page-writeback.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 akpm@zip.com.au
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. /*
  37. * The maximum number of pages to writeout in a single bdflush/kupdate
  38. * operation. We do this so we don't hold I_SYNC against an inode for
  39. * enormous amounts of time, which would block a userspace task which has
  40. * been forced to throttle against that inode. Also, the code reevaluates
  41. * the dirty each time it has written this many pages.
  42. */
  43. #define MAX_WRITEBACK_PAGES 1024
  44. /*
  45. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  46. * will look to see if it needs to force writeback or throttling.
  47. */
  48. static long ratelimit_pages = 32;
  49. /*
  50. * When balance_dirty_pages decides that the caller needs to perform some
  51. * non-background writeback, this is how many pages it will attempt to write.
  52. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  53. * large amounts of I/O are submitted.
  54. */
  55. static inline long sync_writeback_pages(void)
  56. {
  57. return ratelimit_pages + ratelimit_pages / 2;
  58. }
  59. /* The following parameters are exported via /proc/sys/vm */
  60. /*
  61. * Start background writeback (via pdflush) at this percentage
  62. */
  63. int dirty_background_ratio = 5;
  64. /*
  65. * free highmem will not be subtracted from the total free memory
  66. * for calculating free ratios if vm_highmem_is_dirtyable is true
  67. */
  68. int vm_highmem_is_dirtyable;
  69. /*
  70. * The generator of dirty data starts writeback at this percentage
  71. */
  72. int vm_dirty_ratio = 10;
  73. /*
  74. * The interval between `kupdate'-style writebacks, in jiffies
  75. */
  76. int dirty_writeback_interval = 5 * HZ;
  77. /*
  78. * The longest number of jiffies for which data is allowed to remain dirty
  79. */
  80. int dirty_expire_interval = 30 * HZ;
  81. /*
  82. * Flag that makes the machine dump writes/reads and block dirtyings.
  83. */
  84. int block_dump;
  85. /*
  86. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  87. * a full sync is triggered after this time elapses without any disk activity.
  88. */
  89. int laptop_mode;
  90. EXPORT_SYMBOL(laptop_mode);
  91. /* End of sysctl-exported parameters */
  92. static void background_writeout(unsigned long _min_pages);
  93. /*
  94. * Scale the writeback cache size proportional to the relative writeout speeds.
  95. *
  96. * We do this by keeping a floating proportion between BDIs, based on page
  97. * writeback completions [end_page_writeback()]. Those devices that write out
  98. * pages fastest will get the larger share, while the slower will get a smaller
  99. * share.
  100. *
  101. * We use page writeout completions because we are interested in getting rid of
  102. * dirty pages. Having them written out is the primary goal.
  103. *
  104. * We introduce a concept of time, a period over which we measure these events,
  105. * because demand can/will vary over time. The length of this period itself is
  106. * measured in page writeback completions.
  107. *
  108. */
  109. static struct prop_descriptor vm_completions;
  110. static struct prop_descriptor vm_dirties;
  111. static unsigned long determine_dirtyable_memory(void);
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
  121. return 2 + ilog2(dirty_total - 1);
  122. }
  123. /*
  124. * update the period when the dirty ratio changes.
  125. */
  126. int dirty_ratio_handler(struct ctl_table *table, int write,
  127. struct file *filp, void __user *buffer, size_t *lenp,
  128. loff_t *ppos)
  129. {
  130. int old_ratio = vm_dirty_ratio;
  131. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  132. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  133. int shift = calc_period_shift();
  134. prop_change_shift(&vm_completions, shift);
  135. prop_change_shift(&vm_dirties, shift);
  136. }
  137. return ret;
  138. }
  139. /*
  140. * Increment the BDI's writeout completion count and the global writeout
  141. * completion count. Called from test_clear_page_writeback().
  142. */
  143. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  144. {
  145. __prop_inc_percpu(&vm_completions, &bdi->completions);
  146. }
  147. static inline void task_dirty_inc(struct task_struct *tsk)
  148. {
  149. prop_inc_single(&vm_dirties, &tsk->dirties);
  150. }
  151. /*
  152. * Obtain an accurate fraction of the BDI's portion.
  153. */
  154. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  155. long *numerator, long *denominator)
  156. {
  157. if (bdi_cap_writeback_dirty(bdi)) {
  158. prop_fraction_percpu(&vm_completions, &bdi->completions,
  159. numerator, denominator);
  160. } else {
  161. *numerator = 0;
  162. *denominator = 1;
  163. }
  164. }
  165. /*
  166. * Clip the earned share of dirty pages to that which is actually available.
  167. * This avoids exceeding the total dirty_limit when the floating averages
  168. * fluctuate too quickly.
