clock.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. /*
  2. * arch/arm/mach-ep93xx/clock.c
  3. * Clock control for Cirrus EP93xx chips.
  4. *
  5. * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or (at
  10. * your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/clk.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/string.h>
  17. #include <linux/io.h>
  18. #include <asm/clkdev.h>
  19. #include <asm/div64.h>
  20. #include <mach/hardware.h>
  21. struct clk {
  22. unsigned long rate;
  23. int users;
  24. int sw_locked;
  25. void __iomem *enable_reg;
  26. u32 enable_mask;
  27. unsigned long (*get_rate)(struct clk *clk);
  28. int (*set_rate)(struct clk *clk, unsigned long rate);
  29. };
  30. static unsigned long get_uart_rate(struct clk *clk);
  31. static int set_keytchclk_rate(struct clk *clk, unsigned long rate);
  32. static int set_div_rate(struct clk *clk, unsigned long rate);
  33. static struct clk clk_uart1 = {
  34. .sw_locked = 1,
  35. .enable_reg = EP93XX_SYSCON_DEVCFG,
  36. .enable_mask = EP93XX_SYSCON_DEVCFG_U1EN,
  37. .get_rate = get_uart_rate,
  38. };
  39. static struct clk clk_uart2 = {
  40. .sw_locked = 1,
  41. .enable_reg = EP93XX_SYSCON_DEVCFG,
  42. .enable_mask = EP93XX_SYSCON_DEVCFG_U2EN,
  43. .get_rate = get_uart_rate,
  44. };
  45. static struct clk clk_uart3 = {
  46. .sw_locked = 1,
  47. .enable_reg = EP93XX_SYSCON_DEVCFG,
  48. .enable_mask = EP93XX_SYSCON_DEVCFG_U3EN,
  49. .get_rate = get_uart_rate,
  50. };
  51. static struct clk clk_pll1;
  52. static struct clk clk_f;
  53. static struct clk clk_h;
  54. static struct clk clk_p;
  55. static struct clk clk_pll2;
  56. static struct clk clk_usb_host = {
  57. .enable_reg = EP93XX_SYSCON_PWRCNT,
  58. .enable_mask = EP93XX_SYSCON_PWRCNT_USH_EN,
  59. };
  60. static struct clk clk_keypad = {
  61. .sw_locked = 1,
  62. .enable_reg = EP93XX_SYSCON_KEYTCHCLKDIV,
  63. .enable_mask = EP93XX_SYSCON_KEYTCHCLKDIV_KEN,
  64. .set_rate = set_keytchclk_rate,
  65. };
  66. static struct clk clk_pwm = {
  67. .rate = EP93XX_EXT_CLK_RATE,
  68. };
  69. static struct clk clk_video = {
  70. .sw_locked = 1,
  71. .enable_reg = EP93XX_SYSCON_VIDCLKDIV,
  72. .enable_mask = EP93XX_SYSCON_CLKDIV_ENABLE,
  73. .set_rate = set_div_rate,
  74. };
  75. /* DMA Clocks */
  76. static struct clk clk_m2p0 = {
  77. .enable_reg = EP93XX_SYSCON_PWRCNT,
  78. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P0,
  79. };
  80. static struct clk clk_m2p1 = {
  81. .enable_reg = EP93XX_SYSCON_PWRCNT,
  82. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P1,
  83. };
  84. static struct clk clk_m2p2 = {
  85. .enable_reg = EP93XX_SYSCON_PWRCNT,
  86. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P2,
  87. };
  88. static struct clk clk_m2p3 = {
  89. .enable_reg = EP93XX_SYSCON_PWRCNT,
  90. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P3,
  91. };
  92. static struct clk clk_m2p4 = {
  93. .enable_reg = EP93XX_SYSCON_PWRCNT,
  94. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P4,
  95. };
  96. static struct clk clk_m2p5 = {
  97. .enable_reg = EP93XX_SYSCON_PWRCNT,
  98. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P5,
  99. };
  100. static struct clk clk_m2p6 = {
  101. .enable_reg = EP93XX_SYSCON_PWRCNT,
  102. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P6,
  103. };
  104. static struct clk clk_m2p7 = {
  105. .enable_reg = EP93XX_SYSCON_PWRCNT,
  106. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P7,
  107. };
