mmu.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <asm/page.h>
  29. #include <asm/cmpxchg.h>
  30. #include <asm/io.h>
  31. /*
  32. * When setting this variable to true it enables Two-Dimensional-Paging
  33. * where the hardware walks 2 page tables:
  34. * 1. the guest-virtual to guest-physical
  35. * 2. while doing 1. it walks guest-physical to host-physical
  36. * If the hardware supports that we don't need to do shadow paging.
  37. */
  38. static bool tdp_enabled = false;
  39. #undef MMU_DEBUG
  40. #undef AUDIT
  41. #ifdef AUDIT
  42. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  43. #else
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  45. #endif
  46. #ifdef MMU_DEBUG
  47. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  48. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  49. #else
  50. #define pgprintk(x...) do { } while (0)
  51. #define rmap_printk(x...) do { } while (0)
  52. #endif
  53. #if defined(MMU_DEBUG) || defined(AUDIT)
  54. static int dbg = 1;
  55. #endif
  56. #ifndef MMU_DEBUG
  57. #define ASSERT(x) do { } while (0)
  58. #else
  59. #define ASSERT(x) \
  60. if (!(x)) { \
  61. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  62. __FILE__, __LINE__, #x); \
  63. }
  64. #endif
  65. #define PT64_PT_BITS 9
  66. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  67. #define PT32_PT_BITS 10
  68. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  69. #define PT_WRITABLE_SHIFT 1
  70. #define PT_PRESENT_MASK (1ULL << 0)
  71. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  72. #define PT_USER_MASK (1ULL << 2)
  73. #define PT_PWT_MASK (1ULL << 3)
  74. #define PT_PCD_MASK (1ULL << 4)
  75. #define PT_ACCESSED_MASK (1ULL << 5)
  76. #define PT_DIRTY_MASK (1ULL << 6)
  77. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  78. #define PT_PAT_MASK (1ULL << 7)
  79. #define PT_GLOBAL_MASK (1ULL << 8)
  80. #define PT64_NX_SHIFT 63
  81. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  82. #define PT_PAT_SHIFT 7
  83. #define PT_DIR_PAT_SHIFT 12
  84. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  85. #define PT32_DIR_PSE36_SIZE 4
  86. #define PT32_DIR_PSE36_SHIFT 13
  87. #define PT32_DIR_PSE36_MASK \
  88. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  89. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  90. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  91. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  92. #define PT64_LEVEL_BITS 9
  93. #define PT64_LEVEL_SHIFT(level) \
  94. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  95. #define PT64_LEVEL_MASK(level) \
  96. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  97. #define PT64_INDEX(address, level)\
  98. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  99. #define PT32_LEVEL_BITS 10
  100. #define PT32_LEVEL_SHIFT(level) \
  101. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  102. #define PT32_LEVEL_MASK(level) \
  103. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  104. #define PT32_INDEX(address, level)\
  105. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  106. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  107. #define PT64_DIR_BASE_ADDR_MASK \
  108. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  109. #define PT32_BASE_ADDR_MASK PAGE_MASK
  110. #define PT32_DIR_BASE_ADDR_MASK \
  111. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  112. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  113. | PT64_NX_MASK)
  114. #define PFERR_PRESENT_MASK (1U << 0)
  115. #define PFERR_WRITE_MASK (1U << 1)
  116. #define PFERR_USER_MASK (1U << 2)
  117. #define PFERR_FETCH_MASK (1U << 4)
  118. #define PT64_ROOT_LEVEL 4
  119. #define PT32_ROOT_LEVEL 2
  120. #define PT32E_ROOT_LEVEL 3
  121. #define PT_DIRECTORY_LEVEL 2
  122. #define PT_PAGE_TABLE_LEVEL 1
  123. #define RMAP_EXT 4
  124. #define ACC_EXEC_MASK 1
  125. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  126. #define ACC_USER_MASK PT_USER_MASK
  127. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  128. struct kvm_rmap_desc {
  129. u64 *shadow_ptes[RMAP_EXT];
  130. struct kvm_rmap_desc *more;
  131. };
  132. static struct kmem_cache *pte_chain_cache;
  133. static struct kmem_cache *rmap_desc_cache;
  134. static struct kmem_cache *mmu_page_header_cache;
  135. static u64 __read_mostly shadow_trap_nonpresent_pte;
  136. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  137. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  138. {
  139. shadow_trap_nonpresent_pte = trap_pte;
  140. shadow_notrap_nonpresent_pte = notrap_pte;
  141. }
  142. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  143. static int is_write_protection(struct kvm_vcpu *vcpu)
  144. {
  145. return vcpu->arch.cr0 & X86_CR0_WP;
  146. }
  147. static int is_cpuid_PSE36(void)
  148. {
  149. return 1;
  150. }
  151. static int is_nx(struct kvm_vcpu *vcpu)
  152. {
  153. return vcpu->arch.shadow_efer & EFER_NX;
  154. }
  155. static int is_present_pte(unsigned long pte)
  156. {
  157. return pte & PT_PRESENT_MASK;
  158. }
  159. static int is_shadow_present_pte(u64 pte)
  160. {
  161. return pte != shadow_trap_nonpresent_pte
  162. && pte != shadow_notrap_nonpresent_pte;
  163. }
  164. static int is_writeble_pte(unsigned long pte)
  165. {
  166. return pte & PT_WRITABLE_MASK;
  167. }
  168. static int is_dirty_pte(unsigned long pte)
  169. {
  170. return pte & PT_DIRTY_MASK;
  171. }
  172. static int is_rmap_pte(u64 pte)
  173. {
  174. return is_shadow_present_pte(pte);
  175. }
  176. static gfn_t pse36_gfn_delta(u32 gpte)
  177. {
  178. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  179. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  180. }
  181. static void set_shadow_pte(u64 *sptep, u64 spte)
  182. {
  183. #ifdef CONFIG_X86_64
  184. set_64bit((unsigned long *)sptep, spte);
  185. #else
  186. set_64bit((unsigned long long *)sptep, spte);
  187. #endif
  188. }
  189. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  190. struct kmem_cache *base_cache, int min)
  191. {
  192. void *obj;
  193. if (cache->nobjs >= min)
  194. return 0;
  195. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  196. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  197. if (!obj)
  198. return -ENOMEM;
  199. cache->objects[cache->nobjs++] = obj;
  200. }
  201. return 0;
  202. }
  203. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  204. {
  205. while (mc->nobjs)
  206. kfree(mc->objects[--mc->nobjs]);
  207. }
  208. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  209. int min)
  210. {
  211. struct page *page;
  212. if (cache->nobjs >= min)
  213. return 0;
  214. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  215. page = alloc_page(GFP_KERNEL);
  216. if (!page)
  217. return -ENOMEM;
  218. set_page_private(page, 0);
  219. cache->objects[cache->nobjs++] = page_address(page);
  220. }
  221. return 0;
  222. }
  223. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  224. {
  225. while (mc->nobjs)
  226. free_page((unsigned long)mc->objects[--mc->nobjs]);
  227. }
  228. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  229. {
  230. int r;
  231. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  232. pte_chain_cache, 4);
  233. if (r)
  234. goto out;
  235. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  236. rmap_desc_cache, 1);
  237. if (r)
  238. goto out;
  239. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  240. if (r)
  241. goto out;
  242. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  243. mmu_page_header_cache, 4);
  244. out:
  245. return r;
  246. }
  247. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  248. {
  249. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  250. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  251. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  252. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  253. }
  254. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  255. size_t size)
  256. {
  257. void *p;
  258. BUG_ON(!mc->nobjs);
  259. p = mc->objects[--mc->nobjs];
  260. memset(p, 0, size);
  261. return p;
  262. }
  263. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  264. {
  265. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  266. sizeof(struct kvm_pte_chain));
  267. }
  268. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  269. {
  270. kfree(pc);
  271. }
  272. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  273. {
  274. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  275. sizeof(struct kvm_rmap_desc));
  276. }
  277. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  278. {
  279. kfree(rd);
  280. }
  281. /*
  282. * Take gfn and return the reverse mapping to it.