  169. */
  170. static void
  171. clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
  172. {
  173. long avail_dirty;
  174. avail_dirty = dirty -
  175. (global_page_state(NR_FILE_DIRTY) +
  176. global_page_state(NR_WRITEBACK) +
  177. global_page_state(NR_UNSTABLE_NFS));
  178. if (avail_dirty < 0)
  179. avail_dirty = 0;
  180. avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
  181. bdi_stat(bdi, BDI_WRITEBACK);
  182. *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
  183. }
  184. static inline void task_dirties_fraction(struct task_struct *tsk,
  185. long *numerator, long *denominator)
  186. {
  187. prop_fraction_single(&vm_dirties, &tsk->dirties,
  188. numerator, denominator);
  189. }
  190. /*
  191. * scale the dirty limit
  192. *
  193. * task specific dirty limit:
  194. *
  195. * dirty -= (dirty/8) * p_{t}
  196. */
  197. static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
  198. {
  199. long numerator, denominator;
  200. long dirty = *pdirty;
  201. u64 inv = dirty >> 3;
  202. task_dirties_fraction(tsk, &numerator, &denominator);
  203. inv *= numerator;
  204. do_div(inv, denominator);
  205. dirty -= inv;
  206. if (dirty < *pdirty/2)
  207. dirty = *pdirty/2;
  208. *pdirty = dirty;
  209. }
  210. /*
  211. *
  212. */
  213. static DEFINE_SPINLOCK(bdi_lock);
  214. static unsigned int bdi_min_ratio;
  215. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  216. {
  217. int ret = 0;
  218. unsigned long flags;
  219. spin_lock_irqsave(&bdi_lock, flags);
  220. min_ratio -= bdi->min_ratio;
  221. if (bdi_min_ratio + min_ratio < 100) {
  222. bdi_min_ratio += min_ratio;
  223. bdi->min_ratio += min_ratio;
  224. } else
  225. ret = -EINVAL;
  226. spin_unlock_irqrestore(&bdi_lock, flags);
  227. return ret;
  228. }
  229. /*
  230. * Work out the current dirty-memory clamping and background writeout
  231. * thresholds.
  232. *
  233. * The main aim here is to lower them aggressively if there is a lot of mapped
  234. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  235. * pages. It is better to clamp down on writers than to start swapping, and
  236. * performing lots of scanning.
  237. *
  238. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  239. *
  240. * We don't permit the clamping level to fall below 5% - that is getting rather
  241. * excessive.
  242. *
  243. * We make sure that the background writeout level is below the adjusted
  244. * clamping level.
  245. */
  246. static unsigned long highmem_dirtyable_memory(unsigned long total)
  247. {
  248. #ifdef CONFIG_HIGHMEM
  249. int node;
  250. unsigned long x = 0;
  251. for_each_node_state(node, N_HIGH_MEMORY) {
  252. struct zone *z =
  253. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  254. x += zone_page_state(z, NR_FREE_PAGES)
  255. + zone_page_state(z, NR_INACTIVE)
  256. + zone_page_state(z, NR_ACTIVE);
  257. }
  258. /*
  259. * Make sure that the number of highmem pages is never larger
  260. * than the number of the total dirtyable memory. This can only
  261. * occur in very strange VM situations but we want to make sure
  262. * that this does not occur.
  263. */
  264. return min(x, total);
  265. #else
  266. return 0;
  267. #endif
  268. }
  269. static unsigned long determine_dirtyable_memory(void)
  270. {
  271. unsigned long x;
  272. x = global_page_state(NR_FREE_PAGES)
  273. + global_page_state(NR_INACTIVE)
  274. + global_page_state(NR_ACTIVE);
  275. if (!vm_highmem_is_dirtyable)
  276. x -= highmem_dirtyable_memory(x);
  277. return x + 1; /* Ensure that we never return 0 */
  278. }
  279. void
  280. get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
  281. struct backing_dev_info *bdi)
  282. {
  283. int background_ratio; /* Percentages */
  284. int dirty_ratio;
  285. long background;
  286. long dirty;
  287. unsigned long available_memory = determine_dirtyable_memory();
  288. struct task_struct *tsk;
  289. dirty_ratio = vm_dirty_ratio;
  290. if (dirty_ratio < 5)
  291. dirty_ratio = 5;
  292. background_ratio = dirty_background_ratio;
  293. if (background_ratio >= dirty_ratio)
  294. background_ratio = dirty_ratio / 2;
  295. background = (background_ratio * available_memory) / 100;
  296. dirty = (dirty_ratio * available_memory) / 100;
  297. tsk = current;
  298. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  299. background += background / 4;
  300. dirty += dirty / 4;
  301. }
  302. *pbackground = background;
  303. *pdirty = dirty;
  304. if (bdi) {
  305. u64 bdi_dirty;
  306. long numerator, denominator;
  307. /*
  308. * Calculate this BDI's share of the dirty ratio.
