smp.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * arch/s390/kernel/smp.c
  3. *
  4. * Copyright IBM Corp. 1999, 2009
  5. * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. * Heiko Carstens (heiko.carstens@de.ibm.com)
  8. *
  9. * based on other smp stuff by
  10. * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
  11. * (c) 1998 Ingo Molnar
  12. *
  13. * We work with logical cpu numbering everywhere we can. The only
  14. * functions using the real cpu address (got from STAP) are the sigp
  15. * functions. For all other functions we use the identity mapping.
  16. * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
  17. * used e.g. to find the idle task belonging to a logical cpu. Every array
  18. * in the kernel is sorted by the logical cpu number and not by the physical
  19. * one which is causing all the confusion with __cpu_logical_map and
  20. * cpu_number_map in other architectures.
  21. */
  22. #define KMSG_COMPONENT "cpu"
  23. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/err.h>
  28. #include <linux/spinlock.h>
  29. #include <linux/kernel_stat.h>
  30. #include <linux/delay.h>
  31. #include <linux/cache.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/irqflags.h>
  34. #include <linux/cpu.h>
  35. #include <linux/timex.h>
  36. #include <linux/bootmem.h>
  37. #include <asm/ipl.h>
  38. #include <asm/setup.h>
  39. #include <asm/sigp.h>
  40. #include <asm/pgalloc.h>
  41. #include <asm/irq.h>
  42. #include <asm/s390_ext.h>
  43. #include <asm/cpcmd.h>
  44. #include <asm/tlbflush.h>
  45. #include <asm/timer.h>
  46. #include <asm/lowcore.h>
  47. #include <asm/sclp.h>
  48. #include <asm/cputime.h>
  49. #include <asm/vdso.h>
  50. #include <asm/cpu.h>
  51. #include "entry.h"
  52. static struct task_struct *current_set[NR_CPUS];
  53. static u8 smp_cpu_type;
  54. static int smp_use_sigp_detection;
  55. enum s390_cpu_state {
  56. CPU_STATE_STANDBY,
  57. CPU_STATE_CONFIGURED,
  58. };
  59. DEFINE_MUTEX(smp_cpu_state_mutex);
  60. int smp_cpu_polarization[NR_CPUS];
  61. static int smp_cpu_state[NR_CPUS];
  62. static int cpu_management;
  63. static DEFINE_PER_CPU(struct cpu, cpu_devices);
  64. static void smp_ext_bitcall(int, ec_bit_sig);
  65. static int cpu_stopped(int cpu)
  66. {
  67. __u32 status;
  68. switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
  69. case sigp_order_code_accepted:
  70. case sigp_status_stored:
  71. /* Check for stopped and check stop state */
  72. if (status & 0x50)
  73. return 1;
  74. break;
  75. default:
  76. break;
  77. }
  78. return 0;
  79. }
  80. void smp_send_stop(void)
  81. {
  82. int cpu, rc;
  83. /* Disable all interrupts/machine checks */
  84. __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
  85. trace_hardirqs_off();
  86. /* stop all processors */
  87. for_each_online_cpu(cpu) {
  88. if (cpu == smp_processor_id())
  89. continue;
  90. do {
  91. rc = signal_processor(cpu, sigp_stop);
  92. } while (rc == sigp_busy);
  93. while (!cpu_stopped(cpu))
  94. cpu_relax();
  95. }
  96. }
  97. /*
  98. * This is the main routine where commands issued by other
  99. * cpus are handled.
  100. */
  101. static void do_ext_call_interrupt(__u16 code)
  102. {
  103. unsigned long bits;
  104. /*
  105. * handle bit signal external calls
  106. *
  107. * For the ec_schedule signal we have to do nothing. All the work
  108. * is done automatically when we return from the interrupt.
  109. */
  110. bits = xchg(&S390_lowcore.ext_call_fast, 0);
  111. if (test_bit(ec_call_function, &bits))
  112. generic_smp_call_function_interrupt();
  113. if (test_bit(ec_call_function_single, &bits))
  114. generic_smp_call_function_single_interrupt();
  115. }
  116. /*
  117. * Send an external call sigp to another cpu and return without waiting
  118. * for its completion.
