debug.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /*
  2. * kernel/sched/debug.c
  3. *
  4. * Print the CFS rbtree
  5. *
  6. * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/utsname.h>
  17. #include "sched.h"
  18. static DEFINE_SPINLOCK(sched_debug_lock);
  19. /*
  20. * This allows printing both to /proc/sched_debug and
  21. * to the console
  22. */
  23. #define SEQ_printf(m, x...) \
  24. do { \
  25. if (m) \
  26. seq_printf(m, x); \
  27. else \
  28. printk(x); \
  29. } while (0)
  30. /*
  31. * Ease the printing of nsec fields:
  32. */
  33. static long long nsec_high(unsigned long long nsec)
  34. {
  35. if ((long long)nsec < 0) {
  36. nsec = -nsec;
  37. do_div(nsec, 1000000);
  38. return -nsec;
  39. }
  40. do_div(nsec, 1000000);
  41. return nsec;
  42. }
  43. static unsigned long nsec_low(unsigned long long nsec)
  44. {
  45. if ((long long)nsec < 0)
  46. nsec = -nsec;
  47. return do_div(nsec, 1000000);
  48. }
  49. #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  50. #ifdef CONFIG_FAIR_GROUP_SCHED
  51. static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
  52. {
  53. struct sched_entity *se = tg->se[cpu];
  54. #define P(F) \
  55. SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
  56. #define PN(F) \
  57. SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
  58. if (!se) {
  59. struct sched_avg *avg = &cpu_rq(cpu)->avg;
  60. P(avg->runnable_avg_sum);
  61. P(avg->runnable_avg_period);
  62. return;
  63. }
  64. PN(se->exec_start);
  65. PN(se->vruntime);
  66. PN(se->sum_exec_runtime);
  67. #ifdef CONFIG_SCHEDSTATS
  68. PN(se->statistics.wait_start);
  69. PN(se->statistics.sleep_start);
  70. PN(se->statistics.block_start);
  71. PN(se->statistics.sleep_max);
  72. PN(se->statistics.block_max);
  73. PN(se->statistics.exec_max);
  74. PN(se->statistics.slice_max);
  75. PN(se->statistics.wait_max);
  76. PN(se->statistics.wait_sum);
  77. P(se->statistics.wait_count);
  78. #endif
  79. P(se->load.weight);
  80. #ifdef CONFIG_SMP
  81. P(se->avg.runnable_avg_sum);
  82. P(se->avg.runnable_avg_period);
  83. #endif
  84. #undef PN
  85. #undef P
  86. }
  87. #endif
  88. #ifdef CONFIG_CGROUP_SCHED
  89. static char group_path[PATH_MAX];
  90. static char *task_group_path(struct task_group *tg)
  91. {
  92. if (autogroup_path(tg, group_path, PATH_MAX))
  93. return group_path;
  94. /*
  95. * May be NULL if the underlying cgroup isn't fully-created yet
  96. */
  97. if (!tg->css.cgroup) {
  98. group_path[0] = '\0';
  99. return group_path;
  100. }
  101. cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
  102. return group_path;
  103. }
  104. #endif
  105. static void
  106. print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
  107. {
  108. if (rq->curr == p)
  109. SEQ_printf(m, "R");
  110. else
  111. SEQ_printf(m, " ");
  112. SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
  113. p->comm, p->pid,
  114. SPLIT_NS(p->se.vruntime),
  115. (long long)(p->nvcsw + p->nivcsw),
  116. p->prio);
  117. #ifdef CONFIG_SCHEDSTATS
  118. SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
  119. SPLIT_NS(p->se.vruntime),
  120. SPLIT_NS(p->se.sum_exec_runtime),
  121. SPLIT_NS(p->se.statistics.sum_sleep_runtime));
  122. #else
  123. SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
  124. 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
  125. #endif
  126. #ifdef CONFIG_CGROUP_SCHED
  127. SEQ_printf(m, " %s", task_group_path(task_group(p)));
  128. #endif
  129. SEQ_printf(m, "\n");
  130. }
  131. static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
  132. {
  133. struct task_struct *g, *p;
  134. unsigned long flags;
  135. SEQ_printf(m,
  136. "\nrunnable tasks:\n"
  137. " task PID tree-key switches prio"
  138. " exec-runtime sum-exec sum-sleep\n"
  139. "------------------------------------------------------"
  140. "----------------------------------------------------\n");
  141. read_lock_irqsave(&tasklist_lock, flags);
  142. do_each_thread(g, p) {
  143. if (!p->on_rq || task_cpu(p) != rq_cpu)
  144. continue;
  145. print_task(m, rq, p);
  146. } while_each_thread(g, p);
  147. read_unlock_irqrestore(&tasklist_lock, flags);
  148. }
  149. void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
  150. {
  151. s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
  152. spread, rq0_min_vruntime, spread0;
  153. struct rq *rq = cpu_rq(cpu);
  154. struct sched_entity *last;
  155. unsigned long flags;
  156. #ifdef CONFIG_FAIR_GROUP_SCHED
  157. SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
  158. #else
  159. SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
  160. #endif
  161. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
  162. SPLIT_NS(cfs_rq->exec_clock));
