setup_64.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <linux/init_ohci1394_dma.h>
  43. #include <asm/mtrr.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/system.h>
  46. #include <asm/vsyscall.h>
  47. #include <asm/io.h>
  48. #include <asm/smp.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <video/edid.h>
  52. #include <asm/e820.h>
  53. #include <asm/dma.h>
  54. #include <asm/gart.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/proto.h>
  58. #include <asm/setup.h>
  59. #include <asm/mach_apic.h>
  60. #include <asm/numa.h>
  61. #include <asm/sections.h>
  62. #include <asm/dmi.h>
  63. #include <asm/cacheflush.h>
  64. #include <asm/mce.h>
  65. #include <asm/ds.h>
  66. #include <asm/topology.h>
  67. #ifdef CONFIG_PARAVIRT
  68. #include <asm/paravirt.h>
  69. #else
  70. #define ARCH_SETUP
  71. #endif
  72. /*
  73. * Machine setup..
  74. */
  75. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  76. EXPORT_SYMBOL(boot_cpu_data);
  77. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  78. unsigned long mmu_cr4_features;
  79. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  80. int bootloader_type;
  81. unsigned long saved_video_mode;
  82. int force_mwait __cpuinitdata;
  83. /*
  84. * Early DMI memory
  85. */
  86. int dmi_alloc_index;
  87. char dmi_alloc_data[DMI_MAX_DATA];
  88. /*
  89. * Setup options
  90. */
  91. struct screen_info screen_info;
  92. EXPORT_SYMBOL(screen_info);
  93. struct sys_desc_table_struct {
  94. unsigned short length;
  95. unsigned char table[0];
  96. };
  97. struct edid_info edid_info;
  98. EXPORT_SYMBOL_GPL(edid_info);
  99. extern int root_mountflags;
  100. char __initdata command_line[COMMAND_LINE_SIZE];
  101. struct resource standard_io_resources[] = {
  102. { .name = "dma1", .start = 0x00, .end = 0x1f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic1", .start = 0x20, .end = 0x21,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "timer0", .start = 0x40, .end = 0x43,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "timer1", .start = 0x50, .end = 0x53,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  110. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  111. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  112. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  113. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  114. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  115. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  116. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  117. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  118. { .name = "fpu", .start = 0xf0, .end = 0xff,
  119. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  120. };
  121. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  122. static struct resource data_resource = {
  123. .name = "Kernel data",
  124. .start = 0,
  125. .end = 0,
  126. .flags = IORESOURCE_RAM,
  127. };
  128. static struct resource code_resource = {
  129. .name = "Kernel code",
  130. .start = 0,
  131. .end = 0,
  132. .flags = IORESOURCE_RAM,
  133. };
  134. static struct resource bss_resource = {
  135. .name = "Kernel bss",
  136. .start = 0,
  137. .end = 0,
  138. .flags = IORESOURCE_RAM,
  139. };
  140. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  141. #ifdef CONFIG_PROC_VMCORE
  142. /* elfcorehdr= specifies the location of elf core header
  143. * stored by the crashed kernel. This option will be passed
  144. * by kexec loader to the capture kernel.
  145. */
  146. static int __init setup_elfcorehdr(char *arg)
  147. {
  148. char *end;
  149. if (!arg)
  150. return -EINVAL;
  151. elfcorehdr_addr = memparse(arg, &end);
  152. return end > arg ? 0 : -EINVAL;
  153. }
  154. early_param("elfcorehdr", setup_elfcorehdr);
  155. #endif
  156. #ifndef CONFIG_NUMA
  157. static void __init
  158. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  159. {
  160. unsigned long bootmap_size, bootmap;
  161. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  162. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  163. PAGE_SIZE);
  164. if (bootmap == -1L)
  165. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  166. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  167. e820_register_active_regions(0, start_pfn, end_pfn);
  168. free_bootmem_with_active_regions(0, end_pfn);
  169. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  170. }
  171. #endif
  172. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  173. struct edd edd;
  174. #ifdef CONFIG_EDD_MODULE
  175. EXPORT_SYMBOL(edd);
  176. #endif
  177. /**
  178. * copy_edd() - Copy the BIOS EDD information
  179. * from boot_params into a safe place.
