending_bios = &device->pending_sync_bios;
  168. force_reg = 1;
  169. } else {
  170. pending_bios = &device->pending_bios;
  171. force_reg = 0;
  172. }
  173. pending = pending_bios->head;
  174. tail = pending_bios->tail;
  175. WARN_ON(pending && !tail);
  176. /*
  177. * if pending was null this time around, no bios need processing
  178. * at all and we can stop. Otherwise it'll loop back up again
  179. * and do an additional check so no bios are missed.
  180. *
  181. * device->running_pending is used to synchronize with the
  182. * schedule_bio code.
  183. */
  184. if (device->pending_sync_bios.head == NULL &&
  185. device->pending_bios.head == NULL) {
  186. again = 0;
  187. device->running_pending = 0;
  188. } else {
  189. again = 1;
  190. device->running_pending = 1;
  191. }
  192. pending_bios->head = NULL;
  193. pending_bios->tail = NULL;
  194. spin_unlock(&device->io_lock);
  195. /*
  196. * if we're doing the regular priority list, make sure we unplug
  197. * for any high prio bios we've sent down
  198. */
  199. if (pending_bios == &device->pending_bios && num_sync_run > 0) {
  200. num_sync_run = 0;
  201. blk_run_backing_dev(bdi, NULL);
  202. }
  203. while (pending) {
  204. rmb();
  205. /* we want to work on both lists, but do more bios on the
  206. * sync list than the regular list
  207. */
  208. if ((num_run > 32 &&
  209. pending_bios != &device->pending_sync_bios &&
  210. device->pending_sync_bios.head) ||
  211. (num_run > 64 && pending_bios == &device->pending_sync_bios &&
  212. device->pending_bios.head)) {
  213. spin_lock(&device->io_lock);
  214. requeue_list(pending_bios, pending, tail);
  215. goto loop_lock;
  216. }
  217. cur = pending;
  218. pending = pending->bi_next;
  219. cur->bi_next = NULL;
  220. atomic_dec(&fs_info->nr_async_bios);
  221. if (atomic_read(&fs_info->nr_async_bios) < limit &&
  222. waitqueue_active(&fs_info->async_submit_wait))
  223. wake_up(&fs_info->async_submit_wait);
  224. BUG_ON(atomic_read(&cur->bi_cnt) == 0);
  225. submit_bio(cur->bi_rw, cur);
  226. num_run++;
  227. batch_run++;
  228. if (bio_rw_flagged(cur, BIO_RW_SYNCIO))
  229. num_sync_run++;
  230. if (need_resched()) {
  231. if (num_sync_run) {
  232. blk_run_backing_dev(bdi, NULL);
  233. num_sync_run = 0;
  234. }
  235. cond_resched();
  236. }
  237. /*
  238. * we made progress, there is more work to do and the bdi
  239. * is now congested. Back off and let other work structs
  240. * run instead
  241. */
  242. if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
  243. fs_info->fs_devices->open_devices > 1) {
  244. struct io_context *ioc;
  245. ioc = current->io_context;
  246. /*
  247. * the main goal here is that we don't want to
  248. * block if we're going to be able to submit
  249. * more requests without blocking.
  250. *
  251. * This code does two great things, it pokes into
  252. * the elevator code from a filesystem _and_
  253. * it makes assumptions about how batching works.
  254. */
  255. if (ioc && ioc->nr_batch_requests > 0 &&
  256. time_before(jiffies, ioc->last_waited + HZ/50UL) &&
  257. (last_waited == 0 ||
  258. ioc->last_waited == last_waited)) {
  259. /*
  260. * we want to go through our batch of
  261. * requests and stop. So, we copy out
  262. * the ioc->last_waited time and test
  263. * against it before looping
  264. */
  265. last_waited = ioc->last_waited;
  266. if (need_resched()) {
  267. if (num_sync_run) {
  268. blk_run_backing_dev(bdi, NULL);
  269. num_sync_run = 0;
  270. }
  271. cond_resched();
  272. }
  273. continue;
  274. }
  275. spin_lock(&device->io_lock);
  276. requeue_list(pending_bios, pending, tail);
  277. device->running_pending = 1;
  278. spin_unlock(&device->io_lock);
  279. btrfs_requeue_work(&device->work);
  280. goto done;
  281. }
  282. }
  283. if (num_sync_run) {
  284. num_sync_run = 0;
  285. blk_run_backing_dev(bdi, NULL);
  286. }
  287. cond_resched();
  288. if (again)
  289. goto loop;
  290. spin_lock(&device->io_lock);
  291. if (device->pending_bios.head || device->pending_sync_bios.head)
  292. goto loop_lock;
  293. spin_unlock(&device->io_lock);
  294. /*
  295. * IO has already been through a long path to get here. Checksumming,
  296. * async helper threads, perhaps compression. We've done a pretty
  297. * good job of collecting a batch of IO and should just unplug
  298. * the device right away.
  299. *
  300. * This will help anyone who is waiting on the IO, they might have
  301. * already unplugged, but managed to do so before the bio they
  302. * cared about found its way down here.
  303. */
  304. blk_run_backing_dev(bdi, NULL);
  305. done:
  306. return 0;
  307. }
  308. static void pending_bios_fn(struct btrfs_work *work)
  309. {
  310. struct btrfs_device *device;
  311. device = container_of(work, struct btrfs_device, work);
  312. run_scheduled_bios(device);
  313. }
  314. static noinline int device_list_add(const char *path,
  315. struct btrfs_super_block *disk_super,
  316. u64 devid, struct btrfs_fs_devices **fs_devices_ret)
  317. {
  318. struct btrfs_device *device;
  319. struct btrfs_fs_devices *fs_devices;
  320. u64 found_transid = btrfs_super_generation(disk_super);
  321. fs_devices = find_fsid(disk_super->fsid);
  322. if (!fs_devices) {
  323. fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
  324. if (!fs_devices)
  325. return -ENOMEM;
  326. INIT_LIST_HEAD(&fs_devices->devices);
  327. INIT_LIST_HEAD(&fs_devices->alloc_list);
  328. list_add(&fs_devices->list, &fs_uuids);
  329. memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
  330. fs_devices->latest_devid = devid;
  331. fs_devices->latest_trans = found_transid;
  332. mutex_init(&fs_devices->device_list_mutex);
  333. device = NULL;
  334. } else {
  335. device = __find_device(&fs_devices->devices, devid,
  336. disk_super->dev_item.uuid);
  337. }
  338. if (!device) {
  339. if (fs_devices->opened)
  340. return -EBUSY;
  341. device = kzalloc(sizeof(*device), GFP_NOFS);
  342. if (!device) {
  343. /* we can safely leave the fs_devices entry around */
  344. return -ENOMEM;
  345. }
  346. device->devid = devid;
  347. device->work.func = pending_bios_fn;
  348. memcpy(device->uuid, disk_super->dev_item.uuid,
  349. BTRFS_UUID_SIZE);
  350. device->barriers = 1;
  351. spin_lock_init(&device->io_lock);
  352. device->name = kstrdup(path, GFP_NOFS);
  353. if (!device->name) {
  354. kfree(device);
  355. return -ENOMEM;
  356. }
  357. INIT_LIST_HEAD(&device->dev_alloc_list);
  358. mutex_lock(&fs_devices->device_list_mutex);
  359. list_add(&device->dev_list, &fs_devices->devices);
  360. mutex_unlock(&fs_devices->device_list_mutex);
  361. device->fs_devices = fs_devices;
  362. fs_devices->num_devices++;
  363. }
  364. if (found_transid > fs_devices->latest_trans) {
  365. fs_devices->latest_devid = devid;
  366. fs_devices->latest_trans = found_transid;
  367. }
  368. *fs_devices_ret = fs_devices;
  369. return 0;
  370. }
  371. static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
  372. {
  373. struct btrfs_fs_devices *fs_devices;
  374. struct btrfs_device *device;
  375. struct btrfs_device *orig_dev;
  376. fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
  377. if (!fs_devices)
  378. return ERR_PTR(-ENOMEM);
  379. INIT_LIST_HEAD(&fs_devices->devices);
  380. INIT_LIST_HEAD(&fs_devices->alloc_list);
  381. INIT_LIST_HEAD(&fs_devices->list);
  382. mutex_init(&fs_devices->device_list_mutex);
  383. fs_devices->latest_devid = orig->latest_devid;
  384. fs_devices->latest_trans = orig->latest_trans;
  385. memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
  386. mutex_lock(&orig->device_list_mutex);
  387. list_for_each_entry(orig_dev, &orig->devices, dev_list) {
  388. device = kzalloc(sizeof(*device), GFP_NOFS);
  389. if (!device)
  390. goto error;
  391. device->name = kstrdup(orig_dev->name, GFP_NOFS);
  392. if (!device->name)
  393. goto error;
  394. device->devid = orig_dev->devid;
  395. device->work.func = pending_bios_fn;
  396. memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
  397. device->barriers = 1;
  398. spin_lock_init(&device->io_lock);
  399. INIT_LIST_HEAD(&device->dev_list);
  400. INIT_LIST_HEAD(&device->dev_alloc_list);
  401. list_add(&device->dev_list, &fs_devices->devices);
  402. device->fs_devices = fs_devices;
  403. fs_devices->num_devices++;
  404. }
  405. mutex_unlock(&orig->device_list_mutex);
  406. return fs_devices;
  407. error:
  408. mutex_unlock(&orig->device_list_mutex);
  409. free_fs_devices(fs_devices);
  410. return ERR_PTR(-ENOMEM);
  411. }
  412. int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
  413. {
  414. struct btrfs_device *device, *next;
  415. mutex_lock(&uuid_mutex);
  416. again:
  417. mutex_lock(&fs_devices->device_list_mutex);
  418. list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
  419. if (device->in_fs_metadata)
  420. continue;
  421. if (device->bdev) {
  422. close_bdev_exclusive(device->bdev, device->mode);
  423. device->bdev = NULL;
  424. fs_devices->open_devices--;
  425. }
  426. if (device->writeable) {
  427. list_del_init(&device->dev_alloc_list);
  428. device->writeable = 0;
  429. fs_devices->rw_devices--;
  430. }
  431. list_del_init(&device->dev_list);
  432. fs_devices->num_devices--;
  433. kfree(device->name);
  434. kfree(device);
  435. }
  436. mutex_unlock(&fs_devices->device_list_mutex);
  437. if (fs_devices->seed) {
  438. fs_devices = fs_devices->seed;
  439. goto again;
  440. }
  441. mutex_unlock(&uuid_mutex);
  442. return 0;
  443. }
  444. static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
  445. {
  446. struct btrfs_device *device;
  447. if (--fs_devices->opened > 0)
  448. return 0;
  449. list_for_each_entry(device, &fs_devices->devices, dev_list) {
  450. if (device->bdev) {
  451. close_bdev_exclusive(device->bdev, device->mode);
  452. fs_devices->open_devices--;
  453. }
  454. if (device->writeable) {
  455. list_del_init(&device->dev_alloc_list);
  456. fs_devices->rw_devices--;
  457. }
  458. device->bdev = NULL;
  459. device->writeable = 0;
  460. device->in_fs_metadata = 0;
  461. }
  462. WARN_ON(fs_devices->open_devices);
  463. WARN_ON(fs_devices->rw_devices);
  464. fs_devices->opened = 0;
  465. fs_devices->seeding = 0;
  466. return 0;
  467. }
  468. int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
  469. {
  470. struct btrfs_fs_devices *seed_devices = NULL;
  471. int ret;
  472. mutex_lock(&uuid_mutex);
  473. ret = __btrfs_close_devices(fs_devices);
  474. if (!fs_devices->opened) {
  475. seed_devices = fs_devices->seed;
  476. fs_devices->seed = NULL;
  477. }
  478. mutex_unlock(&uuid_mutex);
  479. while (seed_devices) {
  480. fs_devices = seed_devices;
  481. seed_devices = fs_devices->seed;
  482. __btrfs_close_devices(fs_devices);
  483. free_fs_devices(fs_devices);
  484. }
  485. return ret;
  486. }
  487. static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
  488. fmode_t flags, void *holder)
  489. {
  490. struct block_device *bdev;
  491. struct list_head *head = &fs_devices->devices;
  492. struct btrfs_device *device;
  493. struct block_device *latest_bdev = NULL;
  494. struct buffer_head *bh;
  495. struct btrfs_super_block *disk_super;
  496. u64 latest_devid = 0;
  497. u64 latest_transid = 0;
  498. u64 devid;
  499. int seeding = 1;
  500. int ret = 0;
  501. list_for_each_entry(device, head, dev_list) {
  502. if (device->bdev)
  503. continue;
  504. if (!device->name)
  505. continue;
  506. bdev = open_bdev_exclusive(device->name, flags, holder);
  507. if (IS_ERR(bdev)) {
  508. printk(KERN_INFO "open %s failed\n", device->name);
  509. goto error;
  510. }
  511. set_blocksize(bdev, 4096);
  512. bh = btrfs_read_dev_super(bdev);
  513. if (!bh)
  514. goto error_close;
  515. disk_super = (struct btrfs_super_block *)bh->b_data;
  516. devid = le64_to_cpu(disk_super->dev_item.devid);
  517. if (devid != device->devid)
  518. goto error_brelse;
  519. if (memcmp(device->uuid, disk_super->dev_item.uuid,
  520. BTRFS_UUID_SIZE))
  521. goto error_brelse;
  522. device->generation = btrfs_super_generation(disk_super);
  523. if (!latest_transid || device->generation > latest_transid) {
  524. latest_devid = devid;
  525. latest_transid = device->generation;
  526. latest_bdev = bdev;
  527. }