  283. * Note: gfn must be unaliased before this function get called
  284. */
  285. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
  286. {
  287. struct kvm_memory_slot *slot;
  288. slot = gfn_to_memslot(kvm, gfn);
  289. return &slot->rmap[gfn - slot->base_gfn];
  290. }
  291. /*
  292. * Reverse mapping data structures:
  293. *
  294. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  295. * that points to page_address(page).
  296. *
  297. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  298. * containing more mappings.
  299. */
  300. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  301. {
  302. struct kvm_mmu_page *sp;
  303. struct kvm_rmap_desc *desc;
  304. unsigned long *rmapp;
  305. int i;
  306. if (!is_rmap_pte(*spte))
  307. return;
  308. gfn = unalias_gfn(vcpu->kvm, gfn);
  309. sp = page_header(__pa(spte));
  310. sp->gfns[spte - sp->spt] = gfn;
  311. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  312. if (!*rmapp) {
  313. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  314. *rmapp = (unsigned long)spte;
  315. } else if (!(*rmapp & 1)) {
  316. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  317. desc = mmu_alloc_rmap_desc(vcpu);
  318. desc->shadow_ptes[0] = (u64 *)*rmapp;
  319. desc->shadow_ptes[1] = spte;
  320. *rmapp = (unsigned long)desc | 1;
  321. } else {
  322. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  323. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  324. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  325. desc = desc->more;
  326. if (desc->shadow_ptes[RMAP_EXT-1]) {
  327. desc->more = mmu_alloc_rmap_desc(vcpu);
  328. desc = desc->more;
  329. }
  330. for (i = 0; desc->shadow_ptes[i]; ++i)
  331. ;
  332. desc->shadow_ptes[i] = spte;
  333. }
  334. }
  335. static void rmap_desc_remove_entry(unsigned long *rmapp,
  336. struct kvm_rmap_desc *desc,
  337. int i,
  338. struct kvm_rmap_desc *prev_desc)
  339. {
  340. int j;
  341. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  342. ;
  343. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  344. desc->shadow_ptes[j] = NULL;
  345. if (j != 0)
  346. return;
  347. if (!prev_desc && !desc->more)
  348. *rmapp = (unsigned long)desc->shadow_ptes[0];
  349. else
  350. if (prev_desc)
  351. prev_desc->more = desc->more;
  352. else
  353. *rmapp = (unsigned long)desc->more | 1;
  354. mmu_free_rmap_desc(desc);
  355. }
  356. static void rmap_remove(struct kvm *kvm, u64 *spte)
  357. {
  358. struct kvm_rmap_desc *desc;
  359. struct kvm_rmap_desc *prev_desc;
  360. struct kvm_mmu_page *sp;
  361. struct page *page;
  362. unsigned long *rmapp;
  363. int i;
  364. if (!is_rmap_pte(*spte))
  365. return;
  366. sp = page_header(__pa(spte));
  367. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  368. mark_page_accessed(page);
  369. if (is_writeble_pte(*spte))
  370. kvm_release_page_dirty(page);
  371. else
  372. kvm_release_page_clean(page);
  373. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
  374. if (!*rmapp) {
  375. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  376. BUG();
  377. } else if (!(*rmapp & 1)) {
  378. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  379. if ((u64 *)*rmapp != spte) {
  380. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  381. spte, *spte);
  382. BUG();
  383. }
  384. *rmapp = 0;
  385. } else {
  386. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  387. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  388. prev_desc = NULL;
  389. while (desc) {
  390. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  391. if (desc->shadow_ptes[i] == spte) {
  392. rmap_desc_remove_entry(rmapp,
  393. desc, i,
  394. prev_desc);
  395. return;
  396. }
  397. prev_desc = desc;
  398. desc = desc->more;
  399. }
  400. BUG();
  401. }
  402. }
  403. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  404. {
  405. struct kvm_rmap_desc *desc;
  406. struct kvm_rmap_desc *prev_desc;
  407. u64 *prev_spte;
  408. int i;
  409. if (!*rmapp)
  410. return NULL;
  411. else if (!(*rmapp & 1)) {
  412. if (!spte)
  413. return (u64 *)*rmapp;
  414. return NULL;
  415. }
  416. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  417. prev_desc = NULL;
  418. prev_spte = NULL;
  419. while (desc) {
  420. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  421. if (prev_spte == spte)
  422. return desc->shadow_ptes[i];
  423. prev_spte = desc->shadow_ptes[i];
  424. }
  425. desc = desc->more;
  426. }
  427. return NULL;
  428. }
  429. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  430. {
  431. unsigned long *rmapp;
  432. u64 *spte;
  433. int write_protected = 0;
  434. gfn = unalias_gfn(kvm, gfn);
  435. rmapp = gfn_to_rmap(kvm, gfn);
  436. spte = rmap_next(kvm, rmapp, NULL);
  437. while (spte) {
  438. BUG_ON(!spte);
  439. BUG_ON(!(*spte & PT_PRESENT_MASK));
  440. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  441. if (is_writeble_pte(*spte)) {
  442. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  443. write_protected = 1;
  444. }
  445. spte = rmap_next(kvm, rmapp, spte);
  446. }
  447. if (write_protected)
  448. kvm_flush_remote_tlbs(kvm);
  449. }
  450. #ifdef MMU_DEBUG
  451. static int is_empty_shadow_page(u64 *spt)
  452. {
  453. u64 *pos;
  454. u64 *end;
  455. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  456. if (*pos != shadow_trap_nonpresent_pte) {
  457. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  458. pos, *pos);
  459. return 0;
  460. }
  461. return 1;
  462. }
  463. #endif
  464. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  465. {
  466. ASSERT(is_empty_shadow_page(sp->spt));
  467. list_del(&sp->link);
  468. __free_page(virt_to_page(sp->spt));
  469. __free_page(virt_to_page(sp->gfns));
  470. kfree(sp);
  471. ++kvm->arch.n_free_mmu_pages;
  472. }
  473. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  474. {
  475. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  476. }
  477. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  478. u64 *parent_pte)
  479. {
  480. struct kvm_mmu_page *sp;
  481. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  482. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  483. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  484. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  485. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  486. ASSERT(is_empty_shadow_page(sp->spt));
  487. sp->slot_bitmap = 0;
