skbuff.h 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* return minimum truesize of one skb containing X bytes of data */
  44. #define SKB_TRUESIZE(X) ((X) + \
  45. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  46. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  47. /* A. Checksumming of received packets by device.
  48. *
  49. * NONE: device failed to checksum this packet.
  50. * skb->csum is undefined.
  51. *
  52. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  53. * skb->csum is undefined.
  54. * It is bad option, but, unfortunately, many of vendors do this.
  55. * Apparently with secret goal to sell you new device, when you
  56. * will add new protocol to your host. F.e. IPv6. 8)
  57. *
  58. * COMPLETE: the most generic way. Device supplied checksum of _all_
  59. * the packet as seen by netif_rx in skb->csum.
  60. * NOTE: Even if device supports only some protocols, but
  61. * is able to produce some skb->csum, it MUST use COMPLETE,
  62. * not UNNECESSARY.
  63. *
  64. * PARTIAL: identical to the case for output below. This may occur
  65. * on a packet received directly from another Linux OS, e.g.,
  66. * a virtualised Linux kernel on the same host. The packet can
  67. * be treated in the same way as UNNECESSARY except that on
  68. * output (i.e., forwarding) the checksum must be filled in
  69. * by the OS or the hardware.
  70. *
  71. * B. Checksumming on output.
  72. *
  73. * NONE: skb is checksummed by protocol or csum is not required.
  74. *
  75. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  76. * from skb->csum_start to the end and to record the checksum
  77. * at skb->csum_start + skb->csum_offset.
  78. *
  79. * Device must show its capabilities in dev->features, set
  80. * at device setup time.
  81. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  82. * everything.
  83. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  84. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  85. * TCP/UDP over IPv4. Sigh. Vendors like this
  86. * way by an unknown reason. Though, see comment above
  87. * about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  89. *
  90. * Any questions? No questions, good. --ANK
  91. */
  92. struct net_device;
  93. struct scatterlist;
  94. struct pipe_inode_info;
  95. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  96. struct nf_conntrack {
  97. atomic_t use;
  98. };
  99. #endif
  100. #ifdef CONFIG_BRIDGE_NETFILTER
  101. struct nf_bridge_info {
  102. atomic_t use;
  103. struct net_device *physindev;
  104. struct net_device *physoutdev;
  105. unsigned int mask;
  106. unsigned long data[32 / sizeof(unsigned long)];
  107. };
  108. #endif
  109. struct sk_buff_head {
  110. /* These two members must be first. */
  111. struct sk_buff *next;
  112. struct sk_buff *prev;
  113. __u32 qlen;
  114. spinlock_t lock;
  115. };
  116. struct sk_buff;
  117. /* To allow 64K frame to be packed as single skb without frag_list. Since
  118. * GRO uses frags we allocate at least 16 regardless of page size.
  119. */
  120. #if (65536/PAGE_SIZE + 2) < 16
  121. #define MAX_SKB_FRAGS 16UL
  122. #else
  123. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  124. #endif
  125. typedef struct skb_frag_struct skb_frag_t;
  126. struct skb_frag_struct {
  127. struct {
  128. struct page *p;
  129. } page;
  130. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  131. __u32 page_offset;
  132. __u32 size;
  133. #else
  134. __u16 page_offset;
  135. __u16 size;
  136. #endif
  137. };
  138. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  139. {
  140. return frag->size;
  141. }
  142. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  143. {
  144. frag->size = size;
  145. }
  146. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  147. {
  148. frag->size += delta;
  149. }
  150. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  151. {
  152. frag->size -= delta;
  153. }
  154. #define HAVE_HW_TIME_STAMP
  155. /**
  156. * struct skb_shared_hwtstamps - hardware time stamps
  157. * @hwtstamp: hardware time stamp transformed into duration
  158. * since arbitrary point in time
  159. * @syststamp: hwtstamp transformed to system time base
  160. *
  161. * Software time stamps generated by ktime_get_real() are stored in
  162. * skb->tstamp. The relation between the different kinds of time
  163. * stamps is as follows:
  164. *
  165. * syststamp and tstamp can be compared against each other in
  166. * arbitrary combinations. The accuracy of a
  167. * syststamp/tstamp/"syststamp from other device" comparison is
  168. * limited by the accuracy of the transformation into system time
  169. * base. This depends on the device driver and its underlying
  170. * hardware.
  171. *
  172. * hwtstamps can only be compared against other hwtstamps from
  173. * the same device.
  174. *
  175. * This structure is attached to packets as part of the
  176. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  177. */
  178. struct skb_shared_hwtstamps {
  179. ktime_t hwtstamp;
  180. ktime_t syststamp;
  181. };
  182. /* Definitions for tx_flags in struct skb_shared_info */
  183. enum {
  184. /* generate hardware time stamp */
  185. SKBTX_HW_TSTAMP = 1 << 0,
  186. /* generate software time stamp */
  187. SKBTX_SW_TSTAMP = 1 << 1,
  188. /* device driver is going to provide hardware time stamp */
  189. SKBTX_IN_PROGRESS = 1 << 2,
  190. /* ensure the originating sk reference is available on driver level */
  191. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  192. /* device driver supports TX zero-copy buffers */
  193. SKBTX_DEV_ZEROCOPY = 1 << 4,
  194. };
  195. /*
  196. * The callback notifies userspace to release buffers when skb DMA is done in
  197. * lower device, the skb last reference should be 0 when calling this.
  198. * The desc is used to track userspace buffer index.
  199. */
  200. struct ubuf_info {
  201. void (*callback)(void *);
  202. void *arg;
  203. unsigned long desc;
  204. };
  205. /* This data is invariant across clones and lives at
  206. * the end of the header data, ie. at skb->end.
  207. */
  208. struct skb_shared_info {
  209. unsigned short nr_frags;
  210. unsigned short gso_size;
  211. /* Warning: this field is not always filled in (UFO)! */
  212. unsigned short gso_segs;
  213. unsigned short gso_type;
  214. __be32 ip6_frag_id;
  215. __u8 tx_flags;
  216. struct sk_buff *frag_list;
  217. struct skb_shared_hwtstamps hwtstamps;
  218. /*
  219. * Warning : all fields before dataref are cleared in __alloc_skb()
  220. */
  221. atomic_t dataref;
  222. /* Intermediate layers must ensure that destructor_arg
  223. * remains valid until skb destructor */
  224. void * destructor_arg;
  225. /* must be last field, see pskb_expand_head() */
  226. skb_frag_t frags[MAX_SKB_FRAGS];
  227. };
  228. /* We divide dataref into two halves. The higher 16 bits hold references
  229. * to the payload part of skb->data. The lower 16 bits hold references to
  230. * the entire skb->data. A clone of a headerless skb holds the length of
  231. * the header in skb->hdr_len.
  232. *
  233. * All users must obey the rule that the skb->data reference count must be
  234. * greater than or equal to the payload reference count.
  235. *
  236. * Holding a reference to the payload part means that the user does not
  237. * care about modifications to the header part of skb->data.
  238. */
  239. #define SKB_DATAREF_SHIFT 16
  240. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  241. enum {
  242. SKB_FCLONE_UNAVAILABLE,
  243. SKB_FCLONE_ORIG,
  244. SKB_FCLONE_CLONE,
  245. };
  246. enum {
  247. SKB_GSO_TCPV4 = 1 << 0,
  248. SKB_GSO_UDP = 1 << 1,
  249. /* This indicates the skb is from an untrusted source. */
  250. SKB_GSO_DODGY = 1 << 2,
  251. /* This indicates the tcp segment has CWR set. */
  252. SKB_GSO_TCP_ECN = 1 << 3,
  253. SKB_GSO_TCPV6 = 1 << 4,
  254. SKB_GSO_FCOE = 1 << 5,
  255. };
  256. #if BITS_PER_LONG > 32
  257. #define NET_SKBUFF_DATA_USES_OFFSET 1
  258. #endif
  259. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  260. typedef unsigned int sk_buff_data_t;
  261. #else
  262. typedef unsigned char *sk_buff_data_t;
  263. #endif
  264. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  265. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  266. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  267. #endif
  268. /**
  269. * struct sk_buff - socket buffer
  270. * @next: Next buffer in list
  271. * @prev: Previous buffer in list
  272. * @tstamp: Time we arrived
  273. * @sk: Socket we are owned by
  274. * @dev: Device we arrived on/are leaving by
  275. * @cb: Control buffer. Free for use by every layer. Put private vars here
  276. * @_skb_refdst: destination entry (with norefcount bit)
  277. * @sp: the security path, used for xfrm
  278. * @len: Length of actual data
  279. * @data_len: Data length
  280. * @mac_len: Length of link layer header
  281. * @hdr_len: writable header length of cloned skb
  282. * @csum: Checksum (must include start/offset pair)
  283. * @csum_start: Offset from skb->head where checksumming should start
  284. * @csum_offset: Offset from csum_start where checksum should be stored
  285. * @priority: Packet queueing priority
  286. * @local_df: allow local fragmentation
  287. * @cloned: Head may be cloned (check refcnt to be sure)
  288. * @ip_summed: Driver fed us an IP checksum
  289. * @nohdr: Payload reference only, must not modify header
  290. * @nfctinfo: Relationship of this skb to the connection
  291. * @pkt_type: Packet class
  292. * @fclone: skbuff clone status
  293. * @ipvs_property: skbuff is owned by ipvs
  294. * @peeked: this packet has been seen already, so stats have been
  295. * done for it, don't do them again
  296. * @nf_trace: netfilter packet trace flag
  297. * @protocol: Packet protocol from driver
  298. * @destructor: Destruct function
  299. * @nfct: Associated connection, if any
  300. * @nfct_reasm: netfilter conntrack re-assembly pointer
  301. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  302. * @skb_iif: ifindex of device we arrived on
  303. * @tc_index: Traffic control index
  304. * @tc_verd: traffic control verdict
  305. * @rxhash: the packet hash computed on receive
  306. * @queue_mapping: Queue mapping for multiqueue devices
  307. * @ndisc_nodetype: router type (from link layer)
  308. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  309. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  310. * ports.