  528. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
  529. device->writeable = 0;
  530. } else {
  531. device->writeable = !bdev_read_only(bdev);
  532. seeding = 0;
  533. }
  534. device->bdev = bdev;
  535. device->in_fs_metadata = 0;
  536. device->mode = flags;
  537. if (!blk_queue_nonrot(bdev_get_queue(bdev)))
  538. fs_devices->rotating = 1;
  539. fs_devices->open_devices++;
  540. if (device->writeable) {
  541. fs_devices->rw_devices++;
  542. list_add(&device->dev_alloc_list,
  543. &fs_devices->alloc_list);
  544. }
  545. continue;
  546. error_brelse:
  547. brelse(bh);
  548. error_close:
  549. close_bdev_exclusive(bdev, FMODE_READ);
  550. error:
  551. continue;
  552. }
  553. if (fs_devices->open_devices == 0) {
  554. ret = -EIO;
  555. goto out;
  556. }
  557. fs_devices->seeding = seeding;
  558. fs_devices->opened = 1;
  559. fs_devices->latest_bdev = latest_bdev;
  560. fs_devices->latest_devid = latest_devid;
  561. fs_devices->latest_trans = latest_transid;
  562. fs_devices->total_rw_bytes = 0;
  563. out:
  564. return ret;
  565. }
  566. int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
  567. fmode_t flags, void *holder)
  568. {
  569. int ret;
  570. mutex_lock(&uuid_mutex);
  571. if (fs_devices->opened) {
  572. fs_devices->opened++;
  573. ret = 0;
  574. } else {
  575. ret = __btrfs_open_devices(fs_devices, flags, holder);
  576. }
  577. mutex_unlock(&uuid_mutex);
  578. return ret;
  579. }
  580. int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
  581. struct btrfs_fs_devices **fs_devices_ret)
  582. {
  583. struct btrfs_super_block *disk_super;
  584. struct block_device *bdev;
  585. struct buffer_head *bh;
  586. int ret;
  587. u64 devid;
  588. u64 transid;
  589. mutex_lock(&uuid_mutex);
  590. bdev = open_bdev_exclusive(path, flags, holder);
  591. if (IS_ERR(bdev)) {
  592. ret = PTR_ERR(bdev);
  593. goto error;
  594. }
  595. ret = set_blocksize(bdev, 4096);
  596. if (ret)
  597. goto error_close;
  598. bh = btrfs_read_dev_super(bdev);
  599. if (!bh) {
  600. ret = -EIO;
  601. goto error_close;
  602. }
  603. disk_super = (struct btrfs_super_block *)bh->b_data;
  604. devid = le64_to_cpu(disk_super->dev_item.devid);
  605. transid = btrfs_super_generation(disk_super);
  606. if (disk_super->label[0])
  607. printk(KERN_INFO "device label %s ", disk_super->label);
  608. else {
  609. /* FIXME, make a readl uuid parser */
  610. printk(KERN_INFO "device fsid %llx-%llx ",
  611. *(unsigned long long *)disk_super->fsid,
  612. *(unsigned long long *)(disk_super->fsid + 8));
  613. }
  614. printk(KERN_CONT "devid %llu transid %llu %s\n",
  615. (unsigned long long)devid, (unsigned long long)transid, path);
  616. ret = device_list_add(path, disk_super, devid, fs_devices_ret);
  617. brelse(bh);
  618. error_close:
  619. close_bdev_exclusive(bdev, flags);
  620. error:
  621. mutex_unlock(&uuid_mutex);
  622. return ret;
  623. }
  624. /*
  625. * this uses a pretty simple search, the expectation is that it is
  626. * called very infrequently and that a given device has a small number
  627. * of extents
  628. */
  629. int find_free_dev_extent(struct btrfs_trans_handle *trans,
  630. struct btrfs_device *device, u64 num_bytes,
  631. u64 *start, u64 *max_avail)
  632. {
  633. struct btrfs_key key;
  634. struct btrfs_root *root = device->dev_root;
  635. struct btrfs_dev_extent *dev_extent = NULL;
  636. struct btrfs_path *path;
  637. u64 hole_size = 0;
  638. u64 last_byte = 0;
  639. u64 search_start = 0;
  640. u64 search_end = device->total_bytes;
  641. int ret;
  642. int slot = 0;
  643. int start_found;
  644. struct extent_buffer *l;
  645. path = btrfs_alloc_path();
  646. if (!path)
  647. return -ENOMEM;
  648. path->reada = 2;
  649. start_found = 0;
  650. /* FIXME use last free of some kind */
  651. /* we don't want to overwrite the superblock on the drive,
  652. * so we make sure to start at an offset of at least 1MB
  653. */
  654. search_start = max((u64)1024 * 1024, search_start);
  655. if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
  656. search_start = max(root->fs_info->alloc_start, search_start);
  657. key.objectid = device->devid;
  658. key.offset = search_start;
  659. key.type = BTRFS_DEV_EXTENT_KEY;
  660. ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
  661. if (ret < 0)
  662. goto error;
  663. if (ret > 0) {
  664. ret = btrfs_previous_item(root, path, key.objectid, key.type);
  665. if (ret < 0)
  666. goto error;
  667. if (ret > 0)
  668. start_found = 1;
  669. }
  670. l = path->nodes[0];
  671. btrfs_item_key_to_cpu(l, &key, path->slots[0]);
  672. while (1) {
  673. l = path->nodes[0];
  674. slot = path->slots[0];
  675. if (slot >= btrfs_header_nritems(l)) {
  676. ret = btrfs_next_leaf(root, path);
  677. if (ret == 0)
  678. continue;
  679. if (ret < 0)
  680. goto error;
  681. no_more_items:
  682. if (!start_found) {
  683. if (search_start >= search_end) {
  684. ret = -ENOSPC;
  685. goto error;
  686. }
  687. *start = search_start;
  688. start_found = 1;
  689. goto check_pending;
  690. }
  691. *start = last_byte > search_start ?
  692. last_byte : search_start;
  693. if (search_end <= *start) {
  694. ret = -ENOSPC;
  695. goto error;
  696. }
  697. goto check_pending;
  698. }
  699. btrfs_item_key_to_cpu(l, &key, slot);
  700. if (key.objectid < device->devid)
  701. goto next;
  702. if (key.objectid > device->devid)
  703. goto no_more_items;
  704. if (key.offset >= search_start && key.offset > last_byte &&
  705. start_found) {
  706. if (last_byte < search_start)
  707. last_byte = search_start;
  708. hole_size = key.offset - last_byte;
  709. if (hole_size > *max_avail)
  710. *max_avail = hole_size;
  711. if (key.offset > last_byte &&
  712. hole_size >= num_bytes) {
  713. *start = last_byte;
  714. goto check_pending;
  715. }
  716. }
  717. if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
  718. goto next;
  719. start_found = 1;
  720. dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
  721. last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
  722. next:
  723. path->slots[0]++;
  724. cond_resched();
  725. }
  726. check_pending:
  727. /* we have to make sure we didn't find an extent that has already
  728. * been allocated by the map tree or the original allocation
  729. */
  730. BUG_ON(*start < search_start);
  731. if (*start + num_bytes > search_end) {
  732. ret = -ENOSPC;
  733. goto error;
  734. }
  735. /* check for pending inserts here */
  736. ret = 0;
  737. error:
  738. btrfs_free_path(path);
  739. return ret;
  740. }
  741. static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
  742. struct btrfs_device *device,
  743. u64 start)
  744. {
  745. int ret;
  746. struct btrfs_path *path;
  747. struct btrfs_root *root = device->dev_root;
  748. struct btrfs_key key;
  749. struct btrfs_key found_key;
  750. struct extent_buffer *leaf = NULL;
  751. struct btrfs_dev_extent *extent = NULL;
  752. path = btrfs_alloc_path();
  753. if (!path)
  754. return -ENOMEM;
  755. key.objectid = device->devid;
  756. key.offset = start;
  757. key.type = BTRFS_DEV_EXTENT_KEY;
  758. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  759. if (ret > 0) {
  760. ret = btrfs_previous_item(root, path, key.objectid,
  761. BTRFS_DEV_EXTENT_KEY);
  762. BUG_ON(ret);
  763. leaf = path->nodes[0];
  764. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  765. extent = btrfs_item_ptr(leaf, path->slots[0],
  766. struct btrfs_dev_extent);
  767. BUG_ON(found_key.offset > start || found_key.offset +
  768. btrfs_dev_extent_length(leaf, extent) < start);
  769. ret = 0;
  770. } else if (ret == 0) {
  771. leaf = path->nodes[0];
  772. extent = btrfs_item_ptr(leaf, path->slots[0],
  773. struct btrfs_dev_extent);
  774. }
  775. BUG_ON(ret);
  776. if (device->bytes_used > 0)
  777. device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
  778. ret = btrfs_del_item(trans, root, path);
  779. BUG_ON(ret);
  780. btrfs_free_path(path);
  781. return ret;
  782. }
  783. int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
  784. struct btrfs_device *device,
  785. u64 chunk_tree, u64 chunk_objectid,
  786. u64 chunk_offset, u64 start, u64 num_bytes)
  787. {
  788. int ret;
  789. struct btrfs_path *path;
  790. struct btrfs_root *root = device->dev_root;
  791. struct btrfs_dev_extent *extent;
  792. struct extent_buffer *leaf;
  793. struct btrfs_key key;
  794. WARN_ON(!device->in_fs_metadata);
  795. path = btrfs_alloc_path();
  796. if (!path)
  797. return -ENOMEM;
  798. key.objectid = device->devid;
  799. key.offset = start;
  800. key.type = BTRFS_DEV_EXTENT_KEY;
  801. ret = btrfs_insert_empty_item(trans, root, path, &key,
  802. sizeof(*extent));
  803. BUG_ON(ret);
  804. leaf = path->nodes[0];
  805. extent = btrfs_item_ptr(leaf, path->slots[0],
  806. struct btrfs_dev_extent);
  807. btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
  808. btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
  809. btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
  810. write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
  811. (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
  812. BTRFS_UUID_SIZE);
  813. btrfs_set_dev_extent_length(leaf, extent, num_bytes);
  814. btrfs_mark_buffer_dirty(leaf);
  815. btrfs_free_path(path);
  816. return ret;
  817. }
  818. static noinline int find_next_chunk(struct btrfs_root *root,
  819. u64 objectid, u64 *offset)
  820. {
  821. struct btrfs_path *path;
  822. int ret;
  823. struct btrfs_key key;
  824. struct btrfs_chunk *chunk;
  825. struct btrfs_key found_key;
  826. path = btrfs_alloc_path();
  827. BUG_ON(!path);
  828. key.objectid = objectid;
  829. key.offset = (u64)-1;
  830. key.type = BTRFS_CHUNK_ITEM_KEY;
  831. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  832. if (ret < 0)
  833. goto error;
  834. BUG_ON(ret == 0);
  835. ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
  836. if (ret) {
  837. *offset = 0;
  838. } else {
  839. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  840. path->slots[0]);
  841. if (found_key.objectid != objectid)
  842. *offset = 0;
  843. else {
  844. chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
  845. struct btrfs_chunk);
  846. *offset = found_key.offset +
  847. btrfs_chunk_length(path->nodes[0], chunk);
  848. }
  849. }
  850. ret = 0;
  851. error:
  852. btrfs_free_path(path);
  853. return ret;
  854. }
  855. static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
  856. {
  857. int ret;
  858. struct btrfs_key key;
  859. struct btrfs_key found_key;
  860. struct btrfs_path *path;
  861. root = root->fs_info->chunk_root;
  862. path = btrfs_alloc_path();
  863. if (!path)
  864. return -ENOMEM;
  865. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  866. key.type = BTRFS_DEV_ITEM_KEY;
  867. key.offset = (u64)-1;
  868. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  869. if (ret < 0)
  870. goto error;
  871. BUG_ON(ret == 0);
  872. ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
  873. BTRFS_DEV_ITEM_KEY);
  874. if (ret) {
  875. *objectid = 1;
  876. } else {
  877. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  878. path->slots[0]);
  879. *objectid = found_key.offset + 1;
  880. }
  881. ret = 0;
  882. error:
  883. btrfs_free_path(path);
  884. return ret;
  885. }
  886. /*
  887. * the device information is stored in the chunk root
  888. * the btrfs_device struct should be fully filled in
  889. */
  890. int btrfs_add_device(struct btrfs_trans_handle *trans,
  891. struct btrfs_root *root,
  892. struct btrfs_device *device)
  893. {
  894. int ret;
  895. struct btrfs_path *path;
  896. struct btrfs_dev_item *dev_item;
  897. struct extent_buffer *leaf;
  898. struct btrfs_key key;
  899. unsigned long ptr;
  900. root = root->fs_info->chunk_root;
  901. path = btrfs_alloc_path();
  902. if (!path)
  903. return -ENOMEM;
  904. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  905. key.type = BTRFS_DEV_ITEM_KEY;
  906. key.offset = device->devid;
  907. ret = btrfs_insert_empty_item(trans, root, path, &key,
  908. sizeof(*dev_item));
  909. if (ret)
  910. goto out;
  911. leaf = path->nodes[0];
  912. dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
  913. btrfs_set_device_id(leaf, dev_item, device->devid);
