ipg.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316
  1. /*
  2. * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
  3. *
  4. * Copyright (C) 2003, 2007 IC Plus Corp
  5. *
  6. * Original Author:
  7. *
  8. * Craig Rich
  9. * Sundance Technology, Inc.
  10. * www.sundanceti.com
  11. * craig_rich@sundanceti.com
  12. *
  13. * Current Maintainer:
  14. *
  15. * Sorbica Shieh.
  16. * http://www.icplus.com.tw
  17. * sorbica@icplus.com.tw
  18. *
  19. * Jesse Huang
  20. * http://www.icplus.com.tw
  21. * jesse@icplus.com.tw
  22. */
  23. #include <linux/crc32.h>
  24. #include <linux/ethtool.h>
  25. #include <linux/mii.h>
  26. #include <linux/mutex.h>
  27. #include <asm/div64.h>
  28. #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
  29. #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
  30. #define IPG_RESET_MASK \
  31. (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
  32. IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
  33. IPG_AC_AUTO_INIT)
  34. #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
  35. #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
  36. #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
  37. #define ipg_r32(reg) ioread32(ioaddr + (reg))
  38. #define ipg_r16(reg) ioread16(ioaddr + (reg))
  39. #define ipg_r8(reg) ioread8(ioaddr + (reg))
  40. #define JUMBO_FRAME_4k_ONLY
  41. enum {
  42. netdev_io_size = 128
  43. };
  44. #include "ipg.h"
  45. #define DRV_NAME "ipg"
  46. MODULE_AUTHOR("IC Plus Corp. 2003");
  47. MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
  48. MODULE_LICENSE("GPL");
  49. /*
  50. * Variable record -- index by leading revision/length
  51. * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
  52. */
  53. static unsigned short DefaultPhyParam[] = {
  54. /* 11/12/03 IP1000A v1-3 rev=0x40 */
  55. /*--------------------------------------------------------------------------
  56. (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
  57. 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
  58. 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
  59. --------------------------------------------------------------------------*/
  60. /* 12/17/03 IP1000A v1-4 rev=0x40 */
  61. (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
  62. 0x0000,
  63. 30, 0x005e, 9, 0x0700,
  64. /* 01/09/04 IP1000A v1-5 rev=0x41 */
  65. (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
  66. 0x0000,
  67. 30, 0x005e, 9, 0x0700,
  68. 0x0000
  69. };
  70. static const char *ipg_brand_name[] = {
  71. "IC PLUS IP1000 1000/100/10 based NIC",
  72. "Sundance Technology ST2021 based NIC",
  73. "Tamarack Microelectronics TC9020/9021 based NIC",
  74. "Tamarack Microelectronics TC9020/9021 based NIC",
  75. "D-Link NIC",
  76. "D-Link NIC IP1000A"
  77. };
  78. static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
  79. { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
  80. { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
  81. { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
  82. { PCI_VDEVICE(DLINK, 0x9021), 3 },
  83. { PCI_VDEVICE(DLINK, 0x4000), 4 },
  84. { PCI_VDEVICE(DLINK, 0x4020), 5 },
  85. { 0, }
  86. };
  87. MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
  88. static inline void __iomem *ipg_ioaddr(struct net_device *dev)
  89. {
  90. struct ipg_nic_private *sp = netdev_priv(dev);
  91. return sp->ioaddr;
  92. }
  93. #ifdef IPG_DEBUG
  94. static void ipg_dump_rfdlist(struct net_device *dev)
  95. {
  96. struct ipg_nic_private *sp = netdev_priv(dev);
  97. void __iomem *ioaddr = sp->ioaddr;
  98. unsigned int i;
  99. u32 offset;
  100. IPG_DEBUG_MSG("_dump_rfdlist\n");
  101. printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
  102. printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
  103. printk(KERN_INFO "RFDList start address = %16.16lx\n",
  104. (unsigned long) sp->rxd_map);
  105. printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
  106. ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
  107. for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
  108. offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
  109. printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
  110. offset, (unsigned long) sp->rxd[i].next_desc);
  111. offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
  112. printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
  113. offset, (unsigned long) sp->rxd[i].rfs);
  114. offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
  115. printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
  116. offset, (unsigned long) sp->rxd[i].frag_info);
  117. }
  118. }
  119. static void ipg_dump_tfdlist(struct net_device *dev)
  120. {
  121. struct ipg_nic_private *sp = netdev_priv(dev);
  122. void __iomem *ioaddr = sp->ioaddr;
  123. unsigned int i;
  124. u32 offset;
  125. IPG_DEBUG_MSG("_dump_tfdlist\n");
  126. printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
  127. printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
  128. printk(KERN_INFO "TFDList start address = %16.16lx\n",
  129. (unsigned long) sp->txd_map);
  130. printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
  131. ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
  132. for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
  133. offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
  134. printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
  135. offset, (unsigned long) sp->txd[i].next_desc);
  136. offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
  137. printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
  138. offset, (unsigned long) sp->txd[i].tfc);
  139. offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
  140. printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
  141. offset, (unsigned long) sp->txd[i].frag_info);
  142. }
  143. }
  144. #endif
  145. static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
  146. {
  147. ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
  148. ndelay(IPG_PC_PHYCTRLWAIT_NS);
  149. }
  150. static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
  151. {
  152. ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
  153. ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
  154. }
  155. static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
  156. {
  157. phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
  158. ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
  159. }
  160. static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
  161. {
  162. ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
  163. phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
  164. }
  165. static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
  166. {
  167. u16 bit_data;
  168. ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
  169. bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
  170. ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
  171. return bit_data;
  172. }
  173. /*
  174. * Read a register from the Physical Layer device located
  175. * on the IPG NIC, using the IPG PHYCTRL register.
  176. */
  177. static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
  178. {
  179. void __iomem *ioaddr = ipg_ioaddr(dev);
  180. /*
  181. * The GMII mangement frame structure for a read is as follows:
  182. *
  183. * |Preamble|st|op|phyad|regad|ta| data |idle|
  184. * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
  185. *
  186. * <32 1s> = 32 consecutive logic 1 values
  187. * A = bit of Physical Layer device address (MSB first)
  188. * R = bit of register address (MSB first)
  189. * z = High impedance state
  190. * D = bit of read data (MSB first)
  191. *
  192. * Transmission order is 'Preamble' field first, bits transmitted
  193. * left to right (first to last).
  194. */
  195. struct {
  196. u32 field;
  197. unsigned int len;
  198. } p[] = {
  199. { GMII_PREAMBLE, 32 }, /* Preamble */
  200. { GMII_ST, 2 }, /* ST */
  201. { GMII_READ, 2 }, /* OP */
  202. { phy_id, 5 }, /* PHYAD */
  203. { phy_reg, 5 }, /* REGAD */
  204. { 0x0000, 2 }, /* TA */
  205. { 0x0000, 16 }, /* DATA */
  206. { 0x0000, 1 } /* IDLE */
  207. };
  208. unsigned int i, j;
  209. u8 polarity, data;
  210. polarity = ipg_r8(PHY_CTRL);
  211. polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
  212. /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
  213. for (j = 0; j < 5; j++) {
  214. for (i = 0; i < p[j].len; i++) {
  215. /* For each variable length field, the MSB must be
  216. * transmitted first. Rotate through the field bits,
  217. * starting with the MSB, and move each bit into the
  218. * the 1st (2^1) bit position (this is the bit position
  219. * corresponding to the MgmtData bit of the PhyCtrl
  220. * register for the IPG).
  221. *
  222. * Example: ST = 01;
  223. *
  224. * First write a '0' to bit 1 of the PhyCtrl
  225. * register, then write a '1' to bit 1 of the
  226. * PhyCtrl register.
  227. *
  228. * To do this, right shift the MSB of ST by the value:
  229. * [field length - 1 - #ST bits already written]
  230. * then left shift this result by 1.
  231. */
  232. data = (p[j].field >> (p[j].len - 1 - i)) << 1;
  233. data &= IPG_PC_MGMTDATA;
  234. data |= polarity | IPG_PC_MGMTDIR;
  235. ipg_drive_phy_ctl_low_high(ioaddr, data);
  236. }
  237. }
  238. send_three_state(ioaddr, polarity);
  239. read_phy_bit(ioaddr, polarity);
  240. /*
  241. * For a read cycle, the bits for the next two fields (TA and
  242. * DATA) are driven by the PHY (the IPG reads these bits).
  243. */
  244. for (i = 0; i < p[6].len; i++) {
  245. p[6].field |=
  246. (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
  247. }
  248. send_three_state(ioaddr, polarity);
  249. send_three_state(ioaddr, polarity);
  250. send_three_state(ioaddr, polarity);
  251. send_end(ioaddr, polarity);
  252. /* Return the value of the DATA field. */
  253. return p[6].field;
  254. }
  255. /*
  256. * Write to a register from the Physical Layer device located
  257. * on the IPG NIC, using the IPG PHYCTRL register.
