x86.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "segment_descriptor.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/clocksource.h>
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <linux/mman.h>
  26. #include <linux/highmem.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/msr.h>
  29. #define MAX_IO_MSRS 256
  30. #define CR0_RESERVED_BITS \
  31. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  32. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  33. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  34. #define CR4_RESERVED_BITS \
  35. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  36. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  37. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  38. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  39. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  40. /* EFER defaults:
  41. * - enable syscall per default because its emulated by KVM
  42. * - enable LME and LMA per default on 64 bit KVM
  43. */
  44. #ifdef CONFIG_X86_64
  45. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  46. #else
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  48. #endif
  49. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  50. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  51. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  52. struct kvm_cpuid_entry2 __user *entries);
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kvm_stats_debugfs_item debugfs_entries[] = {
  55. { "pf_fixed", VCPU_STAT(pf_fixed) },
  56. { "pf_guest", VCPU_STAT(pf_guest) },
  57. { "tlb_flush", VCPU_STAT(tlb_flush) },
  58. { "invlpg", VCPU_STAT(invlpg) },
  59. { "exits", VCPU_STAT(exits) },
  60. { "io_exits", VCPU_STAT(io_exits) },
  61. { "mmio_exits", VCPU_STAT(mmio_exits) },
  62. { "signal_exits", VCPU_STAT(signal_exits) },
  63. { "irq_window", VCPU_STAT(irq_window_exits) },
  64. { "halt_exits", VCPU_STAT(halt_exits) },
  65. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  66. { "request_irq", VCPU_STAT(request_irq_exits) },
  67. { "irq_exits", VCPU_STAT(irq_exits) },
  68. { "host_state_reload", VCPU_STAT(host_state_reload) },
  69. { "efer_reload", VCPU_STAT(efer_reload) },
  70. { "fpu_reload", VCPU_STAT(fpu_reload) },
  71. { "insn_emulation", VCPU_STAT(insn_emulation) },
  72. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  73. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  74. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  75. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  76. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  77. { "mmu_flooded", VM_STAT(mmu_flooded) },
  78. { "mmu_recycled", VM_STAT(mmu_recycled) },
  79. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  80. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  81. { NULL }
  82. };
  83. unsigned long segment_base(u16 selector)
  84. {
  85. struct descriptor_table gdt;
  86. struct segment_descriptor *d;
  87. unsigned long table_base;
  88. unsigned long v;
  89. if (selector == 0)
  90. return 0;
  91. asm("sgdt %0" : "=m"(gdt));
  92. table_base = gdt.base;
  93. if (selector & 4) { /* from ldt */
  94. u16 ldt_selector;
  95. asm("sldt %0" : "=g"(ldt_selector));
  96. table_base = segment_base(ldt_selector);
  97. }
  98. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  99. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  100. ((unsigned long)d->base_high << 24);
  101. #ifdef CONFIG_X86_64
  102. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  103. v |= ((unsigned long) \
  104. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  105. #endif
  106. return v;
  107. }
  108. EXPORT_SYMBOL_GPL(segment_base);
  109. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  110. {
  111. if (irqchip_in_kernel(vcpu->kvm))
  112. return vcpu->arch.apic_base;
  113. else
  114. return vcpu->arch.apic_base;
  115. }
  116. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  117. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  118. {
  119. /* TODO: reserve bits check */
  120. if (irqchip_in_kernel(vcpu->kvm))
  121. kvm_lapic_set_base(vcpu, data);
  122. else
  123. vcpu->arch.apic_base = data;
  124. }
  125. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  126. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  127. {
  128. WARN_ON(vcpu->arch.exception.pending);
  129. vcpu->arch.exception.pending = true;
  130. vcpu->arch.exception.has_error_code = false;
  131. vcpu->arch.exception.nr = nr;
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  134. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  135. u32 error_code)
  136. {
  137. ++vcpu->stat.pf_guest;
  138. if (vcpu->arch.exception.pending && vcpu->arch.exception.nr == PF_VECTOR) {
  139. printk(KERN_DEBUG "kvm: inject_page_fault:"
  140. " double fault 0x%lx\n", addr);
  141. vcpu->arch.exception.nr = DF_VECTOR;
  142. vcpu->arch.exception.error_code = 0;
  143. return;
  144. }
  145. vcpu->arch.cr2 = addr;
  146. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  147. }
  148. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = true;
  153. vcpu->arch.exception.nr = nr;
  154. vcpu->arch.exception.error_code = error_code;
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  157. static void __queue_exception(struct kvm_vcpu *vcpu)
  158. {
  159. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  160. vcpu->arch.exception.has_error_code,
  161. vcpu->arch.exception.error_code);
  162. }
  163. /*
  164. * Load the pae pdptrs. Return true is they are all valid.
  165. */
  166. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  167. {
  168. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  169. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  170. int i;
  171. int ret;
  172. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  173. down_read(&vcpu->kvm->slots_lock);
  174. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  175. offset * sizeof(u64), sizeof(pdpte));
  176. if (ret < 0) {
  177. ret = 0;
  178. goto out;
  179. }
  180. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  181. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  182. ret = 0;
  183. goto out;
  184. }
  185. }
  186. ret = 1;
  187. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  188. out:
  189. up_read(&vcpu->kvm->slots_lock);
  190. return ret;
  191. }
  192. EXPORT_SYMBOL_GPL(load_pdptrs);
  193. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  194. {
  195. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  196. bool changed = true;
  197. int r;
  198. if (is_long_mode(vcpu) || !is_pae(vcpu))
  199. return false;
  200. down_read(&vcpu->kvm->slots_lock);
  201. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  202. if (r < 0)
  203. goto out;
  204. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  205. out:
  206. up_read(&vcpu->kvm->slots_lock);
  207. return changed;
  208. }
  209. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  210. {
  211. if (cr0 & CR0_RESERVED_BITS) {
  212. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  213. cr0, vcpu->arch.cr0);
  214. kvm_inject_gp(vcpu, 0);
  215. return;
  216. }
  217. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  218. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  219. kvm_inject_gp(vcpu, 0);
  220. return;
  221. }
  222. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  223. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  224. "and a clear PE flag\n");
  225. kvm_inject_gp(vcpu, 0);
  226. return;
  227. }
  228. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  229. #ifdef CONFIG_X86_64
  230. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  231. int cs_db, cs_l;
  232. if (!is_pae(vcpu)) {
  233. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  234. "in long mode while PAE is disabled\n");
  235. kvm_inject_gp(vcpu, 0);
  236. return;
  237. }
  238. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  239. if (cs_l) {
  240. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  241. "in long mode while CS.L == 1\n");
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. } else
  246. #endif
  247. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  248. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  249. "reserved bits\n");
  250. kvm_inject_gp(vcpu, 0);
  251. return;
  252. }
  253. }
  254. kvm_x86_ops->set_cr0(vcpu, cr0);
  255. vcpu->arch.cr0 = cr0;
  256. kvm_mmu_reset_context(vcpu);
  257. return;
  258. }
  259. EXPORT_SYMBOL_GPL(set_cr0);
  260. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  261. {
  262. set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  263. }
  264. EXPORT_SYMBOL_GPL(lmsw);
  265. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  266. {
  267. if (cr4 & CR4_RESERVED_BITS) {
  268. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  269. kvm_inject_gp(vcpu, 0);
  270. return;
  271. }
  272. if (is_long_mode(vcpu)) {
  273. if (!(cr4 & X86_CR4_PAE)) {
  274. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  275. "in long mode\n");
  276. kvm_inject_gp(vcpu, 0);
  277. return;
  278. }
  279. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  280. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  281. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  282. kvm_inject_gp(vcpu, 0);
  283. return;
  284. }
  285. if (cr4 & X86_CR4_VMXE) {
  286. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  287. kvm_inject_gp(vcpu, 0);
  288. return;
  289. }
  290. kvm_x86_ops->set_cr4(vcpu, cr4);
  291. vcpu->arch.cr4 = cr4;
  292. kvm_mmu_reset_context(vcpu);
  293. }
  294. EXPORT_SYMBOL_GPL(set_cr4);
  295. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  296. {
  297. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  298. kvm_mmu_flush_tlb(vcpu);
  299. return;
  300. }
  301. if (is_long_mode(vcpu)) {
  302. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  303. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. } else {
  308. if (is_pae(vcpu)) {
  309. if (cr3 & CR3_PAE_RESERVED_BITS) {
  310. printk(KERN_DEBUG
  311. "set_cr3: #GP, reserved bits\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  316. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  317. "reserved bits\n");
  318. kvm_inject_gp(vcpu, 0);
  319. return;
  320. }
  321. }
  322. /*
  323. * We don't check reserved bits in nonpae mode, because
  324. * this isn't enforced, and VMware depends on this.
  325. */
  326. }
  327. down_read(&vcpu->kvm->slots_lock);
  328. /*
  329. * Does the new cr3 value map to physical memory? (Note, we
  330. * catch an invalid cr3 even in real-mode, because it would
  331. * cause trouble later on when we turn on paging anyway.)
  332. *
  333. * A real CPU would silently accept an invalid cr3 and would
  334. * attempt to use it - with largely undefined (and often hard
  335. * to debug) behavior on the guest side.
  336. */
  337. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  338. kvm_inject_gp(vcpu, 0);
  339. else {
  340. vcpu->arch.cr3 = cr3;
  341. vcpu->arch.mmu.new_cr3(vcpu);
  342. }
  343. up_read(&vcpu->kvm->slots_lock);
  344. }
  345. EXPORT_SYMBOL_GPL(set_cr3);
  346. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  347. {
  348. if (cr8 & CR8_RESERVED_BITS) {
  349. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  350. kvm_inject_gp(vcpu, 0);
  351. return;
  352. }
  353. if (irqchip_in_kernel(vcpu->kvm))
  354. kvm_lapic_set_tpr(vcpu, cr8);
  355. else
  356. vcpu->arch.cr8 = cr8;
  357. }
  358. EXPORT_SYMBOL_GPL(set_cr8);
  359. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  360. {
  361. if (irqchip_in_kernel(vcpu->kvm))
  362. return kvm_lapic_get_cr8(vcpu);
  363. else
  364. return vcpu->arch.cr8;
  365. }
  366. EXPORT_SYMBOL_GPL(get_cr8);
  367. /*
  368. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  369. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  370. *
  371. * This list is modified at module load time to reflect the
  372. * capabilities of the host cpu.
  373. */
  374. static u32 msrs_to_save[] = {
  375. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  376. MSR_K6_STAR,
  377. #ifdef CONFIG_X86_64
  378. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  379. #endif
  380. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  381. };
  382. static unsigned num_msrs_to_save;
  383. static u32 emulated_msrs[] = {
  384. MSR_IA32_MISC_ENABLE,
  385. };
  386. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  387. {
  388. if (efer & efer_reserved_bits) {
  389. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  390. efer);
  391. kvm_inject_gp(vcpu, 0);
  392. return;
  393. }
  394. if (is_paging(vcpu)
  395. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  396. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. kvm_x86_ops->set_efer(vcpu, efer);
  401. efer &= ~EFER_LMA;
  402. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  403. vcpu->arch.shadow_efer = efer;
  404. }
  405. void kvm_enable_efer_bits(u64 mask)
  406. {
  407. efer_reserved_bits &= ~mask;
  408. }
  409. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  410. /*
  411. * Writes msr value into into the appropriate "register".
  412. * Returns 0 on success, non-0 otherwise.
  413. * Assumes vcpu_load() was already called.
