bfin_dma_5xx.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. /*
  2. * bfin_dma_5xx.c - Blackfin DMA implementation
  3. *
  4. * Copyright 2004-2008 Analog Devices Inc.
  5. * Licensed under the GPL-2 or later.
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/param.h>
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/spinlock.h>
  16. #include <asm/blackfin.h>
  17. #include <asm/cacheflush.h>
  18. #include <asm/dma.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/early_printk.h>
  21. /*
  22. * To make sure we work around 05000119 - we always check DMA_DONE bit,
  23. * never the DMA_RUN bit
  24. */
  25. struct dma_channel dma_ch[MAX_DMA_CHANNELS];
  26. EXPORT_SYMBOL(dma_ch);
  27. static int __init blackfin_dma_init(void)
  28. {
  29. int i;
  30. printk(KERN_INFO "Blackfin DMA Controller\n");
  31. for (i = 0; i < MAX_DMA_CHANNELS; i++) {
  32. dma_ch[i].chan_status = DMA_CHANNEL_FREE;
  33. dma_ch[i].regs = dma_io_base_addr[i];
  34. mutex_init(&(dma_ch[i].dmalock));
  35. }
  36. /* Mark MEMDMA Channel 0 as requested since we're using it internally */
  37. request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
  38. request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
  39. #if defined(CONFIG_DEB_DMA_URGENT)
  40. bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
  41. | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
  42. #endif
  43. return 0;
  44. }
  45. arch_initcall(blackfin_dma_init);
  46. #ifdef CONFIG_PROC_FS
  47. static int proc_dma_show(struct seq_file *m, void *v)
  48. {
  49. int i;
  50. for (i = 0; i < MAX_DMA_CHANNELS; ++i)
  51. if (dma_ch[i].chan_status != DMA_CHANNEL_FREE)
  52. seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
  53. return 0;
  54. }
  55. static int proc_dma_open(struct inode *inode, struct file *file)
  56. {
  57. return single_open(file, proc_dma_show, NULL);
  58. }
  59. static const struct file_operations proc_dma_operations = {
  60. .open = proc_dma_open,
  61. .read = seq_read,
  62. .llseek = seq_lseek,
  63. .release = single_release,
  64. };
  65. static int __init proc_dma_init(void)
  66. {
  67. return proc_create("dma", 0, NULL, &proc_dma_operations) != NULL;
  68. }
  69. late_initcall(proc_dma_init);
  70. #endif
  71. /**
  72. * request_dma - request a DMA channel
  73. *
  74. * Request the specific DMA channel from the system if it's available.
  75. */
  76. int request_dma(unsigned int channel, const char *device_id)
  77. {
  78. pr_debug("request_dma() : BEGIN \n");
  79. if (device_id == NULL)
  80. printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
  81. #if defined(CONFIG_BF561) && ANOMALY_05000182
  82. if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
  83. if (get_cclk() > 500000000) {
  84. printk(KERN_WARNING
  85. "Request IMDMA failed due to ANOMALY 05000182\n");
  86. return -EFAULT;
  87. }
  88. }
  89. #endif
  90. mutex_lock(&(dma_ch[channel].dmalock));
  91. if ((dma_ch[channel].chan_status == DMA_CHANNEL_REQUESTED)
  92. || (dma_ch[channel].chan_status == DMA_CHANNEL_ENABLED)) {
  93. mutex_unlock(&(dma_ch[channel].dmalock));
  94. pr_debug("DMA CHANNEL IN USE \n");
  95. return -EBUSY;
  96. } else {
  97. dma_ch[channel].chan_status = DMA_CHANNEL_REQUESTED;
  98. pr_debug("DMA CHANNEL IS ALLOCATED \n");
  99. }
  100. mutex_unlock(&(dma_ch[channel].dmalock));
  101. #ifdef CONFIG_BF54x
  102. if (channel >= CH_UART2_RX && channel <= CH_UART3_TX) {
  103. unsigned int per_map;
  104. per_map = dma_ch[channel].regs->peripheral_map & 0xFFF;
  105. if (strncmp(device_id, "BFIN_UART", 9) == 0)
  106. dma_ch[channel].regs->peripheral_map = per_map |
  107. ((channel - CH_UART2_RX + 0xC)<<12);
  108. else
  109. dma_ch[channel].regs->peripheral_map = per_map |
  110. ((channel - CH_UART2_RX + 0x6)<<12);
  111. }
  112. #endif
  113. dma_ch[channel].device_id = device_id;
  114. dma_ch[channel].irq = 0;
  115. /* This is to be enabled by putting a restriction -
  116. * you have to request DMA, before doing any operations on
  117. * descriptor/channel
  118. */
  119. pr_debug("request_dma() : END \n");
  120. return 0;
  121. }
  122. EXPORT_SYMBOL(request_dma);
  123. int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
  124. {
  125. BUG_ON(channel >= MAX_DMA_CHANNELS ||
  126. dma_ch[channel].chan_status == DMA_CHANNEL_FREE);
  127. if (callback != NULL) {
  128. int ret;
  129. unsigned int irq = channel2irq(channel);
  130. ret = request_irq(irq, callback, IRQF_DISABLED,
  131. dma_ch[channel].device_id, data);
  132. if (ret)
  133. return ret;
  134. dma_ch[channel].irq = irq;
  135. dma_ch[channel].data = data;
  136. }
  137. return 0;
  138. }
  139. EXPORT_SYMBOL(set_dma_callback);
  140. /**
  141. * clear_dma_buffer - clear DMA fifos for specified channel
  142. *
  143. * Set the Buffer Clear bit in the Configuration register of specific DMA
  144. * channel. This will stop the descriptor based DMA operation.