  258. */
  259. static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
  260. {
  261. void __iomem *ioaddr = ipg_ioaddr(dev);
  262. /*
  263. * The GMII mangement frame structure for a read is as follows:
  264. *
  265. * |Preamble|st|op|phyad|regad|ta| data |idle|
  266. * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
  267. *
  268. * <32 1s> = 32 consecutive logic 1 values
  269. * A = bit of Physical Layer device address (MSB first)
  270. * R = bit of register address (MSB first)
  271. * z = High impedance state
  272. * D = bit of write data (MSB first)
  273. *
  274. * Transmission order is 'Preamble' field first, bits transmitted
  275. * left to right (first to last).
  276. */
  277. struct {
  278. u32 field;
  279. unsigned int len;
  280. } p[] = {
  281. { GMII_PREAMBLE, 32 }, /* Preamble */
  282. { GMII_ST, 2 }, /* ST */
  283. { GMII_WRITE, 2 }, /* OP */
  284. { phy_id, 5 }, /* PHYAD */
  285. { phy_reg, 5 }, /* REGAD */
  286. { 0x0002, 2 }, /* TA */
  287. { val & 0xffff, 16 }, /* DATA */
  288. { 0x0000, 1 } /* IDLE */
  289. };
  290. unsigned int i, j;
  291. u8 polarity, data;
  292. polarity = ipg_r8(PHY_CTRL);
  293. polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
  294. /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
  295. for (j = 0; j < 7; j++) {
  296. for (i = 0; i < p[j].len; i++) {
  297. /* For each variable length field, the MSB must be
  298. * transmitted first. Rotate through the field bits,
  299. * starting with the MSB, and move each bit into the
  300. * the 1st (2^1) bit position (this is the bit position
  301. * corresponding to the MgmtData bit of the PhyCtrl
  302. * register for the IPG).
  303. *
  304. * Example: ST = 01;
  305. *
  306. * First write a '0' to bit 1 of the PhyCtrl
  307. * register, then write a '1' to bit 1 of the
  308. * PhyCtrl register.
  309. *
  310. * To do this, right shift the MSB of ST by the value:
  311. * [field length - 1 - #ST bits already written]
  312. * then left shift this result by 1.
  313. */
  314. data = (p[j].field >> (p[j].len - 1 - i)) << 1;
  315. data &= IPG_PC_MGMTDATA;
  316. data |= polarity | IPG_PC_MGMTDIR;
  317. ipg_drive_phy_ctl_low_high(ioaddr, data);
  318. }
  319. }
  320. /* The last cycle is a tri-state, so read from the PHY. */
  321. for (j = 7; j < 8; j++) {
  322. for (i = 0; i < p[j].len; i++) {
  323. ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
  324. p[j].field |= ((ipg_r8(PHY_CTRL) &
  325. IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
  326. ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
  327. }
  328. }
  329. }
  330. static void ipg_set_led_mode(struct net_device *dev)
  331. {
  332. struct ipg_nic_private *sp = netdev_priv(dev);
  333. void __iomem *ioaddr = sp->ioaddr;
  334. u32 mode;
  335. mode = ipg_r32(ASIC_CTRL);
  336. mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
  337. if ((sp->led_mode & 0x03) > 1)
  338. mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
  339. if ((sp->led_mode & 0x01) == 1)
  340. mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
  341. if ((sp->led_mode & 0x08) == 8)
  342. mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
  343. ipg_w32(mode, ASIC_CTRL);
  344. }
  345. static void ipg_set_phy_set(struct net_device *dev)
  346. {
  347. struct ipg_nic_private *sp = netdev_priv(dev);
  348. void __iomem *ioaddr = sp->ioaddr;
  349. int physet;
  350. physet = ipg_r8(PHY_SET);
  351. physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
  352. physet |= ((sp->led_mode & 0x70) >> 4);
  353. ipg_w8(physet, PHY_SET);
  354. }
  355. static int ipg_reset(struct net_device *dev, u32 resetflags)
  356. {
  357. /* Assert functional resets via the IPG AsicCtrl
  358. * register as specified by the 'resetflags' input
  359. * parameter.
  360. */
  361. void __iomem *ioaddr = ipg_ioaddr(dev);
  362. unsigned int timeout_count = 0;
  363. IPG_DEBUG_MSG("_reset\n");
  364. ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
  365. /* Delay added to account for problem with 10Mbps reset. */
  366. mdelay(IPG_AC_RESETWAIT);
  367. while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
  368. mdelay(IPG_AC_RESETWAIT);
  369. if (++timeout_count > IPG_AC_RESET_TIMEOUT)
  370. return -ETIME;
  371. }
  372. /* Set LED Mode in Asic Control */
  373. ipg_set_led_mode(dev);
  374. /* Set PHYSet Register Value */
  375. ipg_set_phy_set(dev);
  376. return 0;
  377. }
  378. /* Find the GMII PHY address. */
  379. static int ipg_find_phyaddr(struct net_device *dev)
  380. {
  381. unsigned int phyaddr, i;
  382. for (i = 0; i < 32; i++) {
  383. u32 status;
  384. /* Search for the correct PHY address among 32 possible. */
  385. phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
  386. /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
  387. GMII_PHY_ID1
  388. */
  389. status = mdio_read(dev, phyaddr, MII_BMSR);
  390. if ((status != 0xFFFF) && (status != 0))
  391. return phyaddr;
  392. }
  393. return 0x1f;
  394. }
  395. /*
  396. * Configure IPG based on result of IEEE 802.3 PHY
  397. * auto-negotiation.
  398. */
  399. static int ipg_config_autoneg(struct net_device *dev)
  400. {
  401. struct ipg_nic_private *sp = netdev_priv(dev);
  402. void __iomem *ioaddr = sp->ioaddr;
  403. unsigned int txflowcontrol;
  404. unsigned int rxflowcontrol;
  405. unsigned int fullduplex;
  406. u32 mac_ctrl_val;
  407. u32 asicctrl;
  408. u8 phyctrl;
  409. IPG_DEBUG_MSG("_config_autoneg\n");
  410. asicctrl = ipg_r32(ASIC_CTRL);
  411. phyctrl = ipg_r8(PHY_CTRL);
  412. mac_ctrl_val = ipg_r32(MAC_CTRL);
  413. /* Set flags for use in resolving auto-negotation, assuming
  414. * non-1000Mbps, half duplex, no flow control.
  415. */
  416. fullduplex = 0;
  417. txflowcontrol = 0;
  418. rxflowcontrol = 0;
  419. /* To accomodate a problem in 10Mbps operation,
  420. * set a global flag if PHY running in 10Mbps mode.
  421. */
  422. sp->tenmbpsmode = 0;
  423. printk(KERN_INFO "%s: Link speed = ", dev->name);
  424. /* Determine actual speed of operation. */
  425. switch (phyctrl & IPG_PC_LINK_SPEED) {
  426. case IPG_PC_LINK_SPEED_10MBPS:
  427. printk("10Mbps.\n");
  428. printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
  429. dev->name);
  430. sp->tenmbpsmode = 1;
  431. break;
  432. case IPG_PC_LINK_SPEED_100MBPS:
  433. printk("100Mbps.\n");
  434. break;
  435. case IPG_PC_LINK_SPEED_1000MBPS:
  436. printk("1000Mbps.\n");
  437. break;
  438. default:
  439. printk("undefined!\n");
  440. return 0;
  441. }
  442. if (phyctrl & IPG_PC_DUPLEX_STATUS) {
  443. fullduplex = 1;
  444. txflowcontrol = 1;
  445. rxflowcontrol = 1;
  446. }
  447. /* Configure full duplex, and flow control. */
  448. if (fullduplex == 1) {
  449. /* Configure IPG for full duplex operation. */
  450. printk(KERN_INFO "%s: setting full duplex, ", dev->name);
  451. mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
  452. if (txflowcontrol == 1) {
  453. printk("TX flow control");
  454. mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
  455. } else {
  456. printk("no TX flow control");
  457. mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
  458. }
  459. if (rxflowcontrol == 1) {
  460. printk(", RX flow control.");
  461. mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
  462. } else {
  463. printk(", no RX flow control.");
  464. mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
  465. }
  466. printk("\n");
  467. } else {
  468. /* Configure IPG for half duplex operation. */
  469. printk(KERN_INFO "%s: setting half duplex, "
  470. "no TX flow control, no RX flow control.\n", dev->name);
  471. mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
  472. ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
  473. ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
  474. }
  475. ipg_w32(mac_ctrl_val, MAC_CTRL);
  476. return 0;
  477. }
  478. /* Determine and configure multicast operation and set
  479. * receive mode for IPG.
