lguest.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050
  1. /*P:100
  2. * This is the Launcher code, a simple program which lays out the "physical"
  3. * memory for the new Guest by mapping the kernel image and the virtual
  4. * devices, then opens /dev/lguest to tell the kernel about the Guest and
  5. * control it.
  6. :*/
  7. #define _LARGEFILE64_SOURCE
  8. #define _GNU_SOURCE
  9. #include <stdio.h>
  10. #include <string.h>
  11. #include <unistd.h>
  12. #include <err.h>
  13. #include <stdint.h>
  14. #include <stdlib.h>
  15. #include <elf.h>
  16. #include <sys/mman.h>
  17. #include <sys/param.h>
  18. #include <sys/types.h>
  19. #include <sys/stat.h>
  20. #include <sys/wait.h>
  21. #include <sys/eventfd.h>
  22. #include <fcntl.h>
  23. #include <stdbool.h>
  24. #include <errno.h>
  25. #include <ctype.h>
  26. #include <sys/socket.h>
  27. #include <sys/ioctl.h>
  28. #include <sys/time.h>
  29. #include <time.h>
  30. #include <netinet/in.h>
  31. #include <net/if.h>
  32. #include <linux/sockios.h>
  33. #include <linux/if_tun.h>
  34. #include <sys/uio.h>
  35. #include <termios.h>
  36. #include <getopt.h>
  37. #include <zlib.h>
  38. #include <assert.h>
  39. #include <sched.h>
  40. #include <limits.h>
  41. #include <stddef.h>
  42. #include <signal.h>
  43. #include "linux/lguest_launcher.h"
  44. #include "linux/virtio_config.h"
  45. #include <linux/virtio_ids.h>
  46. #include "linux/virtio_net.h"
  47. #include "linux/virtio_blk.h"
  48. #include "linux/virtio_console.h"
  49. #include "linux/virtio_rng.h"
  50. #include "linux/virtio_ring.h"
  51. #include "asm/bootparam.h"
  52. /*L:110
  53. * We can ignore the 42 include files we need for this program, but I do want
  54. * to draw attention to the use of kernel-style types.
  55. *
  56. * As Linus said, "C is a Spartan language, and so should your naming be." I
  57. * like these abbreviations, so we define them here. Note that u64 is always
  58. * unsigned long long, which works on all Linux systems: this means that we can
  59. * use %llu in printf for any u64.
  60. */
  61. typedef unsigned long long u64;
  62. typedef uint32_t u32;
  63. typedef uint16_t u16;
  64. typedef uint8_t u8;
  65. /*:*/
  66. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  67. #define BRIDGE_PFX "bridge:"
  68. #ifndef SIOCBRADDIF
  69. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  70. #endif
  71. /* We can have up to 256 pages for devices. */
  72. #define DEVICE_PAGES 256
  73. /* This will occupy 3 pages: it must be a power of 2. */
  74. #define VIRTQUEUE_NUM 256
  75. /*L:120
  76. * verbose is both a global flag and a macro. The C preprocessor allows
  77. * this, and although I wouldn't recommend it, it works quite nicely here.
  78. */
  79. static bool verbose;
  80. #define verbose(args...) \
  81. do { if (verbose) printf(args); } while(0)
  82. /*:*/
  83. /* The pointer to the start of guest memory. */
  84. static void *guest_base;
  85. /* The maximum guest physical address allowed, and maximum possible. */
  86. static unsigned long guest_limit, guest_max;
  87. /* The /dev/lguest file descriptor. */
  88. static int lguest_fd;
  89. /* a per-cpu variable indicating whose vcpu is currently running */
  90. static unsigned int __thread cpu_id;
  91. /* This is our list of devices. */
  92. struct device_list {
  93. /* Counter to assign interrupt numbers. */
  94. unsigned int next_irq;
  95. /* Counter to print out convenient device numbers. */
  96. unsigned int device_num;
  97. /* The descriptor page for the devices. */
  98. u8 *descpage;
  99. /* A single linked list of devices. */
  100. struct device *dev;
  101. /* And a pointer to the last device for easy append. */
  102. struct device *lastdev;
  103. };
  104. /* The list of Guest devices, based on command line arguments. */
  105. static struct device_list devices;
  106. /* The device structure describes a single device. */
  107. struct device {
  108. /* The linked-list pointer. */
  109. struct device *next;
  110. /* The device's descriptor, as mapped into the Guest. */
  111. struct lguest_device_desc *desc;
  112. /* We can't trust desc values once Guest has booted: we use these. */
  113. unsigned int feature_len;
  114. unsigned int num_vq;
  115. /* The name of this device, for --verbose. */
  116. const char *name;
  117. /* Any queues attached to this device */
  118. struct virtqueue *vq;
  119. /* Is it operational */
  120. bool running;
  121. /* Does Guest want an intrrupt on empty? */
  122. bool irq_on_empty;
  123. /* Device-specific data. */
  124. void *priv;
  125. };
  126. /* The virtqueue structure describes a queue attached to a device. */
  127. struct virtqueue {
  128. struct virtqueue *next;
  129. /* Which device owns me. */
  130. struct device *dev;
  131. /* The configuration for this queue. */
  132. struct lguest_vqconfig config;
  133. /* The actual ring of buffers. */
  134. struct vring vring;
  135. /* Last available index we saw. */
  136. u16 last_avail_idx;
  137. /* How many are used since we sent last irq? */
  138. unsigned int pending_used;
  139. /* Eventfd where Guest notifications arrive. */
  140. int eventfd;
  141. /* Function for the thread which is servicing this virtqueue. */
  142. void (*service)(struct virtqueue *vq);
  143. pid_t thread;
  144. };
  145. /* Remember the arguments to the program so we can "reboot" */
  146. static char **main_args;
  147. /* The original tty settings to restore on exit. */
  148. static struct termios orig_term;
  149. /*
  150. * We have to be careful with barriers: our devices are all run in separate
  151. * threads and so we need to make sure that changes visible to the Guest happen
  152. * in precise order.
  153. */
  154. #define wmb() __asm__ __volatile__("" : : : "memory")
  155. #define mb() __asm__ __volatile__("" : : : "memory")
  156. /*
  157. * Convert an iovec element to the given type.
  158. *
  159. * This is a fairly ugly trick: we need to know the size of the type and
  160. * alignment requirement to check the pointer is kosher. It's also nice to
  161. * have the name of the type in case we report failure.
  162. *
  163. * Typing those three things all the time is cumbersome and error prone, so we
  164. * have a macro which sets them all up and passes to the real function.
  165. */
  166. #define convert(iov, type) \
  167. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  168. static void *_convert(struct iovec *iov, size_t size, size_t align,
  169. const char *name)
  170. {
  171. if (iov->iov_len != size)
  172. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  173. if ((unsigned long)iov->iov_base % align != 0)
  174. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  175. return iov->iov_base;
  176. }
  177. /* Wrapper for the last available index. Makes it easier to change. */
  178. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  179. /*
  180. * The virtio configuration space is defined to be little-endian. x86 is
  181. * little-endian too, but it's nice to be explicit so we have these helpers.
  182. */
  183. #define cpu_to_le16(v16) (v16)
  184. #define cpu_to_le32(v32) (v32)
  185. #define cpu_to_le64(v64) (v64)
  186. #define le16_to_cpu(v16) (v16)
  187. #define le32_to_cpu(v32) (v32)
  188. #define le64_to_cpu(v64) (v64)
  189. /* Is this iovec empty? */
  190. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  191. {
  192. unsigned int i;
  193. for (i = 0; i < num_iov; i++)
  194. if (iov[i].iov_len)
  195. return false;
  196. return true;
  197. }
  198. /* Take len bytes from the front of this iovec. */
  199. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  200. {
  201. unsigned int i;
  202. for (i = 0; i < num_iov; i++) {
  203. unsigned int used;
  204. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  205. iov[i].iov_base += used;
  206. iov[i].iov_len -= used;
  207. len -= used;
  208. }
  209. assert(len == 0);
  210. }
  211. /* The device virtqueue descriptors are followed by feature bitmasks. */
  212. static u8 *get_feature_bits(struct device *dev)
  213. {
  214. return (u8 *)(dev->desc + 1)
  215. + dev->num_vq * sizeof(struct lguest_vqconfig);
  216. }
  217. /*L:100
  218. * The Launcher code itself takes us out into userspace, that scary place where
  219. * pointers run wild and free! Unfortunately, like most userspace programs,
  220. * it's quite boring (which is why everyone likes to hack on the kernel!).