  119. */
  120. static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
  121. {
  122. /*
  123. * Set signaling bit in lowcore of target cpu and kick it
  124. */
  125. set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
  126. while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
  127. udelay(10);
  128. }
  129. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  130. {
  131. int cpu;
  132. for_each_cpu(cpu, mask)
  133. smp_ext_bitcall(cpu, ec_call_function);
  134. }
  135. void arch_send_call_function_single_ipi(int cpu)
  136. {
  137. smp_ext_bitcall(cpu, ec_call_function_single);
  138. }
  139. #ifndef CONFIG_64BIT
  140. /*
  141. * this function sends a 'purge tlb' signal to another CPU.
  142. */
  143. static void smp_ptlb_callback(void *info)
  144. {
  145. __tlb_flush_local();
  146. }
  147. void smp_ptlb_all(void)
  148. {
  149. on_each_cpu(smp_ptlb_callback, NULL, 1);
  150. }
  151. EXPORT_SYMBOL(smp_ptlb_all);
  152. #endif /* ! CONFIG_64BIT */
  153. /*
  154. * this function sends a 'reschedule' IPI to another CPU.
  155. * it goes straight through and wastes no time serializing
  156. * anything. Worst case is that we lose a reschedule ...
  157. */
  158. void smp_send_reschedule(int cpu)
  159. {
  160. smp_ext_bitcall(cpu, ec_schedule);
  161. }
  162. /*
  163. * parameter area for the set/clear control bit callbacks
  164. */
  165. struct ec_creg_mask_parms {
  166. unsigned long orvals[16];
  167. unsigned long andvals[16];
  168. };
  169. /*
  170. * callback for setting/clearing control bits
  171. */
  172. static void smp_ctl_bit_callback(void *info)
  173. {
  174. struct ec_creg_mask_parms *pp = info;
  175. unsigned long cregs[16];
  176. int i;
  177. __ctl_store(cregs, 0, 15);
  178. for (i = 0; i <= 15; i++)
  179. cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
  180. __ctl_load(cregs, 0, 15);
  181. }
  182. /*
  183. * Set a bit in a control register of all cpus
  184. */
  185. void smp_ctl_set_bit(int cr, int bit)
  186. {
  187. struct ec_creg_mask_parms parms;
  188. memset(&parms.orvals, 0, sizeof(parms.orvals));
  189. memset(&parms.andvals, 0xff, sizeof(parms.andvals));
  190. parms.orvals[cr] = 1 << bit;
  191. on_each_cpu(smp_ctl_bit_callback, &parms, 1);
  192. }
  193. EXPORT_SYMBOL(smp_ctl_set_bit);
  194. /*
  195. * Clear a bit in a control register of all cpus
  196. */
  197. void smp_ctl_clear_bit(int cr, int bit)
  198. {
  199. struct ec_creg_mask_parms parms;
  200. memset(&parms.orvals, 0, sizeof(parms.orvals));
  201. memset(&parms.andvals, 0xff, sizeof(parms.andvals));
  202. parms.andvals[cr] = ~(1L << bit);
  203. on_each_cpu(smp_ctl_bit_callback, &parms, 1);
  204. }
  205. EXPORT_SYMBOL(smp_ctl_clear_bit);
  206. /*
  207. * In early ipl state a temp. logically cpu number is needed, so the sigp
  208. * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
  209. * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
  210. */
  211. #define CPU_INIT_NO 1
  212. #ifdef CONFIG_ZFCPDUMP
  213. /*
  214. * zfcpdump_prefix_array holds prefix registers for the following scenario:
  215. * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
  216. * save its prefix registers, since they get lost, when switching from 31 bit
  217. * to 64 bit.