  480. */
  481. static void ipg_nic_set_multicast_list(struct net_device *dev)
  482. {
  483. void __iomem *ioaddr = ipg_ioaddr(dev);
  484. struct dev_mc_list *mc_list_ptr;
  485. unsigned int hashindex;
  486. u32 hashtable[2];
  487. u8 receivemode;
  488. IPG_DEBUG_MSG("_nic_set_multicast_list\n");
  489. receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
  490. if (dev->flags & IFF_PROMISC) {
  491. /* NIC to be configured in promiscuous mode. */
  492. receivemode = IPG_RM_RECEIVEALLFRAMES;
  493. } else if ((dev->flags & IFF_ALLMULTI) ||
  494. ((dev->flags & IFF_MULTICAST) &&
  495. (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
  496. /* NIC to be configured to receive all multicast
  497. * frames. */
  498. receivemode |= IPG_RM_RECEIVEMULTICAST;
  499. } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) {
  500. /* NIC to be configured to receive selected
  501. * multicast addresses. */
  502. receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
  503. }
  504. /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
  505. * The IPG applies a cyclic-redundancy-check (the same CRC
  506. * used to calculate the frame data FCS) to the destination
  507. * address all incoming multicast frames whose destination
  508. * address has the multicast bit set. The least significant
  509. * 6 bits of the CRC result are used as an addressing index
  510. * into the hash table. If the value of the bit addressed by
  511. * this index is a 1, the frame is passed to the host system.
  512. */
  513. /* Clear hashtable. */
  514. hashtable[0] = 0x00000000;
  515. hashtable[1] = 0x00000000;
  516. /* Cycle through all multicast addresses to filter. */
  517. for (mc_list_ptr = dev->mc_list;
  518. mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
  519. /* Calculate CRC result for each multicast address. */
  520. hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
  521. ETH_ALEN);
  522. /* Use only the least significant 6 bits. */
  523. hashindex = hashindex & 0x3F;
  524. /* Within "hashtable", set bit number "hashindex"
  525. * to a logic 1.
  526. */
  527. set_bit(hashindex, (void *)hashtable);
  528. }
  529. /* Write the value of the hashtable, to the 4, 16 bit
  530. * HASHTABLE IPG registers.
  531. */
  532. ipg_w32(hashtable[0], HASHTABLE_0);
  533. ipg_w32(hashtable[1], HASHTABLE_1);
  534. ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
  535. IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
  536. }
  537. static int ipg_io_config(struct net_device *dev)
  538. {
  539. void __iomem *ioaddr = ipg_ioaddr(dev);
  540. u32 origmacctrl;
  541. u32 restoremacctrl;
  542. IPG_DEBUG_MSG("_io_config\n");
  543. origmacctrl = ipg_r32(MAC_CTRL);
  544. restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
  545. /* Based on compilation option, determine if FCS is to be
  546. * stripped on receive frames by IPG.
  547. */
  548. if (!IPG_STRIP_FCS_ON_RX)
  549. restoremacctrl |= IPG_MC_RCV_FCS;
  550. /* Determine if transmitter and/or receiver are
  551. * enabled so we may restore MACCTRL correctly.
  552. */
  553. if (origmacctrl & IPG_MC_TX_ENABLED)
  554. restoremacctrl |= IPG_MC_TX_ENABLE;
  555. if (origmacctrl & IPG_MC_RX_ENABLED)
  556. restoremacctrl |= IPG_MC_RX_ENABLE;
  557. /* Transmitter and receiver must be disabled before setting
  558. * IFSSelect.
  559. */
  560. ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
  561. IPG_MC_RSVD_MASK, MAC_CTRL);
  562. /* Now that transmitter and receiver are disabled, write
  563. * to IFSSelect.
  564. */
  565. ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
  566. /* Set RECEIVEMODE register. */
  567. ipg_nic_set_multicast_list(dev);
  568. ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
  569. ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
  570. ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
  571. ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
  572. ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
  573. ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
  574. ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
  575. ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
  576. IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
  577. IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
  578. IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
  579. ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
  580. ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
  581. /* IPG multi-frag frame bug workaround.
  582. * Per silicon revision B3 eratta.
  583. */
  584. ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
  585. /* IPG TX poll now bug workaround.
  586. * Per silicon revision B3 eratta.
  587. */
  588. ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
  589. /* IPG RX poll now bug workaround.
  590. * Per silicon revision B3 eratta.
  591. */
  592. ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
  593. /* Now restore MACCTRL to original setting. */
  594. ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
  595. /* Disable unused RMON statistics. */
  596. ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
  597. /* Disable unused MIB statistics. */
  598. ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
  599. IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
  600. IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
  601. IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
  602. IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
  603. IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
  604. return 0;
  605. }
  606. /*
  607. * Create a receive buffer within system memory and update
  608. * NIC private structure appropriately.
  609. */
  610. static int ipg_get_rxbuff(struct net_device *dev, int entry)
  611. {
  612. struct ipg_nic_private *sp = netdev_priv(dev);
  613. struct ipg_rx *rxfd = sp->rxd + entry;
  614. struct sk_buff *skb;
  615. u64 rxfragsize;
  616. IPG_DEBUG_MSG("_get_rxbuff\n");
  617. skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
  618. if (!skb) {
  619. sp->rx_buff[entry] = NULL;
  620. return -ENOMEM;
  621. }
  622. /* Adjust the data start location within the buffer to
  623. * align IP address field to a 16 byte boundary.
  624. */
  625. skb_reserve(skb, NET_IP_ALIGN);
  626. /* Associate the receive buffer with the IPG NIC. */
  627. skb->dev = dev;
  628. /* Save the address of the sk_buff structure. */
  629. sp->rx_buff[entry] = skb;
  630. rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
  631. sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
  632. /* Set the RFD fragment length. */
  633. rxfragsize = sp->rxfrag_size;
  634. rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
  635. return 0;
  636. }
  637. static int init_rfdlist(struct net_device *dev)
  638. {
  639. struct ipg_nic_private *sp = netdev_priv(dev);
  640. void __iomem *ioaddr = sp->ioaddr;
  641. unsigned int i;
  642. IPG_DEBUG_MSG("_init_rfdlist\n");
  643. for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
  644. struct ipg_rx *rxfd = sp->rxd + i;
  645. if (sp->rx_buff[i]) {
  646. pci_unmap_single(sp->pdev,
  647. le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
  648. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  649. dev_kfree_skb_irq(sp->rx_buff[i]);
  650. sp->rx_buff[i] = NULL;
  651. }
  652. /* Clear out the RFS field. */
  653. rxfd->rfs = 0x0000000000000000;
  654. if (ipg_get_rxbuff(dev, i) < 0) {
  655. /*
  656. * A receive buffer was not ready, break the
  657. * RFD list here.
  658. */
  659. IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
  660. /* Just in case we cannot allocate a single RFD.
  661. * Should not occur.
  662. */
  663. if (i == 0) {
  664. printk(KERN_ERR "%s: No memory available"
  665. " for RFD list.\n", dev->name);
  666. return -ENOMEM;
  667. }
  668. }
  669. rxfd->next_desc = cpu_to_le64(sp->rxd_map +
  670. sizeof(struct ipg_rx)*(i + 1));
  671. }
  672. sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
  673. sp->rx_current = 0;
  674. sp->rx_dirty = 0;
  675. /* Write the location of the RFDList to the IPG. */
  676. ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
  677. ipg_w32(0x00000000, RFD_LIST_PTR_1);
  678. return 0;
  679. }
  680. static void init_tfdlist(struct net_device *dev)
  681. {
  682. struct ipg_nic_private *sp = netdev_priv(dev);
  683. void __iomem *ioaddr = sp->ioaddr;
  684. unsigned int i;
  685. IPG_DEBUG_MSG("_init_tfdlist\n");
  686. for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
  687. struct ipg_tx *txfd = sp->txd + i;
  688. txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
  689. if (sp->tx_buff[i]) {
  690. dev_kfree_skb_irq(sp->tx_buff[i]);
  691. sp->tx_buff[i] = NULL;
  692. }
  693. txfd->next_desc = cpu_to_le64(sp->txd_map +
  694. sizeof(struct ipg_tx)*(i + 1));
  695. }
  696. sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
  697. sp->tx_current = 0;
  698. sp->tx_dirty = 0;
  699. /* Write the location of the TFDList to the IPG. */
  700. IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
  701. (u32) sp->txd_map);
  702. ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
  703. ipg_w32(0x00000000, TFD_LIST_PTR_1);
  704. sp->reset_current_tfd = 1;
  705. }
  706. /*
  707. * Free all transmit buffers which have already been transfered
  708. * via DMA to the IPG.
  709. */
  710. static void ipg_nic_txfree(struct net_device *dev)
  711. {
  712. struct ipg_nic_private *sp = netdev_priv(dev);
  713. unsigned int released, pending, dirty;
  714. IPG_DEBUG_MSG("_nic_txfree\n");
  715. pending = sp->tx_current - sp->tx_dirty;
  716. dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
  717. for (released = 0; released < pending; released++) {
  718. struct sk_buff *skb = sp->tx_buff[dirty];
  719. struct ipg_tx *txfd = sp->txd + dirty;
  720. IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
  721. /* Look at each TFD's TFC field beginning
  722. * at the last freed TFD up to the current TFD.
  723. * If the TFDDone bit is set, free the associated
  724. * buffer.
