eeprom_9287.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static int ath9k_hw_AR9287_get_eeprom_ver(struct ath_hw *ah)
  18. {
  19. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  20. }
  21. static int ath9k_hw_AR9287_get_eeprom_rev(struct ath_hw *ah)
  22. {
  23. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  24. }
  25. static bool ath9k_hw_AR9287_fill_eeprom(struct ath_hw *ah)
  26. {
  27. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  28. u16 *eep_data;
  29. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  30. eep_data = (u16 *)eep;
  31. if (!ath9k_hw_use_flash(ah)) {
  32. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  33. "Reading from EEPROM, not flash\n");
  34. }
  35. for (addr = 0; addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
  36. addr++) {
  37. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  38. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  39. "Unable to read eeprom region \n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. }
  46. static int ath9k_hw_AR9287_check_eeprom(struct ath_hw *ah)
  47. {
  48. u32 sum = 0, el, integer;
  49. u16 temp, word, magic, magic2, *eepdata;
  50. int i, addr;
  51. bool need_swap = false;
  52. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  53. if (!ath9k_hw_use_flash(ah)) {
  54. if (!ath9k_hw_nvram_read
  55. (ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
  56. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  57. "Reading Magic # failed\n");
  58. return false;
  59. }
  60. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  61. "Read Magic = 0x%04X\n", magic);
  62. if (magic != AR5416_EEPROM_MAGIC) {
  63. magic2 = swab16(magic);
  64. if (magic2 == AR5416_EEPROM_MAGIC) {
  65. need_swap = true;
  66. eepdata = (u16 *)(&ah->eeprom);
  67. for (addr = 0;
  68. addr < sizeof(struct ar9287_eeprom) / sizeof(u16);
  69. addr++) {
  70. temp = swab16(*eepdata);
  71. *eepdata = temp;
  72. eepdata++;
  73. }
  74. } else {
  75. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  76. "Invalid EEPROM Magic. "
  77. "endianness mismatch.\n");
  78. return -EINVAL;
  79. }
  80. }
  81. }
  82. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ?
  83. "True" : "False");
  84. if (need_swap)
  85. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  86. else
  87. el = ah->eeprom.map9287.baseEepHeader.length;
  88. if (el > sizeof(struct ar9287_eeprom))
  89. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  90. else
  91. el = el / sizeof(u16);
  92. eepdata = (u16 *)(&ah->eeprom);
  93. for (i = 0; i < el; i++)
  94. sum ^= *eepdata++;
  95. if (need_swap) {
  96. word = swab16(eep->baseEepHeader.length);
  97. eep->baseEepHeader.length = word;
  98. word = swab16(eep->baseEepHeader.checksum);
  99. eep->baseEepHeader.checksum = word;
  100. word = swab16(eep->baseEepHeader.version);
  101. eep->baseEepHeader.version = word;
  102. word = swab16(eep->baseEepHeader.regDmn[0]);
  103. eep->baseEepHeader.regDmn[0] = word;
  104. word = swab16(eep->baseEepHeader.regDmn[1]);
  105. eep->baseEepHeader.regDmn[1] = word;
  106. word = swab16(eep->baseEepHeader.rfSilent);
  107. eep->baseEepHeader.rfSilent = word;
  108. word = swab16(eep->baseEepHeader.blueToothOptions);
  109. eep->baseEepHeader.blueToothOptions = word;
  110. word = swab16(eep->baseEepHeader.deviceCap);
  111. eep->baseEepHeader.deviceCap = word;
  112. integer = swab32(eep->modalHeader.antCtrlCommon);
  113. eep->modalHeader.antCtrlCommon = integer;
  114. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  115. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  116. eep->modalHeader.antCtrlChain[i] = integer;
  117. }
  118. for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
  119. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  120. eep->modalHeader.spurChans[i].spurChan = word;
  121. }
  122. }
  123. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  124. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  125. DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
  126. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  127. sum, ah->eep_ops->get_eeprom_ver(ah));
  128. return -EINVAL;
  129. }
  130. return 0;
  131. }
  132. static u32 ath9k_hw_AR9287_get_eeprom(struct ath_hw *ah,
  133. enum eeprom_param param)
  134. {
  135. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  136. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  137. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  138. u16 ver_minor;
  139. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  140. switch (param) {
  141. case EEP_NFTHRESH_2:
  142. return pModal->noiseFloorThreshCh[0];
  143. case AR_EEPROM_MAC(0):
  144. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  145. case AR_EEPROM_MAC(1):
  146. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  147. case AR_EEPROM_MAC(2):
  148. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  149. case EEP_REG_0:
  150. return pBase->regDmn[0];
  151. case EEP_REG_1:
  152. return pBase->regDmn[1];
  153. case EEP_OP_CAP:
  154. return pBase->deviceCap;
  155. case EEP_OP_MODE:
  156. return pBase->opCapFlags;
  157. case EEP_RF_SILENT:
  158. return pBase->rfSilent;
  159. case EEP_MINOR_REV:
  160. return ver_minor;
  161. case EEP_TX_MASK:
  162. return pBase->txMask;
  163. case EEP_RX_MASK:
  164. return pBase->rxMask;
  165. case EEP_DEV_TYPE:
  166. return pBase->deviceType;
  167. case EEP_OL_PWRCTRL:
  168. return pBase->openLoopPwrCntl;
  169. case EEP_TEMPSENSE_SLOPE:
  170. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  171. return pBase->tempSensSlope;
  172. else
  173. return 0;
  174. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  175. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  176. return pBase->tempSensSlopePalOn;
  177. else
  178. return 0;
  179. default:
  180. return 0;
  181. }
  182. }
  183. static void ath9k_hw_get_AR9287_gain_boundaries_pdadcs(struct ath_hw *ah,
  184. struct ath9k_channel *chan,
  185. struct cal_data_per_freq_ar9287 *pRawDataSet,
  186. u8 *bChans, u16 availPiers,
  187. u16 tPdGainOverlap, int16_t *pMinCalPower,
  188. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  189. u16 numXpdGains)
  190. {
  191. #define TMP_VAL_VPD_TABLE \
  192. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  193. int i, j, k;
  194. int16_t ss;
  195. u16 idxL = 0, idxR = 0, numPiers;
  196. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  197. u8 minPwrT4[AR9287_NUM_PD_GAINS];
  198. u8 maxPwrT4[AR9287_NUM_PD_GAINS];
  199. int16_t vpdStep;
  200. int16_t tmpVal;
  201. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  202. bool match;
  203. int16_t minDelta = 0;
  204. struct chan_centers centers;
  205. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  206. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  207. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  208. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  209. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  210. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  211. ath9k_hw_get_channel_centers(ah, chan, &centers);
  212. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  213. if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
  214. break;
  215. }
  216. match = ath9k_hw_get_lower_upper_index(
  217. (u8)FREQ2FBIN(centers.synth_center,
  218. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  219. &idxL, &idxR);
  220. if (match) {
  221. for (i = 0; i < numXpdGains; i++) {
  222. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  223. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  224. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  225. pRawDataSet[idxL].pwrPdg[i],
  226. pRawDataSet[idxL].vpdPdg[i],
  227. AR9287_PD_GAIN_ICEPTS, vpdTableI[i]);
  228. }
  229. } else {
  230. for (i = 0; i < numXpdGains; i++) {
  231. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  232. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  233. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  234. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  235. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  236. maxPwrT4[i] =
  237. min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
  238. pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
  239. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  240. pPwrL, pVpdL,
  241. AR9287_PD_GAIN_ICEPTS,
  242. vpdTableL[i]);
  243. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  244. pPwrR, pVpdR,
  245. AR9287_PD_GAIN_ICEPTS,
  246. vpdTableR[i]);
  247. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  248. vpdTableI[i][j] =
  249. (u8)(ath9k_hw_interpolate((u16)
  250. FREQ2FBIN(centers. synth_center,
  251. IS_CHAN_2GHZ(chan)),
  252. bChans[idxL], bChans[idxR],
  253. vpdTableL[i][j], vpdTableR[i][j]));
  254. }
  255. }
  256. }
  257. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  258. k = 0;
  259. for (i = 0; i < numXpdGains; i++) {
  260. if (i == (numXpdGains - 1))
  261. pPdGainBoundaries[i] = (u16)(maxPwrT4[i] / 2);
  262. else
  263. pPdGainBoundaries[i] = (u16)((maxPwrT4[i] +
  264. minPwrT4[i+1]) / 4);
  265. pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
  266. pPdGainBoundaries[i]);
  267. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  268. minDelta = pPdGainBoundaries[0] - 23;
  269. pPdGainBoundaries[0] = 23;
  270. } else
  271. minDelta = 0;
  272. if (i == 0) {
  273. if (AR_SREV_9280_10_OR_LATER(ah))
  274. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  275. else
  276. ss = 0;
  277. } else
  278. ss = (int16_t)((pPdGainBoundaries[i-1] -
  279. (minPwrT4[i] / 2)) -
  280. tPdGainOverlap + 1 + minDelta);
  281. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  282. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  283. while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1))) {