  221. * Perhaps if you make up an Lguest Drinking Game at this point, it will get
  222. * you through this section. Or, maybe not.
  223. *
  224. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  225. * memory and stores it in "guest_base". In other words, Guest physical ==
  226. * Launcher virtual with an offset.
  227. *
  228. * This can be tough to get your head around, but usually it just means that we
  229. * use these trivial conversion functions when the Guest gives us it's
  230. * "physical" addresses:
  231. */
  232. static void *from_guest_phys(unsigned long addr)
  233. {
  234. return guest_base + addr;
  235. }
  236. static unsigned long to_guest_phys(const void *addr)
  237. {
  238. return (addr - guest_base);
  239. }
  240. /*L:130
  241. * Loading the Kernel.
  242. *
  243. * We start with couple of simple helper routines. open_or_die() avoids
  244. * error-checking code cluttering the callers:
  245. */
  246. static int open_or_die(const char *name, int flags)
  247. {
  248. int fd = open(name, flags);
  249. if (fd < 0)
  250. err(1, "Failed to open %s", name);
  251. return fd;
  252. }
  253. /* map_zeroed_pages() takes a number of pages. */
  254. static void *map_zeroed_pages(unsigned int num)
  255. {
  256. int fd = open_or_die("/dev/zero", O_RDONLY);
  257. void *addr;
  258. /*
  259. * We use a private mapping (ie. if we write to the page, it will be
  260. * copied).
  261. */
  262. addr = mmap(NULL, getpagesize() * num,
  263. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  264. if (addr == MAP_FAILED)
  265. err(1, "Mmaping %u pages of /dev/zero", num);
  266. /*
  267. * One neat mmap feature is that you can close the fd, and it
  268. * stays mapped.
  269. */
  270. close(fd);
  271. return addr;
  272. }
  273. /* Get some more pages for a device. */
  274. static void *get_pages(unsigned int num)
  275. {
  276. void *addr = from_guest_phys(guest_limit);
  277. guest_limit += num * getpagesize();
  278. if (guest_limit > guest_max)
  279. errx(1, "Not enough memory for devices");
  280. return addr;
  281. }
  282. /*
  283. * This routine is used to load the kernel or initrd. It tries mmap, but if
  284. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  285. * it falls back to reading the memory in.
  286. */
  287. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  288. {
  289. ssize_t r;
  290. /*
  291. * We map writable even though for some segments are marked read-only.
  292. * The kernel really wants to be writable: it patches its own
  293. * instructions.
  294. *
  295. * MAP_PRIVATE means that the page won't be copied until a write is
  296. * done to it. This allows us to share untouched memory between
  297. * Guests.
  298. */
  299. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  300. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  301. return;
  302. /* pread does a seek and a read in one shot: saves a few lines. */
  303. r = pread(fd, addr, len, offset);
  304. if (r != len)
  305. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  306. }
  307. /*
  308. * This routine takes an open vmlinux image, which is in ELF, and maps it into
  309. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  310. * by all modern binaries on Linux including the kernel.
  311. *
  312. * The ELF headers give *two* addresses: a physical address, and a virtual
  313. * address. We use the physical address; the Guest will map itself to the
  314. * virtual address.
  315. *
  316. * We return the starting address.
  317. */
  318. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  319. {
  320. Elf32_Phdr phdr[ehdr->e_phnum];
  321. unsigned int i;
  322. /*
  323. * Sanity checks on the main ELF header: an x86 executable with a
  324. * reasonable number of correctly-sized program headers.
  325. */
  326. if (ehdr->e_type != ET_EXEC
  327. || ehdr->e_machine != EM_386
  328. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  329. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  330. errx(1, "Malformed elf header");
  331. /*
  332. * An ELF executable contains an ELF header and a number of "program"
  333. * headers which indicate which parts ("segments") of the program to
  334. * load where.
  335. */
  336. /* We read in all the program headers at once: */
  337. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  338. err(1, "Seeking to program headers");
  339. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  340. err(1, "Reading program headers");
  341. /*
  342. * Try all the headers: there are usually only three. A read-only one,
  343. * a read-write one, and a "note" section which we don't load.
  344. */
  345. for (i = 0; i < ehdr->e_phnum; i++) {
  346. /* If this isn't a loadable segment, we ignore it */
  347. if (phdr[i].p_type != PT_LOAD)
  348. continue;
  349. verbose("Section %i: size %i addr %p\n",
  350. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  351. /* We map this section of the file at its physical address. */
  352. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  353. phdr[i].p_offset, phdr[i].p_filesz);
  354. }
  355. /* The entry point is given in the ELF header. */
  356. return ehdr->e_entry;
  357. }
  358. /*L:150
  359. * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
  360. * to jump into it and it will unpack itself. We used to have to perform some
  361. * hairy magic because the unpacking code scared me.
  362. *
  363. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  364. * a small patch to jump over the tricky bits in the Guest, so now we just read
  365. * the funky header so we know where in the file to load, and away we go!
  366. */
  367. static unsigned long load_bzimage(int fd)
  368. {
  369. struct boot_params boot;
  370. int r;
  371. /* Modern bzImages get loaded at 1M. */
  372. void *p = from_guest_phys(0x100000);
  373. /*
  374. * Go back to the start of the file and read the header. It should be
  375. * a Linux boot header (see Documentation/x86/i386/boot.txt)
  376. */
  377. lseek(fd, 0, SEEK_SET);
  378. read(fd, &boot, sizeof(boot));
  379. /* Inside the setup_hdr, we expect the magic "HdrS" */
  380. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  381. errx(1, "This doesn't look like a bzImage to me");
  382. /* Skip over the extra sectors of the header. */
  383. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  384. /* Now read everything into memory. in nice big chunks. */
  385. while ((r = read(fd, p, 65536)) > 0)
  386. p += r;
  387. /* Finally, code32_start tells us where to enter the kernel. */
  388. return boot.hdr.code32_start;
  389. }
  390. /*L:140
  391. * Loading the kernel is easy when it's a "vmlinux", but most kernels
  392. * come wrapped up in the self-decompressing "bzImage" format. With a little
  393. * work, we can load those, too.
  394. */
  395. static unsigned long load_kernel(int fd)
  396. {
  397. Elf32_Ehdr hdr;
  398. /* Read in the first few bytes. */
  399. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  400. err(1, "Reading kernel");
  401. /* If it's an ELF file, it starts with "\177ELF" */
  402. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  403. return map_elf(fd, &hdr);
  404. /* Otherwise we assume it's a bzImage, and try to load it. */
  405. return load_bzimage(fd);
  406. }
  407. /*
  408. * This is a trivial little helper to align pages. Andi Kleen hated it because
  409. * it calls getpagesize() twice: "it's dumb code."
  410. *
  411. * Kernel guys get really het up about optimization, even when it's not
  412. * necessary. I leave this code as a reaction against that.
  413. */
  414. static inline unsigned long page_align(unsigned long addr)
  415. {
  416. /* Add upwards and truncate downwards. */
  417. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  418. }
  419. /*L:180
  420. * An "initial ram disk" is a disk image loaded into memory along with the
  421. * kernel which the kernel can use to boot from without needing any drivers.
  422. * Most distributions now use this as standard: the initrd contains the code to
  423. * load the appropriate driver modules for the current machine.
  424. *
  425. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  426. * kernels. He sent me this (and tells me when I break it).
  427. */
  428. static unsigned long load_initrd(const char *name, unsigned long mem)
  429. {
  430. int ifd;
  431. struct stat st;
  432. unsigned long len;
  433. ifd = open_or_die(name, O_RDONLY);
  434. /* fstat() is needed to get the file size. */
  435. if (fstat(ifd, &st) < 0)
  436. err(1, "fstat() on initrd '%s'", name);
  437. /*
  438. * We map the initrd at the top of memory, but mmap wants it to be
  439. * page-aligned, so we round the size up for that.
  440. */
  441. len = page_align(st.st_size);
  442. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  443. /*
  444. * Once a file is mapped, you can close the file descriptor. It's a
  445. * little odd, but quite useful.