  725. */
  726. if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
  727. break;
  728. /* Free the transmit buffer. */
  729. if (skb) {
  730. pci_unmap_single(sp->pdev,
  731. le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
  732. skb->len, PCI_DMA_TODEVICE);
  733. dev_kfree_skb_irq(skb);
  734. sp->tx_buff[dirty] = NULL;
  735. }
  736. dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
  737. }
  738. sp->tx_dirty += released;
  739. if (netif_queue_stopped(dev) &&
  740. (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
  741. netif_wake_queue(dev);
  742. }
  743. }
  744. static void ipg_tx_timeout(struct net_device *dev)
  745. {
  746. struct ipg_nic_private *sp = netdev_priv(dev);
  747. void __iomem *ioaddr = sp->ioaddr;
  748. ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
  749. IPG_AC_FIFO);
  750. spin_lock_irq(&sp->lock);
  751. /* Re-configure after DMA reset. */
  752. if (ipg_io_config(dev) < 0) {
  753. printk(KERN_INFO "%s: Error during re-configuration.\n",
  754. dev->name);
  755. }
  756. init_tfdlist(dev);
  757. spin_unlock_irq(&sp->lock);
  758. ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
  759. MAC_CTRL);
  760. }
  761. /*
  762. * For TxComplete interrupts, free all transmit
  763. * buffers which have already been transfered via DMA
  764. * to the IPG.
  765. */
  766. static void ipg_nic_txcleanup(struct net_device *dev)
  767. {
  768. struct ipg_nic_private *sp = netdev_priv(dev);
  769. void __iomem *ioaddr = sp->ioaddr;
  770. unsigned int i;
  771. IPG_DEBUG_MSG("_nic_txcleanup\n");
  772. for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
  773. /* Reading the TXSTATUS register clears the
  774. * TX_COMPLETE interrupt.
  775. */
  776. u32 txstatusdword = ipg_r32(TX_STATUS);
  777. IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
  778. /* Check for Transmit errors. Error bits only valid if
  779. * TX_COMPLETE bit in the TXSTATUS register is a 1.
  780. */
  781. if (!(txstatusdword & IPG_TS_TX_COMPLETE))
  782. break;
  783. /* If in 10Mbps mode, indicate transmit is ready. */
  784. if (sp->tenmbpsmode) {
  785. netif_wake_queue(dev);
  786. }
  787. /* Transmit error, increment stat counters. */
  788. if (txstatusdword & IPG_TS_TX_ERROR) {
  789. IPG_DEBUG_MSG("Transmit error.\n");
  790. sp->stats.tx_errors++;
  791. }
  792. /* Late collision, re-enable transmitter. */
  793. if (txstatusdword & IPG_TS_LATE_COLLISION) {
  794. IPG_DEBUG_MSG("Late collision on transmit.\n");
  795. ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
  796. IPG_MC_RSVD_MASK, MAC_CTRL);
  797. }
  798. /* Maximum collisions, re-enable transmitter. */
  799. if (txstatusdword & IPG_TS_TX_MAX_COLL) {
  800. IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
  801. ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
  802. IPG_MC_RSVD_MASK, MAC_CTRL);
  803. }
  804. /* Transmit underrun, reset and re-enable
  805. * transmitter.
  806. */
  807. if (txstatusdword & IPG_TS_TX_UNDERRUN) {
  808. IPG_DEBUG_MSG("Transmitter underrun.\n");
  809. sp->stats.tx_fifo_errors++;
  810. ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
  811. IPG_AC_NETWORK | IPG_AC_FIFO);
  812. /* Re-configure after DMA reset. */
  813. if (ipg_io_config(dev) < 0) {
  814. printk(KERN_INFO
  815. "%s: Error during re-configuration.\n",
  816. dev->name);
  817. }
  818. init_tfdlist(dev);
  819. ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
  820. IPG_MC_RSVD_MASK, MAC_CTRL);
  821. }
  822. }
  823. ipg_nic_txfree(dev);
  824. }
  825. /* Provides statistical information about the IPG NIC. */
  826. static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
  827. {
  828. struct ipg_nic_private *sp = netdev_priv(dev);
  829. void __iomem *ioaddr = sp->ioaddr;
  830. u16 temp1;
  831. u16 temp2;
  832. IPG_DEBUG_MSG("_nic_get_stats\n");
  833. /* Check to see if the NIC has been initialized via nic_open,
  834. * before trying to read statistic registers.
  835. */
  836. if (!test_bit(__LINK_STATE_START, &dev->state))
  837. return &sp->stats;
  838. sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
  839. sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
  840. sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
  841. sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
  842. temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
  843. sp->stats.rx_errors += temp1;
  844. sp->stats.rx_missed_errors += temp1;
  845. temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
  846. ipg_r32(IPG_LATECOLLISIONS);
  847. temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
  848. sp->stats.collisions += temp1;
  849. sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
  850. sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
  851. ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
  852. sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
  853. /* detailed tx_errors */
  854. sp->stats.tx_carrier_errors += temp2;
  855. /* detailed rx_errors */
  856. sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
  857. ipg_r16(IPG_FRAMETOOLONGERRRORS);
  858. sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
  859. /* Unutilized IPG statistic registers. */
  860. ipg_r32(IPG_MCSTFRAMESRCVDOK);
  861. return &sp->stats;
  862. }
  863. /* Restore used receive buffers. */
  864. static int ipg_nic_rxrestore(struct net_device *dev)
  865. {
  866. struct ipg_nic_private *sp = netdev_priv(dev);
  867. const unsigned int curr = sp->rx_current;
  868. unsigned int dirty = sp->rx_dirty;
  869. IPG_DEBUG_MSG("_nic_rxrestore\n");
  870. for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
  871. unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
  872. /* rx_copybreak may poke hole here and there. */
  873. if (sp->rx_buff[entry])
  874. continue;
  875. /* Generate a new receive buffer to replace the
  876. * current buffer (which will be released by the
  877. * Linux system).
  878. */
  879. if (ipg_get_rxbuff(dev, entry) < 0) {
  880. IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
  881. break;
  882. }
  883. /* Reset the RFS field. */
  884. sp->rxd[entry].rfs = 0x0000000000000000;
  885. }
  886. sp->rx_dirty = dirty;
  887. return 0;
  888. }
  889. /* use jumboindex and jumbosize to control jumbo frame status
  890. * initial status is jumboindex=-1 and jumbosize=0
  891. * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
  892. * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
  893. * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
  894. * previous receiving and need to continue dumping the current one
  895. */
  896. enum {
  897. NORMAL_PACKET,
  898. ERROR_PACKET
  899. };
  900. enum {
  901. FRAME_NO_START_NO_END = 0,
  902. FRAME_WITH_START = 1,
  903. FRAME_WITH_END = 10,
  904. FRAME_WITH_START_WITH_END = 11
  905. };
  906. static void ipg_nic_rx_free_skb(struct net_device *dev)
  907. {
  908. struct ipg_nic_private *sp = netdev_priv(dev);
  909. unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
  910. if (sp->rx_buff[entry]) {
  911. struct ipg_rx *rxfd = sp->rxd + entry;
  912. pci_unmap_single(sp->pdev,
  913. le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
  914. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  915. dev_kfree_skb_irq(sp->rx_buff[entry]);
  916. sp->rx_buff[entry] = NULL;
  917. }
  918. }
  919. static int ipg_nic_rx_check_frame_type(struct net_device *dev)
  920. {
  921. struct ipg_nic_private *sp = netdev_priv(dev);
  922. struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
  923. int type = FRAME_NO_START_NO_END;
  924. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
  925. type += FRAME_WITH_START;
  926. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
  927. type += FRAME_WITH_END;
  928. return type;
  929. }
  930. static int ipg_nic_rx_check_error(struct net_device *dev)
  931. {
  932. struct ipg_nic_private *sp = netdev_priv(dev);
  933. unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
  934. struct ipg_rx *rxfd = sp->rxd + entry;
  935. if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
  936. (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
  937. IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
  938. IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
  939. IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
  940. (unsigned long) rxfd->rfs);
  941. /* Increment general receive error statistic. */
  942. sp->stats.rx_errors++;
  943. /* Increment detailed receive error statistics. */
  944. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
  945. IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
  946. sp->stats.rx_fifo_errors++;
  947. }
  948. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
  949. IPG_DEBUG_MSG("RX runt occured.\n");
  950. sp->stats.rx_length_errors++;
  951. }
  952. /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
  953. * error count handled by a IPG statistic register.
  954. */
  955. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
  956. IPG_DEBUG_MSG("RX alignment error occured.\n");
  957. sp->stats.rx_frame_errors++;
  958. }
  959. /* Do nothing for IPG_RFS_RXFCSERROR, error count
  960. * handled by a IPG statistic register.
  961. */
  962. /* Free the memory associated with the RX
  963. * buffer since it is erroneous and we will
  964. * not pass it to higher layer processes.