  218. */
  219. unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
  220. __attribute__((__section__(".data")));
  221. static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
  222. {
  223. if (ipl_info.type != IPL_TYPE_FCP_DUMP)
  224. return;
  225. if (cpu >= NR_CPUS) {
  226. pr_warning("CPU %i exceeds the maximum %i and is excluded from "
  227. "the dump\n", cpu, NR_CPUS - 1);
  228. return;
  229. }
  230. zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
  231. __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
  232. while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
  233. sigp_busy)
  234. cpu_relax();
  235. memcpy(zfcpdump_save_areas[cpu],
  236. (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
  237. SAVE_AREA_SIZE);
  238. #ifdef CONFIG_64BIT
  239. /* copy original prefix register */
  240. zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
  241. #endif
  242. }
  243. union save_area *zfcpdump_save_areas[NR_CPUS + 1];
  244. EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
  245. #else
  246. static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
  247. #endif /* CONFIG_ZFCPDUMP */
  248. static int cpu_known(int cpu_id)
  249. {
  250. int cpu;
  251. for_each_present_cpu(cpu) {
  252. if (__cpu_logical_map[cpu] == cpu_id)
  253. return 1;
  254. }
  255. return 0;
  256. }
  257. static int smp_rescan_cpus_sigp(cpumask_t avail)
  258. {
  259. int cpu_id, logical_cpu;
  260. logical_cpu = cpumask_first(&avail);
  261. if (logical_cpu >= nr_cpu_ids)
  262. return 0;
  263. for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
  264. if (cpu_known(cpu_id))
  265. continue;
  266. __cpu_logical_map[logical_cpu] = cpu_id;
  267. smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
  268. if (!cpu_stopped(logical_cpu))
  269. continue;
  270. cpu_set(logical_cpu, cpu_present_map);
  271. smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
  272. logical_cpu = cpumask_next(logical_cpu, &avail);
  273. if (logical_cpu >= nr_cpu_ids)
  274. break;
  275. }
  276. return 0;
  277. }
  278. static int smp_rescan_cpus_sclp(cpumask_t avail)
  279. {
  280. struct sclp_cpu_info *info;
  281. int cpu_id, logical_cpu, cpu;
  282. int rc;
  283. logical_cpu = cpumask_first(&avail);
  284. if (logical_cpu >= nr_cpu_ids)
  285. return 0;
  286. info = kmalloc(sizeof(*info), GFP_KERNEL);
  287. if (!info)
  288. return -ENOMEM;
  289. rc = sclp_get_cpu_info(info);
  290. if (rc)
  291. goto out;
  292. for (cpu = 0; cpu < info->combined; cpu++) {
  293. if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
  294. continue;
  295. cpu_id = info->cpu[cpu].address;
  296. if (cpu_known(cpu_id))
  297. continue;
  298. __cpu_logical_map[logical_cpu] = cpu_id;
  299. smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
  300. cpu_set(logical_cpu, cpu_present_map);
  301. if (cpu >= info->configured)
  302. smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
  303. else
  304. smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
  305. logical_cpu = cpumask_next(logical_cpu, &avail);
  306. if (logical_cpu >= nr_cpu_ids)
  307. break;
  308. }
  309. out:
  310. kfree(info);
  311. return rc;
  312. }
  313. static int __smp_rescan_cpus(void)
  314. {
  315. cpumask_t avail;
  316. cpus_xor(avail, cpu_possible_map, cpu_present_map);
  317. if (smp_use_sigp_detection)
  318. return smp_rescan_cpus_sigp(avail);
  319. else
  320. return smp_rescan_cpus_sclp(avail);
  321. }
  322. static void __init smp_detect_cpus(void)
  323. {
  324. unsigned int cpu, c_cpus, s_cpus;
  325. struct sclp_cpu_info *info;
  326. u16 boot_cpu_addr, cpu_addr;
  327. c_cpus = 1;
  328. s_cpus = 0;
  329. boot_cpu_addr = __cpu_logical_map[0];
  330. info = kmalloc(sizeof(*info), GFP_KERNEL);
  331. if (!info)
  332. panic("smp_detect_cpus failed to allocate memory\n");
  333. /* Use sigp detection algorithm if sclp doesn't work. */
  334. if (sclp_get_cpu_info(info)) {
  335. smp_use_sigp_detection = 1;
  336. for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
  337. if (cpu == boot_cpu_addr)
  338. continue;
  339. __cpu_logical_map[CPU_INIT_NO] = cpu;
  340. if (!cpu_stopped(CPU_INIT_NO))
  341. continue;
  342. smp_get_save_area(c_cpus, cpu);
  343. c_cpus++;
  344. }
  345. goto out;
  346. }
  347. if (info->has_cpu_type) {
  348. for (cpu = 0; cpu < info->combined; cpu++) {
  349. if (info->cpu[cpu].address == boot_cpu_addr) {
  350. smp_cpu_type = info->cpu[cpu].type;
  351. break;
  352. }
  353. }
  354. }
  355. for (cpu = 0; cpu < info->combined; cpu++) {
  356. if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
  357. continue;
  358. cpu_addr = info->cpu[cpu].address;
  359. if (cpu_addr == boot_cpu_addr)
  360. continue;
  361. __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
  362. if (!cpu_stopped(CPU_INIT_NO)) {
  363. s_cpus++;
  364. continue;
  365. }
  366. smp_get_save_area(c_cpus, cpu_addr);
  367. c_cpus++;
  368. }
  369. out:
  370. kfree(info);
  371. pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
  372. get_online_cpus();
  373. __smp_rescan_cpus();
  374. put_online_cpus();
  375. }
  376. /*
  377. * Activate a secondary processor.