  488. sp->multimapped = 0;
  489. sp->parent_pte = parent_pte;
  490. --vcpu->kvm->arch.n_free_mmu_pages;
  491. return sp;
  492. }
  493. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  494. struct kvm_mmu_page *sp, u64 *parent_pte)
  495. {
  496. struct kvm_pte_chain *pte_chain;
  497. struct hlist_node *node;
  498. int i;
  499. if (!parent_pte)
  500. return;
  501. if (!sp->multimapped) {
  502. u64 *old = sp->parent_pte;
  503. if (!old) {
  504. sp->parent_pte = parent_pte;
  505. return;
  506. }
  507. sp->multimapped = 1;
  508. pte_chain = mmu_alloc_pte_chain(vcpu);
  509. INIT_HLIST_HEAD(&sp->parent_ptes);
  510. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  511. pte_chain->parent_ptes[0] = old;
  512. }
  513. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  514. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  515. continue;
  516. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  517. if (!pte_chain->parent_ptes[i]) {
  518. pte_chain->parent_ptes[i] = parent_pte;
  519. return;
  520. }
  521. }
  522. pte_chain = mmu_alloc_pte_chain(vcpu);
  523. BUG_ON(!pte_chain);
  524. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  525. pte_chain->parent_ptes[0] = parent_pte;
  526. }
  527. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  528. u64 *parent_pte)
  529. {
  530. struct kvm_pte_chain *pte_chain;
  531. struct hlist_node *node;
  532. int i;
  533. if (!sp->multimapped) {
  534. BUG_ON(sp->parent_pte != parent_pte);
  535. sp->parent_pte = NULL;
  536. return;
  537. }
  538. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  539. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  540. if (!pte_chain->parent_ptes[i])
  541. break;
  542. if (pte_chain->parent_ptes[i] != parent_pte)
  543. continue;
  544. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  545. && pte_chain->parent_ptes[i + 1]) {
  546. pte_chain->parent_ptes[i]
  547. = pte_chain->parent_ptes[i + 1];
  548. ++i;
  549. }
  550. pte_chain->parent_ptes[i] = NULL;
  551. if (i == 0) {
  552. hlist_del(&pte_chain->link);
  553. mmu_free_pte_chain(pte_chain);
  554. if (hlist_empty(&sp->parent_ptes)) {
  555. sp->multimapped = 0;
  556. sp->parent_pte = NULL;
  557. }
  558. }
  559. return;
  560. }
  561. BUG();
  562. }
  563. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  564. {
  565. unsigned index;
  566. struct hlist_head *bucket;
  567. struct kvm_mmu_page *sp;
  568. struct hlist_node *node;
  569. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  570. index = kvm_page_table_hashfn(gfn);
  571. bucket = &kvm->arch.mmu_page_hash[index];
  572. hlist_for_each_entry(sp, node, bucket, hash_link)
  573. if (sp->gfn == gfn && !sp->role.metaphysical) {
  574. pgprintk("%s: found role %x\n",
  575. __FUNCTION__, sp->role.word);
  576. return sp;
  577. }
  578. return NULL;
  579. }
  580. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  581. gfn_t gfn,
  582. gva_t gaddr,
  583. unsigned level,
  584. int metaphysical,
  585. unsigned access,
  586. u64 *parent_pte)
  587. {
  588. union kvm_mmu_page_role role;
  589. unsigned index;
  590. unsigned quadrant;
  591. struct hlist_head *bucket;
  592. struct kvm_mmu_page *sp;
  593. struct hlist_node *node;
  594. role.word = 0;
  595. role.glevels = vcpu->arch.mmu.root_level;
  596. role.level = level;
  597. role.metaphysical = metaphysical;
  598. role.access = access;
  599. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  600. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  601. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  602. role.quadrant = quadrant;
  603. }
  604. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  605. gfn, role.word);
  606. index = kvm_page_table_hashfn(gfn);
  607. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  608. hlist_for_each_entry(sp, node, bucket, hash_link)
  609. if (sp->gfn == gfn && sp->role.word == role.word) {
  610. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  611. pgprintk("%s: found\n", __FUNCTION__);
  612. return sp;
  613. }
  614. ++vcpu->kvm->stat.mmu_cache_miss;
  615. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  616. if (!sp)
  617. return sp;
  618. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  619. sp->gfn = gfn;
  620. sp->role = role;
  621. hlist_add_head(&sp->hash_link, bucket);
  622. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  623. if (!metaphysical)
  624. rmap_write_protect(vcpu->kvm, gfn);
  625. return sp;
  626. }
  627. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  628. struct kvm_mmu_page *sp)
  629. {
  630. unsigned i;
  631. u64 *pt;
  632. u64 ent;
  633. pt = sp->spt;
  634. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  635. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  636. if (is_shadow_present_pte(pt[i]))
  637. rmap_remove(kvm, &pt[i]);
  638. pt[i] = shadow_trap_nonpresent_pte;
  639. }
  640. kvm_flush_remote_tlbs(kvm);
  641. return;
  642. }
  643. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  644. ent = pt[i];
  645. pt[i] = shadow_trap_nonpresent_pte;
  646. if (!is_shadow_present_pte(ent))
  647. continue;
  648. ent &= PT64_BASE_ADDR_MASK;
  649. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  650. }
  651. kvm_flush_remote_tlbs(kvm);
  652. }
  653. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  654. {
  655. mmu_page_remove_parent_pte(sp, parent_pte);
  656. }
  657. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  658. {
  659. int i;
  660. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  661. if (kvm->vcpus[i])
  662. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  663. }
  664. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  665. {
  666. u64 *parent_pte;
  667. ++kvm->stat.mmu_shadow_zapped;
  668. while (sp->multimapped || sp->parent_pte) {
  669. if (!sp->multimapped)
  670. parent_pte = sp->parent_pte;
  671. else {
  672. struct kvm_pte_chain *chain;
  673. chain = container_of(sp->parent_ptes.first,
  674. struct kvm_pte_chain, link);
  675. parent_pte = chain->parent_ptes[0];
  676. }
  677. BUG_ON(!parent_pte);
  678. kvm_mmu_put_page(sp, parent_pte);
  679. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  680. }
  681. kvm_mmu_page_unlink_children(kvm, sp);
  682. if (!sp->root_count) {
  683. hlist_del(&sp->hash_link);
  684. kvm_mmu_free_page(kvm, sp);
  685. } else
  686. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  687. kvm_mmu_reset_last_pte_updated(kvm);