  965. */
  966. if (sp->rx_buff[entry]) {
  967. pci_unmap_single(sp->pdev,
  968. le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
  969. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  970. dev_kfree_skb_irq(sp->rx_buff[entry]);
  971. sp->rx_buff[entry] = NULL;
  972. }
  973. return ERROR_PACKET;
  974. }
  975. return NORMAL_PACKET;
  976. }
  977. static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
  978. struct ipg_nic_private *sp,
  979. struct ipg_rx *rxfd, unsigned entry)
  980. {
  981. struct ipg_jumbo *jumbo = &sp->jumbo;
  982. struct sk_buff *skb;
  983. int framelen;
  984. if (jumbo->found_start) {
  985. dev_kfree_skb_irq(jumbo->skb);
  986. jumbo->found_start = 0;
  987. jumbo->current_size = 0;
  988. jumbo->skb = NULL;
  989. }
  990. /* 1: found error, 0 no error */
  991. if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
  992. return;
  993. skb = sp->rx_buff[entry];
  994. if (!skb)
  995. return;
  996. /* accept this frame and send to upper layer */
  997. framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
  998. if (framelen > sp->rxfrag_size)
  999. framelen = sp->rxfrag_size;
  1000. skb_put(skb, framelen);
  1001. skb->protocol = eth_type_trans(skb, dev);
  1002. skb->ip_summed = CHECKSUM_NONE;
  1003. netif_rx(skb);
  1004. dev->last_rx = jiffies;
  1005. sp->rx_buff[entry] = NULL;
  1006. }
  1007. static void ipg_nic_rx_with_start(struct net_device *dev,
  1008. struct ipg_nic_private *sp,
  1009. struct ipg_rx *rxfd, unsigned entry)
  1010. {
  1011. struct ipg_jumbo *jumbo = &sp->jumbo;
  1012. struct pci_dev *pdev = sp->pdev;
  1013. struct sk_buff *skb;
  1014. /* 1: found error, 0 no error */
  1015. if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
  1016. return;
  1017. /* accept this frame and send to upper layer */
  1018. skb = sp->rx_buff[entry];
  1019. if (!skb)
  1020. return;
  1021. if (jumbo->found_start)
  1022. dev_kfree_skb_irq(jumbo->skb);
  1023. pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
  1024. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  1025. skb_put(skb, sp->rxfrag_size);
  1026. jumbo->found_start = 1;
  1027. jumbo->current_size = sp->rxfrag_size;
  1028. jumbo->skb = skb;
  1029. sp->rx_buff[entry] = NULL;
  1030. dev->last_rx = jiffies;
  1031. }
  1032. static void ipg_nic_rx_with_end(struct net_device *dev,
  1033. struct ipg_nic_private *sp,
  1034. struct ipg_rx *rxfd, unsigned entry)
  1035. {
  1036. struct ipg_jumbo *jumbo = &sp->jumbo;
  1037. /* 1: found error, 0 no error */
  1038. if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
  1039. struct sk_buff *skb = sp->rx_buff[entry];
  1040. if (!skb)
  1041. return;
  1042. if (jumbo->found_start) {
  1043. int framelen, endframelen;
  1044. framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
  1045. endframelen = framelen - jumbo->current_size;
  1046. if (framelen > IPG_RXSUPPORT_SIZE)
  1047. dev_kfree_skb_irq(jumbo->skb);
  1048. else {
  1049. memcpy(skb_put(jumbo->skb, endframelen),
  1050. skb->data, endframelen);
  1051. jumbo->skb->protocol =
  1052. eth_type_trans(jumbo->skb, dev);
  1053. jumbo->skb->ip_summed = CHECKSUM_NONE;
  1054. netif_rx(jumbo->skb);
  1055. }
  1056. }
  1057. dev->last_rx = jiffies;
  1058. jumbo->found_start = 0;
  1059. jumbo->current_size = 0;
  1060. jumbo->skb = NULL;
  1061. ipg_nic_rx_free_skb(dev);
  1062. } else {
  1063. dev_kfree_skb_irq(jumbo->skb);
  1064. jumbo->found_start = 0;
  1065. jumbo->current_size = 0;
  1066. jumbo->skb = NULL;
  1067. }
  1068. }
  1069. static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
  1070. struct ipg_nic_private *sp,
  1071. struct ipg_rx *rxfd, unsigned entry)
  1072. {
  1073. struct ipg_jumbo *jumbo = &sp->jumbo;
  1074. /* 1: found error, 0 no error */
  1075. if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
  1076. struct sk_buff *skb = sp->rx_buff[entry];
  1077. if (skb) {
  1078. if (jumbo->found_start) {
  1079. jumbo->current_size += sp->rxfrag_size;
  1080. if (jumbo->current_size <= IPG_RXSUPPORT_SIZE) {
  1081. memcpy(skb_put(jumbo->skb,
  1082. sp->rxfrag_size),
  1083. skb->data, sp->rxfrag_size);
  1084. }
  1085. }
  1086. dev->last_rx = jiffies;
  1087. ipg_nic_rx_free_skb(dev);
  1088. }
  1089. } else {
  1090. dev_kfree_skb_irq(jumbo->skb);
  1091. jumbo->found_start = 0;
  1092. jumbo->current_size = 0;
  1093. jumbo->skb = NULL;
  1094. }
  1095. }
  1096. static int ipg_nic_rx_jumbo(struct net_device *dev)
  1097. {
  1098. struct ipg_nic_private *sp = netdev_priv(dev);
  1099. unsigned int curr = sp->rx_current;
  1100. void __iomem *ioaddr = sp->ioaddr;
  1101. unsigned int i;
  1102. IPG_DEBUG_MSG("_nic_rx\n");
  1103. for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
  1104. unsigned int entry = curr % IPG_RFDLIST_LENGTH;
  1105. struct ipg_rx *rxfd = sp->rxd + entry;
  1106. if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
  1107. break;
  1108. switch (ipg_nic_rx_check_frame_type(dev)) {
  1109. case FRAME_WITH_START_WITH_END:
  1110. ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
  1111. break;
  1112. case FRAME_WITH_START:
  1113. ipg_nic_rx_with_start(dev, sp, rxfd, entry);
  1114. break;
  1115. case FRAME_WITH_END:
  1116. ipg_nic_rx_with_end(dev, sp, rxfd, entry);
  1117. break;
  1118. case FRAME_NO_START_NO_END:
  1119. ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
  1120. break;
  1121. }
  1122. }
  1123. sp->rx_current = curr;
  1124. if (i == IPG_MAXRFDPROCESS_COUNT) {
  1125. /* There are more RFDs to process, however the
  1126. * allocated amount of RFD processing time has
  1127. * expired. Assert Interrupt Requested to make
  1128. * sure we come back to process the remaining RFDs.
  1129. */
  1130. ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
  1131. }
  1132. ipg_nic_rxrestore(dev);
  1133. return 0;
  1134. }
  1135. static int ipg_nic_rx(struct net_device *dev)
  1136. {
  1137. /* Transfer received Ethernet frames to higher network layers. */
  1138. struct ipg_nic_private *sp = netdev_priv(dev);
  1139. unsigned int curr = sp->rx_current;
  1140. void __iomem *ioaddr = sp->ioaddr;
  1141. struct ipg_rx *rxfd;
  1142. unsigned int i;
  1143. IPG_DEBUG_MSG("_nic_rx\n");
  1144. #define __RFS_MASK \
  1145. cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
  1146. for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
  1147. unsigned int entry = curr % IPG_RFDLIST_LENGTH;
  1148. struct sk_buff *skb = sp->rx_buff[entry];
  1149. unsigned int framelen;
  1150. rxfd = sp->rxd + entry;
  1151. if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
  1152. break;
  1153. /* Get received frame length. */
  1154. framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
  1155. /* Check for jumbo frame arrival with too small
  1156. * RXFRAG_SIZE.
  1157. */
  1158. if (framelen > sp->rxfrag_size) {
  1159. IPG_DEBUG_MSG
  1160. ("RFS FrameLen > allocated fragment size.\n");
  1161. framelen = sp->rxfrag_size;
  1162. }
  1163. if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
  1164. (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
  1165. IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
  1166. IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
  1167. IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
  1168. (unsigned long int) rxfd->rfs);
  1169. /* Increment general receive error statistic. */
  1170. sp->stats.rx_errors++;
  1171. /* Increment detailed receive error statistics. */
  1172. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
  1173. IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
  1174. sp->stats.rx_fifo_errors++;
  1175. }
  1176. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
  1177. IPG_DEBUG_MSG("RX runt occured.\n");
  1178. sp->stats.rx_length_errors++;
  1179. }
  1180. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
  1181. /* Do nothing, error count handled by a IPG
  1182. * statistic register.
  1183. */
  1184. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
  1185. IPG_DEBUG_MSG("RX alignment error occured.\n");
  1186. sp->stats.rx_frame_errors++;
  1187. }
  1188. if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
  1189. /* Do nothing, error count handled by a IPG
  1190. * statistic register.
  1191. */
  1192. /* Free the memory associated with the RX
  1193. * buffer since it is erroneous and we will
  1194. * not pass it to higher layer processes.
  1195. */
  1196. if (skb) {
  1197. __le64 info = rxfd->frag_info;
  1198. pci_unmap_single(sp->pdev,
  1199. le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
  1200. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  1201. dev_kfree_skb_irq(skb);
  1202. }
  1203. } else {
  1204. /* Adjust the new buffer length to accomodate the size
  1205. * of the received frame.