  378. */
  379. int __cpuinit start_secondary(void *cpuvoid)
  380. {
  381. /* Setup the cpu */
  382. cpu_init();
  383. preempt_disable();
  384. /* Enable TOD clock interrupts on the secondary cpu. */
  385. init_cpu_timer();
  386. /* Enable cpu timer interrupts on the secondary cpu. */
  387. init_cpu_vtimer();
  388. /* Enable pfault pseudo page faults on this cpu. */
  389. pfault_init();
  390. /* call cpu notifiers */
  391. notify_cpu_starting(smp_processor_id());
  392. /* Mark this cpu as online */
  393. ipi_call_lock();
  394. cpu_set(smp_processor_id(), cpu_online_map);
  395. ipi_call_unlock();
  396. /* Switch on interrupts */
  397. local_irq_enable();
  398. /* Print info about this processor */
  399. print_cpu_info();
  400. /* cpu_idle will call schedule for us */
  401. cpu_idle();
  402. return 0;
  403. }
  404. static void __init smp_create_idle(unsigned int cpu)
  405. {
  406. struct task_struct *p;
  407. /*
  408. * don't care about the psw and regs settings since we'll never
  409. * reschedule the forked task.
  410. */
  411. p = fork_idle(cpu);
  412. if (IS_ERR(p))
  413. panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
  414. current_set[cpu] = p;
  415. }
  416. static int __cpuinit smp_alloc_lowcore(int cpu)
  417. {
  418. unsigned long async_stack, panic_stack;
  419. struct _lowcore *lowcore;
  420. lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
  421. if (!lowcore)
  422. return -ENOMEM;
  423. async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
  424. panic_stack = __get_free_page(GFP_KERNEL);
  425. if (!panic_stack || !async_stack)
  426. goto out;
  427. memcpy(lowcore, &S390_lowcore, 512);
  428. memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
  429. lowcore->async_stack = async_stack + ASYNC_SIZE;
  430. lowcore->panic_stack = panic_stack + PAGE_SIZE;
  431. #ifndef CONFIG_64BIT
  432. if (MACHINE_HAS_IEEE) {
  433. unsigned long save_area;
  434. save_area = get_zeroed_page(GFP_KERNEL);
  435. if (!save_area)
  436. goto out;
  437. lowcore->extended_save_area_addr = (u32) save_area;
  438. }
  439. #else
  440. if (vdso_alloc_per_cpu(cpu, lowcore))
  441. goto out;
  442. #endif
  443. lowcore_ptr[cpu] = lowcore;
  444. return 0;
  445. out:
  446. free_page(panic_stack);
  447. free_pages(async_stack, ASYNC_ORDER);
  448. free_pages((unsigned long) lowcore, LC_ORDER);
  449. return -ENOMEM;
  450. }
  451. static void smp_free_lowcore(int cpu)
  452. {
  453. struct _lowcore *lowcore;
  454. lowcore = lowcore_ptr[cpu];
  455. #ifndef CONFIG_64BIT
  456. if (MACHINE_HAS_IEEE)
  457. free_page((unsigned long) lowcore->extended_save_area_addr);
  458. #else
  459. vdso_free_per_cpu(cpu, lowcore);
  460. #endif
  461. free_page(lowcore->panic_stack - PAGE_SIZE);
  462. free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
  463. free_pages((unsigned long) lowcore, LC_ORDER);
  464. lowcore_ptr[cpu] = NULL;
  465. }
  466. /* Upping and downing of CPUs */
  467. int __cpuinit __cpu_up(unsigned int cpu)
  468. {
  469. struct task_struct *idle;
  470. struct _lowcore *cpu_lowcore;
  471. struct stack_frame *sf;
  472. sigp_ccode ccode;
  473. u32 lowcore;
  474. if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
  475. return -EIO;
  476. if (smp_alloc_lowcore(cpu))
  477. return -ENOMEM;
  478. do {
  479. ccode = signal_processor(cpu, sigp_initial_cpu_reset);
  480. if (ccode == sigp_busy)
  481. udelay(10);
  482. if (ccode == sigp_not_operational)
  483. goto err_out;
  484. } while (ccode == sigp_busy);
  485. lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
  486. while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
  487. udelay(10);