  311. * @dma_cookie: a cookie to one of several possible DMA operations
  312. * done by skb DMA functions
  313. * @secmark: security marking
  314. * @mark: Generic packet mark
  315. * @dropcount: total number of sk_receive_queue overflows
  316. * @vlan_tci: vlan tag control information
  317. * @transport_header: Transport layer header
  318. * @network_header: Network layer header
  319. * @mac_header: Link layer header
  320. * @tail: Tail pointer
  321. * @end: End pointer
  322. * @head: Head of buffer
  323. * @data: Data head pointer
  324. * @truesize: Buffer size
  325. * @users: User count - see {datagram,tcp}.c
  326. */
  327. struct sk_buff {
  328. /* These two members must be first. */
  329. struct sk_buff *next;
  330. struct sk_buff *prev;
  331. ktime_t tstamp;
  332. struct sock *sk;
  333. struct net_device *dev;
  334. /*
  335. * This is the control buffer. It is free to use for every
  336. * layer. Please put your private variables there. If you
  337. * want to keep them across layers you have to do a skb_clone()
  338. * first. This is owned by whoever has the skb queued ATM.
  339. */
  340. char cb[48] __aligned(8);
  341. unsigned long _skb_refdst;
  342. #ifdef CONFIG_XFRM
  343. struct sec_path *sp;
  344. #endif
  345. unsigned int len,
  346. data_len;
  347. __u16 mac_len,
  348. hdr_len;
  349. union {
  350. __wsum csum;
  351. struct {
  352. __u16 csum_start;
  353. __u16 csum_offset;
  354. };
  355. };
  356. __u32 priority;
  357. kmemcheck_bitfield_begin(flags1);
  358. __u8 local_df:1,
  359. cloned:1,
  360. ip_summed:2,
  361. nohdr:1,
  362. nfctinfo:3;
  363. __u8 pkt_type:3,
  364. fclone:2,
  365. ipvs_property:1,
  366. peeked:1,
  367. nf_trace:1;
  368. kmemcheck_bitfield_end(flags1);
  369. __be16 protocol;
  370. void (*destructor)(struct sk_buff *skb);
  371. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  372. struct nf_conntrack *nfct;
  373. #endif
  374. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  375. struct sk_buff *nfct_reasm;
  376. #endif
  377. #ifdef CONFIG_BRIDGE_NETFILTER
  378. struct nf_bridge_info *nf_bridge;
  379. #endif
  380. int skb_iif;
  381. #ifdef CONFIG_NET_SCHED
  382. __u16 tc_index; /* traffic control index */
  383. #ifdef CONFIG_NET_CLS_ACT
  384. __u16 tc_verd; /* traffic control verdict */
  385. #endif
  386. #endif
  387. __u32 rxhash;
  388. __u16 queue_mapping;
  389. kmemcheck_bitfield_begin(flags2);
  390. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  391. __u8 ndisc_nodetype:2;
  392. #endif
  393. __u8 ooo_okay:1;
  394. __u8 l4_rxhash:1;
  395. kmemcheck_bitfield_end(flags2);
  396. /* 0/13 bit hole */
  397. #ifdef CONFIG_NET_DMA
  398. dma_cookie_t dma_cookie;
  399. #endif
  400. #ifdef CONFIG_NETWORK_SECMARK
  401. __u32 secmark;
  402. #endif
  403. union {
  404. __u32 mark;
  405. __u32 dropcount;
  406. };
  407. __u16 vlan_tci;
  408. sk_buff_data_t transport_header;
  409. sk_buff_data_t network_header;
  410. sk_buff_data_t mac_header;
  411. /* These elements must be at the end, see alloc_skb() for details. */
  412. sk_buff_data_t tail;
  413. sk_buff_data_t end;
  414. unsigned char *head,
  415. *data;
  416. unsigned int truesize;
  417. atomic_t users;
  418. };
  419. #ifdef __KERNEL__
  420. /*
  421. * Handling routines are only of interest to the kernel
  422. */
  423. #include <linux/slab.h>
  424. #include <asm/system.h>
  425. /*
  426. * skb might have a dst pointer attached, refcounted or not.
  427. * _skb_refdst low order bit is set if refcount was _not_ taken
  428. */
  429. #define SKB_DST_NOREF 1UL
  430. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  431. /**
  432. * skb_dst - returns skb dst_entry
  433. * @skb: buffer
  434. *
  435. * Returns skb dst_entry, regardless of reference taken or not.
  436. */
  437. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  438. {
  439. /* If refdst was not refcounted, check we still are in a
  440. * rcu_read_lock section
  441. */
  442. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  443. !rcu_read_lock_held() &&
  444. !rcu_read_lock_bh_held());
  445. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  446. }
  447. /**
  448. * skb_dst_set - sets skb dst
  449. * @skb: buffer
  450. * @dst: dst entry
  451. *
  452. * Sets skb dst, assuming a reference was taken on dst and should
  453. * be released by skb_dst_drop()
  454. */
  455. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  456. {
  457. skb->_skb_refdst = (unsigned long)dst;
  458. }
  459. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  460. /**
  461. * skb_dst_is_noref - Test if skb dst isn't refcounted
  462. * @skb: buffer
  463. */
  464. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  465. {
  466. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  467. }
  468. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  469. {
  470. return (struct rtable *)skb_dst(skb);
  471. }
  472. extern void kfree_skb(struct sk_buff *skb);
  473. extern void consume_skb(struct sk_buff *skb);
  474. extern void __kfree_skb(struct sk_buff *skb);
  475. extern struct sk_buff *__alloc_skb(unsigned int size,
  476. gfp_t priority, int fclone, int node);
  477. static inline struct sk_buff *alloc_skb(unsigned int size,
  478. gfp_t priority)
  479. {
  480. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  481. }
  482. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  483. gfp_t priority)
  484. {
  485. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  486. }
  487. extern void skb_recycle(struct sk_buff *skb);
  488. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  489. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  490. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  491. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  492. gfp_t priority);
  493. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  494. gfp_t priority);
  495. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  496. gfp_t gfp_mask);
  497. extern int pskb_expand_head(struct sk_buff *skb,
  498. int nhead, int ntail,
  499. gfp_t gfp_mask);
  500. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  501. unsigned int headroom);
  502. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  503. int newheadroom, int newtailroom,
  504. gfp_t priority);
  505. extern int skb_to_sgvec(struct sk_buff *skb,
  506. struct scatterlist *sg, int offset,
  507. int len);
  508. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  509. struct sk_buff **trailer);
  510. extern int skb_pad(struct sk_buff *skb, int pad);
  511. #define dev_kfree_skb(a) consume_skb(a)
  512. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  513. int getfrag(void *from, char *to, int offset,
  514. int len,int odd, struct sk_buff *skb),
  515. void *from, int length);
  516. struct skb_seq_state {
  517. __u32 lower_offset;
  518. __u32 upper_offset;
  519. __u32 frag_idx;
  520. __u32 stepped_offset;
  521. struct sk_buff *root_skb;
  522. struct sk_buff *cur_skb;
  523. __u8 *frag_data;
  524. };
  525. extern void skb_prepare_seq_read(struct sk_buff *skb,
  526. unsigned int from, unsigned int to,
  527. struct skb_seq_state *st);
  528. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  529. struct skb_seq_state *st);
  530. extern void skb_abort_seq_read(struct skb_seq_state *st);
  531. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  532. unsigned int to, struct ts_config *config,
  533. struct ts_state *state);
  534. extern void __skb_get_rxhash(struct sk_buff *skb);
  535. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  536. {
  537. if (!skb->rxhash)
  538. __skb_get_rxhash(skb);
  539. return skb->rxhash;
  540. }
  541. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  542. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  543. {
  544. return skb->head + skb->end;
  545. }
  546. #else
  547. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  548. {
  549. return skb->end;
  550. }
  551. #endif
  552. /* Internal */
  553. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  554. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  555. {
  556. return &skb_shinfo(skb)->hwtstamps;
  557. }
  558. /**
  559. * skb_queue_empty - check if a queue is empty
  560. * @list: queue head
  561. *
  562. * Returns true if the queue is empty, false otherwise.