  180. *
  181. */
  182. static inline void copy_edd(void)
  183. {
  184. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  185. sizeof(edd.mbr_signature));
  186. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  187. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  188. edd.edd_info_nr = boot_params.eddbuf_entries;
  189. }
  190. #else
  191. static inline void copy_edd(void)
  192. {
  193. }
  194. #endif
  195. #ifdef CONFIG_KEXEC
  196. static void __init reserve_crashkernel(void)
  197. {
  198. unsigned long long total_mem;
  199. unsigned long long crash_size, crash_base;
  200. int ret;
  201. total_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  202. ret = parse_crashkernel(boot_command_line, total_mem,
  203. &crash_size, &crash_base);
  204. if (ret == 0 && crash_size) {
  205. if (crash_base <= 0) {
  206. printk(KERN_INFO "crashkernel reservation failed - "
  207. "you have to specify a base address\n");
  208. return;
  209. }
  210. if (reserve_bootmem(crash_base, crash_size,
  211. BOOTMEM_EXCLUSIVE) < 0) {
  212. printk(KERN_INFO "crashkernel reservation failed - "
  213. "memory is in use\n");
  214. return;
  215. }
  216. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  217. "for crashkernel (System RAM: %ldMB)\n",
  218. (unsigned long)(crash_size >> 20),
  219. (unsigned long)(crash_base >> 20),
  220. (unsigned long)(total_mem >> 20));
  221. crashk_res.start = crash_base;
  222. crashk_res.end = crash_base + crash_size - 1;
  223. }
  224. }
  225. #else
  226. static inline void __init reserve_crashkernel(void)
  227. {}
  228. #endif
  229. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  230. void __attribute__((weak)) __init memory_setup(void)
  231. {
  232. machine_specific_memory_setup();
  233. }
  234. /*
  235. * setup_arch - architecture-specific boot-time initializations
  236. *
  237. * Note: On x86_64, fixmaps are ready for use even before this is called.
  238. */
  239. void __init setup_arch(char **cmdline_p)
  240. {
  241. unsigned i;
  242. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  243. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  244. screen_info = boot_params.screen_info;
  245. edid_info = boot_params.edid_info;
  246. saved_video_mode = boot_params.hdr.vid_mode;
  247. bootloader_type = boot_params.hdr.type_of_loader;
  248. #ifdef CONFIG_BLK_DEV_RAM
  249. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  250. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  251. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  252. #endif
  253. #ifdef CONFIG_EFI
  254. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  255. "EL64", 4))
  256. efi_enabled = 1;
  257. #endif
  258. ARCH_SETUP
  259. memory_setup();
  260. copy_edd();
  261. if (!boot_params.hdr.root_flags)
  262. root_mountflags &= ~MS_RDONLY;
  263. init_mm.start_code = (unsigned long) &_text;
  264. init_mm.end_code = (unsigned long) &_etext;
  265. init_mm.end_data = (unsigned long) &_edata;
  266. init_mm.brk = (unsigned long) &_end;
  267. code_resource.start = virt_to_phys(&_text);
  268. code_resource.end = virt_to_phys(&_etext)-1;
  269. data_resource.start = virt_to_phys(&_etext);
  270. data_resource.end = virt_to_phys(&_edata)-1;
  271. bss_resource.start = virt_to_phys(&__bss_start);
  272. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  273. early_identify_cpu(&boot_cpu_data);
  274. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  275. *cmdline_p = command_line;
  276. parse_early_param();
  277. #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
  278. if (init_ohci1394_dma_early)
  279. init_ohci1394_dma_on_all_controllers();
  280. #endif
  281. finish_e820_parsing();
  282. early_gart_iommu_check();
  283. e820_register_active_regions(0, 0, -1UL);
  284. /*
  285. * partially used pages are not usable - thus
  286. * we are rounding upwards:
  287. */
  288. end_pfn = e820_end_of_ram();
  289. /* update e820 for memory not covered by WB MTRRs */
  290. mtrr_bp_init();
  291. if (mtrr_trim_uncached_memory(end_pfn)) {
  292. e820_register_active_regions(0, 0, -1UL);
  293. end_pfn = e820_end_of_ram();
  294. }
  295. num_physpages = end_pfn;
  296. check_efer();
  297. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  298. if (efi_enabled)
  299. efi_init();
  300. dmi_scan_machine();
  301. io_delay_init();
  302. #ifdef CONFIG_SMP
  303. /* setup to use the early static init tables during kernel startup */
  304. x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
  305. x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
  306. #ifdef CONFIG_NUMA
  307. x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
  308. #endif
  309. #endif
  310. #ifdef CONFIG_ACPI
  311. /*
  312. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  313. * Call this early for SRAT node setup.