  309. */
  310. bdi_writeout_fraction(bdi, &numerator, &denominator);
  311. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  312. bdi_dirty *= numerator;
  313. do_div(bdi_dirty, denominator);
  314. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  315. *pbdi_dirty = bdi_dirty;
  316. clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
  317. task_dirty_limit(current, pbdi_dirty);
  318. }
  319. }
  320. /*
  321. * balance_dirty_pages() must be called by processes which are generating dirty
  322. * data. It looks at the number of dirty pages in the machine and will force
  323. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  324. * If we're over `background_thresh' then pdflush is woken to perform some
  325. * writeout.
  326. */
  327. static void balance_dirty_pages(struct address_space *mapping)
  328. {
  329. long nr_reclaimable, bdi_nr_reclaimable;
  330. long nr_writeback, bdi_nr_writeback;
  331. long background_thresh;
  332. long dirty_thresh;
  333. long bdi_thresh;
  334. unsigned long pages_written = 0;
  335. unsigned long write_chunk = sync_writeback_pages();
  336. struct backing_dev_info *bdi = mapping->backing_dev_info;
  337. for (;;) {
  338. struct writeback_control wbc = {
  339. .bdi = bdi,
  340. .sync_mode = WB_SYNC_NONE,
  341. .older_than_this = NULL,
  342. .nr_to_write = write_chunk,
  343. .range_cyclic = 1,
  344. };
  345. get_dirty_limits(&background_thresh, &dirty_thresh,
  346. &bdi_thresh, bdi);
  347. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  348. global_page_state(NR_UNSTABLE_NFS);
  349. nr_writeback = global_page_state(NR_WRITEBACK);
  350. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  351. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  352. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  353. break;
  354. /*
  355. * Throttle it only when the background writeback cannot
  356. * catch-up. This avoids (excessively) small writeouts
  357. * when the bdi limits are ramping up.
  358. */
  359. if (nr_reclaimable + nr_writeback <
  360. (background_thresh + dirty_thresh) / 2)
  361. break;
  362. if (!bdi->dirty_exceeded)
  363. bdi->dirty_exceeded = 1;
  364. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  365. * Unstable writes are a feature of certain networked
  366. * filesystems (i.e. NFS) in which data may have been
  367. * written to the server's write cache, but has not yet
  368. * been flushed to permanent storage.
  369. */
  370. if (bdi_nr_reclaimable) {
  371. writeback_inodes(&wbc);
  372. pages_written += write_chunk - wbc.nr_to_write;
  373. get_dirty_limits(&background_thresh, &dirty_thresh,
  374. &bdi_thresh, bdi);
  375. }
  376. /*
  377. * In order to avoid the stacked BDI deadlock we need
  378. * to ensure we accurately count the 'dirty' pages when
  379. * the threshold is low.
  380. *
  381. * Otherwise it would be possible to get thresh+n pages
  382. * reported dirty, even though there are thresh-m pages
  383. * actually dirty; with m+n sitting in the percpu
  384. * deltas.
  385. */
  386. if (bdi_thresh < 2*bdi_stat_error(bdi)) {
  387. bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  388. bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
  389. } else if (bdi_nr_reclaimable) {
  390. bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  391. bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
  392. }
  393. if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
  394. break;
  395. if (pages_written >= write_chunk)
  396. break; /* We've done our duty */
  397. congestion_wait(WRITE, HZ/10);
  398. }
  399. if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
  400. bdi->dirty_exceeded)
  401. bdi->dirty_exceeded = 0;
  402. if (writeback_in_progress(bdi))
  403. return; /* pdflush is already working this queue */
  404. /*
  405. * In laptop mode, we wait until hitting the higher threshold before
  406. * starting background writeout, and then write out all the way down
  407. * to the lower threshold. So slow writers cause minimal disk activity.
  408. *
  409. * In normal mode, we start background writeout at the lower
  410. * background_thresh, to keep the amount of dirty memory low.
  411. */
  412. if ((laptop_mode && pages_written) ||
  413. (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
  414. + global_page_state(NR_UNSTABLE_NFS)
  415. > background_thresh)))
  416. pdflush_operation(background_writeout, 0);
  417. }
  418. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  419. {
  420. if (set_page_dirty(page) || page_mkwrite) {
  421. struct address_space *mapping = page_mapping(page);
  422. if (mapping)
  423. balance_dirty_pages_ratelimited(mapping);
  424. }
  425. }
  426. /**
  427. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  428. * @mapping: address_space which was dirtied
  429. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  430. *
  431. * Processes which are dirtying memory should call in here once for each page
  432. * which was newly dirtied. The function will periodically check the system's
  433. * dirty state and will initiate writeback if needed.
  434. *
  435. * On really big machines, get_writeback_state is expensive, so try to avoid
  436. * calling it too often (ratelimiting). But once we're over the dirty memory
  437. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  438. * from overshooting the limit by (ratelimit_pages) each.