  563. */
  564. static inline int skb_queue_empty(const struct sk_buff_head *list)
  565. {
  566. return list->next == (struct sk_buff *)list;
  567. }
  568. /**
  569. * skb_queue_is_last - check if skb is the last entry in the queue
  570. * @list: queue head
  571. * @skb: buffer
  572. *
  573. * Returns true if @skb is the last buffer on the list.
  574. */
  575. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  576. const struct sk_buff *skb)
  577. {
  578. return skb->next == (struct sk_buff *)list;
  579. }
  580. /**
  581. * skb_queue_is_first - check if skb is the first entry in the queue
  582. * @list: queue head
  583. * @skb: buffer
  584. *
  585. * Returns true if @skb is the first buffer on the list.
  586. */
  587. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  588. const struct sk_buff *skb)
  589. {
  590. return skb->prev == (struct sk_buff *)list;
  591. }
  592. /**
  593. * skb_queue_next - return the next packet in the queue
  594. * @list: queue head
  595. * @skb: current buffer
  596. *
  597. * Return the next packet in @list after @skb. It is only valid to
  598. * call this if skb_queue_is_last() evaluates to false.
  599. */
  600. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  601. const struct sk_buff *skb)
  602. {
  603. /* This BUG_ON may seem severe, but if we just return then we
  604. * are going to dereference garbage.
  605. */
  606. BUG_ON(skb_queue_is_last(list, skb));
  607. return skb->next;
  608. }
  609. /**
  610. * skb_queue_prev - return the prev packet in the queue
  611. * @list: queue head
  612. * @skb: current buffer
  613. *
  614. * Return the prev packet in @list before @skb. It is only valid to
  615. * call this if skb_queue_is_first() evaluates to false.
  616. */
  617. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  618. const struct sk_buff *skb)
  619. {
  620. /* This BUG_ON may seem severe, but if we just return then we
  621. * are going to dereference garbage.
  622. */
  623. BUG_ON(skb_queue_is_first(list, skb));
  624. return skb->prev;
  625. }
  626. /**
  627. * skb_get - reference buffer
  628. * @skb: buffer to reference
  629. *
  630. * Makes another reference to a socket buffer and returns a pointer
  631. * to the buffer.
  632. */
  633. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  634. {
  635. atomic_inc(&skb->users);
  636. return skb;
  637. }
  638. /*
  639. * If users == 1, we are the only owner and are can avoid redundant
  640. * atomic change.
  641. */
  642. /**
  643. * skb_cloned - is the buffer a clone
  644. * @skb: buffer to check
  645. *
  646. * Returns true if the buffer was generated with skb_clone() and is
  647. * one of multiple shared copies of the buffer. Cloned buffers are
  648. * shared data so must not be written to under normal circumstances.
  649. */
  650. static inline int skb_cloned(const struct sk_buff *skb)
  651. {
  652. return skb->cloned &&
  653. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  654. }
  655. /**
  656. * skb_header_cloned - is the header a clone
  657. * @skb: buffer to check
  658. *
  659. * Returns true if modifying the header part of the buffer requires
  660. * the data to be copied.
  661. */
  662. static inline int skb_header_cloned(const struct sk_buff *skb)
  663. {
  664. int dataref;
  665. if (!skb->cloned)
  666. return 0;
  667. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  668. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  669. return dataref != 1;
  670. }
  671. /**
  672. * skb_header_release - release reference to header
  673. * @skb: buffer to operate on
  674. *
  675. * Drop a reference to the header part of the buffer. This is done
  676. * by acquiring a payload reference. You must not read from the header
  677. * part of skb->data after this.
  678. */
  679. static inline void skb_header_release(struct sk_buff *skb)
  680. {
  681. BUG_ON(skb->nohdr);
  682. skb->nohdr = 1;
  683. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  684. }
  685. /**
  686. * skb_shared - is the buffer shared
  687. * @skb: buffer to check
  688. *
  689. * Returns true if more than one person has a reference to this
  690. * buffer.
  691. */
  692. static inline int skb_shared(const struct sk_buff *skb)
  693. {
  694. return atomic_read(&skb->users) != 1;
  695. }
  696. /**
  697. * skb_share_check - check if buffer is shared and if so clone it
  698. * @skb: buffer to check
  699. * @pri: priority for memory allocation
  700. *
  701. * If the buffer is shared the buffer is cloned and the old copy
  702. * drops a reference. A new clone with a single reference is returned.
  703. * If the buffer is not shared the original buffer is returned. When
  704. * being called from interrupt status or with spinlocks held pri must
  705. * be GFP_ATOMIC.
  706. *
  707. * NULL is returned on a memory allocation failure.
  708. */
  709. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  710. gfp_t pri)
  711. {
  712. might_sleep_if(pri & __GFP_WAIT);
  713. if (skb_shared(skb)) {
  714. struct sk_buff *nskb = skb_clone(skb, pri);
  715. kfree_skb(skb);
  716. skb = nskb;
  717. }
  718. return skb;
  719. }
  720. /*
  721. * Copy shared buffers into a new sk_buff. We effectively do COW on
  722. * packets to handle cases where we have a local reader and forward
  723. * and a couple of other messy ones. The normal one is tcpdumping
  724. * a packet thats being forwarded.
  725. */
  726. /**
  727. * skb_unshare - make a copy of a shared buffer
  728. * @skb: buffer to check
  729. * @pri: priority for memory allocation
  730. *
  731. * If the socket buffer is a clone then this function creates a new
  732. * copy of the data, drops a reference count on the old copy and returns
  733. * the new copy with the reference count at 1. If the buffer is not a clone
  734. * the original buffer is returned. When called with a spinlock held or
  735. * from interrupt state @pri must be %GFP_ATOMIC
  736. *
  737. * %NULL is returned on a memory allocation failure.
  738. */
  739. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  740. gfp_t pri)
  741. {
  742. might_sleep_if(pri & __GFP_WAIT);
  743. if (skb_cloned(skb)) {
  744. struct sk_buff *nskb = skb_copy(skb, pri);
  745. kfree_skb(skb); /* Free our shared copy */
  746. skb = nskb;
  747. }
  748. return skb;
  749. }
  750. /**
  751. * skb_peek - peek at the head of an &sk_buff_head
  752. * @list_: list to peek at
  753. *
  754. * Peek an &sk_buff. Unlike most other operations you _MUST_
  755. * be careful with this one. A peek leaves the buffer on the
  756. * list and someone else may run off with it. You must hold
  757. * the appropriate locks or have a private queue to do this.
  758. *
  759. * Returns %NULL for an empty list or a pointer to the head element.
  760. * The reference count is not incremented and the reference is therefore
  761. * volatile. Use with caution.
  762. */
  763. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  764. {
  765. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  766. if (list == (struct sk_buff *)list_)
  767. list = NULL;
  768. return list;
  769. }
  770. /**
  771. * skb_peek_tail - peek at the tail of an &sk_buff_head
  772. * @list_: list to peek at
  773. *
  774. * Peek an &sk_buff. Unlike most other operations you _MUST_
  775. * be careful with this one. A peek leaves the buffer on the
  776. * list and someone else may run off with it. You must hold
  777. * the appropriate locks or have a private queue to do this.
  778. *
  779. * Returns %NULL for an empty list or a pointer to the tail element.
  780. * The reference count is not incremented and the reference is therefore
  781. * volatile. Use with caution.
  782. */
  783. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  784. {
  785. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  786. if (list == (struct sk_buff *)list_)
  787. list = NULL;
  788. return list;
  789. }
  790. /**
  791. * skb_queue_len - get queue length
  792. * @list_: list to measure
  793. *
  794. * Return the length of an &sk_buff queue.