  284. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  285. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  286. ss++;
  287. }
  288. sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  289. tgtIndex = (u8)(pPdGainBoundaries[i] +
  290. tPdGainOverlap - (minPwrT4[i] / 2));
  291. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  292. tgtIndex : sizeCurrVpdTable;
  293. while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
  294. pPDADCValues[k++] = vpdTableI[i][ss++];
  295. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  296. vpdTableI[i][sizeCurrVpdTable - 2]);
  297. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  298. if (tgtIndex > maxIndex) {
  299. while ((ss <= tgtIndex) &&
  300. (k < (AR9287_NUM_PDADC_VALUES - 1))) {
  301. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  302. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  303. 255 : tmpVal);
  304. ss++;
  305. }
  306. }
  307. }
  308. while (i < AR9287_PD_GAINS_IN_MASK) {
  309. pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
  310. i++;
  311. }
  312. while (k < AR9287_NUM_PDADC_VALUES) {
  313. pPDADCValues[k] = pPDADCValues[k-1];
  314. k++;
  315. }
  316. #undef TMP_VAL_VPD_TABLE
  317. }
  318. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  319. struct ath9k_channel *chan,
  320. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  321. u8 *pCalChans, u16 availPiers,
  322. int8_t *pPwr)
  323. {
  324. u16 idxL = 0, idxR = 0, numPiers;
  325. bool match;
  326. struct chan_centers centers;
  327. ath9k_hw_get_channel_centers(ah, chan, &centers);
  328. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  329. if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
  330. break;
  331. }
  332. match = ath9k_hw_get_lower_upper_index(
  333. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  334. pCalChans, numPiers,
  335. &idxL, &idxR);
  336. if (match) {
  337. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  338. } else {
  339. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  340. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  341. }
  342. }
  343. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  344. int32_t txPower, u16 chain)
  345. {
  346. u32 tmpVal;
  347. u32 a;
  348. tmpVal = REG_READ(ah, 0xa270);
  349. tmpVal = tmpVal & 0xFCFFFFFF;
  350. tmpVal = tmpVal | (0x3 << 24);
  351. REG_WRITE(ah, 0xa270, tmpVal);
  352. tmpVal = REG_READ(ah, 0xb270);
  353. tmpVal = tmpVal & 0xFCFFFFFF;
  354. tmpVal = tmpVal | (0x3 << 24);
  355. REG_WRITE(ah, 0xb270, tmpVal);
  356. if (chain == 0) {
  357. tmpVal = REG_READ(ah, 0xa398);
  358. tmpVal = tmpVal & 0xff00ffff;
  359. a = (txPower)&0xff;
  360. tmpVal = tmpVal | (a << 16);
  361. REG_WRITE(ah, 0xa398, tmpVal);
  362. }
  363. if (chain == 1) {
  364. tmpVal = REG_READ(ah, 0xb398);
  365. tmpVal = tmpVal & 0xff00ffff;
  366. a = (txPower)&0xff;
  367. tmpVal = tmpVal | (a << 16);
  368. REG_WRITE(ah, 0xb398, tmpVal);
  369. }
  370. }
  371. static void ath9k_hw_set_AR9287_power_cal_table(struct ath_hw *ah,
  372. struct ath9k_channel *chan,
  373. int16_t *pTxPowerIndexOffset)
  374. {
  375. struct cal_data_per_freq_ar9287 *pRawDataset;
  376. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  377. u8 *pCalBChans = NULL;
  378. u16 pdGainOverlap_t2;
  379. u8 pdadcValues[AR9287_NUM_PDADC_VALUES];
  380. u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
  381. u16 numPiers = 0, i, j;
  382. int16_t tMinCalPower;
  383. u16 numXpdGain, xpdMask;
  384. u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
  385. u32 reg32, regOffset, regChainOffset;
  386. int16_t modalIdx, diff = 0;
  387. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  388. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  389. xpdMask = pEepData->modalHeader.xpdGain;
  390. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  391. AR9287_EEP_MINOR_VER_2)
  392. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  393. else
  394. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  395. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  396. if (IS_CHAN_2GHZ(chan)) {
  397. pCalBChans = pEepData->calFreqPier2G;
  398. numPiers = AR9287_NUM_2G_CAL_PIERS;
  399. if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  400. pRawDatasetOpenLoop =
  401. (struct cal_data_op_loop_ar9287 *)
  402. pEepData->calPierData2G[0];
  403. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  404. }
  405. }
  406. numXpdGain = 0;
  407. for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
  408. if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
  409. if (numXpdGain >= AR9287_NUM_PD_GAINS)
  410. break;
  411. xpdGainValues[numXpdGain] =
  412. (u16)(AR9287_PD_GAINS_IN_MASK-i);
  413. numXpdGain++;
  414. }
  415. }
  416. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  417. (numXpdGain - 1) & 0x3);
  418. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  419. xpdGainValues[0]);