  163. raw_spin_lock_irqsave(&rq->lock, flags);
  164. if (cfs_rq->rb_leftmost)
  165. MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
  166. last = __pick_last_entity(cfs_rq);
  167. if (last)
  168. max_vruntime = last->vruntime;
  169. min_vruntime = cfs_rq->min_vruntime;
  170. rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
  171. raw_spin_unlock_irqrestore(&rq->lock, flags);
  172. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
  173. SPLIT_NS(MIN_vruntime));
  174. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
  175. SPLIT_NS(min_vruntime));
  176. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
  177. SPLIT_NS(max_vruntime));
  178. spread = max_vruntime - MIN_vruntime;
  179. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
  180. SPLIT_NS(spread));
  181. spread0 = min_vruntime - rq0_min_vruntime;
  182. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
  183. SPLIT_NS(spread0));
  184. SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
  185. cfs_rq->nr_spread_over);
  186. SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
  187. SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
  188. #ifdef CONFIG_FAIR_GROUP_SCHED
  189. #ifdef CONFIG_SMP
  190. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_avg",
  191. SPLIT_NS(cfs_rq->load_avg));
  192. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_period",
  193. SPLIT_NS(cfs_rq->load_period));
  194. SEQ_printf(m, " .%-30s: %ld\n", "load_contrib",
  195. cfs_rq->load_contribution);
  196. SEQ_printf(m, " .%-30s: %d\n", "load_tg",
  197. atomic_read(&cfs_rq->tg->load_weight));
  198. #endif
  199. print_cfs_group_stats(m, cpu, cfs_rq->tg);
  200. #endif
  201. }
  202. void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
  203. {
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
  206. #else
  207. SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
  208. #endif
  209. #define P(x) \
  210. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
  211. #define PN(x) \
  212. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
  213. P(rt_nr_running);
  214. P(rt_throttled);
  215. PN(rt_time);
  216. PN(rt_runtime);
  217. #undef PN
  218. #undef P
  219. }
  220. extern __read_mostly int sched_clock_running;
  221. static void print_cpu(struct seq_file *m, int cpu)
  222. {
  223. struct rq *rq = cpu_rq(cpu);
  224. unsigned long flags;
  225. #ifdef CONFIG_X86
  226. {
  227. unsigned int freq = cpu_khz ? : 1;
  228. SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
  229. cpu, freq / 1000, (freq % 1000));
  230. }
  231. #else
  232. SEQ_printf(m, "\ncpu#%d\n", cpu);
  233. #endif
  234. #define P(x) \
  235. do { \
  236. if (sizeof(rq->x) == 4) \
  237. SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
  238. else \
  239. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
  240. } while (0)
  241. #define PN(x) \
  242. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
  243. P(nr_running);
  244. SEQ_printf(m, " .%-30s: %lu\n", "load",
  245. rq->load.weight);
  246. P(nr_switches);
  247. P(nr_load_updates);
  248. P(nr_uninterruptible);
  249. PN(next_balance);
  250. P(curr->pid);
  251. PN(clock);
  252. P(cpu_load[0]);
  253. P(cpu_load[1]);
  254. P(cpu_load[2]);
  255. P(cpu_load[3]);
  256. P(cpu_load[4]);
  257. #undef P
  258. #undef PN
  259. #ifdef CONFIG_SCHEDSTATS
  260. #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
  261. #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
  262. P(yld_count);
  263. P(sched_count);
  264. P(sched_goidle);
  265. #ifdef CONFIG_SMP
  266. P64(avg_idle);
  267. #endif
  268. P(ttwu_count);
  269. P(ttwu_local);
  270. #undef P
  271. #undef P64
  272. #endif
  273. spin_lock_irqsave(&sched_debug_lock, flags);
  274. print_cfs_stats(m, cpu);
  275. print_rt_stats(m, cpu);
  276. rcu_read_lock();
  277. print_rq(m, rq, cpu);
  278. rcu_read_unlock();
  279. spin_unlock_irqrestore(&sched_debug_lock, flags);
  280. }
  281. static const char *sched_tunable_scaling_names[] = {
  282. "none",
  283. "logaritmic",
  284. "linear"
  285. };
  286. static int sched_debug_show(struct seq_file *m, void *v)
  287. {
  288. u64 ktime, sched_clk, cpu_clk;
  289. unsigned long flags;
  290. int cpu;
  291. local_irq_save(flags);
  292. ktime = ktime_to_ns(ktime_get());
  293. sched_clk = sched_clock();
  294. cpu_clk = local_clock();
  295. local_irq_restore(flags);
  296. SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
  297. init_utsname()->release,
  298. (int)strcspn(init_utsname()->version, " "),
  299. init_utsname()->version);
  300. #define P(x) \
  301. SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
  302. #define PN(x) \
  303. SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