  488. idle = current_set[cpu];
  489. cpu_lowcore = lowcore_ptr[cpu];
  490. cpu_lowcore->kernel_stack = (unsigned long)
  491. task_stack_page(idle) + THREAD_SIZE;
  492. cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
  493. sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
  494. - sizeof(struct pt_regs)
  495. - sizeof(struct stack_frame));
  496. memset(sf, 0, sizeof(struct stack_frame));
  497. sf->gprs[9] = (unsigned long) sf;
  498. cpu_lowcore->save_area[15] = (unsigned long) sf;
  499. __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
  500. asm volatile(
  501. " stam 0,15,0(%0)"
  502. : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
  503. cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
  504. cpu_lowcore->current_task = (unsigned long) idle;
  505. cpu_lowcore->cpu_nr = cpu;
  506. cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
  507. cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
  508. cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
  509. eieio();
  510. while (signal_processor(cpu, sigp_restart) == sigp_busy)
  511. udelay(10);
  512. while (!cpu_online(cpu))
  513. cpu_relax();
  514. return 0;
  515. err_out:
  516. smp_free_lowcore(cpu);
  517. return -EIO;
  518. }
  519. static int __init setup_possible_cpus(char *s)
  520. {
  521. int pcpus, cpu;
  522. pcpus = simple_strtoul(s, NULL, 0);
  523. init_cpu_possible(cpumask_of(0));
  524. for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
  525. set_cpu_possible(cpu, true);
  526. return 0;
  527. }
  528. early_param("possible_cpus", setup_possible_cpus);
  529. #ifdef CONFIG_HOTPLUG_CPU
  530. int __cpu_disable(void)
  531. {
  532. struct ec_creg_mask_parms cr_parms;
  533. int cpu = smp_processor_id();
  534. cpu_clear(cpu, cpu_online_map);
  535. /* Disable pfault pseudo page faults on this cpu. */
  536. pfault_fini();
  537. memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
  538. memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
  539. /* disable all external interrupts */
  540. cr_parms.orvals[0] = 0;
  541. cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
  542. 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
  543. /* disable all I/O interrupts */
  544. cr_parms.orvals[6] = 0;
  545. cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
  546. 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
  547. /* disable most machine checks */
  548. cr_parms.orvals[14] = 0;
  549. cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
  550. 1 << 25 | 1 << 24);
  551. smp_ctl_bit_callback(&cr_parms);
  552. return 0;
  553. }
  554. void __cpu_die(unsigned int cpu)
  555. {
  556. /* Wait until target cpu is down */
  557. while (!cpu_stopped(cpu))
  558. cpu_relax();
  559. smp_free_lowcore(cpu);
  560. pr_info("Processor %d stopped\n", cpu);
  561. }
  562. void cpu_die(void)
  563. {
  564. idle_task_exit();
  565. signal_processor(smp_processor_id(), sigp_stop);
  566. BUG();
  567. for (;;);
  568. }
  569. #endif /* CONFIG_HOTPLUG_CPU */
  570. void __init smp_prepare_cpus(unsigned int max_cpus)
  571. {
  572. #ifndef CONFIG_64BIT
  573. unsigned long save_area = 0;
  574. #endif
  575. unsigned long async_stack, panic_stack;
  576. struct _lowcore *lowcore;
  577. unsigned int cpu;
  578. smp_detect_cpus();
  579. /* request the 0x1201 emergency signal external interrupt */
  580. if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
  581. panic("Couldn't request external interrupt 0x1201");
  582. print_cpu_info();
  583. /* Reallocate current lowcore, but keep its contents. */
  584. lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