  795. */
  796. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  797. {
  798. return list_->qlen;
  799. }
  800. /**
  801. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  802. * @list: queue to initialize
  803. *
  804. * This initializes only the list and queue length aspects of
  805. * an sk_buff_head object. This allows to initialize the list
  806. * aspects of an sk_buff_head without reinitializing things like
  807. * the spinlock. It can also be used for on-stack sk_buff_head
  808. * objects where the spinlock is known to not be used.
  809. */
  810. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  811. {
  812. list->prev = list->next = (struct sk_buff *)list;
  813. list->qlen = 0;
  814. }
  815. /*
  816. * This function creates a split out lock class for each invocation;
  817. * this is needed for now since a whole lot of users of the skb-queue
  818. * infrastructure in drivers have different locking usage (in hardirq)
  819. * than the networking core (in softirq only). In the long run either the
  820. * network layer or drivers should need annotation to consolidate the
  821. * main types of usage into 3 classes.
  822. */
  823. static inline void skb_queue_head_init(struct sk_buff_head *list)
  824. {
  825. spin_lock_init(&list->lock);
  826. __skb_queue_head_init(list);
  827. }
  828. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  829. struct lock_class_key *class)
  830. {
  831. skb_queue_head_init(list);
  832. lockdep_set_class(&list->lock, class);
  833. }
  834. /*
  835. * Insert an sk_buff on a list.
  836. *
  837. * The "__skb_xxxx()" functions are the non-atomic ones that
  838. * can only be called with interrupts disabled.
  839. */
  840. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  841. static inline void __skb_insert(struct sk_buff *newsk,
  842. struct sk_buff *prev, struct sk_buff *next,
  843. struct sk_buff_head *list)
  844. {
  845. newsk->next = next;
  846. newsk->prev = prev;
  847. next->prev = prev->next = newsk;
  848. list->qlen++;
  849. }
  850. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  851. struct sk_buff *prev,
  852. struct sk_buff *next)
  853. {
  854. struct sk_buff *first = list->next;
  855. struct sk_buff *last = list->prev;
  856. first->prev = prev;
  857. prev->next = first;
  858. last->next = next;
  859. next->prev = last;
  860. }
  861. /**
  862. * skb_queue_splice - join two skb lists, this is designed for stacks
  863. * @list: the new list to add
  864. * @head: the place to add it in the first list
  865. */
  866. static inline void skb_queue_splice(const struct sk_buff_head *list,
  867. struct sk_buff_head *head)
  868. {
  869. if (!skb_queue_empty(list)) {
  870. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  871. head->qlen += list->qlen;
  872. }
  873. }
  874. /**
  875. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  876. * @list: the new list to add
  877. * @head: the place to add it in the first list
  878. *
  879. * The list at @list is reinitialised
  880. */
  881. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  882. struct sk_buff_head *head)
  883. {
  884. if (!skb_queue_empty(list)) {
  885. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  886. head->qlen += list->qlen;
  887. __skb_queue_head_init(list);
  888. }
  889. }
  890. /**
  891. * skb_queue_splice_tail - join two skb lists, each list being a queue
  892. * @list: the new list to add
  893. * @head: the place to add it in the first list
  894. */
  895. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  896. struct sk_buff_head *head)
  897. {
  898. if (!skb_queue_empty(list)) {
  899. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  900. head->qlen += list->qlen;
  901. }
  902. }
  903. /**
  904. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  905. * @list: the new list to add
  906. * @head: the place to add it in the first list
  907. *
  908. * Each of the lists is a queue.
  909. * The list at @list is reinitialised
  910. */
  911. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  912. struct sk_buff_head *head)
  913. {
  914. if (!skb_queue_empty(list)) {
  915. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  916. head->qlen += list->qlen;
  917. __skb_queue_head_init(list);
  918. }
  919. }
  920. /**
  921. * __skb_queue_after - queue a buffer at the list head
  922. * @list: list to use
  923. * @prev: place after this buffer
  924. * @newsk: buffer to queue
  925. *
  926. * Queue a buffer int the middle of a list. This function takes no locks
  927. * and you must therefore hold required locks before calling it.
  928. *
  929. * A buffer cannot be placed on two lists at the same time.
  930. */
  931. static inline void __skb_queue_after(struct sk_buff_head *list,
  932. struct sk_buff *prev,
  933. struct sk_buff *newsk)
  934. {
  935. __skb_insert(newsk, prev, prev->next, list);
  936. }
  937. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  938. struct sk_buff_head *list);
  939. static inline void __skb_queue_before(struct sk_buff_head *list,
  940. struct sk_buff *next,
  941. struct sk_buff *newsk)
  942. {
  943. __skb_insert(newsk, next->prev, next, list);
  944. }
  945. /**
  946. * __skb_queue_head - queue a buffer at the list head
  947. * @list: list to use
  948. * @newsk: buffer to queue
  949. *
  950. * Queue a buffer at the start of a list. This function takes no locks
  951. * and you must therefore hold required locks before calling it.
  952. *
  953. * A buffer cannot be placed on two lists at the same time.
  954. */
  955. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  956. static inline void __skb_queue_head(struct sk_buff_head *list,
  957. struct sk_buff *newsk)
  958. {
  959. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  960. }
  961. /**
  962. * __skb_queue_tail - queue a buffer at the list tail
  963. * @list: list to use
  964. * @newsk: buffer to queue
  965. *
  966. * Queue a buffer at the end of a list. This function takes no locks
  967. * and you must therefore hold required locks before calling it.
  968. *
  969. * A buffer cannot be placed on two lists at the same time.
  970. */
  971. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  972. static inline void __skb_queue_tail(struct sk_buff_head *list,
  973. struct sk_buff *newsk)
  974. {
  975. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  976. }
  977. /*
  978. * remove sk_buff from list. _Must_ be called atomically, and with
  979. * the list known..
  980. */
  981. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  982. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  983. {
  984. struct sk_buff *next, *prev;
  985. list->qlen--;
  986. next = skb->next;
  987. prev = skb->prev;
  988. skb->next = skb->prev = NULL;
  989. next->prev = prev;
  990. prev->next = next;
  991. }
  992. /**
  993. * __skb_dequeue - remove from the head of the queue
  994. * @list: list to dequeue from
  995. *
  996. * Remove the head of the list. This function does not take any locks
  997. * so must be used with appropriate locks held only. The head item is
  998. * returned or %NULL if the list is empty.
  999. */
  1000. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1001. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1002. {
  1003. struct sk_buff *skb = skb_peek(list);
  1004. if (skb)
  1005. __skb_unlink(skb, list);
  1006. return skb;
  1007. }
  1008. /**
  1009. * __skb_dequeue_tail - remove from the tail of the queue
  1010. * @list: list to dequeue from
  1011. *
  1012. * Remove the tail of the list. This function does not take any locks
  1013. * so must be used with appropriate locks held only. The tail item is
  1014. * returned or %NULL if the list is empty.
  1015. */
  1016. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1017. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1018. {
  1019. struct sk_buff *skb = skb_peek_tail(list);
  1020. if (skb)
  1021. __skb_unlink(skb, list);
  1022. return skb;
  1023. }
  1024. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1025. {
  1026. return skb->data_len;
  1027. }
  1028. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1029. {
  1030. return skb->len - skb->data_len;
  1031. }
  1032. static inline int skb_pagelen(const struct sk_buff *skb)
  1033. {
  1034. int i, len = 0;
  1035. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1036. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1037. return len + skb_headlen(skb);
  1038. }
  1039. /**
  1040. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1041. * @skb: buffer containing fragment to be initialised
  1042. * @i: paged fragment index to initialise
  1043. * @page: the page to use for this fragment
  1044. * @off: the offset to the data with @page
  1045. * @size: the length of the data
  1046. *
  1047. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1048. * offset @off within @page.
  1049. *
  1050. * Does not take any additional reference on the fragment.
  1051. */
  1052. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1053. struct page *page, int off, int size)
  1054. {
  1055. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1056. frag->page.p = page;
  1057. frag->page_offset = off;
  1058. skb_frag_size_set(frag, size);
  1059. }
  1060. /**
  1061. * skb_fill_page_desc - initialise a paged fragment in an skb
  1062. * @skb: buffer containing fragment to be initialised
  1063. * @i: paged fragment index to initialise
  1064. * @page: the page to use for this fragment
  1065. * @off: the offset to the data with @page
  1066. * @size: the length of the data
  1067. *
  1068. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1069. * @skb to point to &size bytes at offset @off within @page. In
  1070. * addition updates @skb such that @i is the last fragment.
  1071. *
  1072. * Does not take any additional reference on the fragment.