  688. }
  689. /*
  690. * Changing the number of mmu pages allocated to the vm
  691. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  692. */
  693. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  694. {
  695. /*
  696. * If we set the number of mmu pages to be smaller be than the
  697. * number of actived pages , we must to free some mmu pages before we
  698. * change the value
  699. */
  700. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  701. kvm_nr_mmu_pages) {
  702. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  703. - kvm->arch.n_free_mmu_pages;
  704. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  705. struct kvm_mmu_page *page;
  706. page = container_of(kvm->arch.active_mmu_pages.prev,
  707. struct kvm_mmu_page, link);
  708. kvm_mmu_zap_page(kvm, page);
  709. n_used_mmu_pages--;
  710. }
  711. kvm->arch.n_free_mmu_pages = 0;
  712. }
  713. else
  714. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  715. - kvm->arch.n_alloc_mmu_pages;
  716. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  717. }
  718. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  719. {
  720. unsigned index;
  721. struct hlist_head *bucket;
  722. struct kvm_mmu_page *sp;
  723. struct hlist_node *node, *n;
  724. int r;
  725. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  726. r = 0;
  727. index = kvm_page_table_hashfn(gfn);
  728. bucket = &kvm->arch.mmu_page_hash[index];
  729. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  730. if (sp->gfn == gfn && !sp->role.metaphysical) {
  731. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  732. sp->role.word);
  733. kvm_mmu_zap_page(kvm, sp);
  734. r = 1;
  735. }
  736. return r;
  737. }
  738. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  739. {
  740. struct kvm_mmu_page *sp;
  741. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  742. pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
  743. kvm_mmu_zap_page(kvm, sp);
  744. }
  745. }
  746. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  747. {
  748. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  749. struct kvm_mmu_page *sp = page_header(__pa(pte));
  750. __set_bit(slot, &sp->slot_bitmap);
  751. }
  752. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  753. {
  754. struct page *page;
  755. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  756. if (gpa == UNMAPPED_GVA)
  757. return NULL;
  758. down_read(&current->mm->mmap_sem);
  759. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  760. up_read(&current->mm->mmap_sem);
  761. return page;
  762. }
  763. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  764. unsigned pt_access, unsigned pte_access,
  765. int user_fault, int write_fault, int dirty,
  766. int *ptwrite, gfn_t gfn, struct page *page)
  767. {
  768. u64 spte;
  769. int was_rmapped = 0;
  770. int was_writeble = is_writeble_pte(*shadow_pte);
  771. hfn_t host_pfn = (*shadow_pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  772. pgprintk("%s: spte %llx access %x write_fault %d"
  773. " user_fault %d gfn %lx\n",
  774. __FUNCTION__, *shadow_pte, pt_access,
  775. write_fault, user_fault, gfn);
  776. if (is_rmap_pte(*shadow_pte)) {
  777. if (host_pfn != page_to_pfn(page)) {
  778. pgprintk("hfn old %lx new %lx\n",
  779. host_pfn, page_to_pfn(page));
  780. rmap_remove(vcpu->kvm, shadow_pte);
  781. }
  782. else
  783. was_rmapped = 1;
  784. }
  785. /*
  786. * We don't set the accessed bit, since we sometimes want to see
  787. * whether the guest actually used the pte (in order to detect
  788. * demand paging).
  789. */
  790. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  791. if (!dirty)
  792. pte_access &= ~ACC_WRITE_MASK;
  793. if (!(pte_access & ACC_EXEC_MASK))
  794. spte |= PT64_NX_MASK;
  795. spte |= PT_PRESENT_MASK;
  796. if (pte_access & ACC_USER_MASK)
  797. spte |= PT_USER_MASK;
  798. spte |= page_to_phys(page);
  799. if ((pte_access & ACC_WRITE_MASK)
  800. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  801. struct kvm_mmu_page *shadow;
  802. spte |= PT_WRITABLE_MASK;
  803. if (user_fault) {
  804. mmu_unshadow(vcpu->kvm, gfn);
  805. goto unshadowed;
  806. }
  807. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  808. if (shadow) {
  809. pgprintk("%s: found shadow page for %lx, marking ro\n",
  810. __FUNCTION__, gfn);
  811. pte_access &= ~ACC_WRITE_MASK;
  812. if (is_writeble_pte(spte)) {
  813. spte &= ~PT_WRITABLE_MASK;
  814. kvm_x86_ops->tlb_flush(vcpu);
  815. }
  816. if (write_fault)
  817. *ptwrite = 1;
  818. }
  819. }
  820. unshadowed:
  821. if (pte_access & ACC_WRITE_MASK)
  822. mark_page_dirty(vcpu->kvm, gfn);
  823. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  824. set_shadow_pte(shadow_pte, spte);
  825. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  826. if (!was_rmapped) {
  827. rmap_add(vcpu, shadow_pte, gfn);
  828. if (!is_rmap_pte(*shadow_pte))
  829. kvm_release_page_clean(page);
  830. } else {
  831. if (was_writeble)
  832. kvm_release_page_dirty(page);
  833. else
  834. kvm_release_page_clean(page);
  835. }
  836. if (!ptwrite || !*ptwrite)
  837. vcpu->arch.last_pte_updated = shadow_pte;
  838. }
  839. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  840. {
  841. }
  842. static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
  843. gfn_t gfn, struct page *page)
  844. {
  845. int level = PT32E_ROOT_LEVEL;
  846. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  847. int pt_write = 0;
  848. for (; ; level--) {
  849. u32 index = PT64_INDEX(v, level);
  850. u64 *table;
  851. ASSERT(VALID_PAGE(table_addr));
  852. table = __va(table_addr);
  853. if (level == 1) {
  854. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  855. 0, write, 1, &pt_write, gfn, page);
  856. return pt_write;
  857. }
  858. if (table[index] == shadow_trap_nonpresent_pte) {
  859. struct kvm_mmu_page *new_table;
  860. gfn_t pseudo_gfn;
  861. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  862. >> PAGE_SHIFT;
  863. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  864. v, level - 1,
  865. 1, ACC_ALL, &table[index]);
  866. if (!new_table) {
  867. pgprintk("nonpaging_map: ENOMEM\n");
  868. kvm_release_page_clean(page);
  869. return -ENOMEM;
  870. }
  871. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  872. | PT_WRITABLE_MASK | PT_USER_MASK;
  873. }
  874. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  875. }
  876. }