  1206. */
  1207. skb_put(skb, framelen);
  1208. /* Set the buffer's protocol field to Ethernet. */
  1209. skb->protocol = eth_type_trans(skb, dev);
  1210. /* The IPG encountered an error with (or
  1211. * there were no) IP/TCP/UDP checksums.
  1212. * This may or may not indicate an invalid
  1213. * IP/TCP/UDP frame was received. Let the
  1214. * upper layer decide.
  1215. */
  1216. skb->ip_summed = CHECKSUM_NONE;
  1217. /* Hand off frame for higher layer processing.
  1218. * The function netif_rx() releases the sk_buff
  1219. * when processing completes.
  1220. */
  1221. netif_rx(skb);
  1222. /* Record frame receive time (jiffies = Linux
  1223. * kernel current time stamp).
  1224. */
  1225. dev->last_rx = jiffies;
  1226. }
  1227. /* Assure RX buffer is not reused by IPG. */
  1228. sp->rx_buff[entry] = NULL;
  1229. }
  1230. /*
  1231. * If there are more RFDs to proces and the allocated amount of RFD
  1232. * processing time has expired, assert Interrupt Requested to make
  1233. * sure we come back to process the remaining RFDs.
  1234. */
  1235. if (i == IPG_MAXRFDPROCESS_COUNT)
  1236. ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
  1237. #ifdef IPG_DEBUG
  1238. /* Check if the RFD list contained no receive frame data. */
  1239. if (!i)
  1240. sp->EmptyRFDListCount++;
  1241. #endif
  1242. while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
  1243. !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
  1244. (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
  1245. unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
  1246. rxfd = sp->rxd + entry;
  1247. IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
  1248. /* An unexpected event, additional code needed to handle
  1249. * properly. So for the time being, just disregard the
  1250. * frame.
  1251. */
  1252. /* Free the memory associated with the RX
  1253. * buffer since it is erroneous and we will
  1254. * not pass it to higher layer processes.
  1255. */
  1256. if (sp->rx_buff[entry]) {
  1257. pci_unmap_single(sp->pdev,
  1258. le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
  1259. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  1260. dev_kfree_skb_irq(sp->rx_buff[entry]);
  1261. }
  1262. /* Assure RX buffer is not reused by IPG. */
  1263. sp->rx_buff[entry] = NULL;
  1264. }
  1265. sp->rx_current = curr;
  1266. /* Check to see if there are a minimum number of used
  1267. * RFDs before restoring any (should improve performance.)
  1268. */
  1269. if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
  1270. ipg_nic_rxrestore(dev);
  1271. return 0;
  1272. }
  1273. static void ipg_reset_after_host_error(struct work_struct *work)
  1274. {
  1275. struct ipg_nic_private *sp =
  1276. container_of(work, struct ipg_nic_private, task.work);
  1277. struct net_device *dev = sp->dev;
  1278. IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
  1279. /*
  1280. * Acknowledge HostError interrupt by resetting
  1281. * IPG DMA and HOST.
  1282. */
  1283. ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
  1284. init_rfdlist(dev);
  1285. init_tfdlist(dev);
  1286. if (ipg_io_config(dev) < 0) {
  1287. printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
  1288. dev->name);
  1289. schedule_delayed_work(&sp->task, HZ);
  1290. }
  1291. }
  1292. static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
  1293. {
  1294. struct net_device *dev = dev_inst;
  1295. struct ipg_nic_private *sp = netdev_priv(dev);
  1296. void __iomem *ioaddr = sp->ioaddr;
  1297. unsigned int handled = 0;
  1298. u16 status;
  1299. IPG_DEBUG_MSG("_interrupt_handler\n");
  1300. if (sp->is_jumbo)
  1301. ipg_nic_rxrestore(dev);
  1302. spin_lock(&sp->lock);
  1303. /* Get interrupt source information, and acknowledge
  1304. * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
  1305. * IntRequested, MacControlFrame, LinkEvent) interrupts
  1306. * if issued. Also, all IPG interrupts are disabled by
  1307. * reading IntStatusAck.
  1308. */
  1309. status = ipg_r16(INT_STATUS_ACK);
  1310. IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
  1311. /* Shared IRQ of remove event. */
  1312. if (!(status & IPG_IS_RSVD_MASK))
  1313. goto out_enable;
  1314. handled = 1;
  1315. if (unlikely(!netif_running(dev)))
  1316. goto out_unlock;
  1317. /* If RFDListEnd interrupt, restore all used RFDs. */
  1318. if (status & IPG_IS_RFD_LIST_END) {
  1319. IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
  1320. /* The RFD list end indicates an RFD was encountered
  1321. * with a 0 NextPtr, or with an RFDDone bit set to 1
  1322. * (indicating the RFD is not read for use by the
  1323. * IPG.) Try to restore all RFDs.
  1324. */
  1325. ipg_nic_rxrestore(dev);
  1326. #ifdef IPG_DEBUG
  1327. /* Increment the RFDlistendCount counter. */
  1328. sp->RFDlistendCount++;
  1329. #endif
  1330. }
  1331. /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
  1332. * IntRequested interrupt, process received frames. */
  1333. if ((status & IPG_IS_RX_DMA_PRIORITY) ||
  1334. (status & IPG_IS_RFD_LIST_END) ||
  1335. (status & IPG_IS_RX_DMA_COMPLETE) ||
  1336. (status & IPG_IS_INT_REQUESTED)) {
  1337. #ifdef IPG_DEBUG
  1338. /* Increment the RFD list checked counter if interrupted
  1339. * only to check the RFD list. */
  1340. if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
  1341. IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
  1342. (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
  1343. IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
  1344. IPG_IS_UPDATE_STATS)))
  1345. sp->RFDListCheckedCount++;
  1346. #endif
  1347. if (sp->is_jumbo)
  1348. ipg_nic_rx_jumbo(dev);
  1349. else
  1350. ipg_nic_rx(dev);
  1351. }
  1352. /* If TxDMAComplete interrupt, free used TFDs. */
  1353. if (status & IPG_IS_TX_DMA_COMPLETE)
  1354. ipg_nic_txfree(dev);
  1355. /* TxComplete interrupts indicate one of numerous actions.
  1356. * Determine what action to take based on TXSTATUS register.
  1357. */
  1358. if (status & IPG_IS_TX_COMPLETE)
  1359. ipg_nic_txcleanup(dev);
  1360. /* If UpdateStats interrupt, update Linux Ethernet statistics */
  1361. if (status & IPG_IS_UPDATE_STATS)
  1362. ipg_nic_get_stats(dev);
  1363. /* If HostError interrupt, reset IPG. */
  1364. if (status & IPG_IS_HOST_ERROR) {
  1365. IPG_DDEBUG_MSG("HostError Interrupt\n");
  1366. schedule_delayed_work(&sp->task, 0);
  1367. }
  1368. /* If LinkEvent interrupt, resolve autonegotiation. */
  1369. if (status & IPG_IS_LINK_EVENT) {
  1370. if (ipg_config_autoneg(dev) < 0)
  1371. printk(KERN_INFO "%s: Auto-negotiation error.\n",
  1372. dev->name);
  1373. }
  1374. /* If MACCtrlFrame interrupt, do nothing. */
  1375. if (status & IPG_IS_MAC_CTRL_FRAME)
  1376. IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
  1377. /* If RxComplete interrupt, do nothing. */
  1378. if (status & IPG_IS_RX_COMPLETE)
  1379. IPG_DEBUG_MSG("RxComplete interrupt.\n");
  1380. /* If RxEarly interrupt, do nothing. */
  1381. if (status & IPG_IS_RX_EARLY)
  1382. IPG_DEBUG_MSG("RxEarly interrupt.\n");
  1383. out_enable:
  1384. /* Re-enable IPG interrupts. */
  1385. ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
  1386. IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
  1387. IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
  1388. out_unlock:
  1389. spin_unlock(&sp->lock);
  1390. return IRQ_RETVAL(handled);
  1391. }
  1392. static void ipg_rx_clear(struct ipg_nic_private *sp)
  1393. {
  1394. unsigned int i;
  1395. for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
  1396. if (sp->rx_buff[i]) {
  1397. struct ipg_rx *rxfd = sp->rxd + i;
  1398. dev_kfree_skb_irq(sp->rx_buff[i]);
  1399. sp->rx_buff[i] = NULL;
  1400. pci_unmap_single(sp->pdev,
  1401. le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
  1402. sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
  1403. }
  1404. }
  1405. }
  1406. static void ipg_tx_clear(struct ipg_nic_private *sp)
  1407. {
  1408. unsigned int i;
  1409. for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
  1410. if (sp->tx_buff[i]) {
  1411. struct ipg_tx *txfd = sp->txd + i;
  1412. pci_unmap_single(sp->pdev,
  1413. le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
  1414. sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
  1415. dev_kfree_skb_irq(sp->tx_buff[i]);
  1416. sp->tx_buff[i] = NULL;
  1417. }
  1418. }
  1419. }
  1420. static int ipg_nic_open(struct net_device *dev)
  1421. {
  1422. struct ipg_nic_private *sp = netdev_priv(dev);
  1423. void __iomem *ioaddr = sp->ioaddr;
  1424. struct pci_dev *pdev = sp->pdev;
  1425. int rc;
  1426. IPG_DEBUG_MSG("_nic_open\n");
  1427. sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
  1428. /* Check for interrupt line conflicts, and request interrupt
  1429. * line for IPG.