  446. */
  447. close(ifd);
  448. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  449. /* We return the initrd size. */
  450. return len;
  451. }
  452. /*:*/
  453. /*
  454. * Simple routine to roll all the commandline arguments together with spaces
  455. * between them.
  456. */
  457. static void concat(char *dst, char *args[])
  458. {
  459. unsigned int i, len = 0;
  460. for (i = 0; args[i]; i++) {
  461. if (i) {
  462. strcat(dst+len, " ");
  463. len++;
  464. }
  465. strcpy(dst+len, args[i]);
  466. len += strlen(args[i]);
  467. }
  468. /* In case it's empty. */
  469. dst[len] = '\0';
  470. }
  471. /*L:185
  472. * This is where we actually tell the kernel to initialize the Guest. We
  473. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  474. * the base of Guest "physical" memory, the top physical page to allow and the
  475. * entry point for the Guest.
  476. */
  477. static void tell_kernel(unsigned long start)
  478. {
  479. unsigned long args[] = { LHREQ_INITIALIZE,
  480. (unsigned long)guest_base,
  481. guest_limit / getpagesize(), start };
  482. verbose("Guest: %p - %p (%#lx)\n",
  483. guest_base, guest_base + guest_limit, guest_limit);
  484. lguest_fd = open_or_die("/dev/lguest", O_RDWR);
  485. if (write(lguest_fd, args, sizeof(args)) < 0)
  486. err(1, "Writing to /dev/lguest");
  487. }
  488. /*:*/
  489. /*L:200
  490. * Device Handling.
  491. *
  492. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  493. * We need to make sure it's not trying to reach into the Launcher itself, so
  494. * we have a convenient routine which checks it and exits with an error message
  495. * if something funny is going on:
  496. */
  497. static void *_check_pointer(unsigned long addr, unsigned int size,
  498. unsigned int line)
  499. {
  500. /*
  501. * We have to separately check addr and addr+size, because size could
  502. * be huge and addr + size might wrap around.
  503. */
  504. if (addr >= guest_limit || addr + size >= guest_limit)
  505. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  506. /*
  507. * We return a pointer for the caller's convenience, now we know it's
  508. * safe to use.
  509. */
  510. return from_guest_phys(addr);
  511. }
  512. /* A macro which transparently hands the line number to the real function. */
  513. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  514. /*
  515. * Each buffer in the virtqueues is actually a chain of descriptors. This
  516. * function returns the next descriptor in the chain, or vq->vring.num if we're
  517. * at the end.
  518. */
  519. static unsigned next_desc(struct vring_desc *desc,
  520. unsigned int i, unsigned int max)
  521. {
  522. unsigned int next;
  523. /* If this descriptor says it doesn't chain, we're done. */
  524. if (!(desc[i].flags & VRING_DESC_F_NEXT))
  525. return max;
  526. /* Check they're not leading us off end of descriptors. */
  527. next = desc[i].next;
  528. /* Make sure compiler knows to grab that: we don't want it changing! */
  529. wmb();
  530. if (next >= max)
  531. errx(1, "Desc next is %u", next);
  532. return next;
  533. }
  534. /*
  535. * This actually sends the interrupt for this virtqueue, if we've used a
  536. * buffer.
  537. */
  538. static void trigger_irq(struct virtqueue *vq)
  539. {
  540. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  541. /* Don't inform them if nothing used. */
  542. if (!vq->pending_used)
  543. return;
  544. vq->pending_used = 0;
  545. /* If they don't want an interrupt, don't send one... */
  546. if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
  547. /* ... unless they've asked us to force one on empty. */
  548. if (!vq->dev->irq_on_empty
  549. || lg_last_avail(vq) != vq->vring.avail->idx)
  550. return;
  551. }
  552. /* Send the Guest an interrupt tell them we used something up. */
  553. if (write(lguest_fd, buf, sizeof(buf)) != 0)
  554. err(1, "Triggering irq %i", vq->config.irq);
  555. }
  556. /*
  557. * This looks in the virtqueue for the first available buffer, and converts
  558. * it to an iovec for convenient access. Since descriptors consist of some
  559. * number of output then some number of input descriptors, it's actually two
  560. * iovecs, but we pack them into one and note how many of each there were.
  561. *
  562. * This function waits if necessary, and returns the descriptor number found.
  563. */
  564. static unsigned wait_for_vq_desc(struct virtqueue *vq,
  565. struct iovec iov[],
  566. unsigned int *out_num, unsigned int *in_num)
  567. {
  568. unsigned int i, head, max;
  569. struct vring_desc *desc;
  570. u16 last_avail = lg_last_avail(vq);
  571. /* There's nothing available? */
  572. while (last_avail == vq->vring.avail->idx) {
  573. u64 event;
  574. /*
  575. * Since we're about to sleep, now is a good time to tell the
  576. * Guest about what we've used up to now.
  577. */
  578. trigger_irq(vq);
  579. /* OK, now we need to know about added descriptors. */
  580. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  581. /*
  582. * They could have slipped one in as we were doing that: make
  583. * sure it's written, then check again.
  584. */
  585. mb();
  586. if (last_avail != vq->vring.avail->idx) {
  587. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  588. break;
  589. }
  590. /* Nothing new? Wait for eventfd to tell us they refilled. */
  591. if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
  592. errx(1, "Event read failed?");
  593. /* We don't need to be notified again. */
  594. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  595. }
  596. /* Check it isn't doing very strange things with descriptor numbers. */
  597. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  598. errx(1, "Guest moved used index from %u to %u",
  599. last_avail, vq->vring.avail->idx);
  600. /*
  601. * Grab the next descriptor number they're advertising, and increment
  602. * the index we've seen.
  603. */
  604. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  605. lg_last_avail(vq)++;
  606. /* If their number is silly, that's a fatal mistake. */
  607. if (head >= vq->vring.num)
  608. errx(1, "Guest says index %u is available", head);
  609. /* When we start there are none of either input nor output. */
  610. *out_num = *in_num = 0;
  611. max = vq->vring.num;
  612. desc = vq->vring.desc;
  613. i = head;
  614. /*
  615. * If this is an indirect entry, then this buffer contains a descriptor
  616. * table which we handle as if it's any normal descriptor chain.
  617. */
  618. if (desc[i].flags & VRING_DESC_F_INDIRECT) {
  619. if (desc[i].len % sizeof(struct vring_desc))
  620. errx(1, "Invalid size for indirect buffer table");
  621. max = desc[i].len / sizeof(struct vring_desc);
  622. desc = check_pointer(desc[i].addr, desc[i].len);
  623. i = 0;
  624. }
  625. do {
  626. /* Grab the first descriptor, and check it's OK. */
  627. iov[*out_num + *in_num].iov_len = desc[i].len;
  628. iov[*out_num + *in_num].iov_base
  629. = check_pointer(desc[i].addr, desc[i].len);
  630. /* If this is an input descriptor, increment that count. */
  631. if (desc[i].flags & VRING_DESC_F_WRITE)
  632. (*in_num)++;
  633. else {
  634. /*
  635. * If it's an output descriptor, they're all supposed
  636. * to come before any input descriptors.
  637. */
  638. if (*in_num)
  639. errx(1, "Descriptor has out after in");
  640. (*out_num)++;
  641. }
  642. /* If we've got too many, that implies a descriptor loop. */
  643. if (*out_num + *in_num > max)
  644. errx(1, "Looped descriptor");
  645. } while ((i = next_desc(desc, i, max)) != max);
  646. return head;
  647. }
  648. /*
  649. * After we've used one of their buffers, we tell the Guest about it. Sometime
  650. * later we'll want to send them an interrupt using trigger_irq(); note that
  651. * wait_for_vq_desc() does that for us if it has to wait.
  652. */
  653. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  654. {
  655. struct vring_used_elem *used;
  656. /*
  657. * The virtqueue contains a ring of used buffers. Get a pointer to the
  658. * next entry in that used ring.
  659. */
  660. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  661. used->id = head;
  662. used->len = len;
  663. /* Make sure buffer is written before we update index. */
  664. wmb();
  665. vq->vring.used->idx++;
  666. vq->pending_used++;
  667. }
  668. /* And here's the combo meal deal. Supersize me! */
  669. static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
  670. {
  671. add_used(vq, head, len);
  672. trigger_irq(vq);
  673. }
  674. /*
  675. * The Console
  676. *
  677. * We associate some data with the console for our exit hack.