  914. btrfs_set_device_generation(leaf, dev_item, 0);
  915. btrfs_set_device_type(leaf, dev_item, device->type);
  916. btrfs_set_device_io_align(leaf, dev_item, device->io_align);
  917. btrfs_set_device_io_width(leaf, dev_item, device->io_width);
  918. btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
  919. btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
  920. btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
  921. btrfs_set_device_group(leaf, dev_item, 0);
  922. btrfs_set_device_seek_speed(leaf, dev_item, 0);
  923. btrfs_set_device_bandwidth(leaf, dev_item, 0);
  924. btrfs_set_device_start_offset(leaf, dev_item, 0);
  925. ptr = (unsigned long)btrfs_device_uuid(dev_item);
  926. write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
  927. ptr = (unsigned long)btrfs_device_fsid(dev_item);
  928. write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
  929. btrfs_mark_buffer_dirty(leaf);
  930. ret = 0;
  931. out:
  932. btrfs_free_path(path);
  933. return ret;
  934. }
  935. static int btrfs_rm_dev_item(struct btrfs_root *root,
  936. struct btrfs_device *device)
  937. {
  938. int ret;
  939. struct btrfs_path *path;
  940. struct btrfs_key key;
  941. struct btrfs_trans_handle *trans;
  942. root = root->fs_info->chunk_root;
  943. path = btrfs_alloc_path();
  944. if (!path)
  945. return -ENOMEM;
  946. trans = btrfs_start_transaction(root, 1);
  947. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  948. key.type = BTRFS_DEV_ITEM_KEY;
  949. key.offset = device->devid;
  950. lock_chunks(root);
  951. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  952. if (ret < 0)
  953. goto out;
  954. if (ret > 0) {
  955. ret = -ENOENT;
  956. goto out;
  957. }
  958. ret = btrfs_del_item(trans, root, path);
  959. if (ret)
  960. goto out;
  961. out:
  962. btrfs_free_path(path);
  963. unlock_chunks(root);
  964. btrfs_commit_transaction(trans, root);
  965. return ret;
  966. }
  967. int btrfs_rm_device(struct btrfs_root *root, char *device_path)
  968. {
  969. struct btrfs_device *device;
  970. struct btrfs_device *next_device;
  971. struct block_device *bdev;
  972. struct buffer_head *bh = NULL;
  973. struct btrfs_super_block *disk_super;
  974. u64 all_avail;
  975. u64 devid;
  976. u64 num_devices;
  977. u8 *dev_uuid;
  978. int ret = 0;
  979. mutex_lock(&uuid_mutex);
  980. mutex_lock(&root->fs_info->volume_mutex);
  981. all_avail = root->fs_info->avail_data_alloc_bits |
  982. root->fs_info->avail_system_alloc_bits |
  983. root->fs_info->avail_metadata_alloc_bits;
  984. if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
  985. root->fs_info->fs_devices->rw_devices <= 4) {
  986. printk(KERN_ERR "btrfs: unable to go below four devices "
  987. "on raid10\n");
  988. ret = -EINVAL;
  989. goto out;
  990. }
  991. if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
  992. root->fs_info->fs_devices->rw_devices <= 2) {
  993. printk(KERN_ERR "btrfs: unable to go below two "
  994. "devices on raid1\n");
  995. ret = -EINVAL;
  996. goto out;
  997. }
  998. if (strcmp(device_path, "missing") == 0) {
  999. struct list_head *devices;
  1000. struct btrfs_device *tmp;
  1001. device = NULL;
  1002. devices = &root->fs_info->fs_devices->devices;
  1003. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1004. list_for_each_entry(tmp, devices, dev_list) {
  1005. if (tmp->in_fs_metadata && !tmp->bdev) {
  1006. device = tmp;
  1007. break;
  1008. }
  1009. }
  1010. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1011. bdev = NULL;
  1012. bh = NULL;
  1013. disk_super = NULL;
  1014. if (!device) {
  1015. printk(KERN_ERR "btrfs: no missing devices found to "
  1016. "remove\n");
  1017. goto out;
  1018. }
  1019. } else {
  1020. bdev = open_bdev_exclusive(device_path, FMODE_READ,
  1021. root->fs_info->bdev_holder);
  1022. if (IS_ERR(bdev)) {
  1023. ret = PTR_ERR(bdev);
  1024. goto out;
  1025. }
  1026. set_blocksize(bdev, 4096);
  1027. bh = btrfs_read_dev_super(bdev);
  1028. if (!bh) {
  1029. ret = -EIO;
  1030. goto error_close;
  1031. }
  1032. disk_super = (struct btrfs_super_block *)bh->b_data;
  1033. devid = le64_to_cpu(disk_super->dev_item.devid);
  1034. dev_uuid = disk_super->dev_item.uuid;
  1035. device = btrfs_find_device(root, devid, dev_uuid,
  1036. disk_super->fsid);
  1037. if (!device) {
  1038. ret = -ENOENT;
  1039. goto error_brelse;
  1040. }
  1041. }
  1042. if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
  1043. printk(KERN_ERR "btrfs: unable to remove the only writeable "
  1044. "device\n");
  1045. ret = -EINVAL;
  1046. goto error_brelse;
  1047. }
  1048. if (device->writeable) {
  1049. list_del_init(&device->dev_alloc_list);
  1050. root->fs_info->fs_devices->rw_devices--;
  1051. }
  1052. ret = btrfs_shrink_device(device, 0);
  1053. if (ret)
  1054. goto error_brelse;
  1055. ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
  1056. if (ret)
  1057. goto error_brelse;
  1058. device->in_fs_metadata = 0;
  1059. /*
  1060. * the device list mutex makes sure that we don't change
  1061. * the device list while someone else is writing out all
  1062. * the device supers.
  1063. */
  1064. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1065. list_del_init(&device->dev_list);
  1066. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1067. device->fs_devices->num_devices--;
  1068. next_device = list_entry(root->fs_info->fs_devices->devices.next,
  1069. struct btrfs_device, dev_list);
  1070. if (device->bdev == root->fs_info->sb->s_bdev)
  1071. root->fs_info->sb->s_bdev = next_device->bdev;
  1072. if (device->bdev == root->fs_info->fs_devices->latest_bdev)
  1073. root->fs_info->fs_devices->latest_bdev = next_device->bdev;
  1074. if (device->bdev) {
  1075. close_bdev_exclusive(device->bdev, device->mode);
  1076. device->bdev = NULL;
  1077. device->fs_devices->open_devices--;
  1078. }
  1079. num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1080. btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
  1081. if (device->fs_devices->open_devices == 0) {
  1082. struct btrfs_fs_devices *fs_devices;
  1083. fs_devices = root->fs_info->fs_devices;
  1084. while (fs_devices) {
  1085. if (fs_devices->seed == device->fs_devices)
  1086. break;
  1087. fs_devices = fs_devices->seed;
  1088. }
  1089. fs_devices->seed = device->fs_devices->seed;
  1090. device->fs_devices->seed = NULL;
  1091. __btrfs_close_devices(device->fs_devices);
  1092. free_fs_devices(device->fs_devices);
  1093. }
  1094. /*
  1095. * at this point, the device is zero sized. We want to
  1096. * remove it from the devices list and zero out the old super
  1097. */
  1098. if (device->writeable) {
  1099. /* make sure this device isn't detected as part of
  1100. * the FS anymore
  1101. */
  1102. memset(&disk_super->magic, 0, sizeof(disk_super->magic));
  1103. set_buffer_dirty(bh);
  1104. sync_dirty_buffer(bh);
  1105. }
  1106. kfree(device->name);
  1107. kfree(device);
  1108. ret = 0;
  1109. error_brelse:
  1110. brelse(bh);
  1111. error_close:
  1112. if (bdev)
  1113. close_bdev_exclusive(bdev, FMODE_READ);
  1114. out:
  1115. mutex_unlock(&root->fs_info->volume_mutex);
  1116. mutex_unlock(&uuid_mutex);
  1117. return ret;
  1118. }
  1119. /*
  1120. * does all the dirty work required for changing file system's UUID.
  1121. */
  1122. static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
  1123. struct btrfs_root *root)
  1124. {
  1125. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  1126. struct btrfs_fs_devices *old_devices;
  1127. struct btrfs_fs_devices *seed_devices;
  1128. struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
  1129. struct btrfs_device *device;
  1130. u64 super_flags;
  1131. BUG_ON(!mutex_is_locked(&uuid_mutex));
  1132. if (!fs_devices->seeding)
  1133. return -EINVAL;
  1134. seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
  1135. if (!seed_devices)
  1136. return -ENOMEM;
  1137. old_devices = clone_fs_devices(fs_devices);
  1138. if (IS_ERR(old_devices)) {
  1139. kfree(seed_devices);
  1140. return PTR_ERR(old_devices);
  1141. }
  1142. list_add(&old_devices->list, &fs_uuids);
  1143. memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
  1144. seed_devices->opened = 1;
  1145. INIT_LIST_HEAD(&seed_devices->devices);
  1146. INIT_LIST_HEAD(&seed_devices->alloc_list);
  1147. mutex_init(&seed_devices->device_list_mutex);
  1148. list_splice_init(&fs_devices->devices, &seed_devices->devices);
  1149. list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
  1150. list_for_each_entry(device, &seed_devices->devices, dev_list) {
  1151. device->fs_devices = seed_devices;
  1152. }
  1153. fs_devices->seeding = 0;
  1154. fs_devices->num_devices = 0;
  1155. fs_devices->open_devices = 0;
  1156. fs_devices->seed = seed_devices;
  1157. generate_random_uuid(fs_devices->fsid);
  1158. memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
  1159. memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
  1160. super_flags = btrfs_super_flags(disk_super) &
  1161. ~BTRFS_SUPER_FLAG_SEEDING;
  1162. btrfs_set_super_flags(disk_super, super_flags);
  1163. return 0;
  1164. }
  1165. /*
  1166. * strore the expected generation for seed devices in device items.
  1167. */
  1168. static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
  1169. struct btrfs_root *root)
  1170. {
  1171. struct btrfs_path *path;
  1172. struct extent_buffer *leaf;
  1173. struct btrfs_dev_item *dev_item;
  1174. struct btrfs_device *device;
  1175. struct btrfs_key key;
  1176. u8 fs_uuid[BTRFS_UUID_SIZE];
  1177. u8 dev_uuid[BTRFS_UUID_SIZE];
  1178. u64 devid;
  1179. int ret;
  1180. path = btrfs_alloc_path();
  1181. if (!path)
  1182. return -ENOMEM;
  1183. root = root->fs_info->chunk_root;
  1184. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  1185. key.offset = 0;
  1186. key.type = BTRFS_DEV_ITEM_KEY;
  1187. while (1) {
  1188. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1189. if (ret < 0)
  1190. goto error;
  1191. leaf = path->nodes[0];
  1192. next_slot:
  1193. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  1194. ret = btrfs_next_leaf(root, path);
  1195. if (ret > 0)
  1196. break;
  1197. if (ret < 0)
  1198. goto error;
  1199. leaf = path->nodes[0];
  1200. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1201. btrfs_release_path(root, path);
  1202. continue;
  1203. }
  1204. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1205. if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
  1206. key.type != BTRFS_DEV_ITEM_KEY)
  1207. break;
  1208. dev_item = btrfs_item_ptr(leaf, path->slots[0],
  1209. struct btrfs_dev_item);
  1210. devid = btrfs_device_id(leaf, dev_item);
  1211. read_extent_buffer(leaf, dev_uuid,
  1212. (unsigned long)btrfs_device_uuid(dev_item),
  1213. BTRFS_UUID_SIZE);
  1214. read_extent_buffer(leaf, fs_uuid,
  1215. (unsigned long)btrfs_device_fsid(dev_item),
  1216. BTRFS_UUID_SIZE);
  1217. device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
  1218. BUG_ON(!device);
  1219. if (device->fs_devices->seeding) {
  1220. btrfs_set_device_generation(leaf, dev_item,
  1221. device->generation);
  1222. btrfs_mark_buffer_dirty(leaf);
  1223. }
  1224. path->slots[0]++;
  1225. goto next_slot;
  1226. }
  1227. ret = 0;
  1228. error:
  1229. btrfs_free_path(path);
  1230. return ret;
  1231. }
  1232. int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
  1233. {
  1234. struct btrfs_trans_handle *trans;
  1235. struct btrfs_device *device;
  1236. struct block_device *bdev;
  1237. struct list_head *devices;
  1238. struct super_block *sb = root->fs_info->sb;
  1239. u64 total_bytes;
  1240. int seeding_dev = 0;
  1241. int ret = 0;
  1242. if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
  1243. return -EINVAL;
  1244. bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
  1245. if (!bdev)
  1246. return -EIO;
  1247. if (root->fs_info->fs_devices->seeding) {
  1248. seeding_dev = 1;
  1249. down_write(&sb->s_umount);
  1250. mutex_lock(&uuid_mutex);
  1251. }
  1252. filemap_write_and_wait(bdev->bd_inode->i_mapping);
  1253. mutex_lock(&root->fs_info->volume_mutex);
  1254. devices = &root->fs_info->fs_devices->devices;
  1255. /*
  1256. * we have the volume lock, so we don't need the extra
  1257. * device list mutex while reading the list here.