  420. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  421. xpdGainValues[1]);
  422. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  423. xpdGainValues[2]);
  424. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  425. regChainOffset = i * 0x1000;
  426. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  427. pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)
  428. pEepData->calPierData2G[i];
  429. if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  430. int8_t txPower;
  431. ar9287_eeprom_get_tx_gain_index(ah, chan,
  432. pRawDatasetOpenLoop,
  433. pCalBChans, numPiers,
  434. &txPower);
  435. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  436. } else {
  437. pRawDataset =
  438. (struct cal_data_per_freq_ar9287 *)
  439. pEepData->calPierData2G[i];
  440. ath9k_hw_get_AR9287_gain_boundaries_pdadcs(
  441. ah, chan, pRawDataset,
  442. pCalBChans, numPiers,
  443. pdGainOverlap_t2,
  444. &tMinCalPower, gainBoundaries,
  445. pdadcValues, numXpdGain);
  446. }
  447. if (i == 0) {
  448. if (!ath9k_hw_AR9287_get_eeprom(
  449. ah, EEP_OL_PWRCTRL)) {
  450. REG_WRITE(ah, AR_PHY_TPCRG5 +
  451. regChainOffset,
  452. SM(pdGainOverlap_t2,
  453. AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
  454. SM(gainBoundaries[0],
  455. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  456. | SM(gainBoundaries[1],
  457. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  458. | SM(gainBoundaries[2],
  459. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  460. | SM(gainBoundaries[3],
  461. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  462. }
  463. }
  464. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  465. pEepData->baseEepHeader.pwrTableOffset) {
  466. diff = (u16)
  467. (pEepData->baseEepHeader.pwrTableOffset
  468. - (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  469. diff *= 2;
  470. for (j = 0;
  471. j < ((u16)AR9287_NUM_PDADC_VALUES-diff);
  472. j++)
  473. pdadcValues[j] = pdadcValues[j+diff];
  474. for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
  475. j < AR9287_NUM_PDADC_VALUES; j++)
  476. pdadcValues[j] =
  477. pdadcValues[
  478. AR9287_NUM_PDADC_VALUES-diff];
  479. }
  480. if (!ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  481. regOffset = AR_PHY_BASE + (672 << 2) +
  482. regChainOffset;
  483. for (j = 0; j < 32; j++) {
  484. reg32 = ((pdadcValues[4*j + 0]
  485. & 0xFF) << 0) |
  486. ((pdadcValues[4*j + 1]
  487. & 0xFF) << 8) |
  488. ((pdadcValues[4*j + 2]
  489. & 0xFF) << 16) |
  490. ((pdadcValues[4*j + 3]
  491. & 0xFF) << 24) ;
  492. REG_WRITE(ah, regOffset, reg32);
  493. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  494. "PDADC (%d,%4x): %4.4x %8.8x\n",
  495. i, regChainOffset, regOffset,
  496. reg32);
  497. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  498. "PDADC: Chain %d | "
  499. "PDADC %3d Value %3d | "
  500. "PDADC %3d Value %3d | "
  501. "PDADC %3d Value %3d | "
  502. "PDADC %3d Value %3d |\n",
  503. i, 4 * j, pdadcValues[4 * j],
  504. 4 * j + 1,
  505. pdadcValues[4 * j + 1],
  506. 4 * j + 2,
  507. pdadcValues[4 * j + 2],
  508. 4 * j + 3,
  509. pdadcValues[4 * j + 3]);
  510. regOffset += 4;
  511. }
  512. }
  513. }
  514. }
  515. *pTxPowerIndexOffset = 0;
  516. }
  517. static void ath9k_hw_set_AR9287_power_per_rate_table(struct ath_hw *ah,
  518. struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl,
  519. u16 AntennaReduction, u16 twiceMaxRegulatoryPower,
  520. u16 powerLimit)
  521. {
  522. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
  523. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
  524. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  525. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  526. static const u16 tpScaleReductionTable[5] =
  527. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  528. int i;
  529. int16_t twiceLargestAntenna;
  530. struct cal_ctl_data_ar9287 *rep;
  531. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  532. targetPowerCck = {0, {0, 0, 0, 0} };
  533. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  534. targetPowerCckExt = {0, {0, 0, 0, 0} };
  535. struct cal_target_power_ht targetPowerHt20,
  536. targetPowerHt40 = {0, {0, 0, 0, 0} };
  537. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  538. u16 ctlModesFor11g[] =
  539. {CTL_11B, CTL_11G, CTL_2GHT20,
  540. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
  541. u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
  542. struct chan_centers centers;
  543. int tx_chainmask;
  544. u16 twiceMinEdgePower;
  545. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  546. tx_chainmask = ah->txchainmask;
  547. ath9k_hw_get_channel_centers(ah, chan, &centers);
  548. twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
  549. pEepData->modalHeader.antennaGainCh[1]);
  550. twiceLargestAntenna = (int16_t)min((AntennaReduction) -
  551. twiceLargestAntenna, 0);