  678. */
  679. struct console_abort {
  680. /* How many times have they hit ^C? */
  681. int count;
  682. /* When did they start? */
  683. struct timeval start;
  684. };
  685. /* This is the routine which handles console input (ie. stdin). */
  686. static void console_input(struct virtqueue *vq)
  687. {
  688. int len;
  689. unsigned int head, in_num, out_num;
  690. struct console_abort *abort = vq->dev->priv;
  691. struct iovec iov[vq->vring.num];
  692. /* Make sure there's a descriptor available. */
  693. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  694. if (out_num)
  695. errx(1, "Output buffers in console in queue?");
  696. /* Read into it. This is where we usually wait. */
  697. len = readv(STDIN_FILENO, iov, in_num);
  698. if (len <= 0) {
  699. /* Ran out of input? */
  700. warnx("Failed to get console input, ignoring console.");
  701. /*
  702. * For simplicity, dying threads kill the whole Launcher. So
  703. * just nap here.
  704. */
  705. for (;;)
  706. pause();
  707. }
  708. /* Tell the Guest we used a buffer. */
  709. add_used_and_trigger(vq, head, len);
  710. /*
  711. * Three ^C within one second? Exit.
  712. *
  713. * This is such a hack, but works surprisingly well. Each ^C has to
  714. * be in a buffer by itself, so they can't be too fast. But we check
  715. * that we get three within about a second, so they can't be too
  716. * slow.
  717. */
  718. if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
  719. abort->count = 0;
  720. return;
  721. }
  722. abort->count++;
  723. if (abort->count == 1)
  724. gettimeofday(&abort->start, NULL);
  725. else if (abort->count == 3) {
  726. struct timeval now;
  727. gettimeofday(&now, NULL);
  728. /* Kill all Launcher processes with SIGINT, like normal ^C */
  729. if (now.tv_sec <= abort->start.tv_sec+1)
  730. kill(0, SIGINT);
  731. abort->count = 0;
  732. }
  733. }
  734. /* This is the routine which handles console output (ie. stdout). */
  735. static void console_output(struct virtqueue *vq)
  736. {
  737. unsigned int head, out, in;
  738. struct iovec iov[vq->vring.num];
  739. /* We usually wait in here, for the Guest to give us something. */
  740. head = wait_for_vq_desc(vq, iov, &out, &in);
  741. if (in)
  742. errx(1, "Input buffers in console output queue?");
  743. /* writev can return a partial write, so we loop here. */
  744. while (!iov_empty(iov, out)) {
  745. int len = writev(STDOUT_FILENO, iov, out);
  746. if (len <= 0)
  747. err(1, "Write to stdout gave %i", len);
  748. iov_consume(iov, out, len);
  749. }
  750. /*
  751. * We're finished with that buffer: if we're going to sleep,
  752. * wait_for_vq_desc() will prod the Guest with an interrupt.
  753. */
  754. add_used(vq, head, 0);
  755. }
  756. /*
  757. * The Network
  758. *
  759. * Handling output for network is also simple: we get all the output buffers
  760. * and write them to /dev/net/tun.
  761. */
  762. struct net_info {
  763. int tunfd;
  764. };
  765. static void net_output(struct virtqueue *vq)
  766. {
  767. struct net_info *net_info = vq->dev->priv;
  768. unsigned int head, out, in;
  769. struct iovec iov[vq->vring.num];
  770. /* We usually wait in here for the Guest to give us a packet. */
  771. head = wait_for_vq_desc(vq, iov, &out, &in);
  772. if (in)
  773. errx(1, "Input buffers in net output queue?");
  774. /*
  775. * Send the whole thing through to /dev/net/tun. It expects the exact
  776. * same format: what a coincidence!
  777. */
  778. if (writev(net_info->tunfd, iov, out) < 0)
  779. errx(1, "Write to tun failed?");
  780. /*
  781. * Done with that one; wait_for_vq_desc() will send the interrupt if
  782. * all packets are processed.
  783. */
  784. add_used(vq, head, 0);
  785. }
  786. /*
  787. * Handling network input is a bit trickier, because I've tried to optimize it.
  788. *
  789. * First we have a helper routine which tells is if from this file descriptor
  790. * (ie. the /dev/net/tun device) will block:
  791. */
  792. static bool will_block(int fd)
  793. {
  794. fd_set fdset;
  795. struct timeval zero = { 0, 0 };
  796. FD_ZERO(&fdset);
  797. FD_SET(fd, &fdset);
  798. return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
  799. }
  800. /*
  801. * This handles packets coming in from the tun device to our Guest. Like all
  802. * service routines, it gets called again as soon as it returns, so you don't
  803. * see a while(1) loop here.
  804. */
  805. static void net_input(struct virtqueue *vq)
  806. {
  807. int len;
  808. unsigned int head, out, in;
  809. struct iovec iov[vq->vring.num];
  810. struct net_info *net_info = vq->dev->priv;
  811. /*
  812. * Get a descriptor to write an incoming packet into. This will also
  813. * send an interrupt if they're out of descriptors.
  814. */
  815. head = wait_for_vq_desc(vq, iov, &out, &in);
  816. if (out)
  817. errx(1, "Output buffers in net input queue?");
  818. /*
  819. * If it looks like we'll block reading from the tun device, send them
  820. * an interrupt.
  821. */
  822. if (vq->pending_used && will_block(net_info->tunfd))
  823. trigger_irq(vq);
  824. /*
  825. * Read in the packet. This is where we normally wait (when there's no
  826. * incoming network traffic).
  827. */
  828. len = readv(net_info->tunfd, iov, in);
  829. if (len <= 0)
  830. err(1, "Failed to read from tun.");
  831. /*
  832. * Mark that packet buffer as used, but don't interrupt here. We want
  833. * to wait until we've done as much work as we can.
  834. */
  835. add_used(vq, head, len);
  836. }
  837. /*:*/
  838. /* This is the helper to create threads: run the service routine in a loop. */
  839. static int do_thread(void *_vq)
  840. {
  841. struct virtqueue *vq = _vq;
  842. for (;;)
  843. vq->service(vq);
  844. return 0;
  845. }
  846. /*
  847. * When a child dies, we kill our entire process group with SIGTERM. This
  848. * also has the side effect that the shell restores the console for us!
  849. */
  850. static void kill_launcher(int signal)
  851. {
  852. kill(0, SIGTERM);
  853. }
  854. static void reset_device(struct device *dev)
  855. {
  856. struct virtqueue *vq;
  857. verbose("Resetting device %s\n", dev->name);
  858. /* Clear any features they've acked. */
  859. memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
  860. /* We're going to be explicitly killing threads, so ignore them. */
  861. signal(SIGCHLD, SIG_IGN);
  862. /* Zero out the virtqueues, get rid of their threads */
  863. for (vq = dev->vq; vq; vq = vq->next) {
  864. if (vq->thread != (pid_t)-1) {
  865. kill(vq->thread, SIGTERM);
  866. waitpid(vq->thread, NULL, 0);
  867. vq->thread = (pid_t)-1;
  868. }
  869. memset(vq->vring.desc, 0,
  870. vring_size(vq->config.num, LGUEST_VRING_ALIGN));
  871. lg_last_avail(vq) = 0;
  872. }
  873. dev->running = false;
  874. /* Now we care if threads die. */
  875. signal(SIGCHLD, (void *)kill_launcher);
  876. }
  877. /*L:216
  878. * This actually creates the thread which services the virtqueue for a device.
  879. */
  880. static void create_thread(struct virtqueue *vq)
  881. {
  882. /*
  883. * Create stack for thread. Since the stack grows upwards, we point
  884. * the stack pointer to the end of this region.
  885. */
  886. char *stack = malloc(32768);
  887. unsigned long args[] = { LHREQ_EVENTFD,
  888. vq->config.pfn*getpagesize(), 0 };
  889. /* Create a zero-initialized eventfd. */
  890. vq->eventfd = eventfd(0, 0);
  891. if (vq->eventfd < 0)
  892. err(1, "Creating eventfd");
  893. args[2] = vq->eventfd;
  894. /*
  895. * Attach an eventfd to this virtqueue: it will go off when the Guest
  896. * does an LHCALL_NOTIFY for this vq.