  414. */
  415. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  416. {
  417. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  418. }
  419. /*
  420. * Adapt set_msr() to msr_io()'s calling convention
  421. */
  422. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  423. {
  424. return kvm_set_msr(vcpu, index, *data);
  425. }
  426. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  427. {
  428. static int version;
  429. struct kvm_wall_clock wc;
  430. struct timespec wc_ts;
  431. if (!wall_clock)
  432. return;
  433. version++;
  434. down_read(&kvm->slots_lock);
  435. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  436. wc_ts = current_kernel_time();
  437. wc.wc_sec = wc_ts.tv_sec;
  438. wc.wc_nsec = wc_ts.tv_nsec;
  439. wc.wc_version = version;
  440. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  441. version++;
  442. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  443. up_read(&kvm->slots_lock);
  444. }
  445. static void kvm_write_guest_time(struct kvm_vcpu *v)
  446. {
  447. struct timespec ts;
  448. unsigned long flags;
  449. struct kvm_vcpu_arch *vcpu = &v->arch;
  450. void *shared_kaddr;
  451. if ((!vcpu->time_page))
  452. return;
  453. /* Keep irq disabled to prevent changes to the clock */
  454. local_irq_save(flags);
  455. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  456. &vcpu->hv_clock.tsc_timestamp);
  457. ktime_get_ts(&ts);
  458. local_irq_restore(flags);
  459. /* With all the info we got, fill in the values */
  460. vcpu->hv_clock.system_time = ts.tv_nsec +
  461. (NSEC_PER_SEC * (u64)ts.tv_sec);
  462. /*
  463. * The interface expects us to write an even number signaling that the
  464. * update is finished. Since the guest won't see the intermediate
  465. * state, we just write "2" at the end
  466. */
  467. vcpu->hv_clock.version = 2;
  468. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  469. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  470. sizeof(vcpu->hv_clock));
  471. kunmap_atomic(shared_kaddr, KM_USER0);
  472. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  473. }
  474. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  475. {
  476. switch (msr) {
  477. case MSR_EFER:
  478. set_efer(vcpu, data);
  479. break;
  480. case MSR_IA32_MC0_STATUS:
  481. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  482. __FUNCTION__, data);
  483. break;
  484. case MSR_IA32_MCG_STATUS:
  485. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  486. __FUNCTION__, data);
  487. break;
  488. case MSR_IA32_MCG_CTL:
  489. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  490. __FUNCTION__, data);
  491. break;
  492. case MSR_IA32_UCODE_REV:
  493. case MSR_IA32_UCODE_WRITE:
  494. case 0x200 ... 0x2ff: /* MTRRs */
  495. break;
  496. case MSR_IA32_APICBASE:
  497. kvm_set_apic_base(vcpu, data);
  498. break;
  499. case MSR_IA32_MISC_ENABLE:
  500. vcpu->arch.ia32_misc_enable_msr = data;
  501. break;
  502. case MSR_KVM_WALL_CLOCK:
  503. vcpu->kvm->arch.wall_clock = data;
  504. kvm_write_wall_clock(vcpu->kvm, data);
  505. break;
  506. case MSR_KVM_SYSTEM_TIME: {
  507. if (vcpu->arch.time_page) {
  508. kvm_release_page_dirty(vcpu->arch.time_page);
  509. vcpu->arch.time_page = NULL;
  510. }
  511. vcpu->arch.time = data;
  512. /* we verify if the enable bit is set... */
  513. if (!(data & 1))
  514. break;
  515. /* ...but clean it before doing the actual write */
  516. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  517. vcpu->arch.hv_clock.tsc_to_system_mul =
  518. clocksource_khz2mult(tsc_khz, 22);
  519. vcpu->arch.hv_clock.tsc_shift = 22;
  520. down_read(&current->mm->mmap_sem);
  521. down_read(&vcpu->kvm->slots_lock);
  522. vcpu->arch.time_page =
  523. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  524. up_read(&vcpu->kvm->slots_lock);
  525. up_read(&current->mm->mmap_sem);
  526. if (is_error_page(vcpu->arch.time_page)) {
  527. kvm_release_page_clean(vcpu->arch.time_page);
  528. vcpu->arch.time_page = NULL;
  529. }
  530. kvm_write_guest_time(vcpu);
  531. break;
  532. }
  533. default:
  534. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  535. return 1;
  536. }
  537. return 0;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  540. /*
  541. * Reads an msr value (of 'msr_index') into 'pdata'.
  542. * Returns 0 on success, non-0 otherwise.
  543. * Assumes vcpu_load() was already called.
  544. */
  545. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  546. {
  547. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  548. }
  549. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  550. {
  551. u64 data;
  552. switch (msr) {
  553. case 0xc0010010: /* SYSCFG */
  554. case 0xc0010015: /* HWCR */
  555. case MSR_IA32_PLATFORM_ID:
  556. case MSR_IA32_P5_MC_ADDR:
  557. case MSR_IA32_P5_MC_TYPE:
  558. case MSR_IA32_MC0_CTL:
  559. case MSR_IA32_MCG_STATUS:
  560. case MSR_IA32_MCG_CAP:
  561. case MSR_IA32_MCG_CTL:
  562. case MSR_IA32_MC0_MISC:
  563. case MSR_IA32_MC0_MISC+4:
  564. case MSR_IA32_MC0_MISC+8:
  565. case MSR_IA32_MC0_MISC+12:
  566. case MSR_IA32_MC0_MISC+16:
  567. case MSR_IA32_UCODE_REV:
  568. case MSR_IA32_PERF_STATUS:
  569. case MSR_IA32_EBL_CR_POWERON:
  570. /* MTRR registers */
  571. case 0xfe:
  572. case 0x200 ... 0x2ff:
  573. data = 0;
  574. break;
  575. case 0xcd: /* fsb frequency */
  576. data = 3;
  577. break;
  578. case MSR_IA32_APICBASE:
  579. data = kvm_get_apic_base(vcpu);
  580. break;
  581. case MSR_IA32_MISC_ENABLE:
  582. data = vcpu->arch.ia32_misc_enable_msr;
  583. break;
  584. case MSR_EFER:
  585. data = vcpu->arch.shadow_efer;
  586. break;
  587. case MSR_KVM_WALL_CLOCK:
  588. data = vcpu->kvm->arch.wall_clock;
  589. break;
  590. case MSR_KVM_SYSTEM_TIME:
  591. data = vcpu->arch.time;
  592. break;
  593. default:
  594. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  595. return 1;
  596. }
  597. *pdata = data;
  598. return 0;
  599. }
  600. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  601. /*
  602. * Read or write a bunch of msrs. All parameters are kernel addresses.
  603. *
  604. * @return number of msrs set successfully.
  605. */
  606. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  607. struct kvm_msr_entry *entries,
  608. int (*do_msr)(struct kvm_vcpu *vcpu,
  609. unsigned index, u64 *data))
  610. {
  611. int i;
  612. vcpu_load(vcpu);
  613. for (i = 0; i < msrs->nmsrs; ++i)
  614. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  615. break;
  616. vcpu_put(vcpu);
  617. return i;
  618. }
  619. /*
  620. * Read or write a bunch of msrs. Parameters are user addresses.
  621. *
  622. * @return number of msrs set successfully.
  623. */
  624. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  625. int (*do_msr)(struct kvm_vcpu *vcpu,
  626. unsigned index, u64 *data),
  627. int writeback)
  628. {
  629. struct kvm_msrs msrs;
  630. struct kvm_msr_entry *entries;
  631. int r, n;
  632. unsigned size;
  633. r = -EFAULT;
  634. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  635. goto out;
  636. r = -E2BIG;
  637. if (msrs.nmsrs >= MAX_IO_MSRS)
  638. goto out;
  639. r = -ENOMEM;
  640. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  641. entries = vmalloc(size);
  642. if (!entries)
  643. goto out;
  644. r = -EFAULT;
  645. if (copy_from_user(entries, user_msrs->entries, size))
  646. goto out_free;
  647. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  648. if (r < 0)
  649. goto out_free;
  650. r = -EFAULT;
  651. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  652. goto out_free;
  653. r = n;
  654. out_free:
  655. vfree(entries);
  656. out:
  657. return r;
  658. }
  659. /*
  660. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  661. * cached on it.
  662. */
  663. void decache_vcpus_on_cpu(int cpu)
  664. {
  665. struct kvm *vm;
  666. struct kvm_vcpu *vcpu;
  667. int i;
  668. spin_lock(&kvm_lock);
  669. list_for_each_entry(vm, &vm_list, vm_list)
  670. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  671. vcpu = vm->vcpus[i];
  672. if (!vcpu)
  673. continue;
  674. /*
  675. * If the vcpu is locked, then it is running on some
  676. * other cpu and therefore it is not cached on the
  677. * cpu in question.
  678. *
  679. * If it's not locked, check the last cpu it executed
  680. * on.