  439. */
  440. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  441. unsigned long nr_pages_dirtied)
  442. {
  443. static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
  444. unsigned long ratelimit;
  445. unsigned long *p;
  446. ratelimit = ratelimit_pages;
  447. if (mapping->backing_dev_info->dirty_exceeded)
  448. ratelimit = 8;
  449. /*
  450. * Check the rate limiting. Also, we do not want to throttle real-time
  451. * tasks in balance_dirty_pages(). Period.
  452. */
  453. preempt_disable();
  454. p = &__get_cpu_var(ratelimits);
  455. *p += nr_pages_dirtied;
  456. if (unlikely(*p >= ratelimit)) {
  457. *p = 0;
  458. preempt_enable();
  459. balance_dirty_pages(mapping);
  460. return;
  461. }
  462. preempt_enable();
  463. }
  464. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  465. void throttle_vm_writeout(gfp_t gfp_mask)
  466. {
  467. long background_thresh;
  468. long dirty_thresh;
  469. for ( ; ; ) {
  470. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  471. /*
  472. * Boost the allowable dirty threshold a bit for page
  473. * allocators so they don't get DoS'ed by heavy writers
  474. */
  475. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  476. if (global_page_state(NR_UNSTABLE_NFS) +
  477. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  478. break;
  479. congestion_wait(WRITE, HZ/10);
  480. /*
  481. * The caller might hold locks which can prevent IO completion
  482. * or progress in the filesystem. So we cannot just sit here
  483. * waiting for IO to complete.
  484. */
  485. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  486. break;
  487. }
  488. }
  489. /*
  490. * writeback at least _min_pages, and keep writing until the amount of dirty
  491. * memory is less than the background threshold, or until we're all clean.
  492. */
  493. static void background_writeout(unsigned long _min_pages)
  494. {
  495. long min_pages = _min_pages;
  496. struct writeback_control wbc = {
  497. .bdi = NULL,
  498. .sync_mode = WB_SYNC_NONE,
  499. .older_than_this = NULL,
  500. .nr_to_write = 0,
  501. .nonblocking = 1,
  502. .range_cyclic = 1,
  503. };
  504. for ( ; ; ) {
  505. long background_thresh;
  506. long dirty_thresh;
  507. get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
  508. if (global_page_state(NR_FILE_DIRTY) +
  509. global_page_state(NR_UNSTABLE_NFS) < background_thresh
  510. && min_pages <= 0)
  511. break;
  512. wbc.more_io = 0;
  513. wbc.encountered_congestion = 0;
  514. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  515. wbc.pages_skipped = 0;
  516. writeback_inodes(&wbc);
  517. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  518. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  519. /* Wrote less than expected */
  520. if (wbc.encountered_congestion || wbc.more_io)
  521. congestion_wait(WRITE, HZ/10);
  522. else
  523. break;
  524. }
  525. }
  526. }
  527. /*
  528. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  529. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  530. * -1 if all pdflush threads were busy.
  531. */
  532. int wakeup_pdflush(long nr_pages)
  533. {
  534. if (nr_pages == 0)
  535. nr_pages = global_page_state(NR_FILE_DIRTY) +
  536. global_page_state(NR_UNSTABLE_NFS);
  537. return pdflush_operation(background_writeout, nr_pages);
  538. }
  539. static void wb_timer_fn(unsigned long unused);
  540. static void laptop_timer_fn(unsigned long unused);
  541. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  542. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  543. /*
  544. * Periodic writeback of "old" data.
  545. *
  546. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  547. * dirtying-time in the inode's address_space. So this periodic writeback code
  548. * just walks the superblock inode list, writing back any inodes which are
  549. * older than a specific point in time.
  550. *
  551. * Try to run once per dirty_writeback_interval. But if a writeback event
  552. * takes longer than a dirty_writeback_interval interval, then leave a
  553. * one-second gap.
  554. *
  555. * older_than_this takes precedence over nr_to_write. So we'll only write back
  556. * all dirty pages if they are all attached to "old" mappings.