  877. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  878. {
  879. int r;
  880. struct page *page;
  881. down_read(&vcpu->kvm->slots_lock);
  882. down_read(&current->mm->mmap_sem);
  883. page = gfn_to_page(vcpu->kvm, gfn);
  884. up_read(&current->mm->mmap_sem);
  885. /* mmio */
  886. if (is_error_page(page)) {
  887. kvm_release_page_clean(page);
  888. up_read(&vcpu->kvm->slots_lock);
  889. return 1;
  890. }
  891. spin_lock(&vcpu->kvm->mmu_lock);
  892. kvm_mmu_free_some_pages(vcpu);
  893. r = __nonpaging_map(vcpu, v, write, gfn, page);
  894. spin_unlock(&vcpu->kvm->mmu_lock);
  895. up_read(&vcpu->kvm->slots_lock);
  896. return r;
  897. }
  898. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  899. struct kvm_mmu_page *sp)
  900. {
  901. int i;
  902. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  903. sp->spt[i] = shadow_trap_nonpresent_pte;
  904. }
  905. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  906. {
  907. int i;
  908. struct kvm_mmu_page *sp;
  909. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  910. return;
  911. spin_lock(&vcpu->kvm->mmu_lock);
  912. #ifdef CONFIG_X86_64
  913. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  914. hpa_t root = vcpu->arch.mmu.root_hpa;
  915. sp = page_header(root);
  916. --sp->root_count;
  917. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  918. spin_unlock(&vcpu->kvm->mmu_lock);
  919. return;
  920. }
  921. #endif
  922. for (i = 0; i < 4; ++i) {
  923. hpa_t root = vcpu->arch.mmu.pae_root[i];
  924. if (root) {
  925. root &= PT64_BASE_ADDR_MASK;
  926. sp = page_header(root);
  927. --sp->root_count;
  928. }
  929. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  930. }
  931. spin_unlock(&vcpu->kvm->mmu_lock);
  932. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  933. }
  934. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  935. {
  936. int i;
  937. gfn_t root_gfn;
  938. struct kvm_mmu_page *sp;
  939. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  940. #ifdef CONFIG_X86_64
  941. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  942. hpa_t root = vcpu->arch.mmu.root_hpa;
  943. ASSERT(!VALID_PAGE(root));
  944. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  945. PT64_ROOT_LEVEL, 0, ACC_ALL, NULL);
  946. root = __pa(sp->spt);
  947. ++sp->root_count;
  948. vcpu->arch.mmu.root_hpa = root;
  949. return;
  950. }
  951. #endif
  952. for (i = 0; i < 4; ++i) {
  953. hpa_t root = vcpu->arch.mmu.pae_root[i];
  954. ASSERT(!VALID_PAGE(root));
  955. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  956. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  957. vcpu->arch.mmu.pae_root[i] = 0;
  958. continue;
  959. }
  960. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  961. } else if (vcpu->arch.mmu.root_level == 0)
  962. root_gfn = 0;
  963. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  964. PT32_ROOT_LEVEL, !is_paging(vcpu),
  965. ACC_ALL, NULL);
  966. root = __pa(sp->spt);
  967. ++sp->root_count;
  968. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  969. }
  970. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  971. }
  972. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  973. {
  974. return vaddr;
  975. }
  976. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  977. u32 error_code)
  978. {
  979. gfn_t gfn;
  980. int r;
  981. pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
  982. r = mmu_topup_memory_caches(vcpu);
  983. if (r)
  984. return r;
  985. ASSERT(vcpu);
  986. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  987. gfn = gva >> PAGE_SHIFT;
  988. return nonpaging_map(vcpu, gva & PAGE_MASK,
  989. error_code & PFERR_WRITE_MASK, gfn);
  990. }
  991. static void nonpaging_free(struct kvm_vcpu *vcpu)
  992. {
  993. mmu_free_roots(vcpu);
  994. }
  995. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  996. {
  997. struct kvm_mmu *context = &vcpu->arch.mmu;
  998. context->new_cr3 = nonpaging_new_cr3;
  999. context->page_fault = nonpaging_page_fault;
  1000. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1001. context->free = nonpaging_free;
  1002. context->prefetch_page = nonpaging_prefetch_page;
  1003. context->root_level = 0;
  1004. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1005. context->root_hpa = INVALID_PAGE;
  1006. return 0;
  1007. }
  1008. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1009. {
  1010. ++vcpu->stat.tlb_flush;
  1011. kvm_x86_ops->tlb_flush(vcpu);
  1012. }
  1013. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1014. {
  1015. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->arch.cr3);
  1016. mmu_free_roots(vcpu);
  1017. }
  1018. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1019. u64 addr,
  1020. u32 err_code)
  1021. {
  1022. kvm_inject_page_fault(vcpu, addr, err_code);
  1023. }
  1024. static void paging_free(struct kvm_vcpu *vcpu)
  1025. {
  1026. nonpaging_free(vcpu);
  1027. }
  1028. #define PTTYPE 64
  1029. #include "paging_tmpl.h"
  1030. #undef PTTYPE
  1031. #define PTTYPE 32
  1032. #include "paging_tmpl.h"
  1033. #undef PTTYPE
  1034. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1035. {
  1036. struct kvm_mmu *context = &vcpu->arch.mmu;
  1037. ASSERT(is_pae(vcpu));
  1038. context->new_cr3 = paging_new_cr3;
  1039. context->page_fault = paging64_page_fault;
  1040. context->gva_to_gpa = paging64_gva_to_gpa;
  1041. context->prefetch_page = paging64_prefetch_page;
  1042. context->free = paging_free;
  1043. context->root_level = level;
  1044. context->shadow_root_level = level;
  1045. context->root_hpa = INVALID_PAGE;
  1046. return 0;
  1047. }
  1048. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1049. {
  1050. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1051. }
  1052. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1053. {
  1054. struct kvm_mmu *context = &vcpu->arch.mmu;
  1055. context->new_cr3 = paging_new_cr3;
  1056. context->page_fault = paging32_page_fault;
  1057. context->gva_to_gpa = paging32_gva_to_gpa;
  1058. context->free = paging_free;
  1059. context->prefetch_page = paging32_prefetch_page;
  1060. context->root_level = PT32_ROOT_LEVEL;
  1061. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1062. context->root_hpa = INVALID_PAGE;
  1063. return 0;
  1064. }
  1065. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1066. {
  1067. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1068. }