  681. */
  682. if (mutex_trylock(&vcpu->mutex)) {
  683. if (vcpu->cpu == cpu) {
  684. kvm_x86_ops->vcpu_decache(vcpu);
  685. vcpu->cpu = -1;
  686. }
  687. mutex_unlock(&vcpu->mutex);
  688. }
  689. }
  690. spin_unlock(&kvm_lock);
  691. }
  692. int kvm_dev_ioctl_check_extension(long ext)
  693. {
  694. int r;
  695. switch (ext) {
  696. case KVM_CAP_IRQCHIP:
  697. case KVM_CAP_HLT:
  698. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  699. case KVM_CAP_USER_MEMORY:
  700. case KVM_CAP_SET_TSS_ADDR:
  701. case KVM_CAP_EXT_CPUID:
  702. case KVM_CAP_CLOCKSOURCE:
  703. r = 1;
  704. break;
  705. case KVM_CAP_VAPIC:
  706. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  707. break;
  708. default:
  709. r = 0;
  710. break;
  711. }
  712. return r;
  713. }
  714. long kvm_arch_dev_ioctl(struct file *filp,
  715. unsigned int ioctl, unsigned long arg)
  716. {
  717. void __user *argp = (void __user *)arg;
  718. long r;
  719. switch (ioctl) {
  720. case KVM_GET_MSR_INDEX_LIST: {
  721. struct kvm_msr_list __user *user_msr_list = argp;
  722. struct kvm_msr_list msr_list;
  723. unsigned n;
  724. r = -EFAULT;
  725. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  726. goto out;
  727. n = msr_list.nmsrs;
  728. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  729. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  730. goto out;
  731. r = -E2BIG;
  732. if (n < num_msrs_to_save)
  733. goto out;
  734. r = -EFAULT;
  735. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  736. num_msrs_to_save * sizeof(u32)))
  737. goto out;
  738. if (copy_to_user(user_msr_list->indices
  739. + num_msrs_to_save * sizeof(u32),
  740. &emulated_msrs,
  741. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  742. goto out;
  743. r = 0;
  744. break;
  745. }
  746. case KVM_GET_SUPPORTED_CPUID: {
  747. struct kvm_cpuid2 __user *cpuid_arg = argp;
  748. struct kvm_cpuid2 cpuid;
  749. r = -EFAULT;
  750. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  751. goto out;
  752. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  753. cpuid_arg->entries);
  754. if (r)
  755. goto out;
  756. r = -EFAULT;
  757. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  758. goto out;
  759. r = 0;
  760. break;
  761. }
  762. default:
  763. r = -EINVAL;
  764. }
  765. out:
  766. return r;
  767. }
  768. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  769. {
  770. kvm_x86_ops->vcpu_load(vcpu, cpu);
  771. kvm_write_guest_time(vcpu);
  772. }
  773. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  774. {
  775. kvm_x86_ops->vcpu_put(vcpu);
  776. kvm_put_guest_fpu(vcpu);
  777. }
  778. static int is_efer_nx(void)
  779. {
  780. u64 efer;
  781. rdmsrl(MSR_EFER, efer);
  782. return efer & EFER_NX;
  783. }
  784. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  785. {
  786. int i;
  787. struct kvm_cpuid_entry2 *e, *entry;
  788. entry = NULL;
  789. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  790. e = &vcpu->arch.cpuid_entries[i];
  791. if (e->function == 0x80000001) {
  792. entry = e;
  793. break;
  794. }
  795. }
  796. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  797. entry->edx &= ~(1 << 20);
  798. printk(KERN_INFO "kvm: guest NX capability removed\n");
  799. }
  800. }
  801. /* when an old userspace process fills a new kernel module */
  802. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  803. struct kvm_cpuid *cpuid,
  804. struct kvm_cpuid_entry __user *entries)
  805. {
  806. int r, i;
  807. struct kvm_cpuid_entry *cpuid_entries;
  808. r = -E2BIG;
  809. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  810. goto out;
  811. r = -ENOMEM;
  812. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  813. if (!cpuid_entries)
  814. goto out;
  815. r = -EFAULT;
  816. if (copy_from_user(cpuid_entries, entries,
  817. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  818. goto out_free;
  819. for (i = 0; i < cpuid->nent; i++) {
  820. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  821. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  822. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  823. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  824. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  825. vcpu->arch.cpuid_entries[i].index = 0;
  826. vcpu->arch.cpuid_entries[i].flags = 0;
  827. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  828. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  829. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  830. }
  831. vcpu->arch.cpuid_nent = cpuid->nent;
  832. cpuid_fix_nx_cap(vcpu);
  833. r = 0;
  834. out_free:
  835. vfree(cpuid_entries);
  836. out:
  837. return r;
  838. }
  839. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  840. struct kvm_cpuid2 *cpuid,
  841. struct kvm_cpuid_entry2 __user *entries)
  842. {
  843. int r;
  844. r = -E2BIG;
  845. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  846. goto out;
  847. r = -EFAULT;
  848. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  849. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  850. goto out;
  851. vcpu->arch.cpuid_nent = cpuid->nent;
  852. return 0;
  853. out:
  854. return r;
  855. }
  856. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  857. struct kvm_cpuid2 *cpuid,
  858. struct kvm_cpuid_entry2 __user *entries)
  859. {
  860. int r;
  861. r = -E2BIG;
  862. if (cpuid->nent < vcpu->arch.cpuid_nent)
  863. goto out;
  864. r = -EFAULT;
  865. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  866. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  867. goto out;
  868. return 0;
  869. out:
  870. cpuid->nent = vcpu->arch.cpuid_nent;
  871. return r;
  872. }
  873. static inline u32 bit(int bitno)
  874. {
  875. return 1 << (bitno & 31);
  876. }
  877. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  878. u32 index)
  879. {
  880. entry->function = function;
  881. entry->index = index;
  882. cpuid_count(entry->function, entry->index,
  883. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  884. entry->flags = 0;
  885. }
  886. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  887. u32 index, int *nent, int maxnent)
  888. {
  889. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  890. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  891. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  892. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  893. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  894. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  895. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  896. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  897. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  898. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  899. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  900. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  901. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  902. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  903. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  904. bit(X86_FEATURE_PGE) |
  905. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  906. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  907. bit(X86_FEATURE_SYSCALL) |
  908. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  909. #ifdef CONFIG_X86_64
  910. bit(X86_FEATURE_LM) |
  911. #endif
  912. bit(X86_FEATURE_MMXEXT) |
  913. bit(X86_FEATURE_3DNOWEXT) |
  914. bit(X86_FEATURE_3DNOW);
  915. const u32 kvm_supported_word3_x86_features =
  916. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  917. const u32 kvm_supported_word6_x86_features =
  918. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  919. /* all func 2 cpuid_count() should be called on the same cpu */
  920. get_cpu();
  921. do_cpuid_1_ent(entry, function, index);
  922. ++*nent;
  923. switch (function) {
  924. case 0:
  925. entry->eax = min(entry->eax, (u32)0xb);
  926. break;
  927. case 1:
  928. entry->edx &= kvm_supported_word0_x86_features;
  929. entry->ecx &= kvm_supported_word3_x86_features;
  930. break;
  931. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  932. * may return different values. This forces us to get_cpu() before
  933. * issuing the first command, and also to emulate this annoying behavior
  934. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  935. case 2: {
  936. int t, times = entry->eax & 0xff;
  937. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  938. for (t = 1; t < times && *nent < maxnent; ++t) {
  939. do_cpuid_1_ent(&entry[t], function, 0);
  940. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  941. ++*nent;
  942. }
  943. break;
  944. }
  945. /* function 4 and 0xb have additional index. */
  946. case 4: {
  947. int index, cache_type;
  948. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  949. /* read more entries until cache_type is zero */
  950. for (index = 1; *nent < maxnent; ++index) {
  951. cache_type = entry[index - 1].eax & 0x1f;
  952. if (!cache_type)
  953. break;
  954. do_cpuid_1_ent(&entry[index], function, index);
  955. entry[index].flags |=
  956. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  957. ++*nent;
  958. }
  959. break;
  960. }
  961. case 0xb: {
  962. int index, level_type;
  963. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  964. /* read more entries until level_type is zero */
  965. for (index = 1; *nent < maxnent; ++index) {
  966. level_type = entry[index - 1].ecx & 0xff;
  967. if (!level_type)
  968. break;
  969. do_cpuid_1_ent(&entry[index], function, index);
  970. entry[index].flags |=
  971. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  972. ++*nent;
  973. }
  974. break;
  975. }
  976. case 0x80000000:
  977. entry->eax = min(entry->eax, 0x8000001a);
  978. break;
  979. case 0x80000001:
  980. entry->edx &= kvm_supported_word1_x86_features;
  981. entry->ecx &= kvm_supported_word6_x86_features;
  982. break;
  983. }
  984. put_cpu();
  985. }
  986. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  987. struct kvm_cpuid_entry2 __user *entries)
  988. {
  989. struct kvm_cpuid_entry2 *cpuid_entries;
  990. int limit, nent = 0, r = -E2BIG;
  991. u32 func;
  992. if (cpuid->nent < 1)
  993. goto out;
  994. r = -ENOMEM;
  995. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  996. if (!cpuid_entries)
  997. goto out;
  998. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  999. limit = cpuid_entries[0].eax;
  1000. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1001. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1002. &nent, cpuid->nent);
  1003. r = -E2BIG;
  1004. if (nent >= cpuid->nent)
  1005. goto out_free;
  1006. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1007. limit = cpuid_entries[nent - 1].eax;
  1008. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1009. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1010. &nent, cpuid->nent);
  1011. r = -EFAULT;
  1012. if (copy_to_user(entries, cpuid_entries,
  1013. nent * sizeof(struct kvm_cpuid_entry2)))
  1014. goto out_free;
  1015. cpuid->nent = nent;
  1016. r = 0;
  1017. out_free:
  1018. vfree(cpuid_entries);
  1019. out:
  1020. return r;
  1021. }
  1022. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1023. struct kvm_lapic_state *s)
  1024. {
  1025. vcpu_load(vcpu);
  1026. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1027. vcpu_put(vcpu);
  1028. return 0;
  1029. }
  1030. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1031. struct kvm_lapic_state *s)
  1032. {
  1033. vcpu_load(vcpu);
  1034. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1035. kvm_apic_post_state_restore(vcpu);
  1036. vcpu_put(vcpu);
  1037. return 0;
  1038. }
  1039. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1040. struct kvm_interrupt *irq)
  1041. {
  1042. if (irq->irq < 0 || irq->irq >= 256)
  1043. return -EINVAL;
  1044. if (irqchip_in_kernel(vcpu->kvm))
  1045. return -ENXIO;
  1046. vcpu_load(vcpu);
  1047. set_bit(irq->irq, vcpu->arch.irq_pending);
  1048. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1049. vcpu_put(vcpu);
  1050. return 0;
  1051. }
  1052. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1053. struct kvm_tpr_access_ctl *tac)
  1054. {
  1055. if (tac->flags)
  1056. return -EINVAL;
  1057. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1058. return 0;
  1059. }
  1060. long kvm_arch_vcpu_ioctl(struct file *filp,
  1061. unsigned int ioctl, unsigned long arg)
  1062. {
  1063. struct kvm_vcpu *vcpu = filp->private_data;
  1064. void __user *argp = (void __user *)arg;
  1065. int r;
  1066. switch (ioctl) {
  1067. case KVM_GET_LAPIC: {
  1068. struct kvm_lapic_state lapic;
  1069. memset(&lapic, 0, sizeof lapic);
  1070. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1071. if (r)
  1072. goto out;
  1073. r = -EFAULT;
  1074. if (copy_to_user(argp, &lapic, sizeof lapic))
  1075. goto out;
  1076. r = 0;
  1077. break;
  1078. }
  1079. case KVM_SET_LAPIC: {
  1080. struct kvm_lapic_state lapic;
  1081. r = -EFAULT;
  1082. if (copy_from_user(&lapic, argp, sizeof lapic))
  1083. goto out;
  1084. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1085. if (r)
  1086. goto out;
  1087. r = 0;
  1088. break;
  1089. }
  1090. case KVM_INTERRUPT: {
  1091. struct kvm_interrupt irq;
  1092. r = -EFAULT;
  1093. if (copy_from_user(&irq, argp, sizeof irq))
  1094. goto out;
  1095. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1096. if (r)
  1097. goto out;
  1098. r = 0;
  1099. break;
  1100. }
  1101. case KVM_SET_CPUID: {
  1102. struct kvm_cpuid __user *cpuid_arg = argp;
  1103. struct kvm_cpuid cpuid;
  1104. r = -EFAULT;
  1105. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1106. goto out;
  1107. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1108. if (r)
  1109. goto out;
  1110. break;
  1111. }
  1112. case KVM_SET_CPUID2: {
  1113. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1114. struct kvm_cpuid2 cpuid;
  1115. r = -EFAULT;
  1116. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1117. goto out;
  1118. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1119. cpuid_arg->entries);
  1120. if (r)
  1121. goto out;
  1122. break;
  1123. }
  1124. case KVM_GET_CPUID2: {
  1125. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1126. struct kvm_cpuid2 cpuid;
  1127. r = -EFAULT;
  1128. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1129. goto out;
  1130. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1131. cpuid_arg->entries);
  1132. if (r)
  1133. goto out;
  1134. r = -EFAULT;
  1135. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1136. goto out;
  1137. r = 0;
  1138. break;
  1139. }
  1140. case KVM_GET_MSRS:
  1141. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1142. break;
  1143. case KVM_SET_MSRS:
  1144. r = msr_io(vcpu, argp, do_set_msr, 0);
  1145. break;
  1146. case KVM_TPR_ACCESS_REPORTING: {
  1147. struct kvm_tpr_access_ctl tac;
  1148. r = -EFAULT;
  1149. if (copy_from_user(&tac, argp, sizeof tac))
  1150. goto out;
  1151. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1152. if (r)
  1153. goto out;
  1154. r = -EFAULT;
  1155. if (copy_to_user(argp, &tac, sizeof tac))
  1156. goto out;
  1157. r = 0;
  1158. break;
  1159. };
  1160. case KVM_SET_VAPIC_ADDR: {
  1161. struct kvm_vapic_addr va;
  1162. r = -EINVAL;
  1163. if (!irqchip_in_kernel(vcpu->kvm))
  1164. goto out;
  1165. r = -EFAULT;
  1166. if (copy_from_user(&va, argp, sizeof va))
  1167. goto out;
  1168. r = 0;
  1169. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1170. break;
  1171. }
  1172. default:
  1173. r = -EINVAL;
  1174. }
  1175. out:
  1176. return r;
  1177. }
  1178. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1179. {
  1180. int ret;
  1181. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1182. return -1;
  1183. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1184. return ret;
  1185. }
  1186. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1187. u32 kvm_nr_mmu_pages)
  1188. {
  1189. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1190. return -EINVAL;
  1191. down_write(&kvm->slots_lock);
  1192. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1193. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1194. up_write(&kvm->slots_lock);
  1195. return 0;
  1196. }
  1197. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1198. {
  1199. return kvm->arch.n_alloc_mmu_pages;
  1200. }
  1201. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1202. {
  1203. int i;
  1204. struct kvm_mem_alias *alias;
  1205. for (i = 0; i < kvm->arch.naliases; ++i) {
  1206. alias = &kvm->arch.aliases[i];
  1207. if (gfn >= alias->base_gfn
  1208. && gfn < alias->base_gfn + alias->npages)
  1209. return alias->target_gfn + gfn - alias->base_gfn;
  1210. }
  1211. return gfn;
  1212. }
  1213. /*
  1214. * Set a new alias region. Aliases map a portion of physical memory into
  1215. * another portion. This is useful for memory windows, for example the PC
  1216. * VGA region.