  304. PN(ktime);
  305. PN(sched_clk);
  306. PN(cpu_clk);
  307. P(jiffies);
  308. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  309. P(sched_clock_stable);
  310. #endif
  311. #undef PN
  312. #undef P
  313. SEQ_printf(m, "\n");
  314. SEQ_printf(m, "sysctl_sched\n");
  315. #define P(x) \
  316. SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
  317. #define PN(x) \
  318. SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
  319. PN(sysctl_sched_latency);
  320. PN(sysctl_sched_min_granularity);
  321. PN(sysctl_sched_wakeup_granularity);
  322. P(sysctl_sched_child_runs_first);
  323. P(sysctl_sched_features);
  324. #undef PN
  325. #undef P
  326. SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling",
  327. sysctl_sched_tunable_scaling,
  328. sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
  329. for_each_online_cpu(cpu)
  330. print_cpu(m, cpu);
  331. SEQ_printf(m, "\n");
  332. return 0;
  333. }
  334. void sysrq_sched_debug_show(void)
  335. {
  336. sched_debug_show(NULL, NULL);
  337. }
  338. static int sched_debug_open(struct inode *inode, struct file *filp)
  339. {
  340. return single_open(filp, sched_debug_show, NULL);
  341. }
  342. static const struct file_operations sched_debug_fops = {
  343. .open = sched_debug_open,
  344. .read = seq_read,
  345. .llseek = seq_lseek,
  346. .release = single_release,
  347. };
  348. static int __init init_sched_debug_procfs(void)
  349. {
  350. struct proc_dir_entry *pe;
  351. pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
  352. if (!pe)
  353. return -ENOMEM;
  354. return 0;
  355. }
  356. __initcall(init_sched_debug_procfs);
  357. void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
  358. {
  359. unsigned long nr_switches;
  360. SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid,
  361. get_nr_threads(p));
  362. SEQ_printf(m,
  363. "---------------------------------------------------------\n");
  364. #define __P(F) \
  365. SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
  366. #define P(F) \
  367. SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
  368. #define __PN(F) \
  369. SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
  370. #define PN(F) \
  371. SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
  372. PN(se.exec_start);
  373. PN(se.vruntime);
  374. PN(se.sum_exec_runtime);
  375. nr_switches = p->nvcsw + p->nivcsw;
  376. #ifdef CONFIG_SCHEDSTATS
  377. PN(se.statistics.wait_start);
  378. PN(se.statistics.sleep_start);
  379. PN(se.statistics.block_start);
  380. PN(se.statistics.sleep_max);
  381. PN(se.statistics.block_max);
  382. PN(se.statistics.exec_max);
  383. PN(se.statistics.slice_max);
  384. PN(se.statistics.wait_max);
  385. PN(se.statistics.wait_sum);
  386. P(se.statistics.wait_count);
  387. PN(se.statistics.iowait_sum);
  388. P(se.statistics.iowait_count);
  389. P(se.nr_migrations);
  390. P(se.statistics.nr_migrations_cold);
  391. P(se.statistics.nr_failed_migrations_affine);
  392. P(se.statistics.nr_failed_migrations_running);
  393. P(se.statistics.nr_failed_migrations_hot);
  394. P(se.statistics.nr_forced_migrations);
  395. P(se.statistics.nr_wakeups);
  396. P(se.statistics.nr_wakeups_sync);
  397. P(se.statistics.nr_wakeups_migrate);
  398. P(se.statistics.nr_wakeups_local);
  399. P(se.statistics.nr_wakeups_remote);
  400. P(se.statistics.nr_wakeups_affine);
  401. P(se.statistics.nr_wakeups_affine_attempts);
  402. P(se.statistics.nr_wakeups_passive);
  403. P(se.statistics.nr_wakeups_idle);
  404. {
  405. u64 avg_atom, avg_per_cpu;
  406. avg_atom = p->se.sum_exec_runtime;
  407. if (nr_switches)
  408. do_div(avg_atom, nr_switches);
  409. else
  410. avg_atom = -1LL;
  411. avg_per_cpu = p->se.sum_exec_runtime;
  412. if (p->se.nr_migrations) {
  413. avg_per_cpu = div64_u64(avg_per_cpu,
  414. p->se.nr_migrations);
  415. } else {
  416. avg_per_cpu = -1LL;
  417. }
  418. __PN(avg_atom);
  419. __PN(avg_per_cpu);
  420. }
  421. #endif
  422. __P(nr_switches);
  423. SEQ_printf(m, "%-35s:%21Ld\n",
  424. "nr_voluntary_switches", (long long)p->nvcsw);
  425. SEQ_printf(m, "%-35s:%21Ld\n",
  426. "nr_involuntary_switches", (long long)p->nivcsw);
  427. P(se.load.weight);
  428. P(policy);
  429. P(prio);
  430. #undef PN
  431. #undef __PN
  432. #undef P
  433. #undef __P
  434. {
  435. unsigned int this_cpu = raw_smp_processor_id();
  436. u64 t0, t1;
  437. t0 = cpu_clock(this_cpu);
  438. t1 = cpu_clock(this_cpu);
  439. SEQ_printf(m, "%-35s:%21Ld\n",
  440. "clock-delta", (long long)(t1-t0));
  441. }
  442. }
  443. void proc_sched_set_task(struct task_struct *p)
  444. {
  445. #ifdef CONFIG_SCHEDSTATS
  446. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  447. #endif
  448. }