  145. */
  146. static void clear_dma_buffer(unsigned int channel)
  147. {
  148. dma_ch[channel].regs->cfg |= RESTART;
  149. SSYNC();
  150. dma_ch[channel].regs->cfg &= ~RESTART;
  151. }
  152. void free_dma(unsigned int channel)
  153. {
  154. pr_debug("freedma() : BEGIN \n");
  155. BUG_ON(channel >= MAX_DMA_CHANNELS ||
  156. dma_ch[channel].chan_status == DMA_CHANNEL_FREE);
  157. /* Halt the DMA */
  158. disable_dma(channel);
  159. clear_dma_buffer(channel);
  160. if (dma_ch[channel].irq)
  161. free_irq(dma_ch[channel].irq, dma_ch[channel].data);
  162. /* Clear the DMA Variable in the Channel */
  163. mutex_lock(&(dma_ch[channel].dmalock));
  164. dma_ch[channel].chan_status = DMA_CHANNEL_FREE;
  165. mutex_unlock(&(dma_ch[channel].dmalock));
  166. pr_debug("freedma() : END \n");
  167. }
  168. EXPORT_SYMBOL(free_dma);
  169. #ifdef CONFIG_PM
  170. # ifndef MAX_DMA_SUSPEND_CHANNELS
  171. # define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
  172. # endif
  173. int blackfin_dma_suspend(void)
  174. {
  175. int i;
  176. for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i) {
  177. if (dma_ch[i].chan_status == DMA_CHANNEL_ENABLED) {
  178. printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
  179. return -EBUSY;
  180. }
  181. dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
  182. }
  183. return 0;
  184. }
  185. void blackfin_dma_resume(void)
  186. {
  187. int i;
  188. for (i = 0; i < MAX_DMA_SUSPEND_CHANNELS; ++i)
  189. dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
  190. }
  191. #endif
  192. /**
  193. * blackfin_dma_early_init - minimal DMA init
  194. *
  195. * Setup a few DMA registers so we can safely do DMA transfers early on in
  196. * the kernel booting process. Really this just means using dma_memcpy().
  197. */
  198. void __init blackfin_dma_early_init(void)
  199. {
  200. early_shadow_stamp();
  201. bfin_write_MDMA_S0_CONFIG(0);
  202. bfin_write_MDMA_S1_CONFIG(0);
  203. }
  204. void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
  205. {
  206. unsigned long dst = (unsigned long)pdst;
  207. unsigned long src = (unsigned long)psrc;
  208. struct dma_register *dst_ch, *src_ch;
  209. early_shadow_stamp();
  210. /* We assume that everything is 4 byte aligned, so include
  211. * a basic sanity check
  212. */
  213. BUG_ON(dst % 4);
  214. BUG_ON(src % 4);
  215. BUG_ON(size % 4);
  216. src_ch = 0;
  217. /* Find an avalible memDMA channel */
  218. while (1) {
  219. if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
  220. dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
  221. src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
  222. } else {
  223. dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
  224. src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
  225. }
  226. if (!bfin_read16(&src_ch->cfg))
  227. break;
  228. else if (bfin_read16(&dst_ch->irq_status) & DMA_DONE) {
  229. bfin_write16(&src_ch->cfg, 0);
  230. break;
  231. }
  232. }
  233. /* Force a sync in case a previous config reset on this channel
  234. * occurred. This is needed so subsequent writes to DMA registers
  235. * are not spuriously lost/corrupted.