  552. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  553. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
  554. maxRegAllowedPower -=
  555. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  556. scaledPower = min(powerLimit, maxRegAllowedPower);
  557. switch (ar5416_get_ntxchains(tx_chainmask)) {
  558. case 1:
  559. break;
  560. case 2:
  561. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  562. break;
  563. case 3:
  564. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  565. break;
  566. }
  567. scaledPower = max((u16)0, scaledPower);
  568. if (IS_CHAN_2GHZ(chan)) {
  569. numCtlModes =
  570. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  571. pCtlMode = ctlModesFor11g;
  572. ath9k_hw_get_legacy_target_powers(ah, chan,
  573. pEepData->calTargetPowerCck,
  574. AR9287_NUM_2G_CCK_TARGET_POWERS,
  575. &targetPowerCck, 4, false);
  576. ath9k_hw_get_legacy_target_powers(ah, chan,
  577. pEepData->calTargetPower2G,
  578. AR9287_NUM_2G_20_TARGET_POWERS,
  579. &targetPowerOfdm, 4, false);
  580. ath9k_hw_get_target_powers(ah, chan,
  581. pEepData->calTargetPower2GHT20,
  582. AR9287_NUM_2G_20_TARGET_POWERS,
  583. &targetPowerHt20, 8, false);
  584. if (IS_CHAN_HT40(chan)) {
  585. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  586. ath9k_hw_get_target_powers(ah, chan,
  587. pEepData->calTargetPower2GHT40,
  588. AR9287_NUM_2G_40_TARGET_POWERS,
  589. &targetPowerHt40, 8, true);
  590. ath9k_hw_get_legacy_target_powers(ah, chan,
  591. pEepData->calTargetPowerCck,
  592. AR9287_NUM_2G_CCK_TARGET_POWERS,
  593. &targetPowerCckExt, 4, true);
  594. ath9k_hw_get_legacy_target_powers(ah, chan,
  595. pEepData->calTargetPower2G,
  596. AR9287_NUM_2G_20_TARGET_POWERS,
  597. &targetPowerOfdmExt, 4, true);
  598. }
  599. }
  600. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  601. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  602. (pCtlMode[ctlMode] == CTL_2GHT40);
  603. if (isHt40CtlMode)
  604. freq = centers.synth_center;
  605. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  606. freq = centers.ext_center;
  607. else
  608. freq = centers.ctl_center;
  609. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  610. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  611. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  612. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  613. if ((((cfgCtl & ~CTL_MODE_M) |
  614. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  615. pEepData->ctlIndex[i]) ||
  616. (((cfgCtl & ~CTL_MODE_M) |
  617. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  618. ((pEepData->ctlIndex[i] &
  619. CTL_MODE_M) | SD_NO_CTL))) {
  620. rep = &(pEepData->ctlData[i]);
  621. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  622. freq,
  623. rep->ctlEdges[ar5416_get_ntxchains(
  624. tx_chainmask) - 1],
  625. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  626. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
  627. twiceMaxEdgePower = min(
  628. twiceMaxEdgePower,
  629. twiceMinEdgePower);
  630. else {
  631. twiceMaxEdgePower = twiceMinEdgePower;
  632. break;
  633. }
  634. }
  635. }
  636. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  637. switch (pCtlMode[ctlMode]) {
  638. case CTL_11B:
  639. for (i = 0;
  640. i < ARRAY_SIZE(targetPowerCck.tPow2x);
  641. i++) {
  642. targetPowerCck.tPow2x[i] = (u8)min(
  643. (u16)targetPowerCck.tPow2x[i],
  644. minCtlPower);
  645. }
  646. break;
  647. case CTL_11A:
  648. case CTL_11G:
  649. for (i = 0;
  650. i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  651. i++) {
  652. targetPowerOfdm.tPow2x[i] = (u8)min(
  653. (u16)targetPowerOfdm.tPow2x[i],
  654. minCtlPower);
  655. }
  656. break;
  657. case CTL_5GHT20:
  658. case CTL_2GHT20:
  659. for (i = 0;
  660. i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  661. i++) {
  662. targetPowerHt20.tPow2x[i] = (u8)min(
  663. (u16)targetPowerHt20.tPow2x[i],
  664. minCtlPower);
  665. }
  666. break;
  667. case CTL_11B_EXT:
  668. targetPowerCckExt.tPow2x[0] = (u8)min(
  669. (u16)targetPowerCckExt.tPow2x[0],
  670. minCtlPower);
  671. break;
  672. case CTL_11A_EXT:
  673. case CTL_11G_EXT:
  674. targetPowerOfdmExt.tPow2x[0] = (u8)min(
  675. (u16)targetPowerOfdmExt.tPow2x[0],
  676. minCtlPower);
  677. break;
  678. case CTL_5GHT40:
  679. case CTL_2GHT40:
  680. for (i = 0;
  681. i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  682. i++) {
  683. targetPowerHt40.tPow2x[i] = (u8)min(
  684. (u16)targetPowerHt40.tPow2x[i],
  685. minCtlPower);
  686. }
  687. break;
  688. default:
  689. break;
  690. }
  691. }
  692. ratesArray[rate6mb] =
  693. ratesArray[rate9mb] =
  694. ratesArray[rate12mb] =
  695. ratesArray[rate18mb] =
  696. ratesArray[rate24mb] =
  697. targetPowerOfdm.tPow2x[0];