  1073. */
  1074. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1075. struct page *page, int off, int size)
  1076. {
  1077. __skb_fill_page_desc(skb, i, page, off, size);
  1078. skb_shinfo(skb)->nr_frags = i + 1;
  1079. }
  1080. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1081. int off, int size);
  1082. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1083. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1084. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1085. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1086. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1087. {
  1088. return skb->head + skb->tail;
  1089. }
  1090. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1091. {
  1092. skb->tail = skb->data - skb->head;
  1093. }
  1094. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1095. {
  1096. skb_reset_tail_pointer(skb);
  1097. skb->tail += offset;
  1098. }
  1099. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1100. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1101. {
  1102. return skb->tail;
  1103. }
  1104. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1105. {
  1106. skb->tail = skb->data;
  1107. }
  1108. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1109. {
  1110. skb->tail = skb->data + offset;
  1111. }
  1112. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1113. /*
  1114. * Add data to an sk_buff
  1115. */
  1116. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1117. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1118. {
  1119. unsigned char *tmp = skb_tail_pointer(skb);
  1120. SKB_LINEAR_ASSERT(skb);
  1121. skb->tail += len;
  1122. skb->len += len;
  1123. return tmp;
  1124. }
  1125. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1126. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1127. {
  1128. skb->data -= len;
  1129. skb->len += len;
  1130. return skb->data;
  1131. }
  1132. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1133. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1134. {
  1135. skb->len -= len;
  1136. BUG_ON(skb->len < skb->data_len);
  1137. return skb->data += len;
  1138. }
  1139. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1140. {
  1141. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1142. }
  1143. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1144. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1145. {
  1146. if (len > skb_headlen(skb) &&
  1147. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1148. return NULL;
  1149. skb->len -= len;
  1150. return skb->data += len;
  1151. }
  1152. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1153. {
  1154. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1155. }
  1156. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1157. {
  1158. if (likely(len <= skb_headlen(skb)))
  1159. return 1;
  1160. if (unlikely(len > skb->len))
  1161. return 0;
  1162. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1163. }
  1164. /**
  1165. * skb_headroom - bytes at buffer head
  1166. * @skb: buffer to check
  1167. *
  1168. * Return the number of bytes of free space at the head of an &sk_buff.
  1169. */
  1170. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1171. {
  1172. return skb->data - skb->head;
  1173. }
  1174. /**
  1175. * skb_tailroom - bytes at buffer end
  1176. * @skb: buffer to check
  1177. *
  1178. * Return the number of bytes of free space at the tail of an sk_buff
  1179. */
  1180. static inline int skb_tailroom(const struct sk_buff *skb)
  1181. {
  1182. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1183. }
  1184. /**
  1185. * skb_reserve - adjust headroom
  1186. * @skb: buffer to alter
  1187. * @len: bytes to move
  1188. *
  1189. * Increase the headroom of an empty &sk_buff by reducing the tail
  1190. * room. This is only allowed for an empty buffer.
  1191. */
  1192. static inline void skb_reserve(struct sk_buff *skb, int len)
  1193. {
  1194. skb->data += len;
  1195. skb->tail += len;
  1196. }
  1197. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1198. {
  1199. skb->mac_len = skb->network_header - skb->mac_header;
  1200. }
  1201. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1202. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1203. {
  1204. return skb->head + skb->transport_header;
  1205. }
  1206. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1207. {
  1208. skb->transport_header = skb->data - skb->head;
  1209. }
  1210. static inline void skb_set_transport_header(struct sk_buff *skb,
  1211. const int offset)
  1212. {
  1213. skb_reset_transport_header(skb);
  1214. skb->transport_header += offset;
  1215. }
  1216. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1217. {
  1218. return skb->head + skb->network_header;
  1219. }
  1220. static inline void skb_reset_network_header(struct sk_buff *skb)
  1221. {
  1222. skb->network_header = skb->data - skb->head;
  1223. }
  1224. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1225. {
  1226. skb_reset_network_header(skb);
  1227. skb->network_header += offset;
  1228. }
  1229. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1230. {
  1231. return skb->head + skb->mac_header;
  1232. }
  1233. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1234. {
  1235. return skb->mac_header != ~0U;
  1236. }
  1237. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1238. {
  1239. skb->mac_header = skb->data - skb->head;
  1240. }
  1241. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1242. {
  1243. skb_reset_mac_header(skb);
  1244. skb->mac_header += offset;
  1245. }
  1246. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1247. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1248. {
  1249. return skb->transport_header;
  1250. }
  1251. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1252. {
  1253. skb->transport_header = skb->data;
  1254. }
  1255. static inline void skb_set_transport_header(struct sk_buff *skb,
  1256. const int offset)
  1257. {
  1258. skb->transport_header = skb->data + offset;
  1259. }
  1260. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1261. {
  1262. return skb->network_header;
  1263. }
  1264. static inline void skb_reset_network_header(struct sk_buff *skb)
  1265. {
  1266. skb->network_header = skb->data;
  1267. }
  1268. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1269. {
  1270. skb->network_header = skb->data + offset;
  1271. }
  1272. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1273. {
  1274. return skb->mac_header;
  1275. }
  1276. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1277. {
  1278. return skb->mac_header != NULL;
  1279. }
  1280. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1281. {
  1282. skb->mac_header = skb->data;
  1283. }
  1284. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1285. {
  1286. skb->mac_header = skb->data + offset;
  1287. }
  1288. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1289. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1290. {
  1291. return skb->csum_start - skb_headroom(skb);
  1292. }
  1293. static inline int skb_transport_offset(const struct sk_buff *skb)
  1294. {
  1295. return skb_transport_header(skb) - skb->data;
  1296. }
  1297. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1298. {
  1299. return skb->transport_header - skb->network_header;
  1300. }
  1301. static inline int skb_network_offset(const struct sk_buff *skb)
  1302. {
  1303. return skb_network_header(skb) - skb->data;
  1304. }
  1305. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1306. {
  1307. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1308. }
  1309. /*
  1310. * CPUs often take a performance hit when accessing unaligned memory
  1311. * locations. The actual performance hit varies, it can be small if the
  1312. * hardware handles it or large if we have to take an exception and fix it
  1313. * in software.
  1314. *
  1315. * Since an ethernet header is 14 bytes network drivers often end up with
  1316. * the IP header at an unaligned offset. The IP header can be aligned by
  1317. * shifting the start of the packet by 2 bytes. Drivers should do this
  1318. * with:
  1319. *
  1320. * skb_reserve(skb, NET_IP_ALIGN);
  1321. *
  1322. * The downside to this alignment of the IP header is that the DMA is now
  1323. * unaligned. On some architectures the cost of an unaligned DMA is high
  1324. * and this cost outweighs the gains made by aligning the IP header.
  1325. *
  1326. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1327. * to be overridden.
  1328. */
  1329. #ifndef NET_IP_ALIGN
  1330. #define NET_IP_ALIGN 2
  1331. #endif
  1332. /*
  1333. * The networking layer reserves some headroom in skb data (via
  1334. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1335. * the header has to grow. In the default case, if the header has to grow
  1336. * 32 bytes or less we avoid the reallocation.
  1337. *
  1338. * Unfortunately this headroom changes the DMA alignment of the resulting
  1339. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1340. * on some architectures. An architecture can override this value,
  1341. * perhaps setting it to a cacheline in size (since that will maintain
  1342. * cacheline alignment of the DMA). It must be a power of 2.
  1343. *
  1344. * Various parts of the networking layer expect at least 32 bytes of
  1345. * headroom, you should not reduce this.
  1346. *
  1347. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1348. * to reduce average number of cache lines per packet.
  1349. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1350. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1351. */
  1352. #ifndef NET_SKB_PAD
  1353. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1354. #endif
  1355. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1356. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1357. {
  1358. if (unlikely(skb_is_nonlinear(skb))) {
  1359. WARN_ON(1);
  1360. return;
  1361. }
  1362. skb->len = len;
  1363. skb_set_tail_pointer(skb, len);
  1364. }
  1365. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1366. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1367. {
  1368. if (skb->data_len)
  1369. return ___pskb_trim(skb, len);
  1370. __skb_trim(skb, len);
  1371. return 0;
  1372. }
  1373. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1374. {
  1375. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1376. }
  1377. /**
  1378. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1379. * @skb: buffer to alter
  1380. * @len: new length
  1381. *
  1382. * This is identical to pskb_trim except that the caller knows that
  1383. * the skb is not cloned so we should never get an error due to out-
  1384. * of-memory.