  1258. */
  1259. list_for_each_entry(device, devices, dev_list) {
  1260. if (device->bdev == bdev) {
  1261. ret = -EEXIST;
  1262. goto error;
  1263. }
  1264. }
  1265. device = kzalloc(sizeof(*device), GFP_NOFS);
  1266. if (!device) {
  1267. /* we can safely leave the fs_devices entry around */
  1268. ret = -ENOMEM;
  1269. goto error;
  1270. }
  1271. device->name = kstrdup(device_path, GFP_NOFS);
  1272. if (!device->name) {
  1273. kfree(device);
  1274. ret = -ENOMEM;
  1275. goto error;
  1276. }
  1277. ret = find_next_devid(root, &device->devid);
  1278. if (ret) {
  1279. kfree(device);
  1280. goto error;
  1281. }
  1282. trans = btrfs_start_transaction(root, 1);
  1283. lock_chunks(root);
  1284. device->barriers = 1;
  1285. device->writeable = 1;
  1286. device->work.func = pending_bios_fn;
  1287. generate_random_uuid(device->uuid);
  1288. spin_lock_init(&device->io_lock);
  1289. device->generation = trans->transid;
  1290. device->io_width = root->sectorsize;
  1291. device->io_align = root->sectorsize;
  1292. device->sector_size = root->sectorsize;
  1293. device->total_bytes = i_size_read(bdev->bd_inode);
  1294. device->disk_total_bytes = device->total_bytes;
  1295. device->dev_root = root->fs_info->dev_root;
  1296. device->bdev = bdev;
  1297. device->in_fs_metadata = 1;
  1298. device->mode = 0;
  1299. set_blocksize(device->bdev, 4096);
  1300. if (seeding_dev) {
  1301. sb->s_flags &= ~MS_RDONLY;
  1302. ret = btrfs_prepare_sprout(trans, root);
  1303. BUG_ON(ret);
  1304. }
  1305. device->fs_devices = root->fs_info->fs_devices;
  1306. /*
  1307. * we don't want write_supers to jump in here with our device
  1308. * half setup
  1309. */
  1310. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1311. list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
  1312. list_add(&device->dev_alloc_list,
  1313. &root->fs_info->fs_devices->alloc_list);
  1314. root->fs_info->fs_devices->num_devices++;
  1315. root->fs_info->fs_devices->open_devices++;
  1316. root->fs_info->fs_devices->rw_devices++;
  1317. root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
  1318. if (!blk_queue_nonrot(bdev_get_queue(bdev)))
  1319. root->fs_info->fs_devices->rotating = 1;
  1320. total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
  1321. btrfs_set_super_total_bytes(&root->fs_info->super_copy,
  1322. total_bytes + device->total_bytes);
  1323. total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
  1324. btrfs_set_super_num_devices(&root->fs_info->super_copy,
  1325. total_bytes + 1);
  1326. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1327. if (seeding_dev) {
  1328. ret = init_first_rw_device(trans, root, device);
  1329. BUG_ON(ret);
  1330. ret = btrfs_finish_sprout(trans, root);
  1331. BUG_ON(ret);
  1332. } else {
  1333. ret = btrfs_add_device(trans, root, device);
  1334. }
  1335. /*
  1336. * we've got more storage, clear any full flags on the space
  1337. * infos
  1338. */
  1339. btrfs_clear_space_info_full(root->fs_info);
  1340. unlock_chunks(root);
  1341. btrfs_commit_transaction(trans, root);
  1342. if (seeding_dev) {
  1343. mutex_unlock(&uuid_mutex);
  1344. up_write(&sb->s_umount);
  1345. ret = btrfs_relocate_sys_chunks(root);
  1346. BUG_ON(ret);
  1347. }
  1348. out:
  1349. mutex_unlock(&root->fs_info->volume_mutex);
  1350. return ret;
  1351. error:
  1352. close_bdev_exclusive(bdev, 0);
  1353. if (seeding_dev) {
  1354. mutex_unlock(&uuid_mutex);
  1355. up_write(&sb->s_umount);
  1356. }
  1357. goto out;
  1358. }
  1359. static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
  1360. struct btrfs_device *device)
  1361. {
  1362. int ret;
  1363. struct btrfs_path *path;
  1364. struct btrfs_root *root;
  1365. struct btrfs_dev_item *dev_item;
  1366. struct extent_buffer *leaf;
  1367. struct btrfs_key key;
  1368. root = device->dev_root->fs_info->chunk_root;
  1369. path = btrfs_alloc_path();
  1370. if (!path)
  1371. return -ENOMEM;
  1372. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  1373. key.type = BTRFS_DEV_ITEM_KEY;
  1374. key.offset = device->devid;
  1375. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1376. if (ret < 0)
  1377. goto out;
  1378. if (ret > 0) {
  1379. ret = -ENOENT;
  1380. goto out;
  1381. }
  1382. leaf = path->nodes[0];
  1383. dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
  1384. btrfs_set_device_id(leaf, dev_item, device->devid);
  1385. btrfs_set_device_type(leaf, dev_item, device->type);
  1386. btrfs_set_device_io_align(leaf, dev_item, device->io_align);
  1387. btrfs_set_device_io_width(leaf, dev_item, device->io_width);
  1388. btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
  1389. btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
  1390. btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
  1391. btrfs_mark_buffer_dirty(leaf);
  1392. out:
  1393. btrfs_free_path(path);
  1394. return ret;
  1395. }
  1396. static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
  1397. struct btrfs_device *device, u64 new_size)
  1398. {
  1399. struct btrfs_super_block *super_copy =
  1400. &device->dev_root->fs_info->super_copy;
  1401. u64 old_total = btrfs_super_total_bytes(super_copy);
  1402. u64 diff = new_size - device->total_bytes;
  1403. if (!device->writeable)
  1404. return -EACCES;
  1405. if (new_size <= device->total_bytes)
  1406. return -EINVAL;
  1407. btrfs_set_super_total_bytes(super_copy, old_total + diff);
  1408. device->fs_devices->total_rw_bytes += diff;
  1409. device->total_bytes = new_size;
  1410. device->disk_total_bytes = new_size;
  1411. btrfs_clear_space_info_full(device->dev_root->fs_info);
  1412. return btrfs_update_device(trans, device);
  1413. }
  1414. int btrfs_grow_device(struct btrfs_trans_handle *trans,
  1415. struct btrfs_device *device, u64 new_size)
  1416. {
  1417. int ret;
  1418. lock_chunks(device->dev_root);
  1419. ret = __btrfs_grow_device(trans, device, new_size);
  1420. unlock_chunks(device->dev_root);
  1421. return ret;
  1422. }
  1423. static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
  1424. struct btrfs_root *root,
  1425. u64 chunk_tree, u64 chunk_objectid,
  1426. u64 chunk_offset)
  1427. {
  1428. int ret;
  1429. struct btrfs_path *path;
  1430. struct btrfs_key key;
  1431. root = root->fs_info->chunk_root;
  1432. path = btrfs_alloc_path();
  1433. if (!path)
  1434. return -ENOMEM;
  1435. key.objectid = chunk_objectid;
  1436. key.offset = chunk_offset;
  1437. key.type = BTRFS_CHUNK_ITEM_KEY;
  1438. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1439. BUG_ON(ret);
  1440. ret = btrfs_del_item(trans, root, path);
  1441. BUG_ON(ret);
  1442. btrfs_free_path(path);
  1443. return 0;
  1444. }
  1445. static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
  1446. chunk_offset)
  1447. {
  1448. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  1449. struct btrfs_disk_key *disk_key;
  1450. struct btrfs_chunk *chunk;
  1451. u8 *ptr;
  1452. int ret = 0;
  1453. u32 num_stripes;
  1454. u32 array_size;
  1455. u32 len = 0;
  1456. u32 cur;
  1457. struct btrfs_key key;
  1458. array_size = btrfs_super_sys_array_size(super_copy);
  1459. ptr = super_copy->sys_chunk_array;
  1460. cur = 0;
  1461. while (cur < array_size) {
  1462. disk_key = (struct btrfs_disk_key *)ptr;
  1463. btrfs_disk_key_to_cpu(&key, disk_key);
  1464. len = sizeof(*disk_key);
  1465. if (key.type == BTRFS_CHUNK_ITEM_KEY) {
  1466. chunk = (struct btrfs_chunk *)(ptr + len);
  1467. num_stripes = btrfs_stack_chunk_num_stripes(chunk);
  1468. len += btrfs_chunk_item_size(num_stripes);
  1469. } else {
  1470. ret = -EIO;
  1471. break;
  1472. }
  1473. if (key.objectid == chunk_objectid &&
  1474. key.offset == chunk_offset) {
  1475. memmove(ptr, ptr + len, array_size - (cur + len));
  1476. array_size -= len;
  1477. btrfs_set_super_sys_array_size(super_copy, array_size);
  1478. } else {
  1479. ptr += len;
  1480. cur += len;
  1481. }
  1482. }
  1483. return ret;
  1484. }
  1485. static int btrfs_relocate_chunk(struct btrfs_root *root,
  1486. u64 chunk_tree, u64 chunk_objectid,
  1487. u64 chunk_offset)
  1488. {
  1489. struct extent_map_tree *em_tree;
  1490. struct btrfs_root *extent_root;
  1491. struct btrfs_trans_handle *trans;
  1492. struct extent_map *em;
  1493. struct map_lookup *map;
  1494. int ret;
  1495. int i;
  1496. root = root->fs_info->chunk_root;
  1497. extent_root = root->fs_info->extent_root;
  1498. em_tree = &root->fs_info->mapping_tree.map_tree;
  1499. ret = btrfs_can_relocate(extent_root, chunk_offset);
  1500. if (ret)
  1501. return -ENOSPC;
  1502. /* step one, relocate all the extents inside this chunk */
  1503. ret = btrfs_relocate_block_group(extent_root, chunk_offset);
  1504. BUG_ON(ret);
  1505. trans = btrfs_start_transaction(root, 1);
  1506. BUG_ON(!trans);
  1507. lock_chunks(root);
  1508. /*
  1509. * step two, delete the device extents and the
  1510. * chunk tree entries
  1511. */
  1512. read_lock(&em_tree->lock);
  1513. em = lookup_extent_mapping(em_tree, chunk_offset, 1);
  1514. read_unlock(&em_tree->lock);
  1515. BUG_ON(em->start > chunk_offset ||
  1516. em->start + em->len < chunk_offset);
  1517. map = (struct map_lookup *)em->bdev;
  1518. for (i = 0; i < map->num_stripes; i++) {
  1519. ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
  1520. map->stripes[i].physical);
  1521. BUG_ON(ret);
  1522. if (map->stripes[i].dev) {
  1523. ret = btrfs_update_device(trans, map->stripes[i].dev);
  1524. BUG_ON(ret);
  1525. }
  1526. }
  1527. ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
  1528. chunk_offset);
  1529. BUG_ON(ret);
  1530. if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
  1531. ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
  1532. BUG_ON(ret);
  1533. }
  1534. ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
  1535. BUG_ON(ret);
  1536. write_lock(&em_tree->lock);
  1537. remove_extent_mapping(em_tree, em);
  1538. write_unlock(&em_tree->lock);
  1539. kfree(map);
  1540. em->bdev = NULL;
  1541. /* once for the tree */
  1542. free_extent_map(em);
  1543. /* once for us */
  1544. free_extent_map(em);
  1545. unlock_chunks(root);
  1546. btrfs_end_transaction(trans, root);
  1547. return 0;
  1548. }
  1549. static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
  1550. {
  1551. struct btrfs_root *chunk_root = root->fs_info->chunk_root;
  1552. struct btrfs_path *path;
  1553. struct extent_buffer *leaf;
  1554. struct btrfs_chunk *chunk;
  1555. struct btrfs_key key;
  1556. struct btrfs_key found_key;
  1557. u64 chunk_tree = chunk_root->root_key.objectid;
  1558. u64 chunk_type;
  1559. bool retried = false;
  1560. int failed = 0;
  1561. int ret;
  1562. path = btrfs_alloc_path();
  1563. if (!path)
  1564. return -ENOMEM;
  1565. again:
  1566. key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
  1567. key.offset = (u64)-1;
  1568. key.type = BTRFS_CHUNK_ITEM_KEY;
  1569. while (1) {
  1570. ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
  1571. if (ret < 0)