  314. */
  315. acpi_boot_table_init();
  316. #endif
  317. /* How many end-of-memory variables you have, grandma! */
  318. max_low_pfn = end_pfn;
  319. max_pfn = end_pfn;
  320. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  321. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  322. remove_all_active_ranges();
  323. #ifdef CONFIG_ACPI_NUMA
  324. /*
  325. * Parse SRAT to discover nodes.
  326. */
  327. acpi_numa_init();
  328. #endif
  329. #ifdef CONFIG_NUMA
  330. numa_initmem_init(0, end_pfn);
  331. #else
  332. contig_initmem_init(0, end_pfn);
  333. #endif
  334. early_res_to_bootmem();
  335. #ifdef CONFIG_ACPI_SLEEP
  336. /*
  337. * Reserve low memory region for sleep support.
  338. */
  339. acpi_reserve_bootmem();
  340. #endif
  341. if (efi_enabled)
  342. efi_reserve_bootmem();
  343. /*
  344. * Find and reserve possible boot-time SMP configuration:
  345. */
  346. find_smp_config();
  347. #ifdef CONFIG_BLK_DEV_INITRD
  348. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  349. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  350. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  351. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  352. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  353. if (ramdisk_end <= end_of_mem) {
  354. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  355. initrd_start = ramdisk_image + PAGE_OFFSET;
  356. initrd_end = initrd_start+ramdisk_size;
  357. } else {
  358. /* Assumes everything on node 0 */
  359. free_bootmem(ramdisk_image, ramdisk_size);
  360. printk(KERN_ERR "initrd extends beyond end of memory "
  361. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  362. ramdisk_end, end_of_mem);
  363. initrd_start = 0;
  364. }
  365. }
  366. #endif
  367. reserve_crashkernel();
  368. paging_init();
  369. map_vsyscall();
  370. early_quirks();
  371. #ifdef CONFIG_ACPI
  372. /*
  373. * Read APIC and some other early information from ACPI tables.
  374. */
  375. acpi_boot_init();
  376. #endif
  377. init_cpu_to_node();
  378. /*
  379. * get boot-time SMP configuration:
  380. */
  381. if (smp_found_config)
  382. get_smp_config();
  383. init_apic_mappings();
  384. ioapic_init_mappings();
  385. /*
  386. * We trust e820 completely. No explicit ROM probing in memory.