  1385. */
  1386. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1387. {
  1388. int err = pskb_trim(skb, len);
  1389. BUG_ON(err);
  1390. }
  1391. /**
  1392. * skb_orphan - orphan a buffer
  1393. * @skb: buffer to orphan
  1394. *
  1395. * If a buffer currently has an owner then we call the owner's
  1396. * destructor function and make the @skb unowned. The buffer continues
  1397. * to exist but is no longer charged to its former owner.
  1398. */
  1399. static inline void skb_orphan(struct sk_buff *skb)
  1400. {
  1401. if (skb->destructor)
  1402. skb->destructor(skb);
  1403. skb->destructor = NULL;
  1404. skb->sk = NULL;
  1405. }
  1406. /**
  1407. * __skb_queue_purge - empty a list
  1408. * @list: list to empty
  1409. *
  1410. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1411. * the list and one reference dropped. This function does not take the
  1412. * list lock and the caller must hold the relevant locks to use it.
  1413. */
  1414. extern void skb_queue_purge(struct sk_buff_head *list);
  1415. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1416. {
  1417. struct sk_buff *skb;
  1418. while ((skb = __skb_dequeue(list)) != NULL)
  1419. kfree_skb(skb);
  1420. }
  1421. /**
  1422. * __dev_alloc_skb - allocate an skbuff for receiving
  1423. * @length: length to allocate
  1424. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1425. *
  1426. * Allocate a new &sk_buff and assign it a usage count of one. The
  1427. * buffer has unspecified headroom built in. Users should allocate
  1428. * the headroom they think they need without accounting for the
  1429. * built in space. The built in space is used for optimisations.
  1430. *
  1431. * %NULL is returned if there is no free memory.
  1432. */
  1433. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1434. gfp_t gfp_mask)
  1435. {
  1436. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1437. if (likely(skb))
  1438. skb_reserve(skb, NET_SKB_PAD);
  1439. return skb;
  1440. }
  1441. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1442. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1443. unsigned int length, gfp_t gfp_mask);
  1444. /**
  1445. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1446. * @dev: network device to receive on
  1447. * @length: length to allocate
  1448. *
  1449. * Allocate a new &sk_buff and assign it a usage count of one. The
  1450. * buffer has unspecified headroom built in. Users should allocate
  1451. * the headroom they think they need without accounting for the
  1452. * built in space. The built in space is used for optimisations.
  1453. *
  1454. * %NULL is returned if there is no free memory. Although this function
  1455. * allocates memory it can be called from an interrupt.
  1456. */
  1457. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1458. unsigned int length)
  1459. {
  1460. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1461. }
  1462. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1463. unsigned int length, gfp_t gfp)
  1464. {
  1465. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1466. if (NET_IP_ALIGN && skb)
  1467. skb_reserve(skb, NET_IP_ALIGN);
  1468. return skb;
  1469. }
  1470. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1471. unsigned int length)
  1472. {
  1473. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1474. }
  1475. /**
  1476. * __netdev_alloc_page - allocate a page for ps-rx on a specific device
  1477. * @dev: network device to receive on
  1478. * @gfp_mask: alloc_pages_node mask
  1479. *
  1480. * Allocate a new page. dev currently unused.
  1481. *
  1482. * %NULL is returned if there is no free memory.
  1483. */
  1484. static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
  1485. {
  1486. return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
  1487. }
  1488. /**
  1489. * netdev_alloc_page - allocate a page for ps-rx on a specific device
  1490. * @dev: network device to receive on
  1491. *
  1492. * Allocate a new page. dev currently unused.
  1493. *
  1494. * %NULL is returned if there is no free memory.
  1495. */
  1496. static inline struct page *netdev_alloc_page(struct net_device *dev)
  1497. {
  1498. return __netdev_alloc_page(dev, GFP_ATOMIC);
  1499. }
  1500. static inline void netdev_free_page(struct net_device *dev, struct page *page)
  1501. {
  1502. __free_page(page);
  1503. }
  1504. /**
  1505. * skb_frag_page - retrieve the page refered to by a paged fragment
  1506. * @frag: the paged fragment
  1507. *
  1508. * Returns the &struct page associated with @frag.
  1509. */
  1510. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1511. {
  1512. return frag->page.p;
  1513. }
  1514. /**
  1515. * __skb_frag_ref - take an addition reference on a paged fragment.
  1516. * @frag: the paged fragment
  1517. *
  1518. * Takes an additional reference on the paged fragment @frag.
  1519. */
  1520. static inline void __skb_frag_ref(skb_frag_t *frag)
  1521. {
  1522. get_page(skb_frag_page(frag));
  1523. }
  1524. /**
  1525. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1526. * @skb: the buffer
  1527. * @f: the fragment offset.
  1528. *
  1529. * Takes an additional reference on the @f'th paged fragment of @skb.
  1530. */
  1531. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1532. {
  1533. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1534. }
  1535. /**
  1536. * __skb_frag_unref - release a reference on a paged fragment.
  1537. * @frag: the paged fragment
  1538. *
  1539. * Releases a reference on the paged fragment @frag.
  1540. */
  1541. static inline void __skb_frag_unref(skb_frag_t *frag)
  1542. {
  1543. put_page(skb_frag_page(frag));
  1544. }
  1545. /**
  1546. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1547. * @skb: the buffer
  1548. * @f: the fragment offset
  1549. *
  1550. * Releases a reference on the @f'th paged fragment of @skb.
  1551. */
  1552. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1553. {
  1554. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1555. }
  1556. /**
  1557. * skb_frag_address - gets the address of the data contained in a paged fragment
  1558. * @frag: the paged fragment buffer
  1559. *
  1560. * Returns the address of the data within @frag. The page must already
  1561. * be mapped.
  1562. */
  1563. static inline void *skb_frag_address(const skb_frag_t *frag)
  1564. {
  1565. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1566. }
  1567. /**
  1568. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1569. * @frag: the paged fragment buffer
  1570. *
  1571. * Returns the address of the data within @frag. Checks that the page
  1572. * is mapped and returns %NULL otherwise.
  1573. */
  1574. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1575. {
  1576. void *ptr = page_address(skb_frag_page(frag));
  1577. if (unlikely(!ptr))
  1578. return NULL;
  1579. return ptr + frag->page_offset;
  1580. }
  1581. /**
  1582. * __skb_frag_set_page - sets the page contained in a paged fragment
  1583. * @frag: the paged fragment
  1584. * @page: the page to set
  1585. *
  1586. * Sets the fragment @frag to contain @page.
  1587. */
  1588. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1589. {
  1590. frag->page.p = page;
  1591. }
  1592. /**
  1593. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1594. * @skb: the buffer
  1595. * @f: the fragment offset
  1596. * @page: the page to set
  1597. *
  1598. * Sets the @f'th fragment of @skb to contain @page.
  1599. */
  1600. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1601. struct page *page)
  1602. {
  1603. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1604. }
  1605. /**
  1606. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1607. * @device: the device to map the fragment to
  1608. * @frag: the paged fragment to map
  1609. * @offset: the offset within the fragment (starting at the
  1610. * fragment's own offset)
  1611. * @size: the number of bytes to map
  1612. * @direction: the direction of the mapping (%PCI_DMA_*)
  1613. *
  1614. * Maps the page associated with @frag to @device.
  1615. */
  1616. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1617. const skb_frag_t *frag,
  1618. size_t offset, size_t size,
  1619. enum dma_data_direction dir)
  1620. {
  1621. return dma_map_page(dev, skb_frag_page(frag),
  1622. frag->page_offset + offset, size, dir);
  1623. }
  1624. /**
  1625. * skb_clone_writable - is the header of a clone writable
  1626. * @skb: buffer to check
  1627. * @len: length up to which to write
  1628. *
  1629. * Returns true if modifying the header part of the cloned buffer
  1630. * does not requires the data to be copied.
  1631. */
  1632. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1633. {
  1634. return !skb_header_cloned(skb) &&
  1635. skb_headroom(skb) + len <= skb->hdr_len;
  1636. }
  1637. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1638. int cloned)
  1639. {
  1640. int delta = 0;
  1641. if (headroom < NET_SKB_PAD)
  1642. headroom = NET_SKB_PAD;
  1643. if (headroom > skb_headroom(skb))
  1644. delta = headroom - skb_headroom(skb);
  1645. if (delta || cloned)
  1646. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1647. GFP_ATOMIC);
  1648. return 0;
  1649. }
  1650. /**
  1651. * skb_cow - copy header of skb when it is required
  1652. * @skb: buffer to cow
  1653. * @headroom: needed headroom
  1654. *
  1655. * If the skb passed lacks sufficient headroom or its data part
  1656. * is shared, data is reallocated. If reallocation fails, an error
  1657. * is returned and original skb is not changed.