  698. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  699. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  700. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  701. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  702. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  703. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  704. if (IS_CHAN_2GHZ(chan)) {
  705. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  706. ratesArray[rate2s] = ratesArray[rate2l] =
  707. targetPowerCck.tPow2x[1];
  708. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  709. targetPowerCck.tPow2x[2];
  710. ratesArray[rate11s] = ratesArray[rate11l] =
  711. targetPowerCck.tPow2x[3];
  712. }
  713. if (IS_CHAN_HT40(chan)) {
  714. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  715. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  716. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  717. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  718. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  719. if (IS_CHAN_2GHZ(chan))
  720. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  721. }
  722. #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  723. #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
  724. }
  725. static void ath9k_hw_AR9287_set_txpower(struct ath_hw *ah,
  726. struct ath9k_channel *chan, u16 cfgCtl,
  727. u8 twiceAntennaReduction,
  728. u8 twiceMaxRegulatoryPower,
  729. u8 powerLimit)
  730. {
  731. #define INCREASE_MAXPOW_BY_TWO_CHAIN 6
  732. #define INCREASE_MAXPOW_BY_THREE_CHAIN 10
  733. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  734. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  735. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  736. int16_t ratesArray[Ar5416RateSize];
  737. int16_t txPowerIndexOffset = 0;
  738. u8 ht40PowerIncForPdadc = 2;
  739. int i;
  740. memset(ratesArray, 0, sizeof(ratesArray));
  741. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  742. AR9287_EEP_MINOR_VER_2)
  743. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  744. ath9k_hw_set_AR9287_power_per_rate_table(ah, chan,
  745. &ratesArray[0], cfgCtl,
  746. twiceAntennaReduction,
  747. twiceMaxRegulatoryPower,
  748. powerLimit);
  749. ath9k_hw_set_AR9287_power_cal_table(ah, chan, &txPowerIndexOffset);
  750. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  751. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  752. if (ratesArray[i] > AR9287_MAX_RATE_POWER)
  753. ratesArray[i] = AR9287_MAX_RATE_POWER;
  754. }
  755. if (AR_SREV_9280_10_OR_LATER(ah)) {
  756. for (i = 0; i < Ar5416RateSize; i++)
  757. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  758. }
  759. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  760. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  761. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  762. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  763. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  764. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  765. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  766. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  767. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  768. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  769. if (IS_CHAN_2GHZ(chan)) {
  770. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  771. ATH9K_POW_SM(ratesArray[rate2s], 24)
  772. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  773. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  774. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  775. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  776. ATH9K_POW_SM(ratesArray[rate11s], 24)
  777. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  778. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  779. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  780. }
  781. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  782. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  783. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  784. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  785. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  786. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  787. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  788. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  789. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  790. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  791. if (IS_CHAN_HT40(chan)) {
  792. if (ath9k_hw_AR9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  793. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  794. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  795. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  796. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  797. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  798. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  799. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  800. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  801. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  802. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  803. } else {