  1217. */
  1218. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1219. struct kvm_memory_alias *alias)
  1220. {
  1221. int r, n;
  1222. struct kvm_mem_alias *p;
  1223. r = -EINVAL;
  1224. /* General sanity checks */
  1225. if (alias->memory_size & (PAGE_SIZE - 1))
  1226. goto out;
  1227. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1228. goto out;
  1229. if (alias->slot >= KVM_ALIAS_SLOTS)
  1230. goto out;
  1231. if (alias->guest_phys_addr + alias->memory_size
  1232. < alias->guest_phys_addr)
  1233. goto out;
  1234. if (alias->target_phys_addr + alias->memory_size
  1235. < alias->target_phys_addr)
  1236. goto out;
  1237. down_write(&kvm->slots_lock);
  1238. p = &kvm->arch.aliases[alias->slot];
  1239. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1240. p->npages = alias->memory_size >> PAGE_SHIFT;
  1241. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1242. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1243. if (kvm->arch.aliases[n - 1].npages)
  1244. break;
  1245. kvm->arch.naliases = n;
  1246. kvm_mmu_zap_all(kvm);
  1247. up_write(&kvm->slots_lock);
  1248. return 0;
  1249. out:
  1250. return r;
  1251. }
  1252. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1253. {
  1254. int r;
  1255. r = 0;
  1256. switch (chip->chip_id) {
  1257. case KVM_IRQCHIP_PIC_MASTER:
  1258. memcpy(&chip->chip.pic,
  1259. &pic_irqchip(kvm)->pics[0],
  1260. sizeof(struct kvm_pic_state));
  1261. break;
  1262. case KVM_IRQCHIP_PIC_SLAVE:
  1263. memcpy(&chip->chip.pic,
  1264. &pic_irqchip(kvm)->pics[1],
  1265. sizeof(struct kvm_pic_state));
  1266. break;
  1267. case KVM_IRQCHIP_IOAPIC:
  1268. memcpy(&chip->chip.ioapic,
  1269. ioapic_irqchip(kvm),
  1270. sizeof(struct kvm_ioapic_state));
  1271. break;
  1272. default:
  1273. r = -EINVAL;
  1274. break;
  1275. }
  1276. return r;
  1277. }
  1278. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1279. {
  1280. int r;
  1281. r = 0;
  1282. switch (chip->chip_id) {
  1283. case KVM_IRQCHIP_PIC_MASTER:
  1284. memcpy(&pic_irqchip(kvm)->pics[0],
  1285. &chip->chip.pic,
  1286. sizeof(struct kvm_pic_state));
  1287. break;
  1288. case KVM_IRQCHIP_PIC_SLAVE:
  1289. memcpy(&pic_irqchip(kvm)->pics[1],
  1290. &chip->chip.pic,
  1291. sizeof(struct kvm_pic_state));
  1292. break;
  1293. case KVM_IRQCHIP_IOAPIC:
  1294. memcpy(ioapic_irqchip(kvm),
  1295. &chip->chip.ioapic,
  1296. sizeof(struct kvm_ioapic_state));
  1297. break;
  1298. default:
  1299. r = -EINVAL;
  1300. break;
  1301. }
  1302. kvm_pic_update_irq(pic_irqchip(kvm));
  1303. return r;
  1304. }
  1305. /*
  1306. * Get (and clear) the dirty memory log for a memory slot.
  1307. */
  1308. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1309. struct kvm_dirty_log *log)
  1310. {
  1311. int r;
  1312. int n;
  1313. struct kvm_memory_slot *memslot;
  1314. int is_dirty = 0;
  1315. down_write(&kvm->slots_lock);
  1316. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1317. if (r)
  1318. goto out;
  1319. /* If nothing is dirty, don't bother messing with page tables. */
  1320. if (is_dirty) {
  1321. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1322. kvm_flush_remote_tlbs(kvm);
  1323. memslot = &kvm->memslots[log->slot];
  1324. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1325. memset(memslot->dirty_bitmap, 0, n);
  1326. }
  1327. r = 0;
  1328. out:
  1329. up_write(&kvm->slots_lock);
  1330. return r;
  1331. }
  1332. long kvm_arch_vm_ioctl(struct file *filp,
  1333. unsigned int ioctl, unsigned long arg)
  1334. {
  1335. struct kvm *kvm = filp->private_data;
  1336. void __user *argp = (void __user *)arg;
  1337. int r = -EINVAL;
  1338. switch (ioctl) {
  1339. case KVM_SET_TSS_ADDR:
  1340. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1341. if (r < 0)
  1342. goto out;
  1343. break;
  1344. case KVM_SET_MEMORY_REGION: {
  1345. struct kvm_memory_region kvm_mem;
  1346. struct kvm_userspace_memory_region kvm_userspace_mem;
  1347. r = -EFAULT;
  1348. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1349. goto out;
  1350. kvm_userspace_mem.slot = kvm_mem.slot;
  1351. kvm_userspace_mem.flags = kvm_mem.flags;
  1352. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1353. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1354. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1355. if (r)
  1356. goto out;
  1357. break;
  1358. }
  1359. case KVM_SET_NR_MMU_PAGES:
  1360. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1361. if (r)
  1362. goto out;
  1363. break;
  1364. case KVM_GET_NR_MMU_PAGES:
  1365. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1366. break;
  1367. case KVM_SET_MEMORY_ALIAS: {
  1368. struct kvm_memory_alias alias;
  1369. r = -EFAULT;
  1370. if (copy_from_user(&alias, argp, sizeof alias))
  1371. goto out;
  1372. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1373. if (r)
  1374. goto out;
  1375. break;
  1376. }
  1377. case KVM_CREATE_IRQCHIP:
  1378. r = -ENOMEM;
  1379. kvm->arch.vpic = kvm_create_pic(kvm);
  1380. if (kvm->arch.vpic) {
  1381. r = kvm_ioapic_init(kvm);
  1382. if (r) {
  1383. kfree(kvm->arch.vpic);
  1384. kvm->arch.vpic = NULL;
  1385. goto out;
  1386. }
  1387. } else
  1388. goto out;
  1389. break;
  1390. case KVM_IRQ_LINE: {
  1391. struct kvm_irq_level irq_event;
  1392. r = -EFAULT;
  1393. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1394. goto out;
  1395. if (irqchip_in_kernel(kvm)) {
  1396. mutex_lock(&kvm->lock);
  1397. if (irq_event.irq < 16)
  1398. kvm_pic_set_irq(pic_irqchip(kvm),
  1399. irq_event.irq,
  1400. irq_event.level);
  1401. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1402. irq_event.irq,
  1403. irq_event.level);
  1404. mutex_unlock(&kvm->lock);
  1405. r = 0;
  1406. }
  1407. break;
  1408. }
  1409. case KVM_GET_IRQCHIP: {
  1410. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1411. struct kvm_irqchip chip;
  1412. r = -EFAULT;
  1413. if (copy_from_user(&chip, argp, sizeof chip))
  1414. goto out;
  1415. r = -ENXIO;
  1416. if (!irqchip_in_kernel(kvm))
  1417. goto out;
  1418. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1419. if (r)
  1420. goto out;
  1421. r = -EFAULT;
  1422. if (copy_to_user(argp, &chip, sizeof chip))
  1423. goto out;
  1424. r = 0;
  1425. break;
  1426. }
  1427. case KVM_SET_IRQCHIP: {
  1428. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1429. struct kvm_irqchip chip;
  1430. r = -EFAULT;
  1431. if (copy_from_user(&chip, argp, sizeof chip))
  1432. goto out;
  1433. r = -ENXIO;
  1434. if (!irqchip_in_kernel(kvm))
  1435. goto out;
  1436. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1437. if (r)
  1438. goto out;
  1439. r = 0;
  1440. break;
  1441. }
  1442. default:
  1443. ;
  1444. }
  1445. out:
  1446. return r;
  1447. }
  1448. static void kvm_init_msr_list(void)
  1449. {
  1450. u32 dummy[2];
  1451. unsigned i, j;
  1452. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1453. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1454. continue;
  1455. if (j < i)
  1456. msrs_to_save[j] = msrs_to_save[i];
  1457. j++;
  1458. }
  1459. num_msrs_to_save = j;
  1460. }
  1461. /*
  1462. * Only apic need an MMIO device hook, so shortcut now..
  1463. */
  1464. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1465. gpa_t addr)
  1466. {
  1467. struct kvm_io_device *dev;
  1468. if (vcpu->arch.apic) {
  1469. dev = &vcpu->arch.apic->dev;
  1470. if (dev->in_range(dev, addr))
  1471. return dev;
  1472. }
  1473. return NULL;
  1474. }
  1475. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1476. gpa_t addr)
  1477. {
  1478. struct kvm_io_device *dev;
  1479. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1480. if (dev == NULL)
  1481. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1482. return dev;
  1483. }
  1484. int emulator_read_std(unsigned long addr,
  1485. void *val,
  1486. unsigned int bytes,
  1487. struct kvm_vcpu *vcpu)
  1488. {
  1489. void *data = val;
  1490. int r = X86EMUL_CONTINUE;
  1491. down_read(&vcpu->kvm->slots_lock);
  1492. while (bytes) {
  1493. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1494. unsigned offset = addr & (PAGE_SIZE-1);
  1495. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1496. int ret;
  1497. if (gpa == UNMAPPED_GVA) {
  1498. r = X86EMUL_PROPAGATE_FAULT;
  1499. goto out;
  1500. }
  1501. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1502. if (ret < 0) {
  1503. r = X86EMUL_UNHANDLEABLE;
  1504. goto out;
  1505. }
  1506. bytes -= tocopy;
  1507. data += tocopy;
  1508. addr += tocopy;
  1509. }
  1510. out:
  1511. up_read(&vcpu->kvm->slots_lock);
  1512. return r;
  1513. }
  1514. EXPORT_SYMBOL_GPL(emulator_read_std);
  1515. static int emulator_read_emulated(unsigned long addr,
  1516. void *val,
  1517. unsigned int bytes,
  1518. struct kvm_vcpu *vcpu)
  1519. {
  1520. struct kvm_io_device *mmio_dev;
  1521. gpa_t gpa;
  1522. if (vcpu->mmio_read_completed) {
  1523. memcpy(val, vcpu->mmio_data, bytes);
  1524. vcpu->mmio_read_completed = 0;
  1525. return X86EMUL_CONTINUE;
  1526. }
  1527. down_read(&vcpu->kvm->slots_lock);
  1528. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1529. up_read(&vcpu->kvm->slots_lock);
  1530. /* For APIC access vmexit */
  1531. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1532. goto mmio;
  1533. if (emulator_read_std(addr, val, bytes, vcpu)
  1534. == X86EMUL_CONTINUE)
  1535. return X86EMUL_CONTINUE;
  1536. if (gpa == UNMAPPED_GVA)
  1537. return X86EMUL_PROPAGATE_FAULT;
  1538. mmio:
  1539. /*
  1540. * Is this MMIO handled locally?