  1572. goto error;
  1573. BUG_ON(ret == 0);
  1574. ret = btrfs_previous_item(chunk_root, path, key.objectid,
  1575. key.type);
  1576. if (ret < 0)
  1577. goto error;
  1578. if (ret > 0)
  1579. break;
  1580. leaf = path->nodes[0];
  1581. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  1582. chunk = btrfs_item_ptr(leaf, path->slots[0],
  1583. struct btrfs_chunk);
  1584. chunk_type = btrfs_chunk_type(leaf, chunk);
  1585. btrfs_release_path(chunk_root, path);
  1586. if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
  1587. ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
  1588. found_key.objectid,
  1589. found_key.offset);
  1590. if (ret == -ENOSPC)
  1591. failed++;
  1592. else if (ret)
  1593. BUG();
  1594. }
  1595. if (found_key.offset == 0)
  1596. break;
  1597. key.offset = found_key.offset - 1;
  1598. }
  1599. ret = 0;
  1600. if (failed && !retried) {
  1601. failed = 0;
  1602. retried = true;
  1603. goto again;
  1604. } else if (failed && retried) {
  1605. WARN_ON(1);
  1606. ret = -ENOSPC;
  1607. }
  1608. error:
  1609. btrfs_free_path(path);
  1610. return ret;
  1611. }
  1612. static u64 div_factor(u64 num, int factor)
  1613. {
  1614. if (factor == 10)
  1615. return num;
  1616. num *= factor;
  1617. do_div(num, 10);
  1618. return num;
  1619. }
  1620. int btrfs_balance(struct btrfs_root *dev_root)
  1621. {
  1622. int ret;
  1623. struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
  1624. struct btrfs_device *device;
  1625. u64 old_size;
  1626. u64 size_to_free;
  1627. struct btrfs_path *path;
  1628. struct btrfs_key key;
  1629. struct btrfs_chunk *chunk;
  1630. struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
  1631. struct btrfs_trans_handle *trans;
  1632. struct btrfs_key found_key;
  1633. if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
  1634. return -EROFS;
  1635. mutex_lock(&dev_root->fs_info->volume_mutex);
  1636. dev_root = dev_root->fs_info->dev_root;
  1637. /* step one make some room on all the devices */
  1638. list_for_each_entry(device, devices, dev_list) {
  1639. old_size = device->total_bytes;
  1640. size_to_free = div_factor(old_size, 1);
  1641. size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
  1642. if (!device->writeable ||
  1643. device->total_bytes - device->bytes_used > size_to_free)
  1644. continue;
  1645. ret = btrfs_shrink_device(device, old_size - size_to_free);
  1646. if (ret == -ENOSPC)
  1647. break;
  1648. BUG_ON(ret);
  1649. trans = btrfs_start_transaction(dev_root, 1);
  1650. BUG_ON(!trans);
  1651. ret = btrfs_grow_device(trans, device, old_size);
  1652. BUG_ON(ret);
  1653. btrfs_end_transaction(trans, dev_root);
  1654. }
  1655. /* step two, relocate all the chunks */
  1656. path = btrfs_alloc_path();
  1657. BUG_ON(!path);
  1658. key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
  1659. key.offset = (u64)-1;
  1660. key.type = BTRFS_CHUNK_ITEM_KEY;
  1661. while (1) {
  1662. ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
  1663. if (ret < 0)
  1664. goto error;
  1665. /*
  1666. * this shouldn't happen, it means the last relocate
  1667. * failed
  1668. */
  1669. if (ret == 0)
  1670. break;
  1671. ret = btrfs_previous_item(chunk_root, path, 0,
  1672. BTRFS_CHUNK_ITEM_KEY);
  1673. if (ret)
  1674. break;
  1675. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  1676. path->slots[0]);
  1677. if (found_key.objectid != key.objectid)
  1678. break;
  1679. chunk = btrfs_item_ptr(path->nodes[0],
  1680. path->slots[0],
  1681. struct btrfs_chunk);
  1682. /* chunk zero is special */
  1683. if (found_key.offset == 0)
  1684. break;
  1685. btrfs_release_path(chunk_root, path);
  1686. ret = btrfs_relocate_chunk(chunk_root,
  1687. chunk_root->root_key.objectid,
  1688. found_key.objectid,
  1689. found_key.offset);
  1690. BUG_ON(ret && ret != -ENOSPC);
  1691. key.offset = found_key.offset - 1;
  1692. }
  1693. ret = 0;
  1694. error:
  1695. btrfs_free_path(path);
  1696. mutex_unlock(&dev_root->fs_info->volume_mutex);
  1697. return ret;
  1698. }
  1699. /*
  1700. * shrinking a device means finding all of the device extents past
  1701. * the new size, and then following the back refs to the chunks.
  1702. * The chunk relocation code actually frees the device extent
  1703. */
  1704. int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
  1705. {
  1706. struct btrfs_trans_handle *trans;
  1707. struct btrfs_root *root = device->dev_root;
  1708. struct btrfs_dev_extent *dev_extent = NULL;
  1709. struct btrfs_path *path;
  1710. u64 length;
  1711. u64 chunk_tree;
  1712. u64 chunk_objectid;
  1713. u64 chunk_offset;
  1714. int ret;
  1715. int slot;
  1716. int failed = 0;
  1717. bool retried = false;
  1718. struct extent_buffer *l;
  1719. struct btrfs_key key;
  1720. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  1721. u64 old_total = btrfs_super_total_bytes(super_copy);
  1722. u64 old_size = device->total_bytes;
  1723. u64 diff = device->total_bytes - new_size;
  1724. if (new_size >= device->total_bytes)
  1725. return -EINVAL;
  1726. path = btrfs_alloc_path();
  1727. if (!path)
  1728. return -ENOMEM;
  1729. path->reada = 2;
  1730. lock_chunks(root);
  1731. device->total_bytes = new_size;
  1732. if (device->writeable)
  1733. device->fs_devices->total_rw_bytes -= diff;
  1734. unlock_chunks(root);
  1735. again:
  1736. key.objectid = device->devid;
  1737. key.offset = (u64)-1;
  1738. key.type = BTRFS_DEV_EXTENT_KEY;
  1739. while (1) {
  1740. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1741. if (ret < 0)
  1742. goto done;
  1743. ret = btrfs_previous_item(root, path, 0, key.type);
  1744. if (ret < 0)
  1745. goto done;
  1746. if (ret) {
  1747. ret = 0;
  1748. btrfs_release_path(root, path);
  1749. break;
  1750. }
  1751. l = path->nodes[0];
  1752. slot = path->slots[0];
  1753. btrfs_item_key_to_cpu(l, &key, path->slots[0]);
  1754. if (key.objectid != device->devid) {
  1755. btrfs_release_path(root, path);
  1756. break;
  1757. }
  1758. dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
  1759. length = btrfs_dev_extent_length(l, dev_extent);
  1760. if (key.offset + length <= new_size) {
  1761. btrfs_release_path(root, path);
  1762. break;
  1763. }
  1764. chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
  1765. chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
  1766. chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
  1767. btrfs_release_path(root, path);
  1768. ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
  1769. chunk_offset);
  1770. if (ret && ret != -ENOSPC)
  1771. goto done;
  1772. if (ret == -ENOSPC)
  1773. failed++;
  1774. key.offset -= 1;
  1775. }
  1776. if (failed && !retried) {
  1777. failed = 0;
  1778. retried = true;
  1779. goto again;
  1780. } else if (failed && retried) {
  1781. ret = -ENOSPC;
  1782. lock_chunks(root);
  1783. device->total_bytes = old_size;
  1784. if (device->writeable)
  1785. device->fs_devices->total_rw_bytes += diff;
  1786. unlock_chunks(root);
  1787. goto done;
  1788. }
  1789. /* Shrinking succeeded, else we would be at "done". */
  1790. trans = btrfs_start_transaction(root, 1);
  1791. if (!trans) {
  1792. ret = -ENOMEM;
  1793. goto done;
  1794. }
  1795. lock_chunks(root);
  1796. device->disk_total_bytes = new_size;
  1797. /* Now btrfs_update_device() will change the on-disk size. */
  1798. ret = btrfs_update_device(trans, device);
  1799. if (ret) {
  1800. unlock_chunks(root);
  1801. btrfs_end_transaction(trans, root);
  1802. goto done;
  1803. }
  1804. WARN_ON(diff > old_total);
  1805. btrfs_set_super_total_bytes(super_copy, old_total - diff);
  1806. unlock_chunks(root);
  1807. btrfs_end_transaction(trans, root);
  1808. done:
  1809. btrfs_free_path(path);
  1810. return ret;
  1811. }
  1812. static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
  1813. struct btrfs_root *root,
  1814. struct btrfs_key *key,
  1815. struct btrfs_chunk *chunk, int item_size)
  1816. {
  1817. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  1818. struct btrfs_disk_key disk_key;
  1819. u32 array_size;
  1820. u8 *ptr;
  1821. array_size = btrfs_super_sys_array_size(super_copy);
  1822. if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
  1823. return -EFBIG;
  1824. ptr = super_copy->sys_chunk_array + array_size;
  1825. btrfs_cpu_key_to_disk(&disk_key, key);
  1826. memcpy(ptr, &disk_key, sizeof(disk_key));
  1827. ptr += sizeof(disk_key);
  1828. memcpy(ptr, chunk, item_size);
  1829. item_size += sizeof(disk_key);
  1830. btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
  1831. return 0;
  1832. }
  1833. static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
  1834. int num_stripes, int sub_stripes)
  1835. {
  1836. if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
  1837. return calc_size;
  1838. else if (type & BTRFS_BLOCK_GROUP_RAID10)
  1839. return calc_size * (num_stripes / sub_stripes);
  1840. else
  1841. return calc_size * num_stripes;
  1842. }
  1843. static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
  1844. struct btrfs_root *extent_root,
  1845. struct map_lookup **map_ret,
  1846. u64 *num_bytes, u64 *stripe_size,
  1847. u64 start, u64 type)
  1848. {
  1849. struct btrfs_fs_info *info = extent_root->fs_info;
  1850. struct btrfs_device *device = NULL;
  1851. struct btrfs_fs_devices *fs_devices = info->fs_devices;
  1852. struct list_head *cur;
  1853. struct map_lookup *map = NULL;
  1854. struct extent_map_tree *em_tree;
  1855. struct extent_map *em;
  1856. struct list_head private_devs;
  1857. int min_stripe_size = 1 * 1024 * 1024;
  1858. u64 calc_size = 1024 * 1024 * 1024;
  1859. u64 max_chunk_size = calc_size;
  1860. u64 min_free;
  1861. u64 avail;
  1862. u64 max_avail = 0;
  1863. u64 dev_offset;
  1864. int num_stripes = 1;
  1865. int min_stripes = 1;
  1866. int sub_stripes = 0;
  1867. int looped = 0;
  1868. int ret;
  1869. int index;
  1870. int stripe_len = 64 * 1024;
  1871. if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
  1872. (type & BTRFS_BLOCK_GROUP_DUP)) {
  1873. WARN_ON(1);
  1874. type &= ~BTRFS_BLOCK_GROUP_DUP;
  1875. }
  1876. if (list_empty(&fs_devices->alloc_list))
  1877. return -ENOSPC;
  1878. if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
  1879. num_stripes = fs_devices->rw_devices;
  1880. min_stripes = 2;
  1881. }
  1882. if (type & (BTRFS_BLOCK_GROUP_DUP)) {
  1883. num_stripes = 2;
  1884. min_stripes = 2;
  1885. }
  1886. if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
  1887. num_stripes = min_t(u64, 2, fs_devices->rw_devices);
  1888. if (num_stripes < 2)
  1889. return -ENOSPC;
  1890. min_stripes = 2;
  1891. }
  1892. if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
  1893. num_stripes = fs_devices->rw_devices;
  1894. if (num_stripes < 4)
  1895. return -ENOSPC;
  1896. num_stripes &= ~(u32)1;
  1897. sub_stripes = 2;
  1898. min_stripes = 4;
  1899. }
  1900. if (type & BTRFS_BLOCK_GROUP_DATA) {
  1901. max_chunk_size = 10 * calc_size;