  557. */
  558. static void wb_kupdate(unsigned long arg)
  559. {
  560. unsigned long oldest_jif;
  561. unsigned long start_jif;
  562. unsigned long next_jif;
  563. long nr_to_write;
  564. struct writeback_control wbc = {
  565. .bdi = NULL,
  566. .sync_mode = WB_SYNC_NONE,
  567. .older_than_this = &oldest_jif,
  568. .nr_to_write = 0,
  569. .nonblocking = 1,
  570. .for_kupdate = 1,
  571. .range_cyclic = 1,
  572. };
  573. sync_supers();
  574. oldest_jif = jiffies - dirty_expire_interval;
  575. start_jif = jiffies;
  576. next_jif = start_jif + dirty_writeback_interval;
  577. nr_to_write = global_page_state(NR_FILE_DIRTY) +
  578. global_page_state(NR_UNSTABLE_NFS) +
  579. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  580. while (nr_to_write > 0) {
  581. wbc.more_io = 0;
  582. wbc.encountered_congestion = 0;
  583. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  584. writeback_inodes(&wbc);
  585. if (wbc.nr_to_write > 0) {
  586. if (wbc.encountered_congestion || wbc.more_io)
  587. congestion_wait(WRITE, HZ/10);
  588. else
  589. break; /* All the old data is written */
  590. }
  591. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  592. }
  593. if (time_before(next_jif, jiffies + HZ))
  594. next_jif = jiffies + HZ;
  595. if (dirty_writeback_interval)
  596. mod_timer(&wb_timer, next_jif);
  597. }
  598. /*
  599. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  600. */
  601. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  602. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  603. {
  604. proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
  605. if (dirty_writeback_interval)
  606. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  607. else
  608. del_timer(&wb_timer);
  609. return 0;
  610. }
  611. static void wb_timer_fn(unsigned long unused)
  612. {
  613. if (pdflush_operation(wb_kupdate, 0) < 0)
  614. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  615. }
  616. static void laptop_flush(unsigned long unused)
  617. {
  618. sys_sync();
  619. }
  620. static void laptop_timer_fn(unsigned long unused)
  621. {
  622. pdflush_operation(laptop_flush, 0);
  623. }
  624. /*
  625. * We've spun up the disk and we're in laptop mode: schedule writeback
  626. * of all dirty data a few seconds from now. If the flush is already scheduled
  627. * then push it back - the user is still using the disk.
  628. */
  629. void laptop_io_completion(void)
  630. {
  631. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
  632. }
  633. /*
  634. * We're in laptop mode and we've just synced. The sync's writes will have
  635. * caused another writeback to be scheduled by laptop_io_completion.
  636. * Nothing needs to be written back anymore, so we unschedule the writeback.
  637. */
  638. void laptop_sync_completion(void)
  639. {
  640. del_timer(&laptop_mode_wb_timer);
  641. }
  642. /*
  643. * If ratelimit_pages is too high then we can get into dirty-data overload
  644. * if a large number of processes all perform writes at the same time.
  645. * If it is too low then SMP machines will call the (expensive)
  646. * get_writeback_state too often.
  647. *
  648. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  649. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  650. * thresholds before writeback cuts in.
  651. *
  652. * But the limit should not be set too high. Because it also controls the
  653. * amount of memory which the balance_dirty_pages() caller has to write back.
  654. * If this is too large then the caller will block on the IO queue all the
  655. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  656. * will write six megabyte chunks, max.
  657. */
  658. void writeback_set_ratelimit(void)
  659. {
  660. ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
  661. if (ratelimit_pages < 16)
  662. ratelimit_pages = 16;
  663. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  664. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  665. }
  666. static int __cpuinit
  667. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  668. {
  669. writeback_set_ratelimit();
  670. return NOTIFY_DONE;
  671. }
  672. static struct notifier_block __cpuinitdata ratelimit_nb = {
  673. .notifier_call = ratelimit_handler,
  674. .next = NULL,
  675. };
  676. /*
  677. * Called early on to tune the page writeback dirty limits.
  678. *
  679. * We used to scale dirty pages according to how total memory
  680. * related to pages that could be allocated for buffers (by
  681. * comparing nr_free_buffer_pages() to vm_total_pages.
  682. *
  683. * However, that was when we used "dirty_ratio" to scale with
  684. * all memory, and we don't do that any more. "dirty_ratio"
  685. * is now applied to total non-HIGHPAGE memory (by subtracting
  686. * totalhigh_pages from vm_total_pages), and as such we can't
  687. * get into the old insane situation any more where we had
  688. * large amounts of dirty pages compared to a small amount of
  689. * non-HIGHMEM memory.
  690. *
  691. * But we might still want to scale the dirty_ratio by how
  692. * much memory the box has..
  693. */
  694. void __init page_writeback_init(void)
  695. {
  696. int shift;
  697. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  698. writeback_set_ratelimit();
  699. register_cpu_notifier(&ratelimit_nb);
  700. shift = calc_period_shift();
  701. prop_descriptor_init(&vm_completions, shift);
  702. prop_descriptor_init(&vm_dirties, shift);
  703. }
  704. /**
  705. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  706. * @mapping: address space structure to write
  707. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  708. * @writepage: function called for each page
  709. * @data: data passed to writepage function
  710. *
  711. * If a page is already under I/O, write_cache_pages() skips it, even
  712. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  713. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  714. * and msync() need to guarantee that all the data which was dirty at the time
  715. * the call was made get new I/O started against them. If wbc->sync_mode is
  716. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  717. * existing IO to complete.