  585. panic_stack = __get_free_page(GFP_KERNEL);
  586. async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
  587. BUG_ON(!lowcore || !panic_stack || !async_stack);
  588. #ifndef CONFIG_64BIT
  589. if (MACHINE_HAS_IEEE)
  590. save_area = get_zeroed_page(GFP_KERNEL);
  591. #endif
  592. local_irq_disable();
  593. local_mcck_disable();
  594. lowcore_ptr[smp_processor_id()] = lowcore;
  595. *lowcore = S390_lowcore;
  596. lowcore->panic_stack = panic_stack + PAGE_SIZE;
  597. lowcore->async_stack = async_stack + ASYNC_SIZE;
  598. #ifndef CONFIG_64BIT
  599. if (MACHINE_HAS_IEEE)
  600. lowcore->extended_save_area_addr = (u32) save_area;
  601. #endif
  602. set_prefix((u32)(unsigned long) lowcore);
  603. local_mcck_enable();
  604. local_irq_enable();
  605. #ifdef CONFIG_64BIT
  606. if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
  607. BUG();
  608. #endif
  609. for_each_possible_cpu(cpu)
  610. if (cpu != smp_processor_id())
  611. smp_create_idle(cpu);
  612. }
  613. void __init smp_prepare_boot_cpu(void)
  614. {
  615. BUG_ON(smp_processor_id() != 0);
  616. current_thread_info()->cpu = 0;
  617. cpu_set(0, cpu_present_map);
  618. cpu_set(0, cpu_online_map);
  619. S390_lowcore.percpu_offset = __per_cpu_offset[0];
  620. current_set[0] = current;
  621. smp_cpu_state[0] = CPU_STATE_CONFIGURED;
  622. smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
  623. }
  624. void __init smp_cpus_done(unsigned int max_cpus)
  625. {
  626. }
  627. /*
  628. * the frequency of the profiling timer can be changed
  629. * by writing a multiplier value into /proc/profile.
  630. *
  631. * usually you want to run this on all CPUs ;)
  632. */
  633. int setup_profiling_timer(unsigned int multiplier)
  634. {
  635. return 0;
  636. }
  637. #ifdef CONFIG_HOTPLUG_CPU
  638. static ssize_t cpu_configure_show(struct sys_device *dev,
  639. struct sysdev_attribute *attr, char *buf)
  640. {
  641. ssize_t count;
  642. mutex_lock(&smp_cpu_state_mutex);
  643. count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
  644. mutex_unlock(&smp_cpu_state_mutex);
  645. return count;
  646. }
  647. static ssize_t cpu_configure_store(struct sys_device *dev,
  648. struct sysdev_attribute *attr,
  649. const char *buf, size_t count)
  650. {
  651. int cpu = dev->id;
  652. int val, rc;
  653. char delim;
  654. if (sscanf(buf, "%d %c", &val, &delim) != 1)
  655. return -EINVAL;
  656. if (val != 0 && val != 1)
  657. return -EINVAL;
  658. get_online_cpus();
  659. mutex_lock(&smp_cpu_state_mutex);
  660. rc = -EBUSY;
  661. if (cpu_online(cpu))
  662. goto out;
  663. rc = 0;
  664. switch (val) {
  665. case 0:
  666. if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
  667. rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
  668. if (!rc) {
  669. smp_cpu_state[cpu] = CPU_STATE_STANDBY;
  670. smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
  671. }
  672. }
  673. break;
  674. case 1:
  675. if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
  676. rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
  677. if (!rc) {
  678. smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
  679. smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
  680. }
  681. }
  682. break;
  683. default:
  684. break;
  685. }
  686. out:
  687. mutex_unlock(&smp_cpu_state_mutex);
  688. put_online_cpus();
  689. return rc ? rc : count;
  690. }
  691. static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
  692. #endif /* CONFIG_HOTPLUG_CPU */
  693. static ssize_t cpu_polarization_show(struct sys_device *dev,
  694. struct sysdev_attribute *attr, char *buf)
  695. {
  696. int cpu = dev->id;
  697. ssize_t count;