  897. */
  898. if (write(lguest_fd, &args, sizeof(args)) != 0)
  899. err(1, "Attaching eventfd");
  900. /*
  901. * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
  902. * we get a signal if it dies.
  903. */
  904. vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
  905. if (vq->thread == (pid_t)-1)
  906. err(1, "Creating clone");
  907. /* We close our local copy now the child has it. */
  908. close(vq->eventfd);
  909. }
  910. static bool accepted_feature(struct device *dev, unsigned int bit)
  911. {
  912. const u8 *features = get_feature_bits(dev) + dev->feature_len;
  913. if (dev->feature_len < bit / CHAR_BIT)
  914. return false;
  915. return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
  916. }
  917. static void start_device(struct device *dev)
  918. {
  919. unsigned int i;
  920. struct virtqueue *vq;
  921. verbose("Device %s OK: offered", dev->name);
  922. for (i = 0; i < dev->feature_len; i++)
  923. verbose(" %02x", get_feature_bits(dev)[i]);
  924. verbose(", accepted");
  925. for (i = 0; i < dev->feature_len; i++)
  926. verbose(" %02x", get_feature_bits(dev)
  927. [dev->feature_len+i]);
  928. dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  929. for (vq = dev->vq; vq; vq = vq->next) {
  930. if (vq->service)
  931. create_thread(vq);
  932. }
  933. dev->running = true;
  934. }
  935. static void cleanup_devices(void)
  936. {
  937. struct device *dev;
  938. for (dev = devices.dev; dev; dev = dev->next)
  939. reset_device(dev);
  940. /* If we saved off the original terminal settings, restore them now. */
  941. if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
  942. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  943. }
  944. /* When the Guest tells us they updated the status field, we handle it. */
  945. static void update_device_status(struct device *dev)
  946. {
  947. /* A zero status is a reset, otherwise it's a set of flags. */
  948. if (dev->desc->status == 0)
  949. reset_device(dev);
  950. else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  951. warnx("Device %s configuration FAILED", dev->name);
  952. if (dev->running)
  953. reset_device(dev);
  954. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  955. if (!dev->running)
  956. start_device(dev);
  957. }
  958. }
  959. /*L:215
  960. * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
  961. * particular, it's used to notify us of device status changes during boot.
  962. */
  963. static void handle_output(unsigned long addr)
  964. {
  965. struct device *i;
  966. /* Check each device. */
  967. for (i = devices.dev; i; i = i->next) {
  968. struct virtqueue *vq;
  969. /*
  970. * Notifications to device descriptors mean they updated the
  971. * device status.
  972. */
  973. if (from_guest_phys(addr) == i->desc) {
  974. update_device_status(i);
  975. return;
  976. }
  977. /*
  978. * Devices *can* be used before status is set to DRIVER_OK.
  979. * The original plan was that they would never do this: they
  980. * would always finish setting up their status bits before
  981. * actually touching the virtqueues. In practice, we allowed
  982. * them to, and they do (eg. the disk probes for partition
  983. * tables as part of initialization).
  984. *
  985. * If we see this, we start the device: once it's running, we
  986. * expect the device to catch all the notifications.
  987. */
  988. for (vq = i->vq; vq; vq = vq->next) {
  989. if (addr != vq->config.pfn*getpagesize())
  990. continue;
  991. if (i->running)
  992. errx(1, "Notification on running %s", i->name);
  993. /* This just calls create_thread() for each virtqueue */
  994. start_device(i);
  995. return;
  996. }
  997. }
  998. /*
  999. * Early console write is done using notify on a nul-terminated string
  1000. * in Guest memory. It's also great for hacking debugging messages
  1001. * into a Guest.
  1002. */
  1003. if (addr >= guest_limit)
  1004. errx(1, "Bad NOTIFY %#lx", addr);
  1005. write(STDOUT_FILENO, from_guest_phys(addr),
  1006. strnlen(from_guest_phys(addr), guest_limit - addr));
  1007. }
  1008. /*L:190
  1009. * Device Setup
  1010. *
  1011. * All devices need a descriptor so the Guest knows it exists, and a "struct
  1012. * device" so the Launcher can keep track of it. We have common helper
  1013. * routines to allocate and manage them.
  1014. */
  1015. /*
  1016. * The layout of the device page is a "struct lguest_device_desc" followed by a
  1017. * number of virtqueue descriptors, then two sets of feature bits, then an
  1018. * array of configuration bytes. This routine returns the configuration
  1019. * pointer.
  1020. */
  1021. static u8 *device_config(const struct device *dev)
  1022. {
  1023. return (void *)(dev->desc + 1)
  1024. + dev->num_vq * sizeof(struct lguest_vqconfig)
  1025. + dev->feature_len * 2;
  1026. }
  1027. /*
  1028. * This routine allocates a new "struct lguest_device_desc" from descriptor
  1029. * table page just above the Guest's normal memory. It returns a pointer to
  1030. * that descriptor.
  1031. */
  1032. static struct lguest_device_desc *new_dev_desc(u16 type)
  1033. {
  1034. struct lguest_device_desc d = { .type = type };
  1035. void *p;
  1036. /* Figure out where the next device config is, based on the last one. */
  1037. if (devices.lastdev)
  1038. p = device_config(devices.lastdev)
  1039. + devices.lastdev->desc->config_len;
  1040. else
  1041. p = devices.descpage;
  1042. /* We only have one page for all the descriptors. */
  1043. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  1044. errx(1, "Too many devices");
  1045. /* p might not be aligned, so we memcpy in. */
  1046. return memcpy(p, &d, sizeof(d));
  1047. }
  1048. /*
  1049. * Each device descriptor is followed by the description of its virtqueues. We
  1050. * specify how many descriptors the virtqueue is to have.
  1051. */
  1052. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  1053. void (*service)(struct virtqueue *))
  1054. {
  1055. unsigned int pages;
  1056. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  1057. void *p;
  1058. /* First we need some memory for this virtqueue. */
  1059. pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
  1060. / getpagesize();
  1061. p = get_pages(pages);
  1062. /* Initialize the virtqueue */
  1063. vq->next = NULL;
  1064. vq->last_avail_idx = 0;
  1065. vq->dev = dev;
  1066. /*
  1067. * This is the routine the service thread will run, and its Process ID
  1068. * once it's running.
  1069. */
  1070. vq->service = service;
  1071. vq->thread = (pid_t)-1;
  1072. /* Initialize the configuration. */
  1073. vq->config.num = num_descs;
  1074. vq->config.irq = devices.next_irq++;
  1075. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1076. /* Initialize the vring. */
  1077. vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
  1078. /*
  1079. * Append virtqueue to this device's descriptor. We use
  1080. * device_config() to get the end of the device's current virtqueues;
  1081. * we check that we haven't added any config or feature information
  1082. * yet, otherwise we'd be overwriting them.
  1083. */
  1084. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1085. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1086. dev->num_vq++;
  1087. dev->desc->num_vq++;
  1088. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1089. /*
  1090. * Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1091. * second.
  1092. */
  1093. for (i = &dev->vq; *i; i = &(*i)->next);
  1094. *i = vq;
  1095. }
  1096. /*
  1097. * The first half of the feature bitmask is for us to advertise features. The
  1098. * second half is for the Guest to accept features.
  1099. */
  1100. static void add_feature(struct device *dev, unsigned bit)
  1101. {
  1102. u8 *features = get_feature_bits(dev);
  1103. /* We can't extend the feature bits once we've added config bytes */
  1104. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1105. assert(dev->desc->config_len == 0);
  1106. dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
  1107. }
  1108. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1109. }
  1110. /*
  1111. * This routine sets the configuration fields for an existing device's
  1112. * descriptor. It only works for the last device, but that's OK because that's
  1113. * how we use it.
  1114. */
  1115. static void set_config(struct device *dev, unsigned len, const void *conf)
  1116. {
  1117. /* Check we haven't overflowed our single page. */
  1118. if (device_config(dev) + len > devices.descpage + getpagesize())
  1119. errx(1, "Too many devices");
  1120. /* Copy in the config information, and store the length. */
  1121. memcpy(device_config(dev), conf, len);
  1122. dev->desc->config_len = len;
  1123. /* Size must fit in config_len field (8 bits)! */
  1124. assert(dev->desc->config_len == len);
  1125. }
  1126. /*
  1127. * This routine does all the creation and setup of a new device, including
  1128. * calling new_dev_desc() to allocate the descriptor and device memory. We
  1129. * don't actually start the service threads until later.