  387. */
  388. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  389. e820_mark_nosave_regions();
  390. /* request I/O space for devices used on all i[345]86 PCs */
  391. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  392. request_resource(&ioport_resource, &standard_io_resources[i]);
  393. e820_setup_gap();
  394. #ifdef CONFIG_VT
  395. #if defined(CONFIG_VGA_CONSOLE)
  396. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  397. conswitchp = &vga_con;
  398. #elif defined(CONFIG_DUMMY_CONSOLE)
  399. conswitchp = &dummy_con;
  400. #endif
  401. #endif
  402. }
  403. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  404. {
  405. unsigned int *v;
  406. if (c->extended_cpuid_level < 0x80000004)
  407. return 0;
  408. v = (unsigned int *) c->x86_model_id;
  409. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  410. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  411. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  412. c->x86_model_id[48] = 0;
  413. return 1;
  414. }
  415. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  416. {
  417. unsigned int n, dummy, eax, ebx, ecx, edx;
  418. n = c->extended_cpuid_level;
  419. if (n >= 0x80000005) {
  420. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  421. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  422. "D cache %dK (%d bytes/line)\n",
  423. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  424. c->x86_cache_size = (ecx>>24) + (edx>>24);
  425. /* On K8 L1 TLB is inclusive, so don't count it */
  426. c->x86_tlbsize = 0;
  427. }
  428. if (n >= 0x80000006) {
  429. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  430. ecx = cpuid_ecx(0x80000006);
  431. c->x86_cache_size = ecx >> 16;
  432. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  433. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  434. c->x86_cache_size, ecx & 0xFF);
  435. }
  436. if (n >= 0x80000008) {
  437. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  438. c->x86_virt_bits = (eax >> 8) & 0xff;
  439. c->x86_phys_bits = eax & 0xff;
  440. }
  441. }
  442. #ifdef CONFIG_NUMA
  443. static int nearby_node(int apicid)
  444. {
  445. int i, node;
  446. for (i = apicid - 1; i >= 0; i--) {
  447. node = apicid_to_node[i];
  448. if (node != NUMA_NO_NODE && node_online(node))
  449. return node;
  450. }
  451. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  452. node = apicid_to_node[i];
  453. if (node != NUMA_NO_NODE && node_online(node))
  454. return node;
  455. }
  456. return first_node(node_online_map); /* Shouldn't happen */
  457. }
  458. #endif
  459. /*
  460. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  461. * Assumes number of cores is a power of two.
  462. */
  463. static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
  464. {
  465. #ifdef CONFIG_SMP
  466. unsigned bits;
  467. #ifdef CONFIG_NUMA
  468. int cpu = smp_processor_id();
  469. int node = 0;
  470. unsigned apicid = hard_smp_processor_id();
  471. #endif
  472. bits = c->x86_coreid_bits;
  473. /* Low order bits define the core id (index of core in socket) */
  474. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  475. /* Convert the APIC ID into the socket ID */
  476. c->phys_proc_id = phys_pkg_id(bits);
  477. #ifdef CONFIG_NUMA
  478. node = c->phys_proc_id;
  479. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  480. node = apicid_to_node[apicid];
  481. if (!node_online(node)) {
  482. /* Two possibilities here:
  483. - The CPU is missing memory and no node was created.
  484. In that case try picking one from a nearby CPU
  485. - The APIC IDs differ from the HyperTransport node IDs
  486. which the K8 northbridge parsing fills in.
  487. Assume they are all increased by a constant offset,
  488. but in the same order as the HT nodeids.
  489. If that doesn't result in a usable node fall back to the
  490. path for the previous case. */
  491. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  492. if (ht_nodeid >= 0 &&
  493. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  494. node = apicid_to_node[ht_nodeid];
  495. /* Pick a nearby node */
  496. if (!node_online(node))
  497. node = nearby_node(apicid);
  498. }
  499. numa_set_node(cpu, node);
  500. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  501. #endif
  502. #endif
  503. }
  504. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  505. {
  506. #ifdef CONFIG_SMP
  507. unsigned bits, ecx;
  508. /* Multi core CPU? */