  236. */
  237. __builtin_bfin_ssync();
  238. /* Destination */
  239. bfin_write32(&dst_ch->start_addr, dst);
  240. bfin_write16(&dst_ch->x_count, size >> 2);
  241. bfin_write16(&dst_ch->x_modify, 1 << 2);
  242. bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
  243. /* Source */
  244. bfin_write32(&src_ch->start_addr, src);
  245. bfin_write16(&src_ch->x_count, size >> 2);
  246. bfin_write16(&src_ch->x_modify, 1 << 2);
  247. bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);
  248. /* Enable */
  249. bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
  250. bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);
  251. /* Since we are atomic now, don't use the workaround ssync */
  252. __builtin_bfin_ssync();
  253. }
  254. void __init early_dma_memcpy_done(void)
  255. {
  256. early_shadow_stamp();
  257. while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
  258. (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
  259. continue;
  260. bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  261. bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
  262. /*
  263. * Now that DMA is done, we would normally flush cache, but
  264. * i/d cache isn't running this early, so we don't bother,
  265. * and just clear out the DMA channel for next time
  266. */
  267. bfin_write_MDMA_S0_CONFIG(0);
  268. bfin_write_MDMA_S1_CONFIG(0);
  269. bfin_write_MDMA_D0_CONFIG(0);
  270. bfin_write_MDMA_D1_CONFIG(0);
  271. __builtin_bfin_ssync();
  272. }
  273. /**
  274. * __dma_memcpy - program the MDMA registers
  275. *
  276. * Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
  277. * while programming registers so that everything is fully configured. Wait
  278. * for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
  279. * check will make sure we don't clobber any existing transfer.
  280. */
  281. static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
  282. {
  283. static DEFINE_SPINLOCK(mdma_lock);
  284. unsigned long flags;
  285. spin_lock_irqsave(&mdma_lock, flags);
  286. /* Force a sync in case a previous config reset on this channel
  287. * occurred. This is needed so subsequent writes to DMA registers
  288. * are not spuriously lost/corrupted. Do it under irq lock and
  289. * without the anomaly version (because we are atomic already).
  290. */
  291. __builtin_bfin_ssync();
  292. if (bfin_read_MDMA_S0_CONFIG())
  293. while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
  294. continue;
  295. if (conf & DMA2D) {
  296. /* For larger bit sizes, we've already divided down cnt so it
  297. * is no longer a multiple of 64k. So we have to break down
  298. * the limit here so it is a multiple of the incoming size.
  299. * There is no limitation here in terms of total size other
  300. * than the hardware though as the bits lost in the shift are
  301. * made up by MODIFY (== we can hit the whole address space).
  302. * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
  303. */
  304. u32 shift = abs(dmod) >> 1;
  305. size_t ycnt = cnt >> (16 - shift);
  306. cnt = 1 << (16 - shift);
  307. bfin_write_MDMA_D0_Y_COUNT(ycnt);
  308. bfin_write_MDMA_S0_Y_COUNT(ycnt);
  309. bfin_write_MDMA_D0_Y_MODIFY(dmod);
  310. bfin_write_MDMA_S0_Y_MODIFY(smod);
  311. }
  312. bfin_write_MDMA_D0_START_ADDR(daddr);
  313. bfin_write_MDMA_D0_X_COUNT(cnt);
  314. bfin_write_MDMA_D0_X_MODIFY(dmod);
  315. bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  316. bfin_write_MDMA_S0_START_ADDR(saddr);
  317. bfin_write_MDMA_S0_X_COUNT(cnt);
  318. bfin_write_MDMA_S0_X_MODIFY(smod);
  319. bfin_write_MDMA_S0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  320. bfin_write_MDMA_S0_CONFIG(DMAEN | conf);
  321. bfin_write_MDMA_D0_CONFIG(WNR | DI_EN | DMAEN | conf);
  322. spin_unlock_irqrestore(&mdma_lock, flags);
  323. SSYNC();
  324. while (!(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE))
  325. if (bfin_read_MDMA_S0_CONFIG())
  326. continue;
  327. else
  328. return;
  329. bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
  330. bfin_write_MDMA_S0_CONFIG(0);
  331. bfin_write_MDMA_D0_CONFIG(0);
  332. }
  333. /**
  334. * _dma_memcpy - translate C memcpy settings into MDMA settings
  335. *
  336. * Handle all the high level steps before we touch the MDMA registers. So
  337. * handle direction, tweaking of sizes, and formatting of addresses.