  1130. *
  1131. * See what I mean about userspace being boring?
  1132. */
  1133. static struct device *new_device(const char *name, u16 type)
  1134. {
  1135. struct device *dev = malloc(sizeof(*dev));
  1136. /* Now we populate the fields one at a time. */
  1137. dev->desc = new_dev_desc(type);
  1138. dev->name = name;
  1139. dev->vq = NULL;
  1140. dev->feature_len = 0;
  1141. dev->num_vq = 0;
  1142. dev->running = false;
  1143. /*
  1144. * Append to device list. Prepending to a single-linked list is
  1145. * easier, but the user expects the devices to be arranged on the bus
  1146. * in command-line order. The first network device on the command line
  1147. * is eth0, the first block device /dev/vda, etc.
  1148. */
  1149. if (devices.lastdev)
  1150. devices.lastdev->next = dev;
  1151. else
  1152. devices.dev = dev;
  1153. devices.lastdev = dev;
  1154. return dev;
  1155. }
  1156. /*
  1157. * Our first setup routine is the console. It's a fairly simple device, but
  1158. * UNIX tty handling makes it uglier than it could be.
  1159. */
  1160. static void setup_console(void)
  1161. {
  1162. struct device *dev;
  1163. /* If we can save the initial standard input settings... */
  1164. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1165. struct termios term = orig_term;
  1166. /*
  1167. * Then we turn off echo, line buffering and ^C etc: We want a
  1168. * raw input stream to the Guest.
  1169. */
  1170. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1171. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1172. }
  1173. dev = new_device("console", VIRTIO_ID_CONSOLE);
  1174. /* We store the console state in dev->priv, and initialize it. */
  1175. dev->priv = malloc(sizeof(struct console_abort));
  1176. ((struct console_abort *)dev->priv)->count = 0;
  1177. /*
  1178. * The console needs two virtqueues: the input then the output. When
  1179. * they put something the input queue, we make sure we're listening to
  1180. * stdin. When they put something in the output queue, we write it to
  1181. * stdout.
  1182. */
  1183. add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
  1184. add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
  1185. verbose("device %u: console\n", ++devices.device_num);
  1186. }
  1187. /*:*/
  1188. /*M:010
  1189. * Inter-guest networking is an interesting area. Simplest is to have a
  1190. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1191. * used to send packets to another guest in a 1:1 manner.
  1192. *
  1193. * More sopisticated is to use one of the tools developed for project like UML
  1194. * to do networking.
  1195. *
  1196. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1197. * completely generic ("here's my vring, attach to your vring") and would work
  1198. * for any traffic. Of course, namespace and permissions issues need to be
  1199. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1200. * multiple inter-guest channels behind one interface, although it would
  1201. * require some manner of hotplugging new virtio channels.
  1202. *
  1203. * Finally, we could implement a virtio network switch in the kernel.
  1204. :*/
  1205. static u32 str2ip(const char *ipaddr)
  1206. {
  1207. unsigned int b[4];
  1208. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1209. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1210. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1211. }
  1212. static void str2mac(const char *macaddr, unsigned char mac[6])
  1213. {
  1214. unsigned int m[6];
  1215. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1216. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1217. errx(1, "Failed to parse mac address '%s'", macaddr);
  1218. mac[0] = m[0];
  1219. mac[1] = m[1];
  1220. mac[2] = m[2];
  1221. mac[3] = m[3];
  1222. mac[4] = m[4];
  1223. mac[5] = m[5];
  1224. }
  1225. /*
  1226. * This code is "adapted" from libbridge: it attaches the Host end of the
  1227. * network device to the bridge device specified by the command line.
  1228. *
  1229. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1230. * dislike bridging), and I just try not to break it.
  1231. */
  1232. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1233. {
  1234. int ifidx;
  1235. struct ifreq ifr;
  1236. if (!*br_name)
  1237. errx(1, "must specify bridge name");
  1238. ifidx = if_nametoindex(if_name);
  1239. if (!ifidx)
  1240. errx(1, "interface %s does not exist!", if_name);
  1241. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1242. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1243. ifr.ifr_ifindex = ifidx;
  1244. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1245. err(1, "can't add %s to bridge %s", if_name, br_name);
  1246. }
  1247. /*
  1248. * This sets up the Host end of the network device with an IP address, brings
  1249. * it up so packets will flow, the copies the MAC address into the hwaddr
  1250. * pointer.
  1251. */
  1252. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1253. {
  1254. struct ifreq ifr;
  1255. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1256. memset(&ifr, 0, sizeof(ifr));
  1257. strcpy(ifr.ifr_name, tapif);
  1258. /* Don't read these incantations. Just cut & paste them like I did! */
  1259. sin->sin_family = AF_INET;
  1260. sin->sin_addr.s_addr = htonl(ipaddr);
  1261. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1262. err(1, "Setting %s interface address", tapif);
  1263. ifr.ifr_flags = IFF_UP;
  1264. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1265. err(1, "Bringing interface %s up", tapif);
  1266. }
  1267. static int get_tun_device(char tapif[IFNAMSIZ])
  1268. {
  1269. struct ifreq ifr;
  1270. int netfd;
  1271. /* Start with this zeroed. Messy but sure. */
  1272. memset(&ifr, 0, sizeof(ifr));
  1273. /*
  1274. * We open the /dev/net/tun device and tell it we want a tap device. A
  1275. * tap device is like a tun device, only somehow different. To tell
  1276. * the truth, I completely blundered my way through this code, but it
  1277. * works now!
  1278. */
  1279. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1280. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1281. strcpy(ifr.ifr_name, "tap%d");
  1282. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1283. err(1, "configuring /dev/net/tun");
  1284. if (ioctl(netfd, TUNSETOFFLOAD,
  1285. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1286. err(1, "Could not set features for tun device");
  1287. /*
  1288. * We don't need checksums calculated for packets coming in this
  1289. * device: trust us!
  1290. */
  1291. ioctl(netfd, TUNSETNOCSUM, 1);
  1292. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1293. return netfd;
  1294. }
  1295. /*L:195
  1296. * Our network is a Host<->Guest network. This can either use bridging or
  1297. * routing, but the principle is the same: it uses the "tun" device to inject
  1298. * packets into the Host as if they came in from a normal network card. We
  1299. * just shunt packets between the Guest and the tun device.
  1300. */
  1301. static void setup_tun_net(char *arg)
  1302. {
  1303. struct device *dev;
  1304. struct net_info *net_info = malloc(sizeof(*net_info));
  1305. int ipfd;
  1306. u32 ip = INADDR_ANY;
  1307. bool bridging = false;
  1308. char tapif[IFNAMSIZ], *p;
  1309. struct virtio_net_config conf;
  1310. net_info->tunfd = get_tun_device(tapif);
  1311. /* First we create a new network device. */
  1312. dev = new_device("net", VIRTIO_ID_NET);
  1313. dev->priv = net_info;
  1314. /* Network devices need a recv and a send queue, just like console. */
  1315. add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
  1316. add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
  1317. /*
  1318. * We need a socket to perform the magic network ioctls to bring up the
  1319. * tap interface, connect to the bridge etc. Any socket will do!