  108. static struct clk clk_m2p8 = {
  109. .enable_reg = EP93XX_SYSCON_PWRCNT,
  110. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P8,
  111. };
  112. static struct clk clk_m2p9 = {
  113. .enable_reg = EP93XX_SYSCON_PWRCNT,
  114. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2P9,
  115. };
  116. static struct clk clk_m2m0 = {
  117. .enable_reg = EP93XX_SYSCON_PWRCNT,
  118. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2M0,
  119. };
  120. static struct clk clk_m2m1 = {
  121. .enable_reg = EP93XX_SYSCON_PWRCNT,
  122. .enable_mask = EP93XX_SYSCON_PWRCNT_DMA_M2M1,
  123. };
  124. #define INIT_CK(dev,con,ck) \
  125. { .dev_id = dev, .con_id = con, .clk = ck }
  126. static struct clk_lookup clocks[] = {
  127. INIT_CK("apb:uart1", NULL, &clk_uart1),
  128. INIT_CK("apb:uart2", NULL, &clk_uart2),
  129. INIT_CK("apb:uart3", NULL, &clk_uart3),
  130. INIT_CK(NULL, "pll1", &clk_pll1),
  131. INIT_CK(NULL, "fclk", &clk_f),
  132. INIT_CK(NULL, "hclk", &clk_h),
  133. INIT_CK(NULL, "pclk", &clk_p),
  134. INIT_CK(NULL, "pll2", &clk_pll2),
  135. INIT_CK("ep93xx-ohci", NULL, &clk_usb_host),
  136. INIT_CK("ep93xx-keypad", NULL, &clk_keypad),
  137. INIT_CK("ep93xx-fb", NULL, &clk_video),
  138. INIT_CK(NULL, "pwm_clk", &clk_pwm),
  139. INIT_CK(NULL, "m2p0", &clk_m2p0),
  140. INIT_CK(NULL, "m2p1", &clk_m2p1),
  141. INIT_CK(NULL, "m2p2", &clk_m2p2),
  142. INIT_CK(NULL, "m2p3", &clk_m2p3),
  143. INIT_CK(NULL, "m2p4", &clk_m2p4),
  144. INIT_CK(NULL, "m2p5", &clk_m2p5),
  145. INIT_CK(NULL, "m2p6", &clk_m2p6),
  146. INIT_CK(NULL, "m2p7", &clk_m2p7),
  147. INIT_CK(NULL, "m2p8", &clk_m2p8),
  148. INIT_CK(NULL, "m2p9", &clk_m2p9),
  149. INIT_CK(NULL, "m2m0", &clk_m2m0),
  150. INIT_CK(NULL, "m2m1", &clk_m2m1),
  151. };
  152. int clk_enable(struct clk *clk)
  153. {
  154. if (!clk->users++ && clk->enable_reg) {
  155. u32 value;
  156. value = __raw_readl(clk->enable_reg);
  157. value |= clk->enable_mask;
  158. if (clk->sw_locked)
  159. ep93xx_syscon_swlocked_write(value, clk->enable_reg);
  160. else
  161. __raw_writel(value, clk->enable_reg);
  162. }
  163. return 0;
  164. }
  165. EXPORT_SYMBOL(clk_enable);
  166. void clk_disable(struct clk *clk)
  167. {
  168. if (!--clk->users && clk->enable_reg) {
  169. u32 value;
  170. value = __raw_readl(clk->enable_reg);
  171. value &= ~clk->enable_mask;
  172. if (clk->sw_locked)
  173. ep93xx_syscon_swlocked_write(value, clk->enable_reg);
  174. else
  175. __raw_writel(value, clk->enable_reg);
  176. }
  177. }
  178. EXPORT_SYMBOL(clk_disable);
  179. static unsigned long get_uart_rate(struct clk *clk)
  180. {
  181. u32 value;
  182. value = __raw_readl(EP93XX_SYSCON_PWRCNT);
  183. if (value & EP93XX_SYSCON_PWRCNT_UARTBAUD)
  184. return EP93XX_EXT_CLK_RATE;
  185. else
  186. return EP93XX_EXT_CLK_RATE / 2;
  187. }
  188. unsigned long clk_get_rate(struct clk *clk)
  189. {
  190. if (clk->get_rate)
  191. return clk->get_rate(clk);
  192. return clk->rate;
  193. }
  194. EXPORT_SYMBOL(clk_get_rate);
  195. static int set_keytchclk_rate(struct clk *clk, unsigned long rate)
  196. {
  197. u32 val;
  198. u32 div_bit;
  199. val = __raw_readl(clk->enable_reg);
  200. /*
  201. * The Key Matrix and ADC clocks are configured using the same
  202. * System Controller register. The clock used will be either
  203. * 1/4 or 1/16 the external clock rate depending on the
  204. * EP93XX_SYSCON_KEYTCHCLKDIV_KDIV/EP93XX_SYSCON_KEYTCHCLKDIV_ADIV
  205. * bit being set or cleared.