  1541. */
  1542. mutex_lock(&vcpu->kvm->lock);
  1543. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1544. if (mmio_dev) {
  1545. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1546. mutex_unlock(&vcpu->kvm->lock);
  1547. return X86EMUL_CONTINUE;
  1548. }
  1549. mutex_unlock(&vcpu->kvm->lock);
  1550. vcpu->mmio_needed = 1;
  1551. vcpu->mmio_phys_addr = gpa;
  1552. vcpu->mmio_size = bytes;
  1553. vcpu->mmio_is_write = 0;
  1554. return X86EMUL_UNHANDLEABLE;
  1555. }
  1556. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1557. const void *val, int bytes)
  1558. {
  1559. int ret;
  1560. down_read(&vcpu->kvm->slots_lock);
  1561. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1562. if (ret < 0) {
  1563. up_read(&vcpu->kvm->slots_lock);
  1564. return 0;
  1565. }
  1566. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1567. up_read(&vcpu->kvm->slots_lock);
  1568. return 1;
  1569. }
  1570. static int emulator_write_emulated_onepage(unsigned long addr,
  1571. const void *val,
  1572. unsigned int bytes,
  1573. struct kvm_vcpu *vcpu)
  1574. {
  1575. struct kvm_io_device *mmio_dev;
  1576. gpa_t gpa;
  1577. down_read(&vcpu->kvm->slots_lock);
  1578. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1579. up_read(&vcpu->kvm->slots_lock);
  1580. if (gpa == UNMAPPED_GVA) {
  1581. kvm_inject_page_fault(vcpu, addr, 2);
  1582. return X86EMUL_PROPAGATE_FAULT;
  1583. }
  1584. /* For APIC access vmexit */
  1585. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1586. goto mmio;
  1587. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1588. return X86EMUL_CONTINUE;
  1589. mmio:
  1590. /*
  1591. * Is this MMIO handled locally?
  1592. */
  1593. mutex_lock(&vcpu->kvm->lock);
  1594. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1595. if (mmio_dev) {
  1596. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1597. mutex_unlock(&vcpu->kvm->lock);
  1598. return X86EMUL_CONTINUE;
  1599. }
  1600. mutex_unlock(&vcpu->kvm->lock);
  1601. vcpu->mmio_needed = 1;
  1602. vcpu->mmio_phys_addr = gpa;
  1603. vcpu->mmio_size = bytes;
  1604. vcpu->mmio_is_write = 1;
  1605. memcpy(vcpu->mmio_data, val, bytes);
  1606. return X86EMUL_CONTINUE;
  1607. }
  1608. int emulator_write_emulated(unsigned long addr,
  1609. const void *val,
  1610. unsigned int bytes,
  1611. struct kvm_vcpu *vcpu)
  1612. {
  1613. /* Crossing a page boundary? */
  1614. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1615. int rc, now;
  1616. now = -addr & ~PAGE_MASK;
  1617. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1618. if (rc != X86EMUL_CONTINUE)
  1619. return rc;
  1620. addr += now;
  1621. val += now;
  1622. bytes -= now;
  1623. }
  1624. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1625. }
  1626. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1627. static int emulator_cmpxchg_emulated(unsigned long addr,
  1628. const void *old,
  1629. const void *new,
  1630. unsigned int bytes,
  1631. struct kvm_vcpu *vcpu)
  1632. {
  1633. static int reported;
  1634. if (!reported) {
  1635. reported = 1;
  1636. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1637. }
  1638. #ifndef CONFIG_X86_64
  1639. /* guests cmpxchg8b have to be emulated atomically */
  1640. if (bytes == 8) {
  1641. gpa_t gpa;
  1642. struct page *page;
  1643. char *kaddr;
  1644. u64 val;
  1645. down_read(&vcpu->kvm->slots_lock);
  1646. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1647. if (gpa == UNMAPPED_GVA ||
  1648. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1649. goto emul_write;
  1650. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1651. goto emul_write;
  1652. val = *(u64 *)new;
  1653. down_read(&current->mm->mmap_sem);
  1654. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1655. up_read(&current->mm->mmap_sem);
  1656. kaddr = kmap_atomic(page, KM_USER0);
  1657. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1658. kunmap_atomic(kaddr, KM_USER0);
  1659. kvm_release_page_dirty(page);
  1660. emul_write:
  1661. up_read(&vcpu->kvm->slots_lock);
  1662. }
  1663. #endif
  1664. return emulator_write_emulated(addr, new, bytes, vcpu);
  1665. }
  1666. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1667. {
  1668. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1669. }
  1670. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1671. {
  1672. return X86EMUL_CONTINUE;
  1673. }
  1674. int emulate_clts(struct kvm_vcpu *vcpu)
  1675. {
  1676. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1677. return X86EMUL_CONTINUE;
  1678. }
  1679. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1680. {
  1681. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1682. switch (dr) {
  1683. case 0 ... 3:
  1684. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1685. return X86EMUL_CONTINUE;
  1686. default:
  1687. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1688. return X86EMUL_UNHANDLEABLE;
  1689. }
  1690. }
  1691. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1692. {
  1693. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1694. int exception;
  1695. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1696. if (exception) {
  1697. /* FIXME: better handling */
  1698. return X86EMUL_UNHANDLEABLE;
  1699. }
  1700. return X86EMUL_CONTINUE;
  1701. }
  1702. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1703. {
  1704. static int reported;
  1705. u8 opcodes[4];
  1706. unsigned long rip = vcpu->arch.rip;
  1707. unsigned long rip_linear;
  1708. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1709. if (reported)
  1710. return;
  1711. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1712. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1713. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1714. reported = 1;
  1715. }
  1716. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1717. struct x86_emulate_ops emulate_ops = {
  1718. .read_std = emulator_read_std,
  1719. .read_emulated = emulator_read_emulated,
  1720. .write_emulated = emulator_write_emulated,
  1721. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1722. };
  1723. int emulate_instruction(struct kvm_vcpu *vcpu,
  1724. struct kvm_run *run,
  1725. unsigned long cr2,
  1726. u16 error_code,
  1727. int emulation_type)
  1728. {
  1729. int r;
  1730. struct decode_cache *c;
  1731. vcpu->arch.mmio_fault_cr2 = cr2;
  1732. kvm_x86_ops->cache_regs(vcpu);
  1733. vcpu->mmio_is_write = 0;
  1734. vcpu->arch.pio.string = 0;
  1735. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1736. int cs_db, cs_l;
  1737. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1738. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1739. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1740. vcpu->arch.emulate_ctxt.mode =
  1741. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1742. ? X86EMUL_MODE_REAL : cs_l
  1743. ? X86EMUL_MODE_PROT64 : cs_db
  1744. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1745. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1746. vcpu->arch.emulate_ctxt.cs_base = 0;
  1747. vcpu->arch.emulate_ctxt.ds_base = 0;
  1748. vcpu->arch.emulate_ctxt.es_base = 0;
  1749. vcpu->arch.emulate_ctxt.ss_base = 0;
  1750. } else {
  1751. vcpu->arch.emulate_ctxt.cs_base =
  1752. get_segment_base(vcpu, VCPU_SREG_CS);
  1753. vcpu->arch.emulate_ctxt.ds_base =
  1754. get_segment_base(vcpu, VCPU_SREG_DS);
  1755. vcpu->arch.emulate_ctxt.es_base =
  1756. get_segment_base(vcpu, VCPU_SREG_ES);
  1757. vcpu->arch.emulate_ctxt.ss_base =
  1758. get_segment_base(vcpu, VCPU_SREG_SS);
  1759. }
  1760. vcpu->arch.emulate_ctxt.gs_base =
  1761. get_segment_base(vcpu, VCPU_SREG_GS);
  1762. vcpu->arch.emulate_ctxt.fs_base =
  1763. get_segment_base(vcpu, VCPU_SREG_FS);
  1764. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1765. /* Reject the instructions other than VMCALL/VMMCALL when
  1766. * try to emulate invalid opcode */
  1767. c = &vcpu->arch.emulate_ctxt.decode;
  1768. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1769. (!(c->twobyte && c->b == 0x01 &&
  1770. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1771. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1772. return EMULATE_FAIL;
  1773. ++vcpu->stat.insn_emulation;
  1774. if (r) {
  1775. ++vcpu->stat.insn_emulation_fail;
  1776. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1777. return EMULATE_DONE;
  1778. return EMULATE_FAIL;
  1779. }
  1780. }
  1781. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1782. if (vcpu->arch.pio.string)
  1783. return EMULATE_DO_MMIO;
  1784. if ((r || vcpu->mmio_is_write) && run) {
  1785. run->exit_reason = KVM_EXIT_MMIO;
  1786. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1787. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1788. run->mmio.len = vcpu->mmio_size;
  1789. run->mmio.is_write = vcpu->mmio_is_write;
  1790. }
  1791. if (r) {
  1792. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1793. return EMULATE_DONE;
  1794. if (!vcpu->mmio_needed) {
  1795. kvm_report_emulation_failure(vcpu, "mmio");
  1796. return EMULATE_FAIL;
  1797. }
  1798. return EMULATE_DO_MMIO;
  1799. }
  1800. kvm_x86_ops->decache_regs(vcpu);
  1801. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1802. if (vcpu->mmio_is_write) {
  1803. vcpu->mmio_needed = 0;
  1804. return EMULATE_DO_MMIO;
  1805. }
  1806. return EMULATE_DONE;
  1807. }
  1808. EXPORT_SYMBOL_GPL(emulate_instruction);
  1809. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1810. {
  1811. int i;
  1812. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1813. if (vcpu->arch.pio.guest_pages[i]) {
  1814. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1815. vcpu->arch.pio.guest_pages[i] = NULL;
  1816. }
  1817. }
  1818. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1819. {
  1820. void *p = vcpu->arch.pio_data;
  1821. void *q;
  1822. unsigned bytes;
  1823. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1824. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1825. PAGE_KERNEL);
  1826. if (!q) {
  1827. free_pio_guest_pages(vcpu);
  1828. return -ENOMEM;
  1829. }
  1830. q += vcpu->arch.pio.guest_page_offset;
  1831. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1832. if (vcpu->arch.pio.in)
  1833. memcpy(q, p, bytes);
  1834. else
  1835. memcpy(p, q, bytes);
  1836. q -= vcpu->arch.pio.guest_page_offset;
  1837. vunmap(q);
  1838. free_pio_guest_pages(vcpu);
  1839. return 0;
  1840. }
  1841. int complete_pio(struct kvm_vcpu *vcpu)
  1842. {
  1843. struct kvm_pio_request *io = &vcpu->arch.pio;
  1844. long delta;
  1845. int r;
  1846. kvm_x86_ops->cache_regs(vcpu);
  1847. if (!io->string) {
  1848. if (io->in)
  1849. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1850. io->size);
  1851. } else {
  1852. if (io->in) {
  1853. r = pio_copy_data(vcpu);
  1854. if (r) {
  1855. kvm_x86_ops->cache_regs(vcpu);
  1856. return r;
  1857. }
  1858. }
  1859. delta = 1;
  1860. if (io->rep) {
  1861. delta *= io->cur_count;
  1862. /*
  1863. * The size of the register should really depend on
  1864. * current address size.