  1069. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1070. {
  1071. ASSERT(vcpu);
  1072. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1073. if (!is_paging(vcpu))
  1074. return nonpaging_init_context(vcpu);
  1075. else if (is_long_mode(vcpu))
  1076. return paging64_init_context(vcpu);
  1077. else if (is_pae(vcpu))
  1078. return paging32E_init_context(vcpu);
  1079. else
  1080. return paging32_init_context(vcpu);
  1081. }
  1082. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1083. {
  1084. ASSERT(vcpu);
  1085. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1086. vcpu->arch.mmu.free(vcpu);
  1087. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1088. }
  1089. }
  1090. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1091. {
  1092. destroy_kvm_mmu(vcpu);
  1093. return init_kvm_mmu(vcpu);
  1094. }
  1095. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1096. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1097. {
  1098. int r;
  1099. r = mmu_topup_memory_caches(vcpu);
  1100. if (r)
  1101. goto out;
  1102. spin_lock(&vcpu->kvm->mmu_lock);
  1103. kvm_mmu_free_some_pages(vcpu);
  1104. mmu_alloc_roots(vcpu);
  1105. spin_unlock(&vcpu->kvm->mmu_lock);
  1106. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1107. kvm_mmu_flush_tlb(vcpu);
  1108. out:
  1109. return r;
  1110. }
  1111. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1112. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1113. {
  1114. mmu_free_roots(vcpu);
  1115. }
  1116. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1117. struct kvm_mmu_page *sp,
  1118. u64 *spte)
  1119. {
  1120. u64 pte;
  1121. struct kvm_mmu_page *child;
  1122. pte = *spte;
  1123. if (is_shadow_present_pte(pte)) {
  1124. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  1125. rmap_remove(vcpu->kvm, spte);
  1126. else {
  1127. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1128. mmu_page_remove_parent_pte(child, spte);
  1129. }
  1130. }
  1131. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1132. }
  1133. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1134. struct kvm_mmu_page *sp,
  1135. u64 *spte,
  1136. const void *new)
  1137. {
  1138. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1139. ++vcpu->kvm->stat.mmu_pde_zapped;
  1140. return;
  1141. }
  1142. ++vcpu->kvm->stat.mmu_pte_updated;
  1143. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1144. paging32_update_pte(vcpu, sp, spte, new);
  1145. else
  1146. paging64_update_pte(vcpu, sp, spte, new);
  1147. }
  1148. static bool need_remote_flush(u64 old, u64 new)
  1149. {
  1150. if (!is_shadow_present_pte(old))
  1151. return false;
  1152. if (!is_shadow_present_pte(new))
  1153. return true;
  1154. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1155. return true;
  1156. old ^= PT64_NX_MASK;
  1157. new ^= PT64_NX_MASK;
  1158. return (old & ~new & PT64_PERM_MASK) != 0;
  1159. }
  1160. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1161. {
  1162. if (need_remote_flush(old, new))
  1163. kvm_flush_remote_tlbs(vcpu->kvm);
  1164. else
  1165. kvm_mmu_flush_tlb(vcpu);
  1166. }
  1167. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1168. {
  1169. u64 *spte = vcpu->arch.last_pte_updated;
  1170. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1171. }
  1172. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1173. const u8 *new, int bytes)
  1174. {
  1175. gfn_t gfn;
  1176. int r;
  1177. u64 gpte = 0;
  1178. struct page *page;
  1179. if (bytes != 4 && bytes != 8)
  1180. return;
  1181. /*
  1182. * Assume that the pte write on a page table of the same type
  1183. * as the current vcpu paging mode. This is nearly always true
  1184. * (might be false while changing modes). Note it is verified later
  1185. * by update_pte().
  1186. */
  1187. if (is_pae(vcpu)) {
  1188. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1189. if ((bytes == 4) && (gpa % 4 == 0)) {
  1190. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1191. if (r)
  1192. return;
  1193. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1194. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1195. memcpy((void *)&gpte, new, 8);
  1196. }
  1197. } else {
  1198. if ((bytes == 4) && (gpa % 4 == 0))
  1199. memcpy((void *)&gpte, new, 4);
  1200. }
  1201. if (!is_present_pte(gpte))
  1202. return;
  1203. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1204. down_read(&vcpu->kvm->slots_lock);
  1205. page = gfn_to_page(vcpu->kvm, gfn);
  1206. up_read(&vcpu->kvm->slots_lock);
  1207. if (is_error_page(page)) {
  1208. kvm_release_page_clean(page);
  1209. return;
  1210. }
  1211. vcpu->arch.update_pte.gfn = gfn;
  1212. vcpu->arch.update_pte.page = page;
  1213. }
  1214. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1215. const u8 *new, int bytes)
  1216. {
  1217. gfn_t gfn = gpa >> PAGE_SHIFT;
  1218. struct kvm_mmu_page *sp;
  1219. struct hlist_node *node, *n;
  1220. struct hlist_head *bucket;
  1221. unsigned index;
  1222. u64 entry, gentry;
  1223. u64 *spte;
  1224. unsigned offset = offset_in_page(gpa);
  1225. unsigned pte_size;
  1226. unsigned page_offset;
  1227. unsigned misaligned;
  1228. unsigned quadrant;
  1229. int level;
  1230. int flooded = 0;
  1231. int npte;
  1232. int r;
  1233. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  1234. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1235. spin_lock(&vcpu->kvm->mmu_lock);
  1236. kvm_mmu_free_some_pages(vcpu);
  1237. ++vcpu->kvm->stat.mmu_pte_write;
  1238. kvm_mmu_audit(vcpu, "pre pte write");
  1239. if (gfn == vcpu->arch.last_pt_write_gfn
  1240. && !last_updated_pte_accessed(vcpu)) {
  1241. ++vcpu->arch.last_pt_write_count;
  1242. if (vcpu->arch.last_pt_write_count >= 3)
  1243. flooded = 1;
  1244. } else {
  1245. vcpu->arch.last_pt_write_gfn = gfn;
  1246. vcpu->arch.last_pt_write_count = 1;
  1247. vcpu->arch.last_pte_updated = NULL;
  1248. }
  1249. index = kvm_page_table_hashfn(gfn);
  1250. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1251. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1252. if (sp->gfn != gfn || sp->role.metaphysical)
  1253. continue;
  1254. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1255. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1256. misaligned |= bytes < 4;
  1257. if (misaligned || flooded) {
  1258. /*
  1259. * Misaligned accesses are too much trouble to fix
  1260. * up; also, they usually indicate a page is not used
  1261. * as a page table.