  509. if (c->extended_cpuid_level < 0x80000008)
  510. return;
  511. ecx = cpuid_ecx(0x80000008);
  512. c->x86_max_cores = (ecx & 0xff) + 1;
  513. /* CPU telling us the core id bits shift? */
  514. bits = (ecx >> 12) & 0xF;
  515. /* Otherwise recompute */
  516. if (bits == 0) {
  517. while ((1 << bits) < c->x86_max_cores)
  518. bits++;
  519. }
  520. c->x86_coreid_bits = bits;
  521. #endif
  522. }
  523. #define ENABLE_C1E_MASK 0x18000000
  524. #define CPUID_PROCESSOR_SIGNATURE 1
  525. #define CPUID_XFAM 0x0ff00000
  526. #define CPUID_XFAM_K8 0x00000000
  527. #define CPUID_XFAM_10H 0x00100000
  528. #define CPUID_XFAM_11H 0x00200000
  529. #define CPUID_XMOD 0x000f0000
  530. #define CPUID_XMOD_REV_F 0x00040000
  531. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  532. static __cpuinit int amd_apic_timer_broken(void)
  533. {
  534. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  535. switch (eax & CPUID_XFAM) {
  536. case CPUID_XFAM_K8:
  537. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  538. break;
  539. case CPUID_XFAM_10H:
  540. case CPUID_XFAM_11H:
  541. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  542. if (lo & ENABLE_C1E_MASK)
  543. return 1;
  544. break;
  545. default:
  546. /* err on the side of caution */
  547. return 1;
  548. }
  549. return 0;
  550. }
  551. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  552. {
  553. early_init_amd_mc(c);
  554. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  555. if (c->x86_power & (1<<8))
  556. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  557. }
  558. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  559. {
  560. unsigned level;
  561. #ifdef CONFIG_SMP
  562. unsigned long value;
  563. /*
  564. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  565. * bit 6 of msr C001_0015
  566. *
  567. * Errata 63 for SH-B3 steppings
  568. * Errata 122 for all steppings (F+ have it disabled by default)
  569. */
  570. if (c->x86 == 15) {
  571. rdmsrl(MSR_K8_HWCR, value);
  572. value |= 1 << 6;
  573. wrmsrl(MSR_K8_HWCR, value);
  574. }
  575. #endif
  576. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  577. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  578. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  579. /* On C+ stepping K8 rep microcode works well for copy/memset */
  580. level = cpuid_eax(1);
  581. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  582. level >= 0x0f58))
  583. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  584. if (c->x86 == 0x10 || c->x86 == 0x11)
  585. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  586. /* Enable workaround for FXSAVE leak */
  587. if (c->x86 >= 6)
  588. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  589. level = get_model_name(c);
  590. if (!level) {
  591. switch (c->x86) {
  592. case 15:
  593. /* Should distinguish Models here, but this is only
  594. a fallback anyways. */
  595. strcpy(c->x86_model_id, "Hammer");
  596. break;
  597. }
  598. }
  599. display_cacheinfo(c);
  600. /* Multi core CPU? */
  601. if (c->extended_cpuid_level >= 0x80000008)
  602. amd_detect_cmp(c);
  603. if (c->extended_cpuid_level >= 0x80000006 &&
  604. (cpuid_edx(0x80000006) & 0xf000))
  605. num_cache_leaves = 4;
  606. else
  607. num_cache_leaves = 3;
  608. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  609. set_cpu_cap(c, X86_FEATURE_K8);
  610. /* MFENCE stops RDTSC speculation */
  611. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  612. if (amd_apic_timer_broken())
  613. disable_apic_timer = 1;
  614. }
  615. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  616. {
  617. #ifdef CONFIG_SMP
  618. u32 eax, ebx, ecx, edx;
  619. int index_msb, core_bits;
  620. cpuid(1, &eax, &ebx, &ecx, &edx);
  621. if (!cpu_has(c, X86_FEATURE_HT))
  622. return;
  623. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  624. goto out;
  625. smp_num_siblings = (ebx & 0xff0000) >> 16;
  626. if (smp_num_siblings == 1) {
  627. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  628. } else if (smp_num_siblings > 1) {
  629. if (smp_num_siblings > NR_CPUS) {
  630. printk(KERN_WARNING "CPU: Unsupported number of "
  631. "siblings %d", smp_num_siblings);
  632. smp_num_siblings = 1;
  633. return;
  634. }
  635. index_msb = get_count_order(smp_num_siblings);
  636. c->phys_proc_id = phys_pkg_id(index_msb);
  637. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  638. index_msb = get_count_order(smp_num_siblings);