  718. */
  719. int write_cache_pages(struct address_space *mapping,
  720. struct writeback_control *wbc, writepage_t writepage,
  721. void *data)
  722. {
  723. struct backing_dev_info *bdi = mapping->backing_dev_info;
  724. int ret = 0;
  725. int done = 0;
  726. struct pagevec pvec;
  727. int nr_pages;
  728. pgoff_t index;
  729. pgoff_t end; /* Inclusive */
  730. int scanned = 0;
  731. int range_whole = 0;
  732. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  733. wbc->encountered_congestion = 1;
  734. return 0;
  735. }
  736. pagevec_init(&pvec, 0);
  737. if (wbc->range_cyclic) {
  738. index = mapping->writeback_index; /* Start from prev offset */
  739. end = -1;
  740. } else {
  741. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  742. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  743. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  744. range_whole = 1;
  745. scanned = 1;
  746. }
  747. retry:
  748. while (!done && (index <= end) &&
  749. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  750. PAGECACHE_TAG_DIRTY,
  751. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
  752. unsigned i;
  753. scanned = 1;
  754. for (i = 0; i < nr_pages; i++) {
  755. struct page *page = pvec.pages[i];
  756. /*
  757. * At this point we hold neither mapping->tree_lock nor
  758. * lock on the page itself: the page may be truncated or
  759. * invalidated (changing page->mapping to NULL), or even
  760. * swizzled back from swapper_space to tmpfs file
  761. * mapping
  762. */
  763. lock_page(page);
  764. if (unlikely(page->mapping != mapping)) {
  765. unlock_page(page);
  766. continue;
  767. }
  768. if (!wbc->range_cyclic && page->index > end) {
  769. done = 1;
  770. unlock_page(page);
  771. continue;
  772. }
  773. if (wbc->sync_mode != WB_SYNC_NONE)
  774. wait_on_page_writeback(page);
  775. if (PageWriteback(page) ||
  776. !clear_page_dirty_for_io(page)) {
  777. unlock_page(page);
  778. continue;
  779. }
  780. ret = (*writepage)(page, wbc, data);
  781. if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
  782. unlock_page(page);
  783. ret = 0;
  784. }
  785. if (ret || (--(wbc->nr_to_write) <= 0))
  786. done = 1;
  787. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  788. wbc->encountered_congestion = 1;
  789. done = 1;
  790. }
  791. }
  792. pagevec_release(&pvec);
  793. cond_resched();
  794. }
  795. if (!scanned && !done) {
  796. /*
  797. * We hit the last page and there is more work to be done: wrap
  798. * back to the start of the file
  799. */
  800. scanned = 1;
  801. index = 0;
  802. goto retry;
  803. }
  804. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  805. mapping->writeback_index = index;
  806. return ret;
  807. }
  808. EXPORT_SYMBOL(write_cache_pages);
  809. /*
  810. * Function used by generic_writepages to call the real writepage
  811. * function and set the mapping flags on error
  812. */
  813. static int __writepage(struct page *page, struct writeback_control *wbc,
  814. void *data)
  815. {
  816. struct address_space *mapping = data;
  817. int ret = mapping->a_ops->writepage(page, wbc);
  818. mapping_set_error(mapping, ret);
  819. return ret;
  820. }
  821. /**
  822. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  823. * @mapping: address space structure to write
  824. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  825. *
  826. * This is a library function, which implements the writepages()
  827. * address_space_operation.
  828. */
  829. int generic_writepages(struct address_space *mapping,
  830. struct writeback_control *wbc)
  831. {
  832. /* deal with chardevs and other special file */
  833. if (!mapping->a_ops->writepage)
  834. return 0;
  835. return write_cache_pages(mapping, wbc, __writepage, mapping);
  836. }
  837. EXPORT_SYMBOL(generic_writepages);
  838. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  839. {
  840. int ret;
  841. if (wbc->nr_to_write <= 0)
  842. return 0;
  843. wbc->for_writepages = 1;
  844. if (mapping->a_ops->writepages)
  845. ret = mapping->a_ops->writepages(mapping, wbc);
  846. else
  847. ret = generic_writepages(mapping, wbc);
  848. wbc->for_writepages = 0;
  849. return ret;
  850. }
  851. /**
  852. * write_one_page - write out a single page and optionally wait on I/O
  853. * @page: the page to write
  854. * @wait: if true, wait on writeout
  855. *
  856. * The page must be locked by the caller and will be unlocked upon return.
  857. *
  858. * write_one_page() returns a negative error code if I/O failed.
  859. */
  860. int write_one_page(struct page *page, int wait)
  861. {
  862. struct address_space *mapping = page->mapping;
  863. int ret = 0;
  864. struct writeback_control wbc = {
  865. .sync_mode = WB_SYNC_ALL,
  866. .nr_to_write = 1,
  867. };
  868. BUG_ON(!PageLocked(page));
  869. if (wait)
  870. wait_on_page_writeback(page);
  871. if (clear_page_dirty_for_io(page)) {
  872. page_cache_get(page);
  873. ret = mapping->a_ops->writepage(page, &wbc);
  874. if (ret == 0 && wait) {
  875. wait_on_page_writeback(page);
  876. if (PageError(page))
  877. ret = -EIO;
  878. }
  879. page_cache_release(page);
  880. } else {
  881. unlock_page(page);
  882. }
  883. return ret;
  884. }
  885. EXPORT_SYMBOL(write_one_page);
  886. /*
  887. * For address_spaces which do not use buffers nor write back.