  206. */
  207. div_bit = clk->enable_mask >> 15;
  208. if (rate == EP93XX_KEYTCHCLK_DIV4)
  209. val |= div_bit;
  210. else if (rate == EP93XX_KEYTCHCLK_DIV16)
  211. val &= ~div_bit;
  212. else
  213. return -EINVAL;
  214. ep93xx_syscon_swlocked_write(val, clk->enable_reg);
  215. clk->rate = rate;
  216. return 0;
  217. }
  218. static unsigned long calc_clk_div(unsigned long rate, int *psel, int *esel,
  219. int *pdiv, int *div)
  220. {
  221. unsigned long max_rate, best_rate = 0,
  222. actual_rate = 0, mclk_rate = 0, rate_err = -1;
  223. int i, found = 0, __div = 0, __pdiv = 0;
  224. /* Don't exceed the maximum rate */
  225. max_rate = max(max(clk_pll1.rate / 4, clk_pll2.rate / 4),
  226. (unsigned long)EP93XX_EXT_CLK_RATE / 4);
  227. rate = min(rate, max_rate);
  228. /*
  229. * Try the two pll's and the external clock
  230. * Because the valid predividers are 2, 2.5 and 3, we multiply
  231. * all the clocks by 2 to avoid floating point math.
  232. *
  233. * This is based on the algorithm in the ep93xx raster guide:
  234. * http://be-a-maverick.com/en/pubs/appNote/AN269REV1.pdf
  235. *
  236. */
  237. for (i = 0; i < 3; i++) {
  238. if (i == 0)
  239. mclk_rate = EP93XX_EXT_CLK_RATE * 2;
  240. else if (i == 1)
  241. mclk_rate = clk_pll1.rate * 2;
  242. else if (i == 2)
  243. mclk_rate = clk_pll2.rate * 2;
  244. /* Try each predivider value */
  245. for (__pdiv = 4; __pdiv <= 6; __pdiv++) {
  246. __div = mclk_rate / (rate * __pdiv);
  247. if (__div < 2 || __div > 127)
  248. continue;
  249. actual_rate = mclk_rate / (__pdiv * __div);
  250. if (!found || abs(actual_rate - rate) < rate_err) {
  251. *pdiv = __pdiv - 3;
  252. *div = __div;
  253. *psel = (i == 2);
  254. *esel = (i != 0);
  255. best_rate = actual_rate;
  256. rate_err = abs(actual_rate - rate);
  257. found = 1;
  258. }
  259. }
  260. }
  261. if (!found)
  262. return 0;
  263. return best_rate;
  264. }
  265. static int set_div_rate(struct clk *clk, unsigned long rate)
  266. {
  267. unsigned long actual_rate;
  268. int psel = 0, esel = 0, pdiv = 0, div = 0;
  269. u32 val;
  270. actual_rate = calc_clk_div(rate, &psel, &esel, &pdiv, &div);
  271. if (actual_rate == 0)
  272. return -EINVAL;
  273. clk->rate = actual_rate;
  274. /* Clear the esel, psel, pdiv and div bits */
  275. val = __raw_readl(clk->enable_reg);
  276. val &= ~0x7fff;
  277. /* Set the new esel, psel, pdiv and div bits for the new clock rate */
  278. val |= (esel ? EP93XX_SYSCON_CLKDIV_ESEL : 0) |
  279. (psel ? EP93XX_SYSCON_CLKDIV_PSEL : 0) |
  280. (pdiv << EP93XX_SYSCON_CLKDIV_PDIV_SHIFT) | div;
  281. ep93xx_syscon_swlocked_write(val, clk->enable_reg);
  282. return 0;
  283. }
  284. int clk_set_rate(struct clk *clk, unsigned long rate)