  639. core_bits = get_count_order(c->x86_max_cores);
  640. c->cpu_core_id = phys_pkg_id(index_msb) &
  641. ((1 << core_bits) - 1);
  642. }
  643. out:
  644. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  645. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  646. c->phys_proc_id);
  647. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  648. c->cpu_core_id);
  649. }
  650. #endif
  651. }
  652. /*
  653. * find out the number of processor cores on the die
  654. */
  655. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  656. {
  657. unsigned int eax, t;
  658. if (c->cpuid_level < 4)
  659. return 1;
  660. cpuid_count(4, 0, &eax, &t, &t, &t);
  661. if (eax & 0x1f)
  662. return ((eax >> 26) + 1);
  663. else
  664. return 1;
  665. }
  666. static void srat_detect_node(void)
  667. {
  668. #ifdef CONFIG_NUMA
  669. unsigned node;
  670. int cpu = smp_processor_id();
  671. int apicid = hard_smp_processor_id();
  672. /* Don't do the funky fallback heuristics the AMD version employs
  673. for now. */
  674. node = apicid_to_node[apicid];
  675. if (node == NUMA_NO_NODE)
  676. node = first_node(node_online_map);
  677. numa_set_node(cpu, node);
  678. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  679. #endif
  680. }
  681. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  682. {
  683. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  684. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  685. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  686. }
  687. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  688. {
  689. /* Cache sizes */
  690. unsigned n;
  691. init_intel_cacheinfo(c);
  692. if (c->cpuid_level > 9) {
  693. unsigned eax = cpuid_eax(10);
  694. /* Check for version and the number of counters */
  695. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  696. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  697. }
  698. if (cpu_has_ds) {
  699. unsigned int l1, l2;
  700. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  701. if (!(l1 & (1<<11)))
  702. set_cpu_cap(c, X86_FEATURE_BTS);
  703. if (!(l1 & (1<<12)))
  704. set_cpu_cap(c, X86_FEATURE_PEBS);
  705. }
  706. if (cpu_has_bts)
  707. ds_init_intel(c);
  708. n = c->extended_cpuid_level;
  709. if (n >= 0x80000008) {
  710. unsigned eax = cpuid_eax(0x80000008);
  711. c->x86_virt_bits = (eax >> 8) & 0xff;
  712. c->x86_phys_bits = eax & 0xff;
  713. /* CPUID workaround for Intel 0F34 CPU */
  714. if (c->x86_vendor == X86_VENDOR_INTEL &&
  715. c->x86 == 0xF && c->x86_model == 0x3 &&
  716. c->x86_mask == 0x4)
  717. c->x86_phys_bits = 36;
  718. }
  719. if (c->x86 == 15)
  720. c->x86_cache_alignment = c->x86_clflush_size * 2;
  721. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  722. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  723. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  724. if (c->x86 == 6)
  725. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  726. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  727. c->x86_max_cores = intel_num_cpu_cores(c);
  728. srat_detect_node();
  729. }
  730. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  731. {
  732. char *v = c->x86_vendor_id;
  733. if (!strcmp(v, "AuthenticAMD"))
  734. c->x86_vendor = X86_VENDOR_AMD;
  735. else if (!strcmp(v, "GenuineIntel"))
  736. c->x86_vendor = X86_VENDOR_INTEL;
  737. else
  738. c->x86_vendor = X86_VENDOR_UNKNOWN;
  739. }
  740. /* Do some early cpuid on the boot CPU to get some parameter that are
  741. needed before check_bugs. Everything advanced is in identify_cpu
  742. below. */
  743. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  744. {
  745. u32 tfms, xlvl;
  746. c->loops_per_jiffy = loops_per_jiffy;
  747. c->x86_cache_size = -1;
  748. c->x86_vendor = X86_VENDOR_UNKNOWN;
  749. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  750. c->x86_vendor_id[0] = '\0'; /* Unset */
  751. c->x86_model_id[0] = '\0'; /* Unset */
  752. c->x86_clflush_size = 64;
  753. c->x86_cache_alignment = c->x86_clflush_size;
  754. c->x86_max_cores = 1;
  755. c->x86_coreid_bits = 0;
  756. c->extended_cpuid_level = 0;
  757. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  758. /* Get vendor name */
  759. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  760. (unsigned int *)&c->x86_vendor_id[0],
  761. (unsigned int *)&c->x86_vendor_id[8],
  762. (unsigned int *)&c->x86_vendor_id[4]);
  763. get_cpu_vendor(c);
  764. /* Initialize the standard set of capabilities */