  888. */
  889. int __set_page_dirty_no_writeback(struct page *page)
  890. {
  891. if (!PageDirty(page))
  892. SetPageDirty(page);
  893. return 0;
  894. }
  895. /*
  896. * For address_spaces which do not use buffers. Just tag the page as dirty in
  897. * its radix tree.
  898. *
  899. * This is also used when a single buffer is being dirtied: we want to set the
  900. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  901. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  902. *
  903. * Most callers have locked the page, which pins the address_space in memory.
  904. * But zap_pte_range() does not lock the page, however in that case the
  905. * mapping is pinned by the vma's ->vm_file reference.
  906. *
  907. * We take care to handle the case where the page was truncated from the
  908. * mapping by re-checking page_mapping() inside tree_lock.
  909. */
  910. int __set_page_dirty_nobuffers(struct page *page)
  911. {
  912. if (!TestSetPageDirty(page)) {
  913. struct address_space *mapping = page_mapping(page);
  914. struct address_space *mapping2;
  915. if (!mapping)
  916. return 1;
  917. write_lock_irq(&mapping->tree_lock);
  918. mapping2 = page_mapping(page);
  919. if (mapping2) { /* Race with truncate? */
  920. BUG_ON(mapping2 != mapping);
  921. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  922. if (mapping_cap_account_dirty(mapping)) {
  923. __inc_zone_page_state(page, NR_FILE_DIRTY);
  924. __inc_bdi_stat(mapping->backing_dev_info,
  925. BDI_RECLAIMABLE);
  926. task_io_account_write(PAGE_CACHE_SIZE);
  927. }
  928. radix_tree_tag_set(&mapping->page_tree,
  929. page_index(page), PAGECACHE_TAG_DIRTY);
  930. }
  931. write_unlock_irq(&mapping->tree_lock);
  932. if (mapping->host) {
  933. /* !PageAnon && !swapper_space */
  934. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  935. }
  936. return 1;
  937. }
  938. return 0;
  939. }
  940. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  941. /*
  942. * When a writepage implementation decides that it doesn't want to write this
  943. * page for some reason, it should redirty the locked page via
  944. * redirty_page_for_writepage() and it should then unlock the page and return 0
  945. */
  946. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  947. {
  948. wbc->pages_skipped++;
  949. return __set_page_dirty_nobuffers(page);
  950. }
  951. EXPORT_SYMBOL(redirty_page_for_writepage);
  952. /*
  953. * If the mapping doesn't provide a set_page_dirty a_op, then
  954. * just fall through and assume that it wants buffer_heads.
  955. */
  956. static int __set_page_dirty(struct page *page)
  957. {
  958. struct address_space *mapping = page_mapping(page);
  959. if (likely(mapping)) {
  960. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  961. #ifdef CONFIG_BLOCK
  962. if (!spd)
  963. spd = __set_page_dirty_buffers;
  964. #endif
  965. return (*spd)(page);
  966. }
  967. if (!PageDirty(page)) {
  968. if (!TestSetPageDirty(page))
  969. return 1;
  970. }
  971. return 0;
  972. }
  973. int set_page_dirty(struct page *page)
  974. {
  975. int ret = __set_page_dirty(page);
  976. if (ret)
  977. task_dirty_inc(current);
  978. return ret;
  979. }
  980. EXPORT_SYMBOL(set_page_dirty);
  981. /*
  982. * set_page_dirty() is racy if the caller has no reference against
  983. * page->mapping->host, and if the page is unlocked. This is because another
  984. * CPU could truncate the page off the mapping and then free the mapping.
  985. *
  986. * Usually, the page _is_ locked, or the caller is a user-space process which
  987. * holds a reference on the inode by having an open file.
  988. *
  989. * In other cases, the page should be locked before running set_page_dirty().
  990. */
  991. int set_page_dirty_lock(struct page *page)
  992. {
  993. int ret;
  994. lock_page_nosync(page);
  995. ret = set_page_dirty(page);
  996. unlock_page(page);
  997. return ret;
  998. }
  999. EXPORT_SYMBOL(set_page_dirty_lock);
  1000. /*
  1001. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1002. * Returns true if the page was previously dirty.
  1003. *
  1004. * This is for preparing to put the page under writeout. We leave the page
  1005. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1006. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1007. * implementation will run either set_page_writeback() or set_page_dirty(),
  1008. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1009. * back into sync.
  1010. *
  1011. * This incoherency between the page's dirty flag and radix-tree tag is
  1012. * unfortunate, but it only exists while the page is locked.