  1430. *
  1431. * IMPORTANT: Disable IPG interrupts prior to registering
  1432. * IRQ.
  1433. */
  1434. ipg_w16(0x0000, INT_ENABLE);
  1435. /* Register the interrupt line to be used by the IPG within
  1436. * the Linux system.
  1437. */
  1438. rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
  1439. dev->name, dev);
  1440. if (rc < 0) {
  1441. printk(KERN_INFO "%s: Error when requesting interrupt.\n",
  1442. dev->name);
  1443. goto out;
  1444. }
  1445. dev->irq = pdev->irq;
  1446. rc = -ENOMEM;
  1447. sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
  1448. &sp->rxd_map, GFP_KERNEL);
  1449. if (!sp->rxd)
  1450. goto err_free_irq_0;
  1451. sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
  1452. &sp->txd_map, GFP_KERNEL);
  1453. if (!sp->txd)
  1454. goto err_free_rx_1;
  1455. rc = init_rfdlist(dev);
  1456. if (rc < 0) {
  1457. printk(KERN_INFO "%s: Error during configuration.\n",
  1458. dev->name);
  1459. goto err_free_tx_2;
  1460. }
  1461. init_tfdlist(dev);
  1462. rc = ipg_io_config(dev);
  1463. if (rc < 0) {
  1464. printk(KERN_INFO "%s: Error during configuration.\n",
  1465. dev->name);
  1466. goto err_release_tfdlist_3;
  1467. }
  1468. /* Resolve autonegotiation. */
  1469. if (ipg_config_autoneg(dev) < 0)
  1470. printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
  1471. /* initialize JUMBO Frame control variable */
  1472. sp->jumbo.found_start = 0;
  1473. sp->jumbo.current_size = 0;
  1474. sp->jumbo.skb = NULL;
  1475. if (IPG_TXFRAG_SIZE)
  1476. dev->mtu = IPG_TXFRAG_SIZE;
  1477. /* Enable transmit and receive operation of the IPG. */
  1478. ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
  1479. IPG_MC_RSVD_MASK, MAC_CTRL);
  1480. netif_start_queue(dev);
  1481. out:
  1482. return rc;
  1483. err_release_tfdlist_3:
  1484. ipg_tx_clear(sp);
  1485. ipg_rx_clear(sp);
  1486. err_free_tx_2:
  1487. dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
  1488. err_free_rx_1:
  1489. dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
  1490. err_free_irq_0:
  1491. free_irq(pdev->irq, dev);
  1492. goto out;
  1493. }
  1494. static int ipg_nic_stop(struct net_device *dev)
  1495. {
  1496. struct ipg_nic_private *sp = netdev_priv(dev);
  1497. void __iomem *ioaddr = sp->ioaddr;
  1498. struct pci_dev *pdev = sp->pdev;
  1499. IPG_DEBUG_MSG("_nic_stop\n");
  1500. netif_stop_queue(dev);
  1501. IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
  1502. IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
  1503. IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
  1504. IPG_DUMPTFDLIST(dev);
  1505. do {
  1506. (void) ipg_r16(INT_STATUS_ACK);
  1507. ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
  1508. synchronize_irq(pdev->irq);
  1509. } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
  1510. ipg_rx_clear(sp);
  1511. ipg_tx_clear(sp);
  1512. pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
  1513. pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
  1514. free_irq(pdev->irq, dev);
  1515. return 0;
  1516. }
  1517. static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1518. {
  1519. struct ipg_nic_private *sp = netdev_priv(dev);
  1520. void __iomem *ioaddr = sp->ioaddr;
  1521. unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
  1522. unsigned long flags;
  1523. struct ipg_tx *txfd;
  1524. IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
  1525. /* If in 10Mbps mode, stop the transmit queue so
  1526. * no more transmit frames are accepted.
  1527. */
  1528. if (sp->tenmbpsmode)
  1529. netif_stop_queue(dev);
  1530. if (sp->reset_current_tfd) {
  1531. sp->reset_current_tfd = 0;
  1532. entry = 0;
  1533. }
  1534. txfd = sp->txd + entry;
  1535. sp->tx_buff[entry] = skb;
  1536. /* Clear all TFC fields, except TFDDONE. */
  1537. txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
  1538. /* Specify the TFC field within the TFD. */
  1539. txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
  1540. (IPG_TFC_FRAMEID & sp->tx_current) |
  1541. (IPG_TFC_FRAGCOUNT & (1 << 24)));
  1542. /*
  1543. * 16--17 (WordAlign) <- 3 (disable),
  1544. * 0--15 (FrameId) <- sp->tx_current,
  1545. * 24--27 (FragCount) <- 1
  1546. */
  1547. /* Request TxComplete interrupts at an interval defined
  1548. * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
  1549. * Request TxComplete interrupt for every frame
  1550. * if in 10Mbps mode to accomodate problem with 10Mbps
  1551. * processing.
  1552. */
  1553. if (sp->tenmbpsmode)
  1554. txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
  1555. txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
  1556. /* Based on compilation option, determine if FCS is to be
  1557. * appended to transmit frame by IPG.
  1558. */
  1559. if (!(IPG_APPEND_FCS_ON_TX))
  1560. txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
  1561. /* Based on compilation option, determine if IP, TCP and/or
  1562. * UDP checksums are to be added to transmit frame by IPG.
  1563. */
  1564. if (IPG_ADD_IPCHECKSUM_ON_TX)
  1565. txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
  1566. if (IPG_ADD_TCPCHECKSUM_ON_TX)
  1567. txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
  1568. if (IPG_ADD_UDPCHECKSUM_ON_TX)
  1569. txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
  1570. /* Based on compilation option, determine if VLAN tag info is to be
  1571. * inserted into transmit frame by IPG.
  1572. */
  1573. if (IPG_INSERT_MANUAL_VLAN_TAG) {
  1574. txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
  1575. ((u64) IPG_MANUAL_VLAN_VID << 32) |
  1576. ((u64) IPG_MANUAL_VLAN_CFI << 44) |
  1577. ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
  1578. }
  1579. /* The fragment start location within system memory is defined
  1580. * by the sk_buff structure's data field. The physical address
  1581. * of this location within the system's virtual memory space
  1582. * is determined using the IPG_HOST2BUS_MAP function.
  1583. */
  1584. txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
  1585. skb->len, PCI_DMA_TODEVICE));
  1586. /* The length of the fragment within system memory is defined by
  1587. * the sk_buff structure's len field.
  1588. */
  1589. txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
  1590. ((u64) (skb->len & 0xffff) << 48));
  1591. /* Clear the TFDDone bit last to indicate the TFD is ready
  1592. * for transfer to the IPG.
  1593. */
  1594. txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
  1595. spin_lock_irqsave(&sp->lock, flags);
  1596. sp->tx_current++;
  1597. mmiowb();
  1598. ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
  1599. if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
  1600. netif_stop_queue(dev);
  1601. spin_unlock_irqrestore(&sp->lock, flags);
  1602. return NETDEV_TX_OK;
  1603. }
  1604. static void ipg_set_phy_default_param(unsigned char rev,
  1605. struct net_device *dev, int phy_address)
  1606. {
  1607. unsigned short length;
  1608. unsigned char revision;
  1609. unsigned short *phy_param;
  1610. unsigned short address, value;
  1611. phy_param = &DefaultPhyParam[0];
  1612. length = *phy_param & 0x00FF;
  1613. revision = (unsigned char)((*phy_param) >> 8);
  1614. phy_param++;
  1615. while (length != 0) {
  1616. if (rev == revision) {
  1617. while (length > 1) {
  1618. address = *phy_param;
  1619. value = *(phy_param + 1);
  1620. phy_param += 2;
  1621. mdio_write(dev, phy_address, address, value);
  1622. length -= 4;
  1623. }
  1624. break;
  1625. } else {
  1626. phy_param += length / 2;
  1627. length = *phy_param & 0x00FF;
  1628. revision = (unsigned char)((*phy_param) >> 8);
  1629. phy_param++;
  1630. }
  1631. }
  1632. }
  1633. static int read_eeprom(struct net_device *dev, int eep_addr)
  1634. {
  1635. void __iomem *ioaddr = ipg_ioaddr(dev);
  1636. unsigned int i;
  1637. int ret = 0;
  1638. u16 value;
  1639. value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
  1640. ipg_w16(value, EEPROM_CTRL);
  1641. for (i = 0; i < 1000; i++) {
  1642. u16 data;
  1643. mdelay(10);
  1644. data = ipg_r16(EEPROM_CTRL);
  1645. if (!(data & IPG_EC_EEPROM_BUSY)) {
  1646. ret = ipg_r16(EEPROM_DATA);
  1647. break;
  1648. }
  1649. }
  1650. return ret;
  1651. }
  1652. static void ipg_init_mii(struct net_device *dev)
  1653. {
  1654. struct ipg_nic_private *sp = netdev_priv(dev);
  1655. struct mii_if_info *mii_if = &sp->mii_if;
  1656. int phyaddr;
  1657. mii_if->dev = dev;
  1658. mii_if->mdio_read = mdio_read;
  1659. mii_if->mdio_write = mdio_write;
  1660. mii_if->phy_id_mask = 0x1f;
  1661. mii_if->reg_num_mask = 0x1f;
  1662. mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
  1663. if (phyaddr != 0x1f) {
  1664. u16 mii_phyctrl, mii_1000cr;
  1665. u8 revisionid = 0;
  1666. mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
  1667. mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
  1668. GMII_PHY_1000BASETCONTROL_PreferMaster;
  1669. mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
  1670. mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
  1671. /* Set default phyparam */
  1672. pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
  1673. ipg_set_phy_default_param(revisionid, dev, phyaddr);
  1674. /* Reset PHY */
  1675. mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
  1676. mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
  1677. }
  1678. }
  1679. static int ipg_hw_init(struct net_device *dev)
  1680. {
  1681. struct ipg_nic_private *sp = netdev_priv(dev);
  1682. void __iomem *ioaddr = sp->ioaddr;
  1683. unsigned int i;
  1684. int rc;
  1685. /* Read/Write and Reset EEPROM Value */
  1686. /* Read LED Mode Configuration from EEPROM */
  1687. sp->led_mode = read_eeprom(dev, 6);
  1688. /* Reset all functions within the IPG. Do not assert
  1689. * RST_OUT as not compatible with some PHYs.