  1865. */
  1866. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1867. }
  1868. if (io->down)
  1869. delta = -delta;
  1870. delta *= io->size;
  1871. if (io->in)
  1872. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1873. else
  1874. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1875. }
  1876. kvm_x86_ops->decache_regs(vcpu);
  1877. io->count -= io->cur_count;
  1878. io->cur_count = 0;
  1879. return 0;
  1880. }
  1881. static void kernel_pio(struct kvm_io_device *pio_dev,
  1882. struct kvm_vcpu *vcpu,
  1883. void *pd)
  1884. {
  1885. /* TODO: String I/O for in kernel device */
  1886. mutex_lock(&vcpu->kvm->lock);
  1887. if (vcpu->arch.pio.in)
  1888. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1889. vcpu->arch.pio.size,
  1890. pd);
  1891. else
  1892. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1893. vcpu->arch.pio.size,
  1894. pd);
  1895. mutex_unlock(&vcpu->kvm->lock);
  1896. }
  1897. static void pio_string_write(struct kvm_io_device *pio_dev,
  1898. struct kvm_vcpu *vcpu)
  1899. {
  1900. struct kvm_pio_request *io = &vcpu->arch.pio;
  1901. void *pd = vcpu->arch.pio_data;
  1902. int i;
  1903. mutex_lock(&vcpu->kvm->lock);
  1904. for (i = 0; i < io->cur_count; i++) {
  1905. kvm_iodevice_write(pio_dev, io->port,
  1906. io->size,
  1907. pd);
  1908. pd += io->size;
  1909. }
  1910. mutex_unlock(&vcpu->kvm->lock);
  1911. }
  1912. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1913. gpa_t addr)
  1914. {
  1915. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1916. }
  1917. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1918. int size, unsigned port)
  1919. {
  1920. struct kvm_io_device *pio_dev;
  1921. vcpu->run->exit_reason = KVM_EXIT_IO;
  1922. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1923. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1924. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1925. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1926. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1927. vcpu->arch.pio.in = in;
  1928. vcpu->arch.pio.string = 0;
  1929. vcpu->arch.pio.down = 0;
  1930. vcpu->arch.pio.guest_page_offset = 0;
  1931. vcpu->arch.pio.rep = 0;
  1932. kvm_x86_ops->cache_regs(vcpu);
  1933. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1934. kvm_x86_ops->decache_regs(vcpu);
  1935. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1936. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1937. if (pio_dev) {
  1938. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  1939. complete_pio(vcpu);
  1940. return 1;
  1941. }
  1942. return 0;
  1943. }
  1944. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1945. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1946. int size, unsigned long count, int down,
  1947. gva_t address, int rep, unsigned port)
  1948. {
  1949. unsigned now, in_page;
  1950. int i, ret = 0;
  1951. int nr_pages = 1;
  1952. struct page *page;
  1953. struct kvm_io_device *pio_dev;
  1954. vcpu->run->exit_reason = KVM_EXIT_IO;
  1955. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1956. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1957. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1958. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  1959. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1960. vcpu->arch.pio.in = in;
  1961. vcpu->arch.pio.string = 1;
  1962. vcpu->arch.pio.down = down;
  1963. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  1964. vcpu->arch.pio.rep = rep;
  1965. if (!count) {
  1966. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1967. return 1;
  1968. }
  1969. if (!down)
  1970. in_page = PAGE_SIZE - offset_in_page(address);
  1971. else
  1972. in_page = offset_in_page(address) + size;
  1973. now = min(count, (unsigned long)in_page / size);
  1974. if (!now) {
  1975. /*
  1976. * String I/O straddles page boundary. Pin two guest pages
  1977. * so that we satisfy atomicity constraints. Do just one
  1978. * transaction to avoid complexity.
  1979. */
  1980. nr_pages = 2;
  1981. now = 1;
  1982. }
  1983. if (down) {
  1984. /*
  1985. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1986. */
  1987. pr_unimpl(vcpu, "guest string pio down\n");
  1988. kvm_inject_gp(vcpu, 0);
  1989. return 1;
  1990. }
  1991. vcpu->run->io.count = now;
  1992. vcpu->arch.pio.cur_count = now;
  1993. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  1994. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1995. for (i = 0; i < nr_pages; ++i) {
  1996. down_read(&vcpu->kvm->slots_lock);
  1997. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1998. vcpu->arch.pio.guest_pages[i] = page;
  1999. up_read(&vcpu->kvm->slots_lock);
  2000. if (!page) {
  2001. kvm_inject_gp(vcpu, 0);
  2002. free_pio_guest_pages(vcpu);
  2003. return 1;
  2004. }
  2005. }
  2006. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2007. if (!vcpu->arch.pio.in) {
  2008. /* string PIO write */
  2009. ret = pio_copy_data(vcpu);
  2010. if (ret >= 0 && pio_dev) {
  2011. pio_string_write(pio_dev, vcpu);
  2012. complete_pio(vcpu);
  2013. if (vcpu->arch.pio.count == 0)
  2014. ret = 1;
  2015. }
  2016. } else if (pio_dev)
  2017. pr_unimpl(vcpu, "no string pio read support yet, "
  2018. "port %x size %d count %ld\n",
  2019. port, size, count);
  2020. return ret;
  2021. }
  2022. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2023. int kvm_arch_init(void *opaque)
  2024. {
  2025. int r;
  2026. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2027. if (kvm_x86_ops) {
  2028. printk(KERN_ERR "kvm: already loaded the other module\n");
  2029. r = -EEXIST;
  2030. goto out;
  2031. }
  2032. if (!ops->cpu_has_kvm_support()) {
  2033. printk(KERN_ERR "kvm: no hardware support\n");
  2034. r = -EOPNOTSUPP;
  2035. goto out;
  2036. }
  2037. if (ops->disabled_by_bios()) {
  2038. printk(KERN_ERR "kvm: disabled by bios\n");
  2039. r = -EOPNOTSUPP;
  2040. goto out;
  2041. }
  2042. r = kvm_mmu_module_init();
  2043. if (r)
  2044. goto out;
  2045. kvm_init_msr_list();
  2046. kvm_x86_ops = ops;
  2047. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2048. return 0;
  2049. out:
  2050. return r;
  2051. }
  2052. void kvm_arch_exit(void)
  2053. {
  2054. kvm_x86_ops = NULL;
  2055. kvm_mmu_module_exit();
  2056. }
  2057. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2058. {
  2059. ++vcpu->stat.halt_exits;
  2060. if (irqchip_in_kernel(vcpu->kvm)) {
  2061. vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
  2062. kvm_vcpu_block(vcpu);
  2063. if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
  2064. return -EINTR;
  2065. return 1;
  2066. } else {
  2067. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2068. return 0;
  2069. }
  2070. }
  2071. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2072. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2073. {
  2074. unsigned long nr, a0, a1, a2, a3, ret;
  2075. kvm_x86_ops->cache_regs(vcpu);
  2076. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2077. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2078. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2079. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2080. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2081. if (!is_long_mode(vcpu)) {
  2082. nr &= 0xFFFFFFFF;
  2083. a0 &= 0xFFFFFFFF;
  2084. a1 &= 0xFFFFFFFF;
  2085. a2 &= 0xFFFFFFFF;
  2086. a3 &= 0xFFFFFFFF;
  2087. }
  2088. switch (nr) {
  2089. case KVM_HC_VAPIC_POLL_IRQ:
  2090. ret = 0;
  2091. break;
  2092. default:
  2093. ret = -KVM_ENOSYS;
  2094. break;
  2095. }
  2096. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2097. kvm_x86_ops->decache_regs(vcpu);
  2098. return 0;
  2099. }
  2100. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2101. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2102. {
  2103. char instruction[3];
  2104. int ret = 0;
  2105. /*
  2106. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2107. * to ensure that the updated hypercall appears atomically across all
  2108. * VCPUs.
  2109. */
  2110. kvm_mmu_zap_all(vcpu->kvm);
  2111. kvm_x86_ops->cache_regs(vcpu);
  2112. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2113. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2114. != X86EMUL_CONTINUE)
  2115. ret = -EFAULT;
  2116. return ret;
  2117. }
  2118. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2119. {
  2120. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2121. }
  2122. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2123. {
  2124. struct descriptor_table dt = { limit, base };
  2125. kvm_x86_ops->set_gdt(vcpu, &dt);
  2126. }
  2127. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2128. {
  2129. struct descriptor_table dt = { limit, base };
  2130. kvm_x86_ops->set_idt(vcpu, &dt);
  2131. }
  2132. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2133. unsigned long *rflags)
  2134. {
  2135. lmsw(vcpu, msw);
  2136. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2137. }
  2138. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2139. {
  2140. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2141. switch (cr) {
  2142. case 0:
  2143. return vcpu->arch.cr0;
  2144. case 2:
  2145. return vcpu->arch.cr2;
  2146. case 3:
  2147. return vcpu->arch.cr3;
  2148. case 4:
  2149. return vcpu->arch.cr4;
  2150. case 8:
  2151. return get_cr8(vcpu);
  2152. default:
  2153. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2154. return 0;
  2155. }
  2156. }
  2157. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2158. unsigned long *rflags)
  2159. {
  2160. switch (cr) {
  2161. case 0:
  2162. set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2163. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2164. break;
  2165. case 2:
  2166. vcpu->arch.cr2 = val;
  2167. break;
  2168. case 3:
  2169. set_cr3(vcpu, val);
  2170. break;
  2171. case 4:
  2172. set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2173. break;
  2174. case 8:
  2175. set_cr8(vcpu, val & 0xfUL);
  2176. break;
  2177. default:
  2178. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  2179. }
  2180. }
  2181. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2182. {
  2183. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2184. int j, nent = vcpu->arch.cpuid_nent;
  2185. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2186. /* when no next entry is found, the current entry[i] is reselected */
  2187. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2188. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2189. if (ej->function == e->function) {
  2190. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2191. return j;
  2192. }
  2193. }
  2194. return 0; /* silence gcc, even though control never reaches here */
  2195. }
  2196. /* find an entry with matching function, matching index (if needed), and that
  2197. * should be read next (if it's stateful) */
  2198. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2199. u32 function, u32 index)
  2200. {
  2201. if (e->function != function)
  2202. return 0;
  2203. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2204. return 0;
  2205. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2206. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2207. return 0;
  2208. return 1;
  2209. }
  2210. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2211. {
  2212. int i;
  2213. u32 function, index;
  2214. struct kvm_cpuid_entry2 *e, *best;
  2215. kvm_x86_ops->cache_regs(vcpu);
  2216. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2217. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2218. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2219. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2220. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2221. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2222. best = NULL;
  2223. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2224. e = &vcpu->arch.cpuid_entries[i];
  2225. if (is_matching_cpuid_entry(e, function, index)) {
  2226. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2227. move_to_next_stateful_cpuid_entry(vcpu, i);
  2228. best = e;
  2229. break;
  2230. }
  2231. /*
  2232. * Both basic or both extended?