  338. */
  339. static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
  340. {
  341. u32 conf, shift;
  342. s16 mod;
  343. unsigned long dst = (unsigned long)pdst;
  344. unsigned long src = (unsigned long)psrc;
  345. if (size == 0)
  346. return NULL;
  347. if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
  348. conf = WDSIZE_32;
  349. shift = 2;
  350. } else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
  351. conf = WDSIZE_16;
  352. shift = 1;
  353. } else {
  354. conf = WDSIZE_8;
  355. shift = 0;
  356. }
  357. /* If the two memory regions have a chance of overlapping, make
  358. * sure the memcpy still works as expected. Do this by having the
  359. * copy run backwards instead.
  360. */
  361. mod = 1 << shift;
  362. if (src < dst) {
  363. mod *= -1;
  364. dst += size + mod;
  365. src += size + mod;
  366. }
  367. size >>= shift;
  368. if (size > 0x10000)
  369. conf |= DMA2D;
  370. __dma_memcpy(dst, mod, src, mod, size, conf);
  371. return pdst;
  372. }
  373. /**
  374. * dma_memcpy - DMA memcpy under mutex lock
  375. *
  376. * Do not check arguments before starting the DMA memcpy. Break the transfer
  377. * up into two pieces. The first transfer is in multiples of 64k and the
  378. * second transfer is the piece smaller than 64k.
  379. */
  380. void *dma_memcpy(void *pdst, const void *psrc, size_t size)
  381. {
  382. unsigned long dst = (unsigned long)pdst;
  383. unsigned long src = (unsigned long)psrc;
  384. size_t bulk, rest;
  385. if (bfin_addr_dcacheable(src))
  386. blackfin_dcache_flush_range(src, src + size);
  387. if (bfin_addr_dcacheable(dst))
  388. blackfin_dcache_invalidate_range(dst, dst + size);
  389. bulk = size & ~0xffff;
  390. rest = size - bulk;
  391. if (bulk)
  392. _dma_memcpy(pdst, psrc, bulk);
  393. _dma_memcpy(pdst + bulk, psrc + bulk, rest);
  394. return pdst;
  395. }
  396. EXPORT_SYMBOL(dma_memcpy);
  397. /**
  398. * safe_dma_memcpy - DMA memcpy w/argument checking
  399. *
  400. * Verify arguments are safe before heading to dma_memcpy().
  401. */
  402. void *safe_dma_memcpy(void *dst, const void *src, size_t size)
  403. {
  404. if (!access_ok(VERIFY_WRITE, dst, size))
  405. return NULL;
  406. if (!access_ok(VERIFY_READ, src, size))
  407. return NULL;
  408. return dma_memcpy(dst, src, size);
  409. }
  410. EXPORT_SYMBOL(safe_dma_memcpy);
  411. static void _dma_out(unsigned long addr, unsigned long buf, unsigned short len,
  412. u16 size, u16 dma_size)
  413. {
  414. blackfin_dcache_flush_range(buf, buf + len * size);
  415. __dma_memcpy(addr, 0, buf, size, len, dma_size);
  416. }
  417. static void _dma_in(unsigned long addr, unsigned long buf, unsigned short len,
  418. u16 size, u16 dma_size)
  419. {
  420. blackfin_dcache_invalidate_range(buf, buf + len * size);
  421. __dma_memcpy(buf, size, addr, 0, len, dma_size);
  422. }
  423. #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
  424. void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned short len) \
  425. { \
  426. _dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
  427. } \
  428. EXPORT_SYMBOL(dma_##io##s##bwl)
  429. MAKE_DMA_IO(out, b, 1, 8, const);
  430. MAKE_DMA_IO(in, b, 1, 8, );
  431. MAKE_DMA_IO(out, w, 2, 16, const);
  432. MAKE_DMA_IO(in, w, 2, 16, );
  433. MAKE_DMA_IO(out, l, 4, 32, const);
  434. MAKE_DMA_IO(in, l, 4, 32, );