  285. {
  286. if (clk->set_rate)
  287. return clk->set_rate(clk, rate);
  288. return -EINVAL;
  289. }
  290. EXPORT_SYMBOL(clk_set_rate);
  291. static char fclk_divisors[] = { 1, 2, 4, 8, 16, 1, 1, 1 };
  292. static char hclk_divisors[] = { 1, 2, 4, 5, 6, 8, 16, 32 };
  293. static char pclk_divisors[] = { 1, 2, 4, 8 };
  294. /*
  295. * PLL rate = 14.7456 MHz * (X1FBD + 1) * (X2FBD + 1) / (X2IPD + 1) / 2^PS
  296. */
  297. static unsigned long calc_pll_rate(u32 config_word)
  298. {
  299. unsigned long long rate;
  300. int i;
  301. rate = EP93XX_EXT_CLK_RATE;
  302. rate *= ((config_word >> 11) & 0x1f) + 1; /* X1FBD */
  303. rate *= ((config_word >> 5) & 0x3f) + 1; /* X2FBD */
  304. do_div(rate, (config_word & 0x1f) + 1); /* X2IPD */
  305. for (i = 0; i < ((config_word >> 16) & 3); i++) /* PS */
  306. rate >>= 1;
  307. return (unsigned long)rate;
  308. }
  309. static void __init ep93xx_dma_clock_init(void)
  310. {
  311. clk_m2p0.rate = clk_h.rate;
  312. clk_m2p1.rate = clk_h.rate;
  313. clk_m2p2.rate = clk_h.rate;
  314. clk_m2p3.rate = clk_h.rate;
  315. clk_m2p4.rate = clk_h.rate;
  316. clk_m2p5.rate = clk_h.rate;
  317. clk_m2p6.rate = clk_h.rate;
  318. clk_m2p7.rate = clk_h.rate;
  319. clk_m2p8.rate = clk_h.rate;
  320. clk_m2p9.rate = clk_h.rate;
  321. clk_m2m0.rate = clk_h.rate;
  322. clk_m2m1.rate = clk_h.rate;
  323. }
  324. static int __init ep93xx_clock_init(void)
  325. {
  326. u32 value;
  327. int i;
  328. value = __raw_readl(EP93XX_SYSCON_CLOCK_SET1);
  329. if (!(value & 0x00800000)) { /* PLL1 bypassed? */
  330. clk_pll1.rate = EP93XX_EXT_CLK_RATE;
  331. } else {
  332. clk_pll1.rate = calc_pll_rate(value);
  333. }
  334. clk_f.rate = clk_pll1.rate / fclk_divisors[(value >> 25) & 0x7];
  335. clk_h.rate = clk_pll1.rate / hclk_divisors[(value >> 20) & 0x7];
  336. clk_p.rate = clk_h.rate / pclk_divisors[(value >> 18) & 0x3];
  337. ep93xx_dma_clock_init();
  338. value = __raw_readl(EP93XX_SYSCON_CLOCK_SET2);
  339. if (!(value & 0x00080000)) { /* PLL2 bypassed? */
  340. clk_pll2.rate = EP93XX_EXT_CLK_RATE;
  341. } else if (value & 0x00040000) { /* PLL2 enabled? */
  342. clk_pll2.rate = calc_pll_rate(value);
  343. } else {
  344. clk_pll2.rate = 0;
  345. }
  346. clk_usb_host.rate = clk_pll2.rate / (((value >> 28) & 0xf) + 1);
  347. printk(KERN_INFO "ep93xx: PLL1 running at %ld MHz, PLL2 at %ld MHz\n",
  348. clk_pll1.rate / 1000000, clk_pll2.rate / 1000000);
  349. printk(KERN_INFO "ep93xx: FCLK %ld MHz, HCLK %ld MHz, PCLK %ld MHz\n",
  350. clk_f.rate / 1000000, clk_h.rate / 1000000,
  351. clk_p.rate / 1000000);
  352. for (i = 0; i < ARRAY_SIZE(clocks); i++)
  353. clkdev_add(&clocks[i]);
  354. return 0;
  355. }
  356. arch_initcall(ep93xx_clock_init);