  1262. *
  1263. * If we're seeing too many writes to a page,
  1264. * it may no longer be a page table, or we may be
  1265. * forking, in which case it is better to unmap the
  1266. * page.
  1267. */
  1268. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1269. gpa, bytes, sp->role.word);
  1270. kvm_mmu_zap_page(vcpu->kvm, sp);
  1271. ++vcpu->kvm->stat.mmu_flooded;
  1272. continue;
  1273. }
  1274. page_offset = offset;
  1275. level = sp->role.level;
  1276. npte = 1;
  1277. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1278. page_offset <<= 1; /* 32->64 */
  1279. /*
  1280. * A 32-bit pde maps 4MB while the shadow pdes map
  1281. * only 2MB. So we need to double the offset again
  1282. * and zap two pdes instead of one.
  1283. */
  1284. if (level == PT32_ROOT_LEVEL) {
  1285. page_offset &= ~7; /* kill rounding error */
  1286. page_offset <<= 1;
  1287. npte = 2;
  1288. }
  1289. quadrant = page_offset >> PAGE_SHIFT;
  1290. page_offset &= ~PAGE_MASK;
  1291. if (quadrant != sp->role.quadrant)
  1292. continue;
  1293. }
  1294. spte = &sp->spt[page_offset / sizeof(*spte)];
  1295. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1296. gentry = 0;
  1297. r = kvm_read_guest_atomic(vcpu->kvm,
  1298. gpa & ~(u64)(pte_size - 1),
  1299. &gentry, pte_size);
  1300. new = (const void *)&gentry;
  1301. if (r < 0)
  1302. new = NULL;
  1303. }
  1304. while (npte--) {
  1305. entry = *spte;
  1306. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1307. if (new)
  1308. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1309. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1310. ++spte;
  1311. }
  1312. }
  1313. kvm_mmu_audit(vcpu, "post pte write");
  1314. spin_unlock(&vcpu->kvm->mmu_lock);
  1315. if (vcpu->arch.update_pte.page) {
  1316. kvm_release_page_clean(vcpu->arch.update_pte.page);
  1317. vcpu->arch.update_pte.page = NULL;
  1318. }
  1319. }
  1320. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1321. {
  1322. gpa_t gpa;
  1323. int r;
  1324. down_read(&vcpu->kvm->slots_lock);
  1325. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1326. up_read(&vcpu->kvm->slots_lock);
  1327. spin_lock(&vcpu->kvm->mmu_lock);
  1328. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1329. spin_unlock(&vcpu->kvm->mmu_lock);
  1330. return r;
  1331. }
  1332. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1333. {
  1334. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1335. struct kvm_mmu_page *sp;
  1336. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1337. struct kvm_mmu_page, link);
  1338. kvm_mmu_zap_page(vcpu->kvm, sp);
  1339. ++vcpu->kvm->stat.mmu_recycled;
  1340. }
  1341. }
  1342. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1343. {
  1344. int r;
  1345. enum emulation_result er;
  1346. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1347. if (r < 0)
  1348. goto out;
  1349. if (!r) {
  1350. r = 1;
  1351. goto out;
  1352. }
  1353. r = mmu_topup_memory_caches(vcpu);
  1354. if (r)
  1355. goto out;
  1356. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1357. switch (er) {
  1358. case EMULATE_DONE:
  1359. return 1;
  1360. case EMULATE_DO_MMIO:
  1361. ++vcpu->stat.mmio_exits;
  1362. return 0;
  1363. case EMULATE_FAIL:
  1364. kvm_report_emulation_failure(vcpu, "pagetable");
  1365. return 1;
  1366. default:
  1367. BUG();
  1368. }
  1369. out:
  1370. return r;
  1371. }
  1372. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1373. void kvm_enable_tdp(void)
  1374. {
  1375. tdp_enabled = true;
  1376. }
  1377. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1378. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1379. {
  1380. struct kvm_mmu_page *sp;
  1381. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1382. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1383. struct kvm_mmu_page, link);
  1384. kvm_mmu_zap_page(vcpu->kvm, sp);
  1385. }
  1386. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1387. }
  1388. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1389. {
  1390. struct page *page;
  1391. int i;
  1392. ASSERT(vcpu);
  1393. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1394. vcpu->kvm->arch.n_free_mmu_pages =
  1395. vcpu->kvm->arch.n_requested_mmu_pages;
  1396. else
  1397. vcpu->kvm->arch.n_free_mmu_pages =
  1398. vcpu->kvm->arch.n_alloc_mmu_pages;
  1399. /*
  1400. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1401. * Therefore we need to allocate shadow page tables in the first
  1402. * 4GB of memory, which happens to fit the DMA32 zone.