  2233. */
  2234. if (((e->function ^ function) & 0x80000000) == 0)
  2235. if (!best || e->function > best->function)
  2236. best = e;
  2237. }
  2238. if (best) {
  2239. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2240. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2241. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2242. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2243. }
  2244. kvm_x86_ops->decache_regs(vcpu);
  2245. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2246. }
  2247. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2248. /*
  2249. * Check if userspace requested an interrupt window, and that the
  2250. * interrupt window is open.
  2251. *
  2252. * No need to exit to userspace if we already have an interrupt queued.
  2253. */
  2254. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2255. struct kvm_run *kvm_run)
  2256. {
  2257. return (!vcpu->arch.irq_summary &&
  2258. kvm_run->request_interrupt_window &&
  2259. vcpu->arch.interrupt_window_open &&
  2260. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2261. }
  2262. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2263. struct kvm_run *kvm_run)
  2264. {
  2265. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2266. kvm_run->cr8 = get_cr8(vcpu);
  2267. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2268. if (irqchip_in_kernel(vcpu->kvm))
  2269. kvm_run->ready_for_interrupt_injection = 1;
  2270. else
  2271. kvm_run->ready_for_interrupt_injection =
  2272. (vcpu->arch.interrupt_window_open &&
  2273. vcpu->arch.irq_summary == 0);
  2274. }
  2275. static void vapic_enter(struct kvm_vcpu *vcpu)
  2276. {
  2277. struct kvm_lapic *apic = vcpu->arch.apic;
  2278. struct page *page;
  2279. if (!apic || !apic->vapic_addr)
  2280. return;
  2281. down_read(&current->mm->mmap_sem);
  2282. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2283. up_read(&current->mm->mmap_sem);
  2284. vcpu->arch.apic->vapic_page = page;
  2285. }
  2286. static void vapic_exit(struct kvm_vcpu *vcpu)
  2287. {
  2288. struct kvm_lapic *apic = vcpu->arch.apic;
  2289. if (!apic || !apic->vapic_addr)
  2290. return;
  2291. kvm_release_page_dirty(apic->vapic_page);
  2292. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2293. }
  2294. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2295. {
  2296. int r;
  2297. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2298. pr_debug("vcpu %d received sipi with vector # %x\n",
  2299. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2300. kvm_lapic_reset(vcpu);
  2301. r = kvm_x86_ops->vcpu_reset(vcpu);
  2302. if (r)
  2303. return r;
  2304. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2305. }
  2306. vapic_enter(vcpu);
  2307. preempted:
  2308. if (vcpu->guest_debug.enabled)
  2309. kvm_x86_ops->guest_debug_pre(vcpu);
  2310. again:
  2311. r = kvm_mmu_reload(vcpu);
  2312. if (unlikely(r))
  2313. goto out;
  2314. if (vcpu->requests) {
  2315. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2316. __kvm_migrate_apic_timer(vcpu);
  2317. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2318. &vcpu->requests)) {
  2319. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2320. r = 0;
  2321. goto out;
  2322. }
  2323. }
  2324. kvm_inject_pending_timer_irqs(vcpu);
  2325. preempt_disable();
  2326. kvm_x86_ops->prepare_guest_switch(vcpu);
  2327. kvm_load_guest_fpu(vcpu);
  2328. local_irq_disable();
  2329. if (need_resched()) {
  2330. local_irq_enable();
  2331. preempt_enable();
  2332. r = 1;
  2333. goto out;
  2334. }
  2335. if (signal_pending(current)) {
  2336. local_irq_enable();
  2337. preempt_enable();
  2338. r = -EINTR;
  2339. kvm_run->exit_reason = KVM_EXIT_INTR;
  2340. ++vcpu->stat.signal_exits;
  2341. goto out;
  2342. }
  2343. if (vcpu->arch.exception.pending)
  2344. __queue_exception(vcpu);
  2345. else if (irqchip_in_kernel(vcpu->kvm))
  2346. kvm_x86_ops->inject_pending_irq(vcpu);
  2347. else
  2348. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2349. kvm_lapic_sync_to_vapic(vcpu);
  2350. vcpu->guest_mode = 1;
  2351. kvm_guest_enter();
  2352. if (vcpu->requests)
  2353. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2354. kvm_x86_ops->tlb_flush(vcpu);
  2355. kvm_x86_ops->run(vcpu, kvm_run);
  2356. vcpu->guest_mode = 0;
  2357. local_irq_enable();
  2358. ++vcpu->stat.exits;
  2359. /*
  2360. * We must have an instruction between local_irq_enable() and
  2361. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2362. * the interrupt shadow. The stat.exits increment will do nicely.
  2363. * But we need to prevent reordering, hence this barrier():
  2364. */
  2365. barrier();
  2366. kvm_guest_exit();
  2367. preempt_enable();
  2368. /*
  2369. * Profile KVM exit RIPs:
  2370. */
  2371. if (unlikely(prof_on == KVM_PROFILING)) {
  2372. kvm_x86_ops->cache_regs(vcpu);
  2373. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2374. }
  2375. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2376. vcpu->arch.exception.pending = false;
  2377. kvm_lapic_sync_from_vapic(vcpu);
  2378. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2379. if (r > 0) {
  2380. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2381. r = -EINTR;
  2382. kvm_run->exit_reason = KVM_EXIT_INTR;
  2383. ++vcpu->stat.request_irq_exits;
  2384. goto out;
  2385. }
  2386. if (!need_resched())
  2387. goto again;
  2388. }
  2389. out:
  2390. if (r > 0) {
  2391. kvm_resched(vcpu);
  2392. goto preempted;
  2393. }
  2394. post_kvm_run_save(vcpu, kvm_run);
  2395. vapic_exit(vcpu);
  2396. return r;
  2397. }
  2398. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2399. {
  2400. int r;
  2401. sigset_t sigsaved;
  2402. vcpu_load(vcpu);
  2403. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2404. kvm_vcpu_block(vcpu);
  2405. vcpu_put(vcpu);
  2406. return -EAGAIN;
  2407. }
  2408. if (vcpu->sigset_active)
  2409. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2410. /* re-sync apic's tpr */
  2411. if (!irqchip_in_kernel(vcpu->kvm))
  2412. set_cr8(vcpu, kvm_run->cr8);
  2413. if (vcpu->arch.pio.cur_count) {
  2414. r = complete_pio(vcpu);
  2415. if (r)
  2416. goto out;
  2417. }
  2418. #if CONFIG_HAS_IOMEM
  2419. if (vcpu->mmio_needed) {
  2420. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2421. vcpu->mmio_read_completed = 1;
  2422. vcpu->mmio_needed = 0;
  2423. r = emulate_instruction(vcpu, kvm_run,
  2424. vcpu->arch.mmio_fault_cr2, 0,
  2425. EMULTYPE_NO_DECODE);
  2426. if (r == EMULATE_DO_MMIO) {
  2427. /*
  2428. * Read-modify-write. Back to userspace.
  2429. */
  2430. r = 0;
  2431. goto out;
  2432. }
  2433. }
  2434. #endif
  2435. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2436. kvm_x86_ops->cache_regs(vcpu);
  2437. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2438. kvm_x86_ops->decache_regs(vcpu);
  2439. }
  2440. r = __vcpu_run(vcpu, kvm_run);
  2441. out:
  2442. if (vcpu->sigset_active)
  2443. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2444. vcpu_put(vcpu);
  2445. return r;
  2446. }
  2447. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2448. {
  2449. vcpu_load(vcpu);
  2450. kvm_x86_ops->cache_regs(vcpu);
  2451. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2452. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2453. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2454. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2455. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2456. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2457. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2458. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2459. #ifdef CONFIG_X86_64
  2460. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2461. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2462. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2463. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2464. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2465. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2466. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2467. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2468. #endif
  2469. regs->rip = vcpu->arch.rip;
  2470. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2471. /*
  2472. * Don't leak debug flags in case they were set for guest debugging
  2473. */
  2474. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2475. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2476. vcpu_put(vcpu);
  2477. return 0;
  2478. }
  2479. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2480. {
  2481. vcpu_load(vcpu);
  2482. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2483. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2484. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2485. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2486. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2487. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2488. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2489. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2490. #ifdef CONFIG_X86_64
  2491. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2492. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2493. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2494. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2495. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2496. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2497. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2498. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2499. #endif
  2500. vcpu->arch.rip = regs->rip;
  2501. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2502. kvm_x86_ops->decache_regs(vcpu);
  2503. vcpu_put(vcpu);
  2504. return 0;
  2505. }
  2506. static void get_segment(struct kvm_vcpu *vcpu,
  2507. struct kvm_segment *var, int seg)
  2508. {
  2509. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2510. }
  2511. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2512. {
  2513. struct kvm_segment cs;
  2514. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2515. *db = cs.db;
  2516. *l = cs.l;
  2517. }
  2518. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2519. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2520. struct kvm_sregs *sregs)
  2521. {
  2522. struct descriptor_table dt;
  2523. int pending_vec;
  2524. vcpu_load(vcpu);
  2525. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2526. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2527. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2528. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2529. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2530. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2531. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2532. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2533. kvm_x86_ops->get_idt(vcpu, &dt);
  2534. sregs->idt.limit = dt.limit;
  2535. sregs->idt.base = dt.base;
  2536. kvm_x86_ops->get_gdt(vcpu, &dt);
  2537. sregs->gdt.limit = dt.limit;
  2538. sregs->gdt.base = dt.base;
  2539. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2540. sregs->cr0 = vcpu->arch.cr0;
  2541. sregs->cr2 = vcpu->arch.cr2;
  2542. sregs->cr3 = vcpu->arch.cr3;
  2543. sregs->cr4 = vcpu->arch.cr4;
  2544. sregs->cr8 = get_cr8(vcpu);
  2545. sregs->efer = vcpu->arch.shadow_efer;
  2546. sregs->apic_base = kvm_get_apic_base(vcpu);
  2547. if (irqchip_in_kernel(vcpu->kvm)) {
  2548. memset(sregs->interrupt_bitmap, 0,
  2549. sizeof sregs->interrupt_bitmap);
  2550. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2551. if (pending_vec >= 0)
  2552. set_bit(pending_vec,
  2553. (unsigned long *)sregs->interrupt_bitmap);
  2554. } else
  2555. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2556. sizeof sregs->interrupt_bitmap);
  2557. vcpu_put(vcpu);
  2558. return 0;
  2559. }
  2560. static void set_segment(struct kvm_vcpu *vcpu,
  2561. struct kvm_segment *var, int seg)
  2562. {
  2563. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2564. }
  2565. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2566. struct kvm_sregs *sregs)
  2567. {
  2568. int mmu_reset_needed = 0;
  2569. int i, pending_vec, max_bits;
  2570. struct descriptor_table dt;
  2571. vcpu_load(vcpu);
  2572. dt.limit = sregs->idt.limit;
  2573. dt.base = sregs->idt.base;
  2574. kvm_x86_ops->set_idt(vcpu, &dt);
  2575. dt.limit = sregs->gdt.limit;
  2576. dt.base = sregs->gdt.base;
  2577. kvm_x86_ops->set_gdt(vcpu, &dt);
  2578. vcpu->arch.cr2 = sregs->cr2;
  2579. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  2580. vcpu->arch.cr3 = sregs->cr3;
  2581. set_cr8(vcpu, sregs->cr8);
  2582. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  2583. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2584. kvm_set_apic_base(vcpu, sregs->apic_base);
  2585. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2586. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  2587. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2588. vcpu->arch.cr0 = sregs->cr0;
  2589. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  2590. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2591. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2592. load_pdptrs(vcpu, vcpu->arch.cr3);
  2593. if (mmu_reset_needed)
  2594. kvm_mmu_reset_context(vcpu);
  2595. if (!irqchip_in_kernel(vcpu->kvm)) {
  2596. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  2597. sizeof vcpu->arch.irq_pending);
  2598. vcpu->arch.irq_summary = 0;
  2599. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  2600. if (vcpu->arch.irq_pending[i])
  2601. __set_bit(i, &vcpu->arch.irq_summary);
  2602. } else {
  2603. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2604. pending_vec = find_first_bit(
  2605. (const unsigned long *)sregs->interrupt_bitmap,
  2606. max_bits);
  2607. /* Only pending external irq is handled here */
  2608. if (pending_vec < max_bits) {
  2609. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2610. pr_debug("Set back pending irq %d\n",
  2611. pending_vec);
  2612. }
  2613. }
  2614. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2615. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2616. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2617. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2618. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2619. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2620. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2621. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2622. vcpu_put(vcpu);
  2623. return 0;
  2624. }
  2625. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2626. struct kvm_debug_guest *dbg)
  2627. {
  2628. int r;
  2629. vcpu_load(vcpu);
  2630. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2631. vcpu_put(vcpu);
  2632. return r;
  2633. }
  2634. /*
  2635. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2636. * we have asm/x86/processor.h
  2637. */
  2638. struct fxsave {
  2639. u16 cwd;
  2640. u16 swd;
  2641. u16 twd;
  2642. u16 fop;
  2643. u64 rip;
  2644. u64 rdp;
  2645. u32 mxcsr;
  2646. u32 mxcsr_mask;
  2647. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2648. #ifdef CONFIG_X86_64
  2649. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2650. #else
  2651. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2652. #endif
  2653. };
  2654. /*
  2655. * Translate a guest virtual address to a guest physical address.