  1013. */
  1014. int clear_page_dirty_for_io(struct page *page)
  1015. {
  1016. struct address_space *mapping = page_mapping(page);
  1017. BUG_ON(!PageLocked(page));
  1018. ClearPageReclaim(page);
  1019. if (mapping && mapping_cap_account_dirty(mapping)) {
  1020. /*
  1021. * Yes, Virginia, this is indeed insane.
  1022. *
  1023. * We use this sequence to make sure that
  1024. * (a) we account for dirty stats properly
  1025. * (b) we tell the low-level filesystem to
  1026. * mark the whole page dirty if it was
  1027. * dirty in a pagetable. Only to then
  1028. * (c) clean the page again and return 1 to
  1029. * cause the writeback.
  1030. *
  1031. * This way we avoid all nasty races with the
  1032. * dirty bit in multiple places and clearing
  1033. * them concurrently from different threads.
  1034. *
  1035. * Note! Normally the "set_page_dirty(page)"
  1036. * has no effect on the actual dirty bit - since
  1037. * that will already usually be set. But we
  1038. * need the side effects, and it can help us
  1039. * avoid races.
  1040. *
  1041. * We basically use the page "master dirty bit"
  1042. * as a serialization point for all the different
  1043. * threads doing their things.
  1044. */
  1045. if (page_mkclean(page))
  1046. set_page_dirty(page);
  1047. /*
  1048. * We carefully synchronise fault handlers against
  1049. * installing a dirty pte and marking the page dirty
  1050. * at this point. We do this by having them hold the
  1051. * page lock at some point after installing their
  1052. * pte, but before marking the page dirty.
  1053. * Pages are always locked coming in here, so we get
  1054. * the desired exclusion. See mm/memory.c:do_wp_page()
  1055. * for more comments.
  1056. */
  1057. if (TestClearPageDirty(page)) {
  1058. dec_zone_page_state(page, NR_FILE_DIRTY);
  1059. dec_bdi_stat(mapping->backing_dev_info,
  1060. BDI_RECLAIMABLE);
  1061. return 1;
  1062. }
  1063. return 0;
  1064. }
  1065. return TestClearPageDirty(page);
  1066. }
  1067. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1068. int test_clear_page_writeback(struct page *page)
  1069. {
  1070. struct address_space *mapping = page_mapping(page);
  1071. int ret;
  1072. if (mapping) {
  1073. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1074. unsigned long flags;
  1075. write_lock_irqsave(&mapping->tree_lock, flags);
  1076. ret = TestClearPageWriteback(page);
  1077. if (ret) {
  1078. radix_tree_tag_clear(&mapping->page_tree,
  1079. page_index(page),
  1080. PAGECACHE_TAG_WRITEBACK);
  1081. if (bdi_cap_writeback_dirty(bdi)) {
  1082. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1083. __bdi_writeout_inc(bdi);
  1084. }
  1085. }
  1086. write_unlock_irqrestore(&mapping->tree_lock, flags);
  1087. } else {
  1088. ret = TestClearPageWriteback(page);
  1089. }
  1090. if (ret)
  1091. dec_zone_page_state(page, NR_WRITEBACK);
  1092. return ret;
  1093. }
  1094. int test_set_page_writeback(struct page *page)
  1095. {
  1096. struct address_space *mapping = page_mapping(page);
  1097. int ret;
  1098. if (mapping) {
  1099. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1100. unsigned long flags;
  1101. write_lock_irqsave(&mapping->tree_lock, flags);
  1102. ret = TestSetPageWriteback(page);
  1103. if (!ret) {
  1104. radix_tree_tag_set(&mapping->page_tree,
  1105. page_index(page),
  1106. PAGECACHE_TAG_WRITEBACK);
  1107. if (bdi_cap_writeback_dirty(bdi))
  1108. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1109. }
  1110. if (!PageDirty(page))
  1111. radix_tree_tag_clear(&mapping->page_tree,
  1112. page_index(page),
  1113. PAGECACHE_TAG_DIRTY);
  1114. write_unlock_irqrestore(&mapping->tree_lock, flags);
  1115. } else {
  1116. ret = TestSetPageWriteback(page);
  1117. }
  1118. if (!ret)
  1119. inc_zone_page_state(page, NR_WRITEBACK);
  1120. return ret;
  1121. }
  1122. EXPORT_SYMBOL(test_set_page_writeback);
  1123. /*
  1124. * Return true if any of the pages in the mapping are marked with the
  1125. * passed tag.
  1126. */
  1127. int mapping_tagged(struct address_space *mapping, int tag)
  1128. {
  1129. int ret;
  1130. rcu_read_lock();
  1131. ret = radix_tree_tagged(&mapping->page_tree, tag);
  1132. rcu_read_unlock();
  1133. return ret;
  1134. }
  1135. EXPORT_SYMBOL(mapping_tagged);