  698. mutex_lock(&smp_cpu_state_mutex);
  699. switch (smp_cpu_polarization[cpu]) {
  700. case POLARIZATION_HRZ:
  701. count = sprintf(buf, "horizontal\n");
  702. break;
  703. case POLARIZATION_VL:
  704. count = sprintf(buf, "vertical:low\n");
  705. break;
  706. case POLARIZATION_VM:
  707. count = sprintf(buf, "vertical:medium\n");
  708. break;
  709. case POLARIZATION_VH:
  710. count = sprintf(buf, "vertical:high\n");
  711. break;
  712. default:
  713. count = sprintf(buf, "unknown\n");
  714. break;
  715. }
  716. mutex_unlock(&smp_cpu_state_mutex);
  717. return count;
  718. }
  719. static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
  720. static ssize_t show_cpu_address(struct sys_device *dev,
  721. struct sysdev_attribute *attr, char *buf)
  722. {
  723. return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
  724. }
  725. static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
  726. static struct attribute *cpu_common_attrs[] = {
  727. #ifdef CONFIG_HOTPLUG_CPU
  728. &attr_configure.attr,
  729. #endif
  730. &attr_address.attr,
  731. &attr_polarization.attr,
  732. NULL,
  733. };
  734. static struct attribute_group cpu_common_attr_group = {
  735. .attrs = cpu_common_attrs,
  736. };
  737. static ssize_t show_capability(struct sys_device *dev,
  738. struct sysdev_attribute *attr, char *buf)
  739. {
  740. unsigned int capability;
  741. int rc;
  742. rc = get_cpu_capability(&capability);
  743. if (rc)
  744. return rc;
  745. return sprintf(buf, "%u\n", capability);
  746. }
  747. static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
  748. static ssize_t show_idle_count(struct sys_device *dev,
  749. struct sysdev_attribute *attr, char *buf)
  750. {
  751. struct s390_idle_data *idle;
  752. unsigned long long idle_count;
  753. unsigned int sequence;
  754. idle = &per_cpu(s390_idle, dev->id);
  755. repeat:
  756. sequence = idle->sequence;
  757. smp_rmb();
  758. if (sequence & 1)
  759. goto repeat;
  760. idle_count = idle->idle_count;
  761. if (idle->idle_enter)
  762. idle_count++;
  763. smp_rmb();
  764. if (idle->sequence != sequence)
  765. goto repeat;
  766. return sprintf(buf, "%llu\n", idle_count);
  767. }
  768. static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
  769. static ssize_t show_idle_time(struct sys_device *dev,
  770. struct sysdev_attribute *attr, char *buf)
  771. {
  772. struct s390_idle_data *idle;
  773. unsigned long long now, idle_time, idle_enter;
  774. unsigned int sequence;
  775. idle = &per_cpu(s390_idle, dev->id);
  776. now = get_clock();
  777. repeat:
  778. sequence = idle->sequence;
  779. smp_rmb();
  780. if (sequence & 1)
  781. goto repeat;
  782. idle_time = idle->idle_time;
  783. idle_enter = idle->idle_enter;
  784. if (idle_enter != 0ULL && idle_enter < now)
  785. idle_time += now - idle_enter;
  786. smp_rmb();
  787. if (idle->sequence != sequence)
  788. goto repeat;
  789. return sprintf(buf, "%llu\n", idle_time >> 12);
  790. }
  791. static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
  792. static struct attribute *cpu_online_attrs[] = {
  793. &attr_capability.attr,
  794. &attr_idle_count.attr,
  795. &attr_idle_time_us.attr,
  796. NULL,
  797. };
  798. static struct attribute_group cpu_online_attr_group = {
  799. .attrs = cpu_online_attrs,
  800. };
  801. static int __cpuinit smp_cpu_notify(struct notifier_block *self,
  802. unsigned long action, void *hcpu)
  803. {
  804. unsigned int cpu = (unsigned int)(long)hcpu;
  805. struct cpu *c = &per_cpu(cpu_devices, cpu);
  806. struct sys_device *s = &c->sysdev;
  807. struct s390_idle_data *idle;
  808. switch (action) {
  809. case CPU_ONLINE:
  810. case CPU_ONLINE_FROZEN:
  811. idle = &per_cpu(s390_idle, cpu);
  812. memset(idle, 0, sizeof(struct s390_idle_data));
  813. if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
  814. return NOTIFY_BAD;
  815. break;
  816. case CPU_DEAD:
  817. case CPU_DEAD_FROZEN:
  818. sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
  819. break;
  820. }
  821. return NOTIFY_OK;
  822. }
  823. static struct notifier_block __cpuinitdata smp_cpu_nb = {
  824. .notifier_call = smp_cpu_notify,
  825. };
  826. static int __devinit smp_add_present_cpu(int cpu)
  827. {
  828. struct cpu *c = &per_cpu(cpu_devices, cpu);
  829. struct sys_device *s = &c->sysdev;
  830. int rc;
  831. c->hotpluggable = 1;
  832. rc = register_cpu(c, cpu);
  833. if (rc)
  834. goto out;
  835. rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
  836. if (rc)
  837. goto out_cpu;
  838. if (!cpu_online(cpu))
  839. goto out;
  840. rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
  841. if (!rc)
  842. return 0;
  843. sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
  844. out_cpu:
  845. #ifdef CONFIG_HOTPLUG_CPU
  846. unregister_cpu(c);
  847. #endif
  848. out:
  849. return rc;
  850. }
  851. #ifdef CONFIG_HOTPLUG_CPU
  852. int __ref smp_rescan_cpus(void)
  853. {
  854. cpumask_t newcpus;
  855. int cpu;
  856. int rc;
  857. get_online_cpus();
  858. mutex_lock(&smp_cpu_state_mutex);
  859. newcpus = cpu_present_map;
  860. rc = __smp_rescan_cpus();
  861. if (rc)
  862. goto out;
  863. cpus_andnot(newcpus, cpu_present_map, newcpus);
  864. for_each_cpu_mask(cpu, newcpus) {
  865. rc = smp_add_present_cpu(cpu);
  866. if (rc)
  867. cpu_clear(cpu, cpu_present_map);
  868. }
  869. rc = 0;
  870. out:
  871. mutex_unlock(&smp_cpu_state_mutex);
  872. put_online_cpus();
  873. if (!cpus_empty(newcpus))
  874. topology_schedule_update();
  875. return rc;
  876. }
  877. static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
  878. size_t count)
  879. {
  880. int rc;
  881. rc = smp_rescan_cpus();
  882. return rc ? rc : count;
  883. }
  884. static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
  885. #endif /* CONFIG_HOTPLUG_CPU */
  886. static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
  887. {
  888. ssize_t count;
  889. mutex_lock(&smp_cpu_state_mutex);
  890. count = sprintf(buf, "%d\n", cpu_management);
  891. mutex_unlock(&smp_cpu_state_mutex);
  892. return count;
  893. }
  894. static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
  895. size_t count)
  896. {
  897. int val, rc;
  898. char delim;
  899. if (sscanf(buf, "%d %c", &val, &delim) != 1)
  900. return -EINVAL;
  901. if (val != 0 && val != 1)
  902. return -EINVAL;
  903. rc = 0;
  904. get_online_cpus();
  905. mutex_lock(&smp_cpu_state_mutex);
  906. if (cpu_management == val)
  907. goto out;
  908. rc = topology_set_cpu_management(val);
  909. if (!rc)
  910. cpu_management = val;
  911. out:
  912. mutex_unlock(&smp_cpu_state_mutex);
  913. put_online_cpus();
  914. return rc ? rc : count;
  915. }
  916. static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
  917. dispatching_store);
  918. static int __init topology_init(void)
  919. {
  920. int cpu;
  921. int rc;
  922. register_cpu_notifier(&smp_cpu_nb);
  923. #ifdef CONFIG_HOTPLUG_CPU
  924. rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
  925. if (rc)
  926. return rc;
  927. #endif
  928. rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
  929. if (rc)
  930. return rc;
  931. for_each_present_cpu(cpu) {
  932. rc = smp_add_present_cpu(cpu);
  933. if (rc)
  934. return rc;
  935. }
  936. return 0;
  937. }
  938. subsys_initcall(topology_init);