  2656. */
  2657. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2658. struct kvm_translation *tr)
  2659. {
  2660. unsigned long vaddr = tr->linear_address;
  2661. gpa_t gpa;
  2662. vcpu_load(vcpu);
  2663. down_read(&vcpu->kvm->slots_lock);
  2664. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  2665. up_read(&vcpu->kvm->slots_lock);
  2666. tr->physical_address = gpa;
  2667. tr->valid = gpa != UNMAPPED_GVA;
  2668. tr->writeable = 1;
  2669. tr->usermode = 0;
  2670. vcpu_put(vcpu);
  2671. return 0;
  2672. }
  2673. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2674. {
  2675. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2676. vcpu_load(vcpu);
  2677. memcpy(fpu->fpr, fxsave->st_space, 128);
  2678. fpu->fcw = fxsave->cwd;
  2679. fpu->fsw = fxsave->swd;
  2680. fpu->ftwx = fxsave->twd;
  2681. fpu->last_opcode = fxsave->fop;
  2682. fpu->last_ip = fxsave->rip;
  2683. fpu->last_dp = fxsave->rdp;
  2684. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2685. vcpu_put(vcpu);
  2686. return 0;
  2687. }
  2688. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2689. {
  2690. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  2691. vcpu_load(vcpu);
  2692. memcpy(fxsave->st_space, fpu->fpr, 128);
  2693. fxsave->cwd = fpu->fcw;
  2694. fxsave->swd = fpu->fsw;
  2695. fxsave->twd = fpu->ftwx;
  2696. fxsave->fop = fpu->last_opcode;
  2697. fxsave->rip = fpu->last_ip;
  2698. fxsave->rdp = fpu->last_dp;
  2699. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2700. vcpu_put(vcpu);
  2701. return 0;
  2702. }
  2703. void fx_init(struct kvm_vcpu *vcpu)
  2704. {
  2705. unsigned after_mxcsr_mask;
  2706. /* Initialize guest FPU by resetting ours and saving into guest's */
  2707. preempt_disable();
  2708. fx_save(&vcpu->arch.host_fx_image);
  2709. fpu_init();
  2710. fx_save(&vcpu->arch.guest_fx_image);
  2711. fx_restore(&vcpu->arch.host_fx_image);
  2712. preempt_enable();
  2713. vcpu->arch.cr0 |= X86_CR0_ET;
  2714. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2715. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  2716. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  2717. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2718. }
  2719. EXPORT_SYMBOL_GPL(fx_init);
  2720. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2721. {
  2722. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2723. return;
  2724. vcpu->guest_fpu_loaded = 1;
  2725. fx_save(&vcpu->arch.host_fx_image);
  2726. fx_restore(&vcpu->arch.guest_fx_image);
  2727. }
  2728. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2729. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2730. {
  2731. if (!vcpu->guest_fpu_loaded)
  2732. return;
  2733. vcpu->guest_fpu_loaded = 0;
  2734. fx_save(&vcpu->arch.guest_fx_image);
  2735. fx_restore(&vcpu->arch.host_fx_image);
  2736. ++vcpu->stat.fpu_reload;
  2737. }
  2738. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2739. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2740. {
  2741. kvm_x86_ops->vcpu_free(vcpu);
  2742. }
  2743. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2744. unsigned int id)
  2745. {
  2746. return kvm_x86_ops->vcpu_create(kvm, id);
  2747. }
  2748. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2749. {
  2750. int r;
  2751. /* We do fxsave: this must be aligned. */
  2752. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  2753. vcpu_load(vcpu);
  2754. r = kvm_arch_vcpu_reset(vcpu);
  2755. if (r == 0)
  2756. r = kvm_mmu_setup(vcpu);
  2757. vcpu_put(vcpu);
  2758. if (r < 0)
  2759. goto free_vcpu;
  2760. return 0;
  2761. free_vcpu:
  2762. kvm_x86_ops->vcpu_free(vcpu);
  2763. return r;
  2764. }
  2765. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2766. {
  2767. vcpu_load(vcpu);
  2768. kvm_mmu_unload(vcpu);
  2769. vcpu_put(vcpu);
  2770. kvm_x86_ops->vcpu_free(vcpu);
  2771. }
  2772. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2773. {
  2774. return kvm_x86_ops->vcpu_reset(vcpu);
  2775. }
  2776. void kvm_arch_hardware_enable(void *garbage)
  2777. {
  2778. kvm_x86_ops->hardware_enable(garbage);
  2779. }
  2780. void kvm_arch_hardware_disable(void *garbage)
  2781. {
  2782. kvm_x86_ops->hardware_disable(garbage);
  2783. }
  2784. int kvm_arch_hardware_setup(void)
  2785. {
  2786. return kvm_x86_ops->hardware_setup();
  2787. }
  2788. void kvm_arch_hardware_unsetup(void)
  2789. {
  2790. kvm_x86_ops->hardware_unsetup();
  2791. }
  2792. void kvm_arch_check_processor_compat(void *rtn)
  2793. {
  2794. kvm_x86_ops->check_processor_compatibility(rtn);
  2795. }
  2796. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2797. {
  2798. struct page *page;
  2799. struct kvm *kvm;
  2800. int r;
  2801. BUG_ON(vcpu->kvm == NULL);
  2802. kvm = vcpu->kvm;
  2803. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2804. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2805. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2806. else
  2807. vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2808. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2809. if (!page) {
  2810. r = -ENOMEM;
  2811. goto fail;
  2812. }
  2813. vcpu->arch.pio_data = page_address(page);
  2814. r = kvm_mmu_create(vcpu);
  2815. if (r < 0)
  2816. goto fail_free_pio_data;
  2817. if (irqchip_in_kernel(kvm)) {
  2818. r = kvm_create_lapic(vcpu);
  2819. if (r < 0)
  2820. goto fail_mmu_destroy;
  2821. }
  2822. return 0;
  2823. fail_mmu_destroy:
  2824. kvm_mmu_destroy(vcpu);
  2825. fail_free_pio_data:
  2826. free_page((unsigned long)vcpu->arch.pio_data);
  2827. fail:
  2828. return r;
  2829. }
  2830. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2831. {
  2832. kvm_free_lapic(vcpu);
  2833. kvm_mmu_destroy(vcpu);
  2834. free_page((unsigned long)vcpu->arch.pio_data);
  2835. }
  2836. struct kvm *kvm_arch_create_vm(void)
  2837. {
  2838. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2839. if (!kvm)
  2840. return ERR_PTR(-ENOMEM);
  2841. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  2842. return kvm;
  2843. }
  2844. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2845. {
  2846. vcpu_load(vcpu);
  2847. kvm_mmu_unload(vcpu);
  2848. vcpu_put(vcpu);
  2849. }
  2850. static void kvm_free_vcpus(struct kvm *kvm)
  2851. {
  2852. unsigned int i;
  2853. /*
  2854. * Unpin any mmu pages first.
  2855. */
  2856. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2857. if (kvm->vcpus[i])
  2858. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2859. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2860. if (kvm->vcpus[i]) {
  2861. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2862. kvm->vcpus[i] = NULL;
  2863. }
  2864. }
  2865. }
  2866. void kvm_arch_destroy_vm(struct kvm *kvm)
  2867. {
  2868. kfree(kvm->arch.vpic);
  2869. kfree(kvm->arch.vioapic);
  2870. kvm_free_vcpus(kvm);
  2871. kvm_free_physmem(kvm);
  2872. kfree(kvm);
  2873. }
  2874. int kvm_arch_set_memory_region(struct kvm *kvm,
  2875. struct kvm_userspace_memory_region *mem,
  2876. struct kvm_memory_slot old,
  2877. int user_alloc)
  2878. {
  2879. int npages = mem->memory_size >> PAGE_SHIFT;
  2880. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2881. /*To keep backward compatibility with older userspace,
  2882. *x86 needs to hanlde !user_alloc case.
  2883. */
  2884. if (!user_alloc) {
  2885. if (npages && !old.rmap) {
  2886. down_write(&current->mm->mmap_sem);
  2887. memslot->userspace_addr = do_mmap(NULL, 0,
  2888. npages * PAGE_SIZE,
  2889. PROT_READ | PROT_WRITE,
  2890. MAP_SHARED | MAP_ANONYMOUS,
  2891. 0);
  2892. up_write(&current->mm->mmap_sem);
  2893. if (IS_ERR((void *)memslot->userspace_addr))
  2894. return PTR_ERR((void *)memslot->userspace_addr);
  2895. } else {
  2896. if (!old.user_alloc && old.rmap) {
  2897. int ret;
  2898. down_write(&current->mm->mmap_sem);
  2899. ret = do_munmap(current->mm, old.userspace_addr,
  2900. old.npages * PAGE_SIZE);
  2901. up_write(&current->mm->mmap_sem);
  2902. if (ret < 0)
  2903. printk(KERN_WARNING
  2904. "kvm_vm_ioctl_set_memory_region: "
  2905. "failed to munmap memory\n");
  2906. }
  2907. }
  2908. }
  2909. if (!kvm->arch.n_requested_mmu_pages) {
  2910. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2911. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2912. }
  2913. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2914. kvm_flush_remote_tlbs(kvm);
  2915. return 0;
  2916. }
  2917. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  2918. {
  2919. return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
  2920. || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
  2921. }
  2922. static void vcpu_kick_intr(void *info)
  2923. {
  2924. #ifdef DEBUG
  2925. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  2926. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  2927. #endif
  2928. }
  2929. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  2930. {
  2931. int ipi_pcpu = vcpu->cpu;
  2932. if (waitqueue_active(&vcpu->wq)) {
  2933. wake_up_interruptible(&vcpu->wq);
  2934. ++vcpu->stat.halt_wakeup;
  2935. }
  2936. if (vcpu->guest_mode)
  2937. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  2938. }