  765. /* Note that the vendor-specific code below might override */
  766. /* Intel-defined flags: level 0x00000001 */
  767. if (c->cpuid_level >= 0x00000001) {
  768. __u32 misc;
  769. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  770. &c->x86_capability[0]);
  771. c->x86 = (tfms >> 8) & 0xf;
  772. c->x86_model = (tfms >> 4) & 0xf;
  773. c->x86_mask = tfms & 0xf;
  774. if (c->x86 == 0xf)
  775. c->x86 += (tfms >> 20) & 0xff;
  776. if (c->x86 >= 0x6)
  777. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  778. if (c->x86_capability[0] & (1<<19))
  779. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  780. } else {
  781. /* Have CPUID level 0 only - unheard of */
  782. c->x86 = 4;
  783. }
  784. #ifdef CONFIG_SMP
  785. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  786. #endif
  787. /* AMD-defined flags: level 0x80000001 */
  788. xlvl = cpuid_eax(0x80000000);
  789. c->extended_cpuid_level = xlvl;
  790. if ((xlvl & 0xffff0000) == 0x80000000) {
  791. if (xlvl >= 0x80000001) {
  792. c->x86_capability[1] = cpuid_edx(0x80000001);
  793. c->x86_capability[6] = cpuid_ecx(0x80000001);
  794. }
  795. if (xlvl >= 0x80000004)
  796. get_model_name(c); /* Default name */
  797. }
  798. /* Transmeta-defined flags: level 0x80860001 */
  799. xlvl = cpuid_eax(0x80860000);
  800. if ((xlvl & 0xffff0000) == 0x80860000) {
  801. /* Don't set x86_cpuid_level here for now to not confuse. */
  802. if (xlvl >= 0x80860001)
  803. c->x86_capability[2] = cpuid_edx(0x80860001);
  804. }
  805. c->extended_cpuid_level = cpuid_eax(0x80000000);
  806. if (c->extended_cpuid_level >= 0x80000007)
  807. c->x86_power = cpuid_edx(0x80000007);
  808. switch (c->x86_vendor) {
  809. case X86_VENDOR_AMD:
  810. early_init_amd(c);
  811. break;
  812. case X86_VENDOR_INTEL:
  813. early_init_intel(c);
  814. break;
  815. }
  816. }
  817. /*
  818. * This does the hard work of actually picking apart the CPU stuff...
  819. */
  820. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  821. {
  822. int i;
  823. early_identify_cpu(c);
  824. init_scattered_cpuid_features(c);
  825. c->apicid = phys_pkg_id(0);
  826. /*
  827. * Vendor-specific initialization. In this section we
  828. * canonicalize the feature flags, meaning if there are
  829. * features a certain CPU supports which CPUID doesn't
  830. * tell us, CPUID claiming incorrect flags, or other bugs,
  831. * we handle them here.
  832. *
  833. * At the end of this section, c->x86_capability better
  834. * indicate the features this CPU genuinely supports!
  835. */
  836. switch (c->x86_vendor) {
  837. case X86_VENDOR_AMD:
  838. init_amd(c);
  839. break;
  840. case X86_VENDOR_INTEL:
  841. init_intel(c);
  842. break;
  843. case X86_VENDOR_UNKNOWN:
  844. default:
  845. display_cacheinfo(c);
  846. break;
  847. }
  848. detect_ht(c);
  849. /*
  850. * On SMP, boot_cpu_data holds the common feature set between
  851. * all CPUs; so make sure that we indicate which features are
  852. * common between the CPUs. The first time this routine gets
  853. * executed, c == &boot_cpu_data.
  854. */
  855. if (c != &boot_cpu_data) {
  856. /* AND the already accumulated flags with these */
  857. for (i = 0; i < NCAPINTS; i++)
  858. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  859. }
  860. /* Clear all flags overriden by options */
  861. for (i = 0; i < NCAPINTS; i++)
  862. c->x86_capability[i] ^= cleared_cpu_caps[i];
  863. #ifdef CONFIG_X86_MCE
  864. mcheck_init(c);
  865. #endif
  866. select_idle_routine(c);
  867. if (c != &boot_cpu_data)
  868. mtrr_ap_init();
  869. #ifdef CONFIG_NUMA
  870. numa_add_cpu(smp_processor_id());
  871. #endif
  872. }
  873. static __init int setup_noclflush(char *arg)
  874. {
  875. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  876. return 1;
  877. }
  878. __setup("noclflush", setup_noclflush);
  879. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  880. {
  881. if (c->x86_model_id[0])
  882. printk(KERN_INFO "%s", c->x86_model_id);
  883. if (c->x86_mask || c->cpuid_level >= 0)
  884. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  885. else
  886. printk(KERN_CONT "\n");
  887. }
  888. static __init int setup_disablecpuid(char *arg)
  889. {
  890. int bit;
  891. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  892. setup_clear_cpu_cap(bit);
  893. else
  894. return 0;
  895. return 1;
  896. }
  897. __setup("clearcpuid=", setup_disablecpuid);
  898. /*
  899. * Get CPU information for use by the procfs.