  1403. */
  1404. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1405. if (!page)
  1406. goto error_1;
  1407. vcpu->arch.mmu.pae_root = page_address(page);
  1408. for (i = 0; i < 4; ++i)
  1409. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1410. return 0;
  1411. error_1:
  1412. free_mmu_pages(vcpu);
  1413. return -ENOMEM;
  1414. }
  1415. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1416. {
  1417. ASSERT(vcpu);
  1418. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1419. return alloc_mmu_pages(vcpu);
  1420. }
  1421. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1422. {
  1423. ASSERT(vcpu);
  1424. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1425. return init_kvm_mmu(vcpu);
  1426. }
  1427. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1428. {
  1429. ASSERT(vcpu);
  1430. destroy_kvm_mmu(vcpu);
  1431. free_mmu_pages(vcpu);
  1432. mmu_free_memory_caches(vcpu);
  1433. }
  1434. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1435. {
  1436. struct kvm_mmu_page *sp;
  1437. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1438. int i;
  1439. u64 *pt;
  1440. if (!test_bit(slot, &sp->slot_bitmap))
  1441. continue;
  1442. pt = sp->spt;
  1443. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1444. /* avoid RMW */
  1445. if (pt[i] & PT_WRITABLE_MASK)
  1446. pt[i] &= ~PT_WRITABLE_MASK;
  1447. }
  1448. }
  1449. void kvm_mmu_zap_all(struct kvm *kvm)
  1450. {
  1451. struct kvm_mmu_page *sp, *node;
  1452. spin_lock(&kvm->mmu_lock);
  1453. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1454. kvm_mmu_zap_page(kvm, sp);
  1455. spin_unlock(&kvm->mmu_lock);
  1456. kvm_flush_remote_tlbs(kvm);
  1457. }
  1458. void kvm_mmu_module_exit(void)
  1459. {
  1460. if (pte_chain_cache)
  1461. kmem_cache_destroy(pte_chain_cache);
  1462. if (rmap_desc_cache)
  1463. kmem_cache_destroy(rmap_desc_cache);
  1464. if (mmu_page_header_cache)
  1465. kmem_cache_destroy(mmu_page_header_cache);
  1466. }
  1467. int kvm_mmu_module_init(void)
  1468. {
  1469. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1470. sizeof(struct kvm_pte_chain),
  1471. 0, 0, NULL);
  1472. if (!pte_chain_cache)
  1473. goto nomem;
  1474. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1475. sizeof(struct kvm_rmap_desc),
  1476. 0, 0, NULL);
  1477. if (!rmap_desc_cache)
  1478. goto nomem;
  1479. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1480. sizeof(struct kvm_mmu_page),
  1481. 0, 0, NULL);
  1482. if (!mmu_page_header_cache)
  1483. goto nomem;
  1484. return 0;
  1485. nomem:
  1486. kvm_mmu_module_exit();
  1487. return -ENOMEM;
  1488. }
  1489. /*
  1490. * Caculate mmu pages needed for kvm.
  1491. */
  1492. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1493. {
  1494. int i;
  1495. unsigned int nr_mmu_pages;
  1496. unsigned int nr_pages = 0;
  1497. for (i = 0; i < kvm->nmemslots; i++)
  1498. nr_pages += kvm->memslots[i].npages;
  1499. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1500. nr_mmu_pages = max(nr_mmu_pages,
  1501. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1502. return nr_mmu_pages;
  1503. }
  1504. #ifdef AUDIT
  1505. static const char *audit_msg;
  1506. static gva_t canonicalize(gva_t gva)
  1507. {
  1508. #ifdef CONFIG_X86_64
  1509. gva = (long long)(gva << 16) >> 16;
  1510. #endif
  1511. return gva;
  1512. }
  1513. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1514. gva_t va, int level)
  1515. {
  1516. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1517. int i;
  1518. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1519. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1520. u64 ent = pt[i];
  1521. if (ent == shadow_trap_nonpresent_pte)
  1522. continue;
  1523. va = canonicalize(va);
  1524. if (level > 1) {
  1525. if (ent == shadow_notrap_nonpresent_pte)
  1526. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1527. " in nonleaf level: levels %d gva %lx"
  1528. " level %d pte %llx\n", audit_msg,
  1529. vcpu->arch.mmu.root_level, va, level, ent);
  1530. audit_mappings_page(vcpu, ent, va, level - 1);
  1531. } else {
  1532. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1533. struct page *page = gpa_to_page(vcpu, gpa);
  1534. hpa_t hpa = page_to_phys(page);
  1535. if (is_shadow_present_pte(ent)
  1536. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1537. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1538. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1539. audit_msg, vcpu->arch.mmu.root_level,
  1540. va, gpa, hpa, ent,
  1541. is_shadow_present_pte(ent));
  1542. else if (ent == shadow_notrap_nonpresent_pte
  1543. && !is_error_hpa(hpa))
  1544. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1545. " valid guest gva %lx\n", audit_msg, va);
  1546. kvm_release_page_clean(page);
  1547. }
  1548. }
  1549. }
  1550. static void audit_mappings(struct kvm_vcpu *vcpu)
  1551. {
  1552. unsigned i;
  1553. if (vcpu->arch.mmu.root_level == 4)
  1554. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1555. else
  1556. for (i = 0; i < 4; ++i)
  1557. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1558. audit_mappings_page(vcpu,
  1559. vcpu->arch.mmu.pae_root[i],
  1560. i << 30,
  1561. 2);
  1562. }
  1563. static int count_rmaps(struct kvm_vcpu *vcpu)
  1564. {
  1565. int nmaps = 0;
  1566. int i, j, k;
  1567. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1568. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1569. struct kvm_rmap_desc *d;
  1570. for (j = 0; j < m->npages; ++j) {
  1571. unsigned long *rmapp = &m->rmap[j];
  1572. if (!*rmapp)
  1573. continue;
  1574. if (!(*rmapp & 1)) {
  1575. ++nmaps;
  1576. continue;
  1577. }
  1578. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1579. while (d) {
  1580. for (k = 0; k < RMAP_EXT; ++k)
  1581. if (d->shadow_ptes[k])
  1582. ++nmaps;
  1583. else
  1584. break;
  1585. d = d->more;
  1586. }
  1587. }
  1588. }
  1589. return nmaps;
  1590. }
  1591. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1592. {
  1593. int nmaps = 0;
  1594. struct kvm_mmu_page *sp;
  1595. int i;
  1596. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1597. u64 *pt = sp->spt;
  1598. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1599. continue;
  1600. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1601. u64 ent = pt[i];
  1602. if (!(ent & PT_PRESENT_MASK))
  1603. continue;
  1604. if (!(ent & PT_WRITABLE_MASK))
  1605. continue;
  1606. ++nmaps;
  1607. }
  1608. }
  1609. return nmaps;
  1610. }
  1611. static void audit_rmap(struct kvm_vcpu *vcpu)
  1612. {
  1613. int n_rmap = count_rmaps(vcpu);
  1614. int n_actual = count_writable_mappings(vcpu);
  1615. if (n_rmap != n_actual)
  1616. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1617. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1618. }
  1619. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1620. {
  1621. struct kvm_mmu_page *sp;
  1622. struct kvm_memory_slot *slot;
  1623. unsigned long *rmapp;
  1624. gfn_t gfn;
  1625. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1626. if (sp->role.metaphysical)
  1627. continue;
  1628. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1629. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1630. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1631. if (*rmapp)
  1632. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1633. " mappings: gfn %lx role %x\n",
  1634. __FUNCTION__, audit_msg, sp->gfn,
  1635. sp->role.word);
  1636. }
  1637. }
  1638. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1639. {
  1640. int olddbg = dbg;
  1641. dbg = 0;
  1642. audit_msg = msg;
  1643. audit_rmap(vcpu);
  1644. audit_write_protection(vcpu);
  1645. audit_mappings(vcpu);
  1646. dbg = olddbg;
  1647. }
  1648. #endif