  1658. *
  1659. * The result is skb with writable area skb->head...skb->tail
  1660. * and at least @headroom of space at head.
  1661. */
  1662. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1663. {
  1664. return __skb_cow(skb, headroom, skb_cloned(skb));
  1665. }
  1666. /**
  1667. * skb_cow_head - skb_cow but only making the head writable
  1668. * @skb: buffer to cow
  1669. * @headroom: needed headroom
  1670. *
  1671. * This function is identical to skb_cow except that we replace the
  1672. * skb_cloned check by skb_header_cloned. It should be used when
  1673. * you only need to push on some header and do not need to modify
  1674. * the data.
  1675. */
  1676. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1677. {
  1678. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1679. }
  1680. /**
  1681. * skb_padto - pad an skbuff up to a minimal size
  1682. * @skb: buffer to pad
  1683. * @len: minimal length
  1684. *
  1685. * Pads up a buffer to ensure the trailing bytes exist and are
  1686. * blanked. If the buffer already contains sufficient data it
  1687. * is untouched. Otherwise it is extended. Returns zero on
  1688. * success. The skb is freed on error.
  1689. */
  1690. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1691. {
  1692. unsigned int size = skb->len;
  1693. if (likely(size >= len))
  1694. return 0;
  1695. return skb_pad(skb, len - size);
  1696. }
  1697. static inline int skb_add_data(struct sk_buff *skb,
  1698. char __user *from, int copy)
  1699. {
  1700. const int off = skb->len;
  1701. if (skb->ip_summed == CHECKSUM_NONE) {
  1702. int err = 0;
  1703. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1704. copy, 0, &err);
  1705. if (!err) {
  1706. skb->csum = csum_block_add(skb->csum, csum, off);
  1707. return 0;
  1708. }
  1709. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1710. return 0;
  1711. __skb_trim(skb, off);
  1712. return -EFAULT;
  1713. }
  1714. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1715. const struct page *page, int off)
  1716. {
  1717. if (i) {
  1718. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1719. return page == skb_frag_page(frag) &&
  1720. off == frag->page_offset + skb_frag_size(frag);
  1721. }
  1722. return 0;
  1723. }
  1724. static inline int __skb_linearize(struct sk_buff *skb)
  1725. {
  1726. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1727. }
  1728. /**
  1729. * skb_linearize - convert paged skb to linear one
  1730. * @skb: buffer to linarize
  1731. *
  1732. * If there is no free memory -ENOMEM is returned, otherwise zero
  1733. * is returned and the old skb data released.
  1734. */
  1735. static inline int skb_linearize(struct sk_buff *skb)
  1736. {
  1737. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1738. }
  1739. /**
  1740. * skb_linearize_cow - make sure skb is linear and writable
  1741. * @skb: buffer to process
  1742. *
  1743. * If there is no free memory -ENOMEM is returned, otherwise zero
  1744. * is returned and the old skb data released.
  1745. */
  1746. static inline int skb_linearize_cow(struct sk_buff *skb)
  1747. {
  1748. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1749. __skb_linearize(skb) : 0;
  1750. }
  1751. /**
  1752. * skb_postpull_rcsum - update checksum for received skb after pull
  1753. * @skb: buffer to update
  1754. * @start: start of data before pull
  1755. * @len: length of data pulled
  1756. *
  1757. * After doing a pull on a received packet, you need to call this to
  1758. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1759. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1760. */
  1761. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1762. const void *start, unsigned int len)
  1763. {
  1764. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1765. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1766. }
  1767. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1768. /**
  1769. * pskb_trim_rcsum - trim received skb and update checksum
  1770. * @skb: buffer to trim
  1771. * @len: new length
  1772. *
  1773. * This is exactly the same as pskb_trim except that it ensures the
  1774. * checksum of received packets are still valid after the operation.
  1775. */
  1776. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1777. {
  1778. if (likely(len >= skb->len))
  1779. return 0;
  1780. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1781. skb->ip_summed = CHECKSUM_NONE;
  1782. return __pskb_trim(skb, len);
  1783. }
  1784. #define skb_queue_walk(queue, skb) \
  1785. for (skb = (queue)->next; \
  1786. skb != (struct sk_buff *)(queue); \
  1787. skb = skb->next)
  1788. #define skb_queue_walk_safe(queue, skb, tmp) \
  1789. for (skb = (queue)->next, tmp = skb->next; \
  1790. skb != (struct sk_buff *)(queue); \
  1791. skb = tmp, tmp = skb->next)
  1792. #define skb_queue_walk_from(queue, skb) \
  1793. for (; skb != (struct sk_buff *)(queue); \
  1794. skb = skb->next)
  1795. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1796. for (tmp = skb->next; \
  1797. skb != (struct sk_buff *)(queue); \
  1798. skb = tmp, tmp = skb->next)
  1799. #define skb_queue_reverse_walk(queue, skb) \
  1800. for (skb = (queue)->prev; \
  1801. skb != (struct sk_buff *)(queue); \
  1802. skb = skb->prev)
  1803. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1804. for (skb = (queue)->prev, tmp = skb->prev; \
  1805. skb != (struct sk_buff *)(queue); \
  1806. skb = tmp, tmp = skb->prev)
  1807. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1808. for (tmp = skb->prev; \
  1809. skb != (struct sk_buff *)(queue); \
  1810. skb = tmp, tmp = skb->prev)
  1811. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1812. {
  1813. return skb_shinfo(skb)->frag_list != NULL;
  1814. }
  1815. static inline void skb_frag_list_init(struct sk_buff *skb)
  1816. {
  1817. skb_shinfo(skb)->frag_list = NULL;
  1818. }
  1819. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1820. {
  1821. frag->next = skb_shinfo(skb)->frag_list;
  1822. skb_shinfo(skb)->frag_list = frag;
  1823. }
  1824. #define skb_walk_frags(skb, iter) \
  1825. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1826. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1827. int *peeked, int *err);
  1828. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1829. int noblock, int *err);
  1830. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1831. struct poll_table_struct *wait);
  1832. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1833. int offset, struct iovec *to,
  1834. int size);
  1835. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1836. int hlen,
  1837. struct iovec *iov);
  1838. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1839. int offset,
  1840. const struct iovec *from,
  1841. int from_offset,
  1842. int len);
  1843. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1844. int offset,
  1845. const struct iovec *to,
  1846. int to_offset,
  1847. int size);
  1848. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1849. extern void skb_free_datagram_locked(struct sock *sk,
  1850. struct sk_buff *skb);
  1851. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1852. unsigned int flags);
  1853. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1854. int len, __wsum csum);
  1855. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1856. void *to, int len);
  1857. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1858. const void *from, int len);
  1859. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1860. int offset, u8 *to, int len,
  1861. __wsum csum);
  1862. extern int skb_splice_bits(struct sk_buff *skb,
  1863. unsigned int offset,
  1864. struct pipe_inode_info *pipe,
  1865. unsigned int len,
  1866. unsigned int flags);
  1867. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1868. extern void skb_split(struct sk_buff *skb,
  1869. struct sk_buff *skb1, const u32 len);
  1870. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1871. int shiftlen);
  1872. extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
  1873. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1874. int len, void *buffer)
  1875. {
  1876. int hlen = skb_headlen(skb);
  1877. if (hlen - offset >= len)
  1878. return skb->data + offset;
  1879. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1880. return NULL;
  1881. return buffer;
  1882. }
  1883. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1884. void *to,
  1885. const unsigned int len)
  1886. {
  1887. memcpy(to, skb->data, len);
  1888. }
  1889. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1890. const int offset, void *to,
  1891. const unsigned int len)
  1892. {
  1893. memcpy(to, skb->data + offset, len);
  1894. }
  1895. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1896. const void *from,
  1897. const unsigned int len)
  1898. {
  1899. memcpy(skb->data, from, len);
  1900. }
  1901. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1902. const int offset,
  1903. const void *from,
  1904. const unsigned int len)
  1905. {
  1906. memcpy(skb->data + offset, from, len);
  1907. }
  1908. extern void skb_init(void);
  1909. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1910. {
  1911. return skb->tstamp;
  1912. }
  1913. /**
  1914. * skb_get_timestamp - get timestamp from a skb
  1915. * @skb: skb to get stamp from
  1916. * @stamp: pointer to struct timeval to store stamp in
  1917. *
  1918. * Timestamps are stored in the skb as offsets to a base timestamp.
  1919. * This function converts the offset back to a struct timeval and stores
  1920. * it in stamp.