  900. */
  901. static int show_cpuinfo(struct seq_file *m, void *v)
  902. {
  903. struct cpuinfo_x86 *c = v;
  904. int cpu = 0, i;
  905. #ifdef CONFIG_SMP
  906. cpu = c->cpu_index;
  907. #endif
  908. seq_printf(m, "processor\t: %u\n"
  909. "vendor_id\t: %s\n"
  910. "cpu family\t: %d\n"
  911. "model\t\t: %d\n"
  912. "model name\t: %s\n",
  913. (unsigned)cpu,
  914. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  915. c->x86,
  916. (int)c->x86_model,
  917. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  918. if (c->x86_mask || c->cpuid_level >= 0)
  919. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  920. else
  921. seq_printf(m, "stepping\t: unknown\n");
  922. if (cpu_has(c, X86_FEATURE_TSC)) {
  923. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  924. if (!freq)
  925. freq = cpu_khz;
  926. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  927. freq / 1000, (freq % 1000));
  928. }
  929. /* Cache size */
  930. if (c->x86_cache_size >= 0)
  931. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  932. #ifdef CONFIG_SMP
  933. if (smp_num_siblings * c->x86_max_cores > 1) {
  934. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  935. seq_printf(m, "siblings\t: %d\n",
  936. cpus_weight(per_cpu(cpu_core_map, cpu)));
  937. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  938. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  939. }
  940. #endif
  941. seq_printf(m,
  942. "fpu\t\t: yes\n"
  943. "fpu_exception\t: yes\n"
  944. "cpuid level\t: %d\n"
  945. "wp\t\t: yes\n"
  946. "flags\t\t:",
  947. c->cpuid_level);
  948. for (i = 0; i < 32*NCAPINTS; i++)
  949. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  950. seq_printf(m, " %s", x86_cap_flags[i]);
  951. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  952. c->loops_per_jiffy/(500000/HZ),
  953. (c->loops_per_jiffy/(5000/HZ)) % 100);
  954. if (c->x86_tlbsize > 0)
  955. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  956. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  957. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  958. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  959. c->x86_phys_bits, c->x86_virt_bits);
  960. seq_printf(m, "power management:");
  961. for (i = 0; i < 32; i++) {
  962. if (c->x86_power & (1 << i)) {
  963. if (i < ARRAY_SIZE(x86_power_flags) &&
  964. x86_power_flags[i])
  965. seq_printf(m, "%s%s",
  966. x86_power_flags[i][0]?" ":"",
  967. x86_power_flags[i]);
  968. else
  969. seq_printf(m, " [%d]", i);
  970. }
  971. }
  972. seq_printf(m, "\n\n");
  973. return 0;
  974. }
  975. static void *c_start(struct seq_file *m, loff_t *pos)
  976. {
  977. if (*pos == 0) /* just in case, cpu 0 is not the first */
  978. *pos = first_cpu(cpu_online_map);
  979. if ((*pos) < NR_CPUS && cpu_online(*pos))
  980. return &cpu_data(*pos);
  981. return NULL;
  982. }
  983. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  984. {
  985. *pos = next_cpu(*pos, cpu_online_map);
  986. return c_start(m, pos);
  987. }
  988. static void c_stop(struct seq_file *m, void *v)
  989. {
  990. }
  991. const struct seq_operations cpuinfo_op = {
  992. .start = c_start,
  993. .next = c_next,
  994. .stop = c_stop,
  995. .show = show_cpuinfo,
  996. };