  1320. */
  1321. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1322. if (ipfd < 0)
  1323. err(1, "opening IP socket");
  1324. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1325. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1326. arg += strlen(BRIDGE_PFX);
  1327. bridging = true;
  1328. }
  1329. /* A mac address may follow the bridge name or IP address */
  1330. p = strchr(arg, ':');
  1331. if (p) {
  1332. str2mac(p+1, conf.mac);
  1333. add_feature(dev, VIRTIO_NET_F_MAC);
  1334. *p = '\0';
  1335. }
  1336. /* arg is now either an IP address or a bridge name */
  1337. if (bridging)
  1338. add_to_bridge(ipfd, tapif, arg);
  1339. else
  1340. ip = str2ip(arg);
  1341. /* Set up the tun device. */
  1342. configure_device(ipfd, tapif, ip);
  1343. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1344. /* Expect Guest to handle everything except UFO */
  1345. add_feature(dev, VIRTIO_NET_F_CSUM);
  1346. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1347. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1348. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1349. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1350. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1351. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1352. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1353. /* We handle indirect ring entries */
  1354. add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
  1355. set_config(dev, sizeof(conf), &conf);
  1356. /* We don't need the socket any more; setup is done. */
  1357. close(ipfd);
  1358. devices.device_num++;
  1359. if (bridging)
  1360. verbose("device %u: tun %s attached to bridge: %s\n",
  1361. devices.device_num, tapif, arg);
  1362. else
  1363. verbose("device %u: tun %s: %s\n",
  1364. devices.device_num, tapif, arg);
  1365. }
  1366. /*:*/
  1367. /* This hangs off device->priv. */
  1368. struct vblk_info {
  1369. /* The size of the file. */
  1370. off64_t len;
  1371. /* The file descriptor for the file. */
  1372. int fd;
  1373. };
  1374. /*L:210
  1375. * The Disk
  1376. *
  1377. * The disk only has one virtqueue, so it only has one thread. It is really
  1378. * simple: the Guest asks for a block number and we read or write that position
  1379. * in the file.
  1380. *
  1381. * Before we serviced each virtqueue in a separate thread, that was unacceptably
  1382. * slow: the Guest waits until the read is finished before running anything
  1383. * else, even if it could have been doing useful work.
  1384. *
  1385. * We could have used async I/O, except it's reputed to suck so hard that
  1386. * characters actually go missing from your code when you try to use it.
  1387. */
  1388. static void blk_request(struct virtqueue *vq)
  1389. {
  1390. struct vblk_info *vblk = vq->dev->priv;
  1391. unsigned int head, out_num, in_num, wlen;
  1392. int ret;
  1393. u8 *in;
  1394. struct virtio_blk_outhdr *out;
  1395. struct iovec iov[vq->vring.num];
  1396. off64_t off;
  1397. /*
  1398. * Get the next request, where we normally wait. It triggers the
  1399. * interrupt to acknowledge previously serviced requests (if any).
  1400. */
  1401. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1402. /*
  1403. * Every block request should contain at least one output buffer
  1404. * (detailing the location on disk and the type of request) and one
  1405. * input buffer (to hold the result).
  1406. */
  1407. if (out_num == 0 || in_num == 0)
  1408. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1409. head, out_num, in_num);
  1410. out = convert(&iov[0], struct virtio_blk_outhdr);
  1411. in = convert(&iov[out_num+in_num-1], u8);
  1412. /*
  1413. * For historical reasons, block operations are expressed in 512 byte
  1414. * "sectors".
  1415. */
  1416. off = out->sector * 512;
  1417. /*
  1418. * The block device implements "barriers", where the Guest indicates
  1419. * that it wants all previous writes to occur before this write. We
  1420. * don't have a way of asking our kernel to do a barrier, so we just
  1421. * synchronize all the data in the file. Pretty poor, no?
  1422. */
  1423. if (out->type & VIRTIO_BLK_T_BARRIER)
  1424. fdatasync(vblk->fd);
  1425. /*
  1426. * In general the virtio block driver is allowed to try SCSI commands.
  1427. * It'd be nice if we supported eject, for example, but we don't.
  1428. */
  1429. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1430. fprintf(stderr, "Scsi commands unsupported\n");
  1431. *in = VIRTIO_BLK_S_UNSUPP;
  1432. wlen = sizeof(*in);
  1433. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1434. /*
  1435. * Write
  1436. *
  1437. * Move to the right location in the block file. This can fail
  1438. * if they try to write past end.
  1439. */
  1440. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1441. err(1, "Bad seek to sector %llu", out->sector);
  1442. ret = writev(vblk->fd, iov+1, out_num-1);
  1443. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1444. /*
  1445. * Grr... Now we know how long the descriptor they sent was, we
  1446. * make sure they didn't try to write over the end of the block
  1447. * file (possibly extending it).
  1448. */
  1449. if (ret > 0 && off + ret > vblk->len) {
  1450. /* Trim it back to the correct length */
  1451. ftruncate64(vblk->fd, vblk->len);
  1452. /* Die, bad Guest, die. */
  1453. errx(1, "Write past end %llu+%u", off, ret);
  1454. }
  1455. wlen = sizeof(*in);
  1456. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1457. } else {
  1458. /*
  1459. * Read
  1460. *
  1461. * Move to the right location in the block file. This can fail
  1462. * if they try to read past end.
  1463. */
  1464. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1465. err(1, "Bad seek to sector %llu", out->sector);
  1466. ret = readv(vblk->fd, iov+1, in_num-1);
  1467. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1468. if (ret >= 0) {
  1469. wlen = sizeof(*in) + ret;
  1470. *in = VIRTIO_BLK_S_OK;
  1471. } else {
  1472. wlen = sizeof(*in);
  1473. *in = VIRTIO_BLK_S_IOERR;
  1474. }
  1475. }
  1476. /*
  1477. * OK, so we noted that it was pretty poor to use an fdatasync as a
  1478. * barrier. But Christoph Hellwig points out that we need a sync
  1479. * *afterwards* as well: "Barriers specify no reordering to the front
  1480. * or the back." And Jens Axboe confirmed it, so here we are:
  1481. */
  1482. if (out->type & VIRTIO_BLK_T_BARRIER)
  1483. fdatasync(vblk->fd);
  1484. /* Finished that request. */
  1485. add_used(vq, head, wlen);
  1486. }
  1487. /*L:198 This actually sets up a virtual block device. */
  1488. static void setup_block_file(const char *filename)
  1489. {
  1490. struct device *dev;
  1491. struct vblk_info *vblk;
  1492. struct virtio_blk_config conf;
  1493. /* Creat the device. */
  1494. dev = new_device("block", VIRTIO_ID_BLOCK);
  1495. /* The device has one virtqueue, where the Guest places requests. */
  1496. add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
  1497. /* Allocate the room for our own bookkeeping */
  1498. vblk = dev->priv = malloc(sizeof(*vblk));
  1499. /* First we open the file and store the length. */
  1500. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1501. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1502. /* We support barriers. */
  1503. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1504. /* Tell Guest how many sectors this device has. */
  1505. conf.capacity = cpu_to_le64(vblk->len / 512);
  1506. /*
  1507. * Tell Guest not to put in too many descriptors at once: two are used
  1508. * for the in and out elements.
  1509. */
  1510. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1511. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1512. /* Don't try to put whole struct: we have 8 bit limit. */
  1513. set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
  1514. verbose("device %u: virtblock %llu sectors\n",
  1515. ++devices.device_num, le64_to_cpu(conf.capacity));
  1516. }
  1517. /*L:211
  1518. * Our random number generator device reads from /dev/random into the Guest's
  1519. * input buffers. The usual case is that the Guest doesn't want random numbers
  1520. * and so has no buffers although /dev/random is still readable, whereas
  1521. * console is the reverse.
  1522. *
  1523. * The same logic applies, however.
  1524. */
  1525. struct rng_info {
  1526. int rfd;
  1527. };
  1528. static void rng_input(struct virtqueue *vq)
  1529. {
  1530. int len;
  1531. unsigned int head, in_num, out_num, totlen = 0;
  1532. struct rng_info *rng_info = vq->dev->priv;
  1533. struct iovec iov[vq->vring.num];
  1534. /* First we need a buffer from the Guests's virtqueue. */
  1535. head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
  1536. if (out_num)
  1537. errx(1, "Output buffers in rng?");
  1538. /*
  1539. * Just like the console write, we loop to cover the whole iovec.
  1540. * In this case, short reads actually happen quite a bit.
  1541. */
  1542. while (!iov_empty(iov, in_num)) {
  1543. len = readv(rng_info->rfd, iov, in_num);
  1544. if (len <= 0)
  1545. err(1, "Read from /dev/random gave %i", len);
  1546. iov_consume(iov, in_num, len);
  1547. totlen += len;
  1548. }
  1549. /* Tell the Guest about the new input. */
  1550. add_used(vq, head, totlen);
  1551. }
  1552. /*L:199
  1553. * This creates a "hardware" random number device for the Guest.