  1690. */
  1691. rc = ipg_reset(dev, IPG_RESET_MASK);
  1692. if (rc < 0)
  1693. goto out;
  1694. ipg_init_mii(dev);
  1695. /* Read MAC Address from EEPROM */
  1696. for (i = 0; i < 3; i++)
  1697. sp->station_addr[i] = read_eeprom(dev, 16 + i);
  1698. for (i = 0; i < 3; i++)
  1699. ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
  1700. /* Set station address in ethernet_device structure. */
  1701. dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
  1702. dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
  1703. dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
  1704. dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
  1705. dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
  1706. dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
  1707. out:
  1708. return rc;
  1709. }
  1710. static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1711. {
  1712. struct ipg_nic_private *sp = netdev_priv(dev);
  1713. int rc;
  1714. mutex_lock(&sp->mii_mutex);
  1715. rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
  1716. mutex_unlock(&sp->mii_mutex);
  1717. return rc;
  1718. }
  1719. static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
  1720. {
  1721. /* Function to accomodate changes to Maximum Transfer Unit
  1722. * (or MTU) of IPG NIC. Cannot use default function since
  1723. * the default will not allow for MTU > 1500 bytes.
  1724. */
  1725. IPG_DEBUG_MSG("_nic_change_mtu\n");
  1726. /* Check that the new MTU value is between 68 (14 byte header, 46
  1727. * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
  1728. * corresponds to the MAXFRAMESIZE register in the IPG.
  1729. */
  1730. if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
  1731. return -EINVAL;
  1732. dev->mtu = new_mtu;
  1733. return 0;
  1734. }
  1735. static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1736. {
  1737. struct ipg_nic_private *sp = netdev_priv(dev);
  1738. int rc;
  1739. mutex_lock(&sp->mii_mutex);
  1740. rc = mii_ethtool_gset(&sp->mii_if, cmd);
  1741. mutex_unlock(&sp->mii_mutex);
  1742. return rc;
  1743. }
  1744. static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1745. {
  1746. struct ipg_nic_private *sp = netdev_priv(dev);
  1747. int rc;
  1748. mutex_lock(&sp->mii_mutex);
  1749. rc = mii_ethtool_sset(&sp->mii_if, cmd);
  1750. mutex_unlock(&sp->mii_mutex);
  1751. return rc;
  1752. }
  1753. static int ipg_nway_reset(struct net_device *dev)
  1754. {
  1755. struct ipg_nic_private *sp = netdev_priv(dev);
  1756. int rc;
  1757. mutex_lock(&sp->mii_mutex);
  1758. rc = mii_nway_restart(&sp->mii_if);
  1759. mutex_unlock(&sp->mii_mutex);
  1760. return rc;
  1761. }
  1762. static struct ethtool_ops ipg_ethtool_ops = {
  1763. .get_settings = ipg_get_settings,
  1764. .set_settings = ipg_set_settings,
  1765. .nway_reset = ipg_nway_reset,
  1766. };
  1767. static void __devexit ipg_remove(struct pci_dev *pdev)
  1768. {
  1769. struct net_device *dev = pci_get_drvdata(pdev);
  1770. struct ipg_nic_private *sp = netdev_priv(dev);
  1771. IPG_DEBUG_MSG("_remove\n");
  1772. /* Un-register Ethernet device. */
  1773. unregister_netdev(dev);
  1774. pci_iounmap(pdev, sp->ioaddr);
  1775. pci_release_regions(pdev);
  1776. free_netdev(dev);
  1777. pci_disable_device(pdev);
  1778. pci_set_drvdata(pdev, NULL);
  1779. }
  1780. static int __devinit ipg_probe(struct pci_dev *pdev,
  1781. const struct pci_device_id *id)
  1782. {
  1783. unsigned int i = id->driver_data;
  1784. struct ipg_nic_private *sp;
  1785. struct net_device *dev;
  1786. void __iomem *ioaddr;
  1787. int rc;
  1788. rc = pci_enable_device(pdev);
  1789. if (rc < 0)
  1790. goto out;
  1791. printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
  1792. pci_set_master(pdev);
  1793. rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
  1794. if (rc < 0) {
  1795. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  1796. if (rc < 0) {
  1797. printk(KERN_ERR "%s: DMA config failed.\n",
  1798. pci_name(pdev));
  1799. goto err_disable_0;
  1800. }
  1801. }
  1802. /*
  1803. * Initialize net device.
  1804. */
  1805. dev = alloc_etherdev(sizeof(struct ipg_nic_private));
  1806. if (!dev) {
  1807. printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
  1808. rc = -ENOMEM;
  1809. goto err_disable_0;
  1810. }
  1811. sp = netdev_priv(dev);
  1812. spin_lock_init(&sp->lock);
  1813. mutex_init(&sp->mii_mutex);
  1814. sp->is_jumbo = IPG_JUMBO;
  1815. sp->rxfrag_size = IPG_RXFRAG_SIZE;
  1816. /* Declare IPG NIC functions for Ethernet device methods.
  1817. */
  1818. dev->open = &ipg_nic_open;
  1819. dev->stop = &ipg_nic_stop;
  1820. dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
  1821. dev->get_stats = &ipg_nic_get_stats;
  1822. dev->set_multicast_list = &ipg_nic_set_multicast_list;
  1823. dev->do_ioctl = ipg_ioctl;
  1824. dev->tx_timeout = ipg_tx_timeout;
  1825. dev->change_mtu = &ipg_nic_change_mtu;
  1826. SET_NETDEV_DEV(dev, &pdev->dev);
  1827. SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
  1828. rc = pci_request_regions(pdev, DRV_NAME);
  1829. if (rc)
  1830. goto err_free_dev_1;
  1831. ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
  1832. if (!ioaddr) {
  1833. printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
  1834. rc = -EIO;
  1835. goto err_release_regions_2;
  1836. }
  1837. /* Save the pointer to the PCI device information. */
  1838. sp->ioaddr = ioaddr;
  1839. sp->pdev = pdev;
  1840. sp->dev = dev;
  1841. INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
  1842. pci_set_drvdata(pdev, dev);
  1843. rc = ipg_hw_init(dev);
  1844. if (rc < 0)
  1845. goto err_unmap_3;
  1846. rc = register_netdev(dev);
  1847. if (rc < 0)
  1848. goto err_unmap_3;
  1849. printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
  1850. out:
  1851. return rc;
  1852. err_unmap_3:
  1853. pci_iounmap(pdev, ioaddr);
  1854. err_release_regions_2:
  1855. pci_release_regions(pdev);
  1856. err_free_dev_1:
  1857. free_netdev(dev);
  1858. err_disable_0:
  1859. pci_disable_device(pdev);
  1860. goto out;
  1861. }
  1862. static struct pci_driver ipg_pci_driver = {
  1863. .name = IPG_DRIVER_NAME,
  1864. .id_table = ipg_pci_tbl,
  1865. .probe = ipg_probe,
  1866. .remove = __devexit_p(ipg_remove),
  1867. };
  1868. static int __init ipg_init_module(void)
  1869. {
  1870. return pci_register_driver(&ipg_pci_driver);
  1871. }
  1872. static void __exit ipg_exit_module(void)
  1873. {
  1874. pci_unregister_driver(&ipg_pci_driver);
  1875. }
  1876. module_init(ipg_init_module);
  1877. module_exit(ipg_exit_module);