  1902. min_stripe_size = 64 * 1024 * 1024;
  1903. } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
  1904. max_chunk_size = 4 * calc_size;
  1905. min_stripe_size = 32 * 1024 * 1024;
  1906. } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
  1907. calc_size = 8 * 1024 * 1024;
  1908. max_chunk_size = calc_size * 2;
  1909. min_stripe_size = 1 * 1024 * 1024;
  1910. }
  1911. /* we don't want a chunk larger than 10% of writeable space */
  1912. max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
  1913. max_chunk_size);
  1914. again:
  1915. max_avail = 0;
  1916. if (!map || map->num_stripes != num_stripes) {
  1917. kfree(map);
  1918. map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
  1919. if (!map)
  1920. return -ENOMEM;
  1921. map->num_stripes = num_stripes;
  1922. }
  1923. if (calc_size * num_stripes > max_chunk_size) {
  1924. calc_size = max_chunk_size;
  1925. do_div(calc_size, num_stripes);
  1926. do_div(calc_size, stripe_len);
  1927. calc_size *= stripe_len;
  1928. }
  1929. /* we don't want tiny stripes */
  1930. calc_size = max_t(u64, min_stripe_size, calc_size);
  1931. do_div(calc_size, stripe_len);
  1932. calc_size *= stripe_len;
  1933. cur = fs_devices->alloc_list.next;
  1934. index = 0;
  1935. if (type & BTRFS_BLOCK_GROUP_DUP)
  1936. min_free = calc_size * 2;
  1937. else
  1938. min_free = calc_size;
  1939. /*
  1940. * we add 1MB because we never use the first 1MB of the device, unless
  1941. * we've looped, then we are likely allocating the maximum amount of
  1942. * space left already
  1943. */
  1944. if (!looped)
  1945. min_free += 1024 * 1024;
  1946. INIT_LIST_HEAD(&private_devs);
  1947. while (index < num_stripes) {
  1948. device = list_entry(cur, struct btrfs_device, dev_alloc_list);
  1949. BUG_ON(!device->writeable);
  1950. if (device->total_bytes > device->bytes_used)
  1951. avail = device->total_bytes - device->bytes_used;
  1952. else
  1953. avail = 0;
  1954. cur = cur->next;
  1955. if (device->in_fs_metadata && avail >= min_free) {
  1956. ret = find_free_dev_extent(trans, device,
  1957. min_free, &dev_offset,
  1958. &max_avail);
  1959. if (ret == 0) {
  1960. list_move_tail(&device->dev_alloc_list,
  1961. &private_devs);
  1962. map->stripes[index].dev = device;
  1963. map->stripes[index].physical = dev_offset;
  1964. index++;
  1965. if (type & BTRFS_BLOCK_GROUP_DUP) {
  1966. map->stripes[index].dev = device;
  1967. map->stripes[index].physical =
  1968. dev_offset + calc_size;
  1969. index++;
  1970. }
  1971. }
  1972. } else if (device->in_fs_metadata && avail > max_avail)
  1973. max_avail = avail;
  1974. if (cur == &fs_devices->alloc_list)
  1975. break;
  1976. }
  1977. list_splice(&private_devs, &fs_devices->alloc_list);
  1978. if (index < num_stripes) {
  1979. if (index >= min_stripes) {
  1980. num_stripes = index;
  1981. if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
  1982. num_stripes /= sub_stripes;
  1983. num_stripes *= sub_stripes;
  1984. }
  1985. looped = 1;
  1986. goto again;
  1987. }
  1988. if (!looped && max_avail > 0) {
  1989. looped = 1;
  1990. calc_size = max_avail;
  1991. goto again;
  1992. }
  1993. kfree(map);
  1994. return -ENOSPC;
  1995. }
  1996. map->sector_size = extent_root->sectorsize;
  1997. map->stripe_len = stripe_len;
  1998. map->io_align = stripe_len;
  1999. map->io_width = stripe_len;
  2000. map->type = type;
  2001. map->num_stripes = num_stripes;
  2002. map->sub_stripes = sub_stripes;
  2003. *map_ret = map;
  2004. *stripe_size = calc_size;
  2005. *num_bytes = chunk_bytes_by_type(type, calc_size,
  2006. num_stripes, sub_stripes);
  2007. em = alloc_extent_map(GFP_NOFS);
  2008. if (!em) {
  2009. kfree(map);
  2010. return -ENOMEM;
  2011. }
  2012. em->bdev = (struct block_device *)map;
  2013. em->start = start;
  2014. em->len = *num_bytes;
  2015. em->block_start = 0;
  2016. em->block_len = em->len;
  2017. em_tree = &extent_root->fs_info->mapping_tree.map_tree;
  2018. write_lock(&em_tree->lock);
  2019. ret = add_extent_mapping(em_tree, em);
  2020. write_unlock(&em_tree->lock);
  2021. BUG_ON(ret);
  2022. free_extent_map(em);
  2023. ret = btrfs_make_block_group(trans, extent_root, 0, type,
  2024. BTRFS_FIRST_CHUNK_TREE_OBJECTID,
  2025. start, *num_bytes);
  2026. BUG_ON(ret);
  2027. index = 0;
  2028. while (index < map->num_stripes) {
  2029. device = map->stripes[index].dev;
  2030. dev_offset = map->stripes[index].physical;
  2031. ret = btrfs_alloc_dev_extent(trans, device,
  2032. info->chunk_root->root_key.objectid,
  2033. BTRFS_FIRST_CHUNK_TREE_OBJECTID,
  2034. start, dev_offset, calc_size);
  2035. BUG_ON(ret);
  2036. index++;
  2037. }
  2038. return 0;
  2039. }
  2040. static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
  2041. struct btrfs_root *extent_root,
  2042. struct map_lookup *map, u64 chunk_offset,
  2043. u64 chunk_size, u64 stripe_size)
  2044. {
  2045. u64 dev_offset;
  2046. struct btrfs_key key;
  2047. struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
  2048. struct btrfs_device *device;
  2049. struct btrfs_chunk *chunk;
  2050. struct btrfs_stripe *stripe;
  2051. size_t item_size = btrfs_chunk_item_size(map->num_stripes);
  2052. int index = 0;
  2053. int ret;
  2054. chunk = kzalloc(item_size, GFP_NOFS);
  2055. if (!chunk)
  2056. return -ENOMEM;
  2057. index = 0;
  2058. while (index < map->num_stripes) {
  2059. device = map->stripes[index].dev;
  2060. device->bytes_used += stripe_size;
  2061. ret = btrfs_update_device(trans, device);
  2062. BUG_ON(ret);
  2063. index++;
  2064. }
  2065. index = 0;
  2066. stripe = &chunk->stripe;
  2067. while (index < map->num_stripes) {
  2068. device = map->stripes[index].dev;
  2069. dev_offset = map->stripes[index].physical;
  2070. btrfs_set_stack_stripe_devid(stripe, device->devid);
  2071. btrfs_set_stack_stripe_offset(stripe, dev_offset);
  2072. memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
  2073. stripe++;
  2074. index++;
  2075. }
  2076. btrfs_set_stack_chunk_length(chunk, chunk_size);
  2077. btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
  2078. btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
  2079. btrfs_set_stack_chunk_type(chunk, map->type);
  2080. btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
  2081. btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
  2082. btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
  2083. btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
  2084. btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
  2085. key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
  2086. key.type = BTRFS_CHUNK_ITEM_KEY;
  2087. key.offset = chunk_offset;
  2088. ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
  2089. BUG_ON(ret);
  2090. if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
  2091. ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
  2092. item_size);
  2093. BUG_ON(ret);
  2094. }
  2095. kfree(chunk);
  2096. return 0;
  2097. }
  2098. /*
  2099. * Chunk allocation falls into two parts. The first part does works
  2100. * that make the new allocated chunk useable, but not do any operation
  2101. * that modifies the chunk tree. The second part does the works that
  2102. * require modifying the chunk tree. This division is important for the
  2103. * bootstrap process of adding storage to a seed btrfs.
  2104. */
  2105. int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
  2106. struct btrfs_root *extent_root, u64 type)
  2107. {
  2108. u64 chunk_offset;
  2109. u64 chunk_size;
  2110. u64 stripe_size;
  2111. struct map_lookup *map;
  2112. struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
  2113. int ret;
  2114. ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
  2115. &chunk_offset);
  2116. if (ret)
  2117. return ret;
  2118. ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
  2119. &stripe_size, chunk_offset, type);
  2120. if (ret)
  2121. return ret;
  2122. ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
  2123. chunk_size, stripe_size);
  2124. BUG_ON(ret);
  2125. return 0;
  2126. }
  2127. static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
  2128. struct btrfs_root *root,
  2129. struct btrfs_device *device)
  2130. {
  2131. u64 chunk_offset;
  2132. u64 sys_chunk_offset;
  2133. u64 chunk_size;
  2134. u64 sys_chunk_size;
  2135. u64 stripe_size;
  2136. u64 sys_stripe_size;
  2137. u64 alloc_profile;
  2138. struct map_lookup *map;
  2139. struct map_lookup *sys_map;
  2140. struct btrfs_fs_info *fs_info = root->fs_info;
  2141. struct btrfs_root *extent_root = fs_info->extent_root;
  2142. int ret;
  2143. ret = find_next_chunk(fs_info->chunk_root,
  2144. BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
  2145. BUG_ON(ret);
  2146. alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
  2147. (fs_info->metadata_alloc_profile &
  2148. fs_info->avail_metadata_alloc_bits);
  2149. alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
  2150. ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
  2151. &stripe_size, chunk_offset, alloc_profile);
  2152. BUG_ON(ret);
  2153. sys_chunk_offset = chunk_offset + chunk_size;
  2154. alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
  2155. (fs_info->system_alloc_profile &
  2156. fs_info->avail_system_alloc_bits);
  2157. alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
  2158. ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
  2159. &sys_chunk_size, &sys_stripe_size,
  2160. sys_chunk_offset, alloc_profile);
  2161. BUG_ON(ret);
  2162. ret = btrfs_add_device(trans, fs_info->chunk_root, device);
  2163. BUG_ON(ret);
  2164. /*
  2165. * Modifying chunk tree needs allocating new blocks from both
  2166. * system block group and metadata block group. So we only can
  2167. * do operations require modifying the chunk tree after both
  2168. * block groups were created.
  2169. */
  2170. ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
  2171. chunk_size, stripe_size);
  2172. BUG_ON(ret);
  2173. ret = __finish_chunk_alloc(trans, extent_root, sys_map,
  2174. sys_chunk_offset, sys_chunk_size,
  2175. sys_stripe_size);
  2176. BUG_ON(ret);
  2177. return 0;
  2178. }
  2179. int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
  2180. {
  2181. struct extent_map *em;
  2182. struct map_lookup *map;
  2183. struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
  2184. int readonly = 0;
  2185. int i;
  2186. read_lock(&map_tree->map_tree.lock);
  2187. em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
  2188. read_unlock(&map_tree->map_tree.lock);
  2189. if (!em)
  2190. return 1;
  2191. map = (struct map_lookup *)em->bdev;
  2192. for (i = 0; i < map->num_stripes; i++) {
  2193. if (!map->stripes[i].dev->writeable) {
  2194. readonly = 1;
  2195. break;
  2196. }
  2197. }
  2198. free_extent_map(em);
  2199. return readonly;
  2200. }
  2201. void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
  2202. {
  2203. extent_map_tree_init(&tree->map_tree, GFP_NOFS);
  2204. }