  804. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  805. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  806. ht40PowerIncForPdadc, 24)
  807. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  808. ht40PowerIncForPdadc, 16)
  809. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  810. ht40PowerIncForPdadc, 8)
  811. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  812. ht40PowerIncForPdadc, 0));
  813. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  814. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  815. ht40PowerIncForPdadc, 24)
  816. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  817. ht40PowerIncForPdadc, 16)
  818. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  819. ht40PowerIncForPdadc, 8)
  820. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  821. ht40PowerIncForPdadc, 0));
  822. }
  823. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  824. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  825. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  826. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  827. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  828. }
  829. if (IS_CHAN_2GHZ(chan))
  830. i = rate1l;
  831. else
  832. i = rate6mb;
  833. if (AR_SREV_9280_10_OR_LATER(ah))
  834. regulatory->max_power_level =
  835. ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
  836. else
  837. regulatory->max_power_level = ratesArray[i];
  838. switch (ar5416_get_ntxchains(ah->txchainmask)) {
  839. case 1:
  840. break;
  841. case 2:
  842. regulatory->max_power_level +=
  843. INCREASE_MAXPOW_BY_TWO_CHAIN;
  844. break;
  845. case 3:
  846. regulatory->max_power_level +=
  847. INCREASE_MAXPOW_BY_THREE_CHAIN;
  848. break;
  849. default:
  850. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  851. "Invalid chainmask configuration\n");
  852. break;
  853. }
  854. }
  855. static void ath9k_hw_AR9287_set_addac(struct ath_hw *ah,
  856. struct ath9k_channel *chan)
  857. {
  858. }
  859. static void ath9k_hw_AR9287_set_board_values(struct ath_hw *ah,
  860. struct ath9k_channel *chan)
  861. {
  862. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  863. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  864. u16 antWrites[AR9287_ANT_16S];
  865. u32 regChainOffset;
  866. u8 txRxAttenLocal;
  867. int i, j, offset_num;
  868. pModal = &eep->modalHeader;
  869. antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
  870. antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
  871. antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
  872. antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
  873. antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
  874. antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
  875. antWrites[6] = (u16)((pModal->antCtrlCommon >> 4) & 0xF);
  876. antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
  877. offset_num = 8;
  878. for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
  879. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
  880. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
  881. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
  882. antWrites[j++] = 0;
  883. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
  884. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
  885. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
  886. antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
  887. }
  888. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  889. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  890. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  891. regChainOffset = i * 0x1000;
  892. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  893. pModal->antCtrlChain[i]);
  894. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  895. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  896. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  897. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  898. SM(pModal->iqCalICh[i],
  899. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  900. SM(pModal->iqCalQCh[i],
  901. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  902. txRxAttenLocal = pModal->txRxAttenCh[i];
  903. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  904. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  905. pModal->bswMargin[i]);
  906. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  907. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  908. pModal->bswAtten[i]);
  909. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  910. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  911. txRxAttenLocal);
  912. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  913. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  914. pModal->rxTxMarginCh[i]);
  915. }
  916. if (IS_CHAN_HT40(chan))
  917. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  918. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  919. else