  1554. */
  1555. static void setup_rng(void)
  1556. {
  1557. struct device *dev;
  1558. struct rng_info *rng_info = malloc(sizeof(*rng_info));
  1559. /* Our device's privat info simply contains the /dev/random fd. */
  1560. rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
  1561. /* Create the new device. */
  1562. dev = new_device("rng", VIRTIO_ID_RNG);
  1563. dev->priv = rng_info;
  1564. /* The device has one virtqueue, where the Guest places inbufs. */
  1565. add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
  1566. verbose("device %u: rng\n", devices.device_num++);
  1567. }
  1568. /* That's the end of device setup. */
  1569. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1570. static void __attribute__((noreturn)) restart_guest(void)
  1571. {
  1572. unsigned int i;
  1573. /*
  1574. * Since we don't track all open fds, we simply close everything beyond
  1575. * stderr.
  1576. */
  1577. for (i = 3; i < FD_SETSIZE; i++)
  1578. close(i);
  1579. /* Reset all the devices (kills all threads). */
  1580. cleanup_devices();
  1581. execv(main_args[0], main_args);
  1582. err(1, "Could not exec %s", main_args[0]);
  1583. }
  1584. /*L:220
  1585. * Finally we reach the core of the Launcher which runs the Guest, serves
  1586. * its input and output, and finally, lays it to rest.
  1587. */
  1588. static void __attribute__((noreturn)) run_guest(void)
  1589. {
  1590. for (;;) {
  1591. unsigned long notify_addr;
  1592. int readval;
  1593. /* We read from the /dev/lguest device to run the Guest. */
  1594. readval = pread(lguest_fd, &notify_addr,
  1595. sizeof(notify_addr), cpu_id);
  1596. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1597. if (readval == sizeof(notify_addr)) {
  1598. verbose("Notify on address %#lx\n", notify_addr);
  1599. handle_output(notify_addr);
  1600. /* ENOENT means the Guest died. Reading tells us why. */
  1601. } else if (errno == ENOENT) {
  1602. char reason[1024] = { 0 };
  1603. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1604. errx(1, "%s", reason);
  1605. /* ERESTART means that we need to reboot the guest */
  1606. } else if (errno == ERESTART) {
  1607. restart_guest();
  1608. /* Anything else means a bug or incompatible change. */
  1609. } else
  1610. err(1, "Running guest failed");
  1611. }
  1612. }
  1613. /*L:240
  1614. * This is the end of the Launcher. The good news: we are over halfway
  1615. * through! The bad news: the most fiendish part of the code still lies ahead
  1616. * of us.
  1617. *
  1618. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1619. * "make Host".
  1620. :*/
  1621. static struct option opts[] = {
  1622. { "verbose", 0, NULL, 'v' },
  1623. { "tunnet", 1, NULL, 't' },
  1624. { "block", 1, NULL, 'b' },
  1625. { "rng", 0, NULL, 'r' },
  1626. { "initrd", 1, NULL, 'i' },
  1627. { NULL },
  1628. };
  1629. static void usage(void)
  1630. {
  1631. errx(1, "Usage: lguest [--verbose] "
  1632. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1633. "|--block=<filename>|--initrd=<filename>]...\n"
  1634. "<mem-in-mb> vmlinux [args...]");
  1635. }
  1636. /*L:105 The main routine is where the real work begins: */
  1637. int main(int argc, char *argv[])
  1638. {
  1639. /* Memory, code startpoint and size of the (optional) initrd. */
  1640. unsigned long mem = 0, start, initrd_size = 0;
  1641. /* Two temporaries. */
  1642. int i, c;
  1643. /* The boot information for the Guest. */
  1644. struct boot_params *boot;
  1645. /* If they specify an initrd file to load. */
  1646. const char *initrd_name = NULL;
  1647. /* Save the args: we "reboot" by execing ourselves again. */
  1648. main_args = argv;
  1649. /*
  1650. * First we initialize the device list. We keep a pointer to the last
  1651. * device, and the next interrupt number to use for devices (1:
  1652. * remember that 0 is used by the timer).
  1653. */
  1654. devices.lastdev = NULL;
  1655. devices.next_irq = 1;
  1656. /* We're CPU 0. In fact, that's the only CPU possible right now. */
  1657. cpu_id = 0;
  1658. /*
  1659. * We need to know how much memory so we can set up the device
  1660. * descriptor and memory pages for the devices as we parse the command
  1661. * line. So we quickly look through the arguments to find the amount
  1662. * of memory now.
  1663. */
  1664. for (i = 1; i < argc; i++) {
  1665. if (argv[i][0] != '-') {
  1666. mem = atoi(argv[i]) * 1024 * 1024;
  1667. /*
  1668. * We start by mapping anonymous pages over all of
  1669. * guest-physical memory range. This fills it with 0,
  1670. * and ensures that the Guest won't be killed when it
  1671. * tries to access it.
  1672. */
  1673. guest_base = map_zeroed_pages(mem / getpagesize()
  1674. + DEVICE_PAGES);
  1675. guest_limit = mem;
  1676. guest_max = mem + DEVICE_PAGES*getpagesize();
  1677. devices.descpage = get_pages(1);
  1678. break;
  1679. }
  1680. }
  1681. /* The options are fairly straight-forward */
  1682. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1683. switch (c) {
  1684. case 'v':
  1685. verbose = true;
  1686. break;
  1687. case 't':
  1688. setup_tun_net(optarg);
  1689. break;
  1690. case 'b':
  1691. setup_block_file(optarg);
  1692. break;
  1693. case 'r':
  1694. setup_rng();
  1695. break;
  1696. case 'i':
  1697. initrd_name = optarg;
  1698. break;
  1699. default:
  1700. warnx("Unknown argument %s", argv[optind]);
  1701. usage();
  1702. }
  1703. }
  1704. /*
  1705. * After the other arguments we expect memory and kernel image name,
  1706. * followed by command line arguments for the kernel.
  1707. */
  1708. if (optind + 2 > argc)
  1709. usage();
  1710. verbose("Guest base is at %p\n", guest_base);
  1711. /* We always have a console device */
  1712. setup_console();
  1713. /* Now we load the kernel */
  1714. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1715. /* Boot information is stashed at physical address 0 */
  1716. boot = from_guest_phys(0);
  1717. /* Map the initrd image if requested (at top of physical memory) */
  1718. if (initrd_name) {
  1719. initrd_size = load_initrd(initrd_name, mem);
  1720. /*
  1721. * These are the location in the Linux boot header where the
  1722. * start and size of the initrd are expected to be found.
  1723. */
  1724. boot->hdr.ramdisk_image = mem - initrd_size;
  1725. boot->hdr.ramdisk_size = initrd_size;
  1726. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1727. boot->hdr.type_of_loader = 0xFF;
  1728. }
  1729. /*
  1730. * The Linux boot header contains an "E820" memory map: ours is a
  1731. * simple, single region.
  1732. */
  1733. boot->e820_entries = 1;
  1734. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1735. /*
  1736. * The boot header contains a command line pointer: we put the command
  1737. * line after the boot header.
  1738. */
  1739. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1740. /* We use a simple helper to copy the arguments separated by spaces. */
  1741. concat((char *)(boot + 1), argv+optind+2);
  1742. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1743. boot->hdr.version = 0x207;
  1744. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1745. boot->hdr.hardware_subarch = 1;
  1746. /* Tell the entry path not to try to reload segment registers. */
  1747. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1748. /*
  1749. * We tell the kernel to initialize the Guest: this returns the open
  1750. * /dev/lguest file descriptor.
  1751. */
  1752. tell_kernel(start);
  1753. /* Ensure that we terminate if a device-servicing child dies. */
  1754. signal(SIGCHLD, kill_launcher);
  1755. /* If we exit via err(), this kills all the threads, restores tty. */
  1756. atexit(cleanup_devices);
  1757. /* Finally, run the Guest. This doesn't return. */
  1758. run_guest();
  1759. }
  1760. /*:*/
  1761. /*M:999
  1762. * Mastery is done: you now know everything I do.
  1763. *
  1764. * But surely you have seen code, features and bugs in your wanderings which
  1765. * you now yearn to attack? That is the real game, and I look forward to you
  1766. * patching and forking lguest into the Your-Name-Here-visor.
  1767. *
  1768. * Farewell, and good coding!
  1769. * Rusty Russell.
  1770. */