  2205. void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
  2206. {
  2207. struct extent_map *em;
  2208. while (1) {
  2209. write_lock(&tree->map_tree.lock);
  2210. em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
  2211. if (em)
  2212. remove_extent_mapping(&tree->map_tree, em);
  2213. write_unlock(&tree->map_tree.lock);
  2214. if (!em)
  2215. break;
  2216. kfree(em->bdev);
  2217. /* once for us */
  2218. free_extent_map(em);
  2219. /* once for the tree */
  2220. free_extent_map(em);
  2221. }
  2222. }
  2223. int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
  2224. {
  2225. struct extent_map *em;
  2226. struct map_lookup *map;
  2227. struct extent_map_tree *em_tree = &map_tree->map_tree;
  2228. int ret;
  2229. read_lock(&em_tree->lock);
  2230. em = lookup_extent_mapping(em_tree, logical, len);
  2231. read_unlock(&em_tree->lock);
  2232. BUG_ON(!em);
  2233. BUG_ON(em->start > logical || em->start + em->len < logical);
  2234. map = (struct map_lookup *)em->bdev;
  2235. if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
  2236. ret = map->num_stripes;
  2237. else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
  2238. ret = map->sub_stripes;
  2239. else
  2240. ret = 1;
  2241. free_extent_map(em);
  2242. return ret;
  2243. }
  2244. static int find_live_mirror(struct map_lookup *map, int first, int num,
  2245. int optimal)
  2246. {
  2247. int i;
  2248. if (map->stripes[optimal].dev->bdev)
  2249. return optimal;
  2250. for (i = first; i < first + num; i++) {
  2251. if (map->stripes[i].dev->bdev)
  2252. return i;
  2253. }
  2254. /* we couldn't find one that doesn't fail. Just return something
  2255. * and the io error handling code will clean up eventually
  2256. */
  2257. return optimal;
  2258. }
  2259. static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
  2260. u64 logical, u64 *length,
  2261. struct btrfs_multi_bio **multi_ret,
  2262. int mirror_num, struct page *unplug_page)
  2263. {
  2264. struct extent_map *em;
  2265. struct map_lookup *map;
  2266. struct extent_map_tree *em_tree = &map_tree->map_tree;
  2267. u64 offset;
  2268. u64 stripe_offset;
  2269. u64 stripe_nr;
  2270. int stripes_allocated = 8;
  2271. int stripes_required = 1;
  2272. int stripe_index;
  2273. int i;
  2274. int num_stripes;
  2275. int max_errors = 0;
  2276. struct btrfs_multi_bio *multi = NULL;
  2277. if (multi_ret && !(rw & (1 << BIO_RW)))
  2278. stripes_allocated = 1;
  2279. again:
  2280. if (multi_ret) {
  2281. multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
  2282. GFP_NOFS);
  2283. if (!multi)
  2284. return -ENOMEM;
  2285. atomic_set(&multi->error, 0);
  2286. }
  2287. read_lock(&em_tree->lock);
  2288. em = lookup_extent_mapping(em_tree, logical, *length);
  2289. read_unlock(&em_tree->lock);
  2290. if (!em && unplug_page)
  2291. return 0;
  2292. if (!em) {
  2293. printk(KERN_CRIT "unable to find logical %llu len %llu\n",
  2294. (unsigned long long)logical,
  2295. (unsigned long long)*length);
  2296. BUG();
  2297. }
  2298. BUG_ON(em->start > logical || em->start + em->len < logical);
  2299. map = (struct map_lookup *)em->bdev;
  2300. offset = logical - em->start;
  2301. if (mirror_num > map->num_stripes)
  2302. mirror_num = 0;
  2303. /* if our multi bio struct is too small, back off and try again */
  2304. if (rw & (1 << BIO_RW)) {
  2305. if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
  2306. BTRFS_BLOCK_GROUP_DUP)) {
  2307. stripes_required = map->num_stripes;
  2308. max_errors = 1;
  2309. } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2310. stripes_required = map->sub_stripes;
  2311. max_errors = 1;
  2312. }
  2313. }
  2314. if (multi_ret && (rw & (1 << BIO_RW)) &&
  2315. stripes_allocated < stripes_required) {
  2316. stripes_allocated = map->num_stripes;
  2317. free_extent_map(em);
  2318. kfree(multi);
  2319. goto again;
  2320. }
  2321. stripe_nr = offset;
  2322. /*
  2323. * stripe_nr counts the total number of stripes we have to stride
  2324. * to get to this block
  2325. */
  2326. do_div(stripe_nr, map->stripe_len);
  2327. stripe_offset = stripe_nr * map->stripe_len;
  2328. BUG_ON(offset < stripe_offset);
  2329. /* stripe_offset is the offset of this block in its stripe*/
  2330. stripe_offset = offset - stripe_offset;
  2331. if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
  2332. BTRFS_BLOCK_GROUP_RAID10 |
  2333. BTRFS_BLOCK_GROUP_DUP)) {
  2334. /* we limit the length of each bio to what fits in a stripe */
  2335. *length = min_t(u64, em->len - offset,
  2336. map->stripe_len - stripe_offset);
  2337. } else {
  2338. *length = em->len - offset;
  2339. }
  2340. if (!multi_ret && !unplug_page)
  2341. goto out;
  2342. num_stripes = 1;
  2343. stripe_index = 0;
  2344. if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
  2345. if (unplug_page || (rw & (1 << BIO_RW)))
  2346. num_stripes = map->num_stripes;
  2347. else if (mirror_num)
  2348. stripe_index = mirror_num - 1;
  2349. else {
  2350. stripe_index = find_live_mirror(map, 0,
  2351. map->num_stripes,
  2352. current->pid % map->num_stripes);
  2353. }
  2354. } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
  2355. if (rw & (1 << BIO_RW))
  2356. num_stripes = map->num_stripes;
  2357. else if (mirror_num)
  2358. stripe_index = mirror_num - 1;
  2359. } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2360. int factor = map->num_stripes / map->sub_stripes;
  2361. stripe_index = do_div(stripe_nr, factor);
  2362. stripe_index *= map->sub_stripes;
  2363. if (unplug_page || (rw & (1 << BIO_RW)))
  2364. num_stripes = map->sub_stripes;
  2365. else if (mirror_num)
  2366. stripe_index += mirror_num - 1;
  2367. else {
  2368. stripe_index = find_live_mirror(map, stripe_index,
  2369. map->sub_stripes, stripe_index +
  2370. current->pid % map->sub_stripes);
  2371. }
  2372. } else {
  2373. /*
  2374. * after this do_div call, stripe_nr is the number of stripes
  2375. * on this device we have to walk to find the data, and
  2376. * stripe_index is the number of our device in the stripe array
  2377. */
  2378. stripe_index = do_div(stripe_nr, map->num_stripes);
  2379. }
  2380. BUG_ON(stripe_index >= map->num_stripes);
  2381. for (i = 0; i < num_stripes; i++) {
  2382. if (unplug_page) {
  2383. struct btrfs_device *device;
  2384. struct backing_dev_info *bdi;
  2385. device = map->stripes[stripe_index].dev;
  2386. if (device->bdev) {
  2387. bdi = blk_get_backing_dev_info(device->bdev);
  2388. if (bdi->unplug_io_fn)
  2389. bdi->unplug_io_fn(bdi, unplug_page);
  2390. }
  2391. } else {
  2392. multi->stripes[i].physical =
  2393. map->stripes[stripe_index].physical +
  2394. stripe_offset + stripe_nr * map->stripe_len;
  2395. multi->stripes[i].dev = map->stripes[stripe_index].dev;
  2396. }
  2397. stripe_index++;
  2398. }
  2399. if (multi_ret) {
  2400. *multi_ret = multi;
  2401. multi->num_stripes = num_stripes;
  2402. multi->max_errors = max_errors;
  2403. }
  2404. out:
  2405. free_extent_map(em);
  2406. return 0;
  2407. }
  2408. int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
  2409. u64 logical, u64 *length,
  2410. struct btrfs_multi_bio **multi_ret, int mirror_num)
  2411. {
  2412. return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
  2413. mirror_num, NULL);
  2414. }
  2415. int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
  2416. u64 chunk_start, u64 physical, u64 devid,
  2417. u64 **logical, int *naddrs, int *stripe_len)
  2418. {
  2419. struct extent_map_tree *em_tree = &map_tree->map_tree;
  2420. struct extent_map *em;
  2421. struct map_lookup *map;
  2422. u64 *buf;
  2423. u64 bytenr;
  2424. u64 length;
  2425. u64 stripe_nr;
  2426. int i, j, nr = 0;
  2427. read_lock(&em_tree->lock);
  2428. em = lookup_extent_mapping(em_tree, chunk_start, 1);
  2429. read_unlock(&em_tree->lock);
  2430. BUG_ON(!em || em->start != chunk_start);
  2431. map = (struct map_lookup *)em->bdev;
  2432. length = em->len;
  2433. if (map->type & BTRFS_BLOCK_GROUP_RAID10)
  2434. do_div(length, map->num_stripes / map->sub_stripes);
  2435. else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
  2436. do_div(length, map->num_stripes);
  2437. buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
  2438. BUG_ON(!buf);
  2439. for (i = 0; i < map->num_stripes; i++) {
  2440. if (devid && map->stripes[i].dev->devid != devid)
  2441. continue;
  2442. if (map->stripes[i].physical > physical ||
  2443. map->stripes[i].physical + length <= physical)
  2444. continue;
  2445. stripe_nr = physical - map->stripes[i].physical;
  2446. do_div(stripe_nr, map->stripe_len);
  2447. if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2448. stripe_nr = stripe_nr * map->num_stripes + i;
  2449. do_div(stripe_nr, map->sub_stripes);
  2450. } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
  2451. stripe_nr = stripe_nr * map->num_stripes + i;
  2452. }
  2453. bytenr = chunk_start + stripe_nr * map->stripe_len;
  2454. WARN_ON(nr >= map->num_stripes);
  2455. for (j = 0; j < nr; j++) {
  2456. if (buf[j] == bytenr)
  2457. break;
  2458. }
  2459. if (j == nr) {
  2460. WARN_ON(nr >= map->num_stripes);
  2461. buf[nr++] = bytenr;
  2462. }
  2463. }
  2464. *logical = buf;
  2465. *naddrs = nr;
  2466. *stripe_len = map->stripe_len;
  2467. free_extent_map(em);
  2468. return 0;
  2469. }
  2470. int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
  2471. u64 logical, struct page *page)
  2472. {
  2473. u64 length = PAGE_CACHE_SIZE;
  2474. return __btrfs_map_block(map_tree, READ, logical, &length,
  2475. NULL, 0, page);
  2476. }
  2477. static void end_bio_multi_stripe(struct bio *bio, int err)
  2478. {
  2479. struct btrfs_multi_bio *multi = bio->bi_private;
  2480. int is_orig_bio = 0;
  2481. if (err)
  2482. atomic_inc(&multi->error);
  2483. if (bio == multi->orig_bio)
  2484. is_orig_bio = 1;
  2485. if (atomic_dec_and_test(&multi->stripes_pending)) {
  2486. if (!is_orig_bio) {
  2487. bio_put(bio);
  2488. bio = multi->orig_bio;
  2489. }
  2490. bio->bi_private = multi->private;
  2491. bio->bi_end_io = multi->end_io;
  2492. /* only send an error to the higher layers if it is
  2493. * beyond the tolerance of the multi-bio
  2494. */
  2495. if (atomic_read(&multi->error) > multi->max_errors) {
  2496. err = -EIO;
  2497. } else if (err) {
  2498. /*
  2499. * this bio is actually up to date, we didn't
  2500. * go over the max number of errors
  2501. */
  2502. set_bit(BIO_UPTODATE, &bio->bi_flags);
  2503. err = 0;
  2504. }
  2505. kfree(multi);
  2506. bio_endio(bio, err);
  2507. } else if (!is_orig_bio) {
  2508. bio_put(bio);
  2509. }
  2510. }
  2511. struct async_sched {
  2512. struct bio *bio;
  2513. int rw;
  2514. struct btrfs_fs_info *info;
  2515. struct btrfs_work work;
  2516. };
  2517. /*
  2518. * see run_scheduled_bios for a description of why bios are collected for
  2519. * async submit.
  2520. *
  2521. * This will add one bio to the pending list for a device and make sure
  2522. * the work struct is scheduled.