  1921. */
  1922. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1923. struct timeval *stamp)
  1924. {
  1925. *stamp = ktime_to_timeval(skb->tstamp);
  1926. }
  1927. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1928. struct timespec *stamp)
  1929. {
  1930. *stamp = ktime_to_timespec(skb->tstamp);
  1931. }
  1932. static inline void __net_timestamp(struct sk_buff *skb)
  1933. {
  1934. skb->tstamp = ktime_get_real();
  1935. }
  1936. static inline ktime_t net_timedelta(ktime_t t)
  1937. {
  1938. return ktime_sub(ktime_get_real(), t);
  1939. }
  1940. static inline ktime_t net_invalid_timestamp(void)
  1941. {
  1942. return ktime_set(0, 0);
  1943. }
  1944. extern void skb_timestamping_init(void);
  1945. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1946. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1947. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1948. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1949. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1950. {
  1951. }
  1952. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1953. {
  1954. return false;
  1955. }
  1956. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1957. /**
  1958. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1959. *
  1960. * PHY drivers may accept clones of transmitted packets for
  1961. * timestamping via their phy_driver.txtstamp method. These drivers
  1962. * must call this function to return the skb back to the stack, with
  1963. * or without a timestamp.
  1964. *
  1965. * @skb: clone of the the original outgoing packet
  1966. * @hwtstamps: hardware time stamps, may be NULL if not available
  1967. *
  1968. */
  1969. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1970. struct skb_shared_hwtstamps *hwtstamps);
  1971. /**
  1972. * skb_tstamp_tx - queue clone of skb with send time stamps
  1973. * @orig_skb: the original outgoing packet
  1974. * @hwtstamps: hardware time stamps, may be NULL if not available
  1975. *
  1976. * If the skb has a socket associated, then this function clones the
  1977. * skb (thus sharing the actual data and optional structures), stores
  1978. * the optional hardware time stamping information (if non NULL) or
  1979. * generates a software time stamp (otherwise), then queues the clone
  1980. * to the error queue of the socket. Errors are silently ignored.
  1981. */
  1982. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1983. struct skb_shared_hwtstamps *hwtstamps);
  1984. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1985. {
  1986. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1987. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1988. skb_tstamp_tx(skb, NULL);
  1989. }
  1990. /**
  1991. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1992. *
  1993. * Ethernet MAC Drivers should call this function in their hard_xmit()
  1994. * function immediately before giving the sk_buff to the MAC hardware.
  1995. *
  1996. * @skb: A socket buffer.
  1997. */
  1998. static inline void skb_tx_timestamp(struct sk_buff *skb)
  1999. {
  2000. skb_clone_tx_timestamp(skb);
  2001. sw_tx_timestamp(skb);
  2002. }
  2003. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2004. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2005. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2006. {
  2007. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2008. }
  2009. /**
  2010. * skb_checksum_complete - Calculate checksum of an entire packet
  2011. * @skb: packet to process
  2012. *
  2013. * This function calculates the checksum over the entire packet plus
  2014. * the value of skb->csum. The latter can be used to supply the
  2015. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2016. * checksum.
  2017. *
  2018. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2019. * this function can be used to verify that checksum on received
  2020. * packets. In that case the function should return zero if the
  2021. * checksum is correct. In particular, this function will return zero
  2022. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2023. * hardware has already verified the correctness of the checksum.
  2024. */
  2025. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2026. {
  2027. return skb_csum_unnecessary(skb) ?
  2028. 0 : __skb_checksum_complete(skb);
  2029. }
  2030. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2031. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2032. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2033. {
  2034. if (nfct && atomic_dec_and_test(&nfct->use))
  2035. nf_conntrack_destroy(nfct);
  2036. }
  2037. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2038. {
  2039. if (nfct)
  2040. atomic_inc(&nfct->use);
  2041. }
  2042. #endif
  2043. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2044. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2045. {
  2046. if (skb)
  2047. atomic_inc(&skb->users);
  2048. }
  2049. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2050. {
  2051. if (skb)
  2052. kfree_skb(skb);
  2053. }
  2054. #endif
  2055. #ifdef CONFIG_BRIDGE_NETFILTER
  2056. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2057. {
  2058. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2059. kfree(nf_bridge);
  2060. }
  2061. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2062. {
  2063. if (nf_bridge)
  2064. atomic_inc(&nf_bridge->use);
  2065. }
  2066. #endif /* CONFIG_BRIDGE_NETFILTER */
  2067. static inline void nf_reset(struct sk_buff *skb)
  2068. {
  2069. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2070. nf_conntrack_put(skb->nfct);
  2071. skb->nfct = NULL;
  2072. #endif
  2073. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2074. nf_conntrack_put_reasm(skb->nfct_reasm);
  2075. skb->nfct_reasm = NULL;
  2076. #endif
  2077. #ifdef CONFIG_BRIDGE_NETFILTER
  2078. nf_bridge_put(skb->nf_bridge);
  2079. skb->nf_bridge = NULL;
  2080. #endif
  2081. }
  2082. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2083. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2084. {
  2085. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2086. dst->nfct = src->nfct;
  2087. nf_conntrack_get(src->nfct);
  2088. dst->nfctinfo = src->nfctinfo;
  2089. #endif
  2090. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2091. dst->nfct_reasm = src->nfct_reasm;
  2092. nf_conntrack_get_reasm(src->nfct_reasm);
  2093. #endif
  2094. #ifdef CONFIG_BRIDGE_NETFILTER
  2095. dst->nf_bridge = src->nf_bridge;
  2096. nf_bridge_get(src->nf_bridge);
  2097. #endif
  2098. }
  2099. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2100. {
  2101. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2102. nf_conntrack_put(dst->nfct);
  2103. #endif
  2104. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2105. nf_conntrack_put_reasm(dst->nfct_reasm);
  2106. #endif
  2107. #ifdef CONFIG_BRIDGE_NETFILTER
  2108. nf_bridge_put(dst->nf_bridge);
  2109. #endif
  2110. __nf_copy(dst, src);
  2111. }
  2112. #ifdef CONFIG_NETWORK_SECMARK
  2113. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2114. {
  2115. to->secmark = from->secmark;
  2116. }
  2117. static inline void skb_init_secmark(struct sk_buff *skb)
  2118. {
  2119. skb->secmark = 0;
  2120. }
  2121. #else
  2122. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2123. { }
  2124. static inline void skb_init_secmark(struct sk_buff *skb)
  2125. { }
  2126. #endif
  2127. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2128. {
  2129. skb->queue_mapping = queue_mapping;
  2130. }
  2131. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2132. {
  2133. return skb->queue_mapping;
  2134. }
  2135. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2136. {
  2137. to->queue_mapping = from->queue_mapping;
  2138. }
  2139. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2140. {
  2141. skb->queue_mapping = rx_queue + 1;
  2142. }
  2143. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2144. {
  2145. return skb->queue_mapping - 1;
  2146. }
  2147. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2148. {
  2149. return skb->queue_mapping != 0;
  2150. }
  2151. extern u16 __skb_tx_hash(const struct net_device *dev,
  2152. const struct sk_buff *skb,
  2153. unsigned int num_tx_queues);
  2154. #ifdef CONFIG_XFRM
  2155. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2156. {
  2157. return skb->sp;
  2158. }
  2159. #else
  2160. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2161. {
  2162. return NULL;
  2163. }
  2164. #endif
  2165. static inline int skb_is_gso(const struct sk_buff *skb)
  2166. {
  2167. return skb_shinfo(skb)->gso_size;
  2168. }
  2169. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2170. {
  2171. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2172. }
  2173. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2174. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2175. {
  2176. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2177. * wanted then gso_type will be set. */
  2178. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2179. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2180. unlikely(shinfo->gso_type == 0)) {
  2181. __skb_warn_lro_forwarding(skb);
  2182. return true;
  2183. }
  2184. return false;
  2185. }
  2186. static inline void skb_forward_csum(struct sk_buff *skb)
  2187. {
  2188. /* Unfortunately we don't support this one. Any brave souls? */
  2189. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2190. skb->ip_summed = CHECKSUM_NONE;
  2191. }
  2192. /**
  2193. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2194. * @skb: skb to check
  2195. *
  2196. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2197. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2198. * use this helper, to document places where we make this assertion.
  2199. */
  2200. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2201. {
  2202. #ifdef DEBUG
  2203. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2204. #endif
  2205. }
  2206. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2207. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2208. {
  2209. if (irqs_disabled())
  2210. return false;
  2211. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2212. return false;
  2213. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2214. return false;
  2215. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2216. if (skb_end_pointer(skb) - skb->head < skb_size)
  2217. return false;
  2218. if (skb_shared(skb) || skb_cloned(skb))
  2219. return false;
  2220. return true;
  2221. }
  2222. #endif /* __KERNEL__ */
  2223. #endif /* _LINUX_SKBUFF_H */