  920. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  921. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  922. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  923. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  924. REG_WRITE(ah, AR_PHY_RF_CTL4,
  925. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  926. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  927. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  928. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  929. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  930. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  931. REG_RMW_FIELD(ah, AR_PHY_CCA,
  932. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  933. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  934. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  935. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB1,
  936. AR9287_AN_RF2G3_DB1_S, pModal->db1);
  937. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0, AR9287_AN_RF2G3_DB2,
  938. AR9287_AN_RF2G3_DB2_S, pModal->db2);
  939. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  940. AR9287_AN_RF2G3_OB_CCK,
  941. AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
  942. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  943. AR9287_AN_RF2G3_OB_PSK,
  944. AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
  945. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  946. AR9287_AN_RF2G3_OB_QAM,
  947. AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
  948. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH0,
  949. AR9287_AN_RF2G3_OB_PAL_OFF,
  950. AR9287_AN_RF2G3_OB_PAL_OFF_S,
  951. pModal->ob_pal_off);
  952. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  953. AR9287_AN_RF2G3_DB1, AR9287_AN_RF2G3_DB1_S,
  954. pModal->db1);
  955. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1, AR9287_AN_RF2G3_DB2,
  956. AR9287_AN_RF2G3_DB2_S, pModal->db2);
  957. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  958. AR9287_AN_RF2G3_OB_CCK,
  959. AR9287_AN_RF2G3_OB_CCK_S, pModal->ob_cck);
  960. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  961. AR9287_AN_RF2G3_OB_PSK,
  962. AR9287_AN_RF2G3_OB_PSK_S, pModal->ob_psk);
  963. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  964. AR9287_AN_RF2G3_OB_QAM,
  965. AR9287_AN_RF2G3_OB_QAM_S, pModal->ob_qam);
  966. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_RF2G3_CH1,
  967. AR9287_AN_RF2G3_OB_PAL_OFF,
  968. AR9287_AN_RF2G3_OB_PAL_OFF_S,
  969. pModal->ob_pal_off);
  970. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  971. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  972. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  973. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  974. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  975. AR9287_AN_TOP2_XPABIAS_LVL,
  976. AR9287_AN_TOP2_XPABIAS_LVL_S,
  977. pModal->xpaBiasLvl);
  978. }
  979. static u8 ath9k_hw_AR9287_get_num_ant_config(struct ath_hw *ah,
  980. enum ieee80211_band freq_band)
  981. {
  982. return 1;
  983. }
  984. static u16 ath9k_hw_AR9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
  985. struct ath9k_channel *chan)
  986. {
  987. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  988. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  989. return pModal->antCtrlCommon & 0xFFFF;
  990. }
  991. static u16 ath9k_hw_AR9287_get_spur_channel(struct ath_hw *ah,
  992. u16 i, bool is2GHz)
  993. {
  994. #define EEP_MAP9287_SPURCHAN \
  995. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  996. u16 spur_val = AR_NO_SPUR;
  997. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  998. "Getting spur idx %d is2Ghz. %d val %x\n",
  999. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1000. switch (ah->config.spurmode) {
  1001. case SPUR_DISABLE:
  1002. break;
  1003. case SPUR_ENABLE_IOCTL:
  1004. spur_val = ah->config.spurchans[i][is2GHz];
  1005. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  1006. "Getting spur val from new loc. %d\n", spur_val);
  1007. break;
  1008. case SPUR_ENABLE_EEPROM:
  1009. spur_val = EEP_MAP9287_SPURCHAN;
  1010. break;
  1011. }
  1012. return spur_val;
  1013. #undef EEP_MAP9287_SPURCHAN
  1014. }
  1015. const struct eeprom_ops eep_AR9287_ops = {
  1016. .check_eeprom = ath9k_hw_AR9287_check_eeprom,
  1017. .get_eeprom = ath9k_hw_AR9287_get_eeprom,
  1018. .fill_eeprom = ath9k_hw_AR9287_fill_eeprom,
  1019. .get_eeprom_ver = ath9k_hw_AR9287_get_eeprom_ver,
  1020. .get_eeprom_rev = ath9k_hw_AR9287_get_eeprom_rev,
  1021. .get_num_ant_config = ath9k_hw_AR9287_get_num_ant_config,
  1022. .get_eeprom_antenna_cfg = ath9k_hw_AR9287_get_eeprom_antenna_cfg,
  1023. .set_board_values = ath9k_hw_AR9287_set_board_values,
  1024. .set_addac = ath9k_hw_AR9287_set_addac,
  1025. .set_txpower = ath9k_hw_AR9287_set_txpower,
  1026. .get_spur_channel = ath9k_hw_AR9287_get_spur_channel
  1027. };