  2523. */
  2524. static noinline int schedule_bio(struct btrfs_root *root,
  2525. struct btrfs_device *device,
  2526. int rw, struct bio *bio)
  2527. {
  2528. int should_queue = 1;
  2529. struct btrfs_pending_bios *pending_bios;
  2530. /* don't bother with additional async steps for reads, right now */
  2531. if (!(rw & (1 << BIO_RW))) {
  2532. bio_get(bio);
  2533. submit_bio(rw, bio);
  2534. bio_put(bio);
  2535. return 0;
  2536. }
  2537. /*
  2538. * nr_async_bios allows us to reliably return congestion to the
  2539. * higher layers. Otherwise, the async bio makes it appear we have
  2540. * made progress against dirty pages when we've really just put it
  2541. * on a queue for later
  2542. */
  2543. atomic_inc(&root->fs_info->nr_async_bios);
  2544. WARN_ON(bio->bi_next);
  2545. bio->bi_next = NULL;
  2546. bio->bi_rw |= rw;
  2547. spin_lock(&device->io_lock);
  2548. if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
  2549. pending_bios = &device->pending_sync_bios;
  2550. else
  2551. pending_bios = &device->pending_bios;
  2552. if (pending_bios->tail)
  2553. pending_bios->tail->bi_next = bio;
  2554. pending_bios->tail = bio;
  2555. if (!pending_bios->head)
  2556. pending_bios->head = bio;
  2557. if (device->running_pending)
  2558. should_queue = 0;
  2559. spin_unlock(&device->io_lock);
  2560. if (should_queue)
  2561. btrfs_queue_worker(&root->fs_info->submit_workers,
  2562. &device->work);
  2563. return 0;
  2564. }
  2565. int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
  2566. int mirror_num, int async_submit)
  2567. {
  2568. struct btrfs_mapping_tree *map_tree;
  2569. struct btrfs_device *dev;
  2570. struct bio *first_bio = bio;
  2571. u64 logical = (u64)bio->bi_sector << 9;
  2572. u64 length = 0;
  2573. u64 map_length;
  2574. struct btrfs_multi_bio *multi = NULL;
  2575. int ret;
  2576. int dev_nr = 0;
  2577. int total_devs = 1;
  2578. length = bio->bi_size;
  2579. map_tree = &root->fs_info->mapping_tree;
  2580. map_length = length;
  2581. ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
  2582. mirror_num);
  2583. BUG_ON(ret);
  2584. total_devs = multi->num_stripes;
  2585. if (map_length < length) {
  2586. printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
  2587. "len %llu\n", (unsigned long long)logical,
  2588. (unsigned long long)length,
  2589. (unsigned long long)map_length);
  2590. BUG();
  2591. }
  2592. multi->end_io = first_bio->bi_end_io;
  2593. multi->private = first_bio->bi_private;
  2594. multi->orig_bio = first_bio;
  2595. atomic_set(&multi->stripes_pending, multi->num_stripes);
  2596. while (dev_nr < total_devs) {
  2597. if (total_devs > 1) {
  2598. if (dev_nr < total_devs - 1) {
  2599. bio = bio_clone(first_bio, GFP_NOFS);
  2600. BUG_ON(!bio);
  2601. } else {
  2602. bio = first_bio;
  2603. }
  2604. bio->bi_private = multi;
  2605. bio->bi_end_io = end_bio_multi_stripe;
  2606. }
  2607. bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
  2608. dev = multi->stripes[dev_nr].dev;
  2609. BUG_ON(rw == WRITE && !dev->writeable);
  2610. if (dev && dev->bdev) {
  2611. bio->bi_bdev = dev->bdev;
  2612. if (async_submit)
  2613. schedule_bio(root, dev, rw, bio);
  2614. else
  2615. submit_bio(rw, bio);
  2616. } else {
  2617. bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
  2618. bio->bi_sector = logical >> 9;
  2619. bio_endio(bio, -EIO);
  2620. }
  2621. dev_nr++;
  2622. }
  2623. if (total_devs == 1)
  2624. kfree(multi);
  2625. return 0;
  2626. }
  2627. struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
  2628. u8 *uuid, u8 *fsid)
  2629. {
  2630. struct btrfs_device *device;
  2631. struct btrfs_fs_devices *cur_devices;
  2632. cur_devices = root->fs_info->fs_devices;
  2633. while (cur_devices) {
  2634. if (!fsid ||
  2635. !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
  2636. device = __find_device(&cur_devices->devices,
  2637. devid, uuid);
  2638. if (device)
  2639. return device;
  2640. }
  2641. cur_devices = cur_devices->seed;
  2642. }
  2643. return NULL;
  2644. }
  2645. static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
  2646. u64 devid, u8 *dev_uuid)
  2647. {
  2648. struct btrfs_device *device;
  2649. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  2650. device = kzalloc(sizeof(*device), GFP_NOFS);
  2651. if (!device)
  2652. return NULL;
  2653. list_add(&device->dev_list,
  2654. &fs_devices->devices);
  2655. device->barriers = 1;
  2656. device->dev_root = root->fs_info->dev_root;
  2657. device->devid = devid;
  2658. device->work.func = pending_bios_fn;
  2659. device->fs_devices = fs_devices;
  2660. fs_devices->num_devices++;
  2661. spin_lock_init(&device->io_lock);
  2662. INIT_LIST_HEAD(&device->dev_alloc_list);
  2663. memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
  2664. return device;
  2665. }
  2666. static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
  2667. struct extent_buffer *leaf,
  2668. struct btrfs_chunk *chunk)
  2669. {
  2670. struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
  2671. struct map_lookup *map;
  2672. struct extent_map *em;
  2673. u64 logical;
  2674. u64 length;
  2675. u64 devid;
  2676. u8 uuid[BTRFS_UUID_SIZE];
  2677. int num_stripes;
  2678. int ret;
  2679. int i;
  2680. logical = key->offset;
  2681. length = btrfs_chunk_length(leaf, chunk);
  2682. read_lock(&map_tree->map_tree.lock);
  2683. em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
  2684. read_unlock(&map_tree->map_tree.lock);
  2685. /* already mapped? */
  2686. if (em && em->start <= logical && em->start + em->len > logical) {
  2687. free_extent_map(em);
  2688. return 0;
  2689. } else if (em) {
  2690. free_extent_map(em);
  2691. }
  2692. em = alloc_extent_map(GFP_NOFS);
  2693. if (!em)
  2694. return -ENOMEM;
  2695. num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
  2696. map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
  2697. if (!map) {
  2698. free_extent_map(em);
  2699. return -ENOMEM;
  2700. }
  2701. em->bdev = (struct block_device *)map;
  2702. em->start = logical;
  2703. em->len = length;
  2704. em->block_start = 0;
  2705. em->block_len = em->len;
  2706. map->num_stripes = num_stripes;
  2707. map->io_width = btrfs_chunk_io_width(leaf, chunk);
  2708. map->io_align = btrfs_chunk_io_align(leaf, chunk);
  2709. map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
  2710. map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
  2711. map->type = btrfs_chunk_type(leaf, chunk);
  2712. map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
  2713. for (i = 0; i < num_stripes; i++) {
  2714. map->stripes[i].physical =
  2715. btrfs_stripe_offset_nr(leaf, chunk, i);
  2716. devid = btrfs_stripe_devid_nr(leaf, chunk, i);
  2717. read_extent_buffer(leaf, uuid, (unsigned long)
  2718. btrfs_stripe_dev_uuid_nr(chunk, i),
  2719. BTRFS_UUID_SIZE);
  2720. map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
  2721. NULL);
  2722. if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
  2723. kfree(map);
  2724. free_extent_map(em);
  2725. return -EIO;
  2726. }
  2727. if (!map->stripes[i].dev) {
  2728. map->stripes[i].dev =
  2729. add_missing_dev(root, devid, uuid);
  2730. if (!map->stripes[i].dev) {
  2731. kfree(map);
  2732. free_extent_map(em);
  2733. return -EIO;
  2734. }
  2735. }
  2736. map->stripes[i].dev->in_fs_metadata = 1;
  2737. }
  2738. write_lock(&map_tree->map_tree.lock);
  2739. ret = add_extent_mapping(&map_tree->map_tree, em);
  2740. write_unlock(&map_tree->map_tree.lock);
  2741. BUG_ON(ret);
  2742. free_extent_map(em);
  2743. return 0;
  2744. }
  2745. static int fill_device_from_item(struct extent_buffer *leaf,
  2746. struct btrfs_dev_item *dev_item,
  2747. struct btrfs_device *device)
  2748. {
  2749. unsigned long ptr;
  2750. device->devid = btrfs_device_id(leaf, dev_item);
  2751. device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
  2752. device->total_bytes = device->disk_total_bytes;
  2753. device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
  2754. device->type = btrfs_device_type(leaf, dev_item);
  2755. device->io_align = btrfs_device_io_align(leaf, dev_item);
  2756. device->io_width = btrfs_device_io_width(leaf, dev_item);
  2757. device->sector_size = btrfs_device_sector_size(leaf, dev_item);
  2758. ptr = (unsigned long)btrfs_device_uuid(dev_item);
  2759. read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
  2760. return 0;
  2761. }
  2762. static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
  2763. {
  2764. struct btrfs_fs_devices *fs_devices;
  2765. int ret;
  2766. mutex_lock(&uuid_mutex);
  2767. fs_devices = root->fs_info->fs_devices->seed;
  2768. while (fs_devices) {
  2769. if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
  2770. ret = 0;
  2771. goto out;
  2772. }
  2773. fs_devices = fs_devices->seed;
  2774. }
  2775. fs_devices = find_fsid(fsid);
  2776. if (!fs_devices) {
  2777. ret = -ENOENT;
  2778. goto out;
  2779. }
  2780. fs_devices = clone_fs_devices(fs_devices);
  2781. if (IS_ERR(fs_devices)) {
  2782. ret = PTR_ERR(fs_devices);
  2783. goto out;
  2784. }
  2785. ret = __btrfs_open_devices(fs_devices, FMODE_READ,
  2786. root->fs_info->bdev_holder);
  2787. if (ret)
  2788. goto out;
  2789. if (!fs_devices->seeding) {
  2790. __btrfs_close_devices(fs_devices);
  2791. free_fs_devices(fs_devices);
  2792. ret = -EINVAL;
  2793. goto out;
  2794. }
  2795. fs_devices->seed = root->fs_info->fs_devices->seed;
  2796. root->fs_info->fs_devices->seed = fs_devices;
  2797. out:
  2798. mutex_unlock(&uuid_mutex);
  2799. return ret;
  2800. }
  2801. static int read_one_dev(struct btrfs_root *root,
  2802. struct extent_buffer *leaf,
  2803. struct btrfs_dev_item *dev_item)
  2804. {
  2805. struct btrfs_device *device;
  2806. u64 devid;
  2807. int ret;
  2808. u8 fs_uuid[BTRFS_UUID_SIZE];
  2809. u8 dev_uuid[BTRFS_UUID_SIZE];
  2810. devid = btrfs_device_id(leaf, dev_item);
  2811. read_extent_buffer(leaf, dev_uuid,
  2812. (unsigned long)btrfs_device_uuid(dev_item),
  2813. BTRFS_UUID_SIZE);
  2814. read_extent_buffer(leaf, fs_uuid,
  2815. (unsigned long)btrfs_device_fsid(dev_item),
  2816. BTRFS_UUID_SIZE);
  2817. if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
  2818. ret = open_seed_devices(root, fs_uuid);
  2819. if (ret && !btrfs_test_opt(root, DEGRADED))
  2820. return ret;
  2821. }
  2822. device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
  2823. if (!device || !device->bdev) {
  2824. if (!btrfs_test_opt(root, DEGRADED))
  2825. return -EIO;
  2826. if (!device) {
  2827. printk(KERN_WARNING "warning devid %llu missing\n",
  2828. (unsigned long long)devid);
  2829. device = add_missing_dev(root, devid, dev_uuid);
  2830. if (!device)
  2831. return -ENOMEM;
  2832. }
  2833. }
  2834. if (device->fs_devices != root->fs_info->fs_devices) {
  2835. BUG_ON(device->writeable);
  2836. if (device->generation !=
  2837. btrfs_device_generation(leaf, dev_item))
  2838. return -EINVAL;
  2839. }
  2840. fill_device_from_item(leaf, dev_item, device);
  2841. device->dev_root = root->fs_info->dev_root;
  2842. device->in_fs_metadata = 1;
  2843. if (device->writeable)
  2844. device->fs_devices->total_rw_bytes += device->total_bytes;
  2845. ret = 0;
  2846. return ret;
  2847. }
  2848. int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
  2849. {
  2850. struct btrfs_dev_item *dev_item;
  2851. dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
  2852. dev_item);
  2853. return read_one_dev(root, buf, dev_item);
  2854. }
  2855. int btrfs_read_sys_array(struct btrfs_root *root)
  2856. {
  2857. struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
  2858. struct extent_buffer *sb;
  2859. struct btrfs_disk_key *disk_key;
  2860. struct btrfs_chunk *chunk;
  2861. u8 *ptr;
  2862. unsigned long sb_ptr;
  2863. int ret = 0;
  2864. u32 num_stripes;
  2865. u32 array_size;
  2866. u32 len = 0;
  2867. u32 cur;
  2868. struct btrfs_key key;
  2869. sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
  2870. BTRFS_SUPER_INFO_SIZE);
  2871. if (!sb)
  2872. return -ENOMEM;
  2873. btrfs_set_buffer_uptodate(sb);
  2874. btrfs_set_buffer_lockdep_class(sb, 0);
  2875. write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
  2876. array_size = btrfs_super_sys_array_size(super_copy);
  2877. ptr = super_copy->sys_chunk_array;
  2878. sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
  2879. cur = 0;
  2880. while (cur < array_size) {
  2881. disk_key = (struct btrfs_disk_key *)ptr;
  2882. btrfs_disk_key_to_cpu(&key, disk_key);
  2883. len = sizeof(*disk_key); ptr += len;
  2884. sb_ptr += len;
  2885. cur += len;
  2886. if (key.type == BTRFS_CHUNK_ITEM_KEY) {
  2887. chunk = (struct btrfs_chunk *)sb_ptr;
  2888. ret = read_one_chunk(root, &key, sb, chunk);
  2889. if (ret)
  2890. break;
  2891. num_stripes = btrfs_chunk_num_stripes(sb, chunk);
  2892. len = btrfs_chunk_item_size(num_stripes);
  2893. } else {
  2894. ret = -EIO;
  2895. break;
  2896. }
  2897. ptr += len;
  2898. sb_ptr += len;
  2899. cur += len;
  2900. }
  2901. free_extent_buffer(sb);
  2902. return ret;
  2903. }
  2904. int btrfs_read_chunk_tree(struct btrfs_root *root)
  2905. {
  2906. struct btrfs_path *path;
  2907. struct extent_buffer *leaf;
  2908. struct btrfs_key key;
  2909. struct btrfs_key found_key;
  2910. int ret;
  2911. int slot;
  2912. root = root->fs_info->chunk_root;
  2913. path = btrfs_alloc_path();
  2914. if (!path)
  2915. return -ENOMEM;
  2916. /* first we search for all of the device items, and then we
  2917. * read in all of the chunk items. This way we can create chunk
  2918. * mappings that reference all of the devices that are afound
  2919. */
  2920. key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
  2921. key.offset = 0;
  2922. key.type = 0;
  2923. again:
  2924. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2925. while (1) {
  2926. leaf = path->nodes[0];
  2927. slot = path->slots[0];
  2928. if (slot >= btrfs_header_nritems(leaf)) {
  2929. ret = btrfs_next_leaf(root, path);
  2930. if (ret == 0)
  2931. continue;
  2932. if (ret < 0)
  2933. goto error;
  2934. break;
  2935. }
  2936. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2937. if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
  2938. if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
  2939. break;
  2940. if (found_key.type == BTRFS_DEV_ITEM_KEY) {
  2941. struct btrfs_dev_item *dev_item;
  2942. dev_item = btrfs_item_ptr(leaf, slot,
  2943. struct btrfs_dev_item);
  2944. ret = read_one_dev(root, leaf, dev_item);
  2945. if (ret)
  2946. goto error;
  2947. }
  2948. } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
  2949. struct btrfs_chunk *chunk;
  2950. chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
  2951. ret = read_one_chunk(root, &found_key, leaf, chunk);
  2952. if (ret)
  2953. goto error;
  2954. }
  2955. path->slots[0]++;
  2956. }
  2957. if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
  2958. key.objectid = 0;
  2959. btrfs_release_path(root, path);
  2960. goto again;
  2961. }
  2962. ret = 0;
  2963. error:
  2964. btrfs_free_path(path);
  2965. return ret;
  2966. }