vmx.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE | X86_CR0_TS | X86_CR0_MP)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_CR4_GUEST_OWNED_BITS \
  60. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT)
  62. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  63. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  64. /*
  65. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  66. * ple_gap: upper bound on the amount of time between two successive
  67. * executions of PAUSE in a loop. Also indicate if ple enabled.
  68. * According to test, this time is usually small than 41 cycles.
  69. * ple_window: upper bound on the amount of time a guest is allowed to execute
  70. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  71. * less than 2^12 cycles
  72. * Time is measured based on a counter that runs at the same rate as the TSC,
  73. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  74. */
  75. #define KVM_VMX_DEFAULT_PLE_GAP 41
  76. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  77. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  78. module_param(ple_gap, int, S_IRUGO);
  79. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  80. module_param(ple_window, int, S_IRUGO);
  81. struct vmcs {
  82. u32 revision_id;
  83. u32 abort;
  84. char data[0];
  85. };
  86. struct shared_msr_entry {
  87. unsigned index;
  88. u64 data;
  89. u64 mask;
  90. };
  91. struct vcpu_vmx {
  92. struct kvm_vcpu vcpu;
  93. struct list_head local_vcpus_link;
  94. unsigned long host_rsp;
  95. int launched;
  96. u8 fail;
  97. u32 idt_vectoring_info;
  98. struct shared_msr_entry *guest_msrs;
  99. int nmsrs;
  100. int save_nmsrs;
  101. #ifdef CONFIG_X86_64
  102. u64 msr_host_kernel_gs_base;
  103. u64 msr_guest_kernel_gs_base;
  104. #endif
  105. struct vmcs *vmcs;
  106. struct {
  107. int loaded;
  108. u16 fs_sel, gs_sel, ldt_sel;
  109. int gs_ldt_reload_needed;
  110. int fs_reload_needed;
  111. } host_state;
  112. struct {
  113. int vm86_active;
  114. u8 save_iopl;
  115. struct kvm_save_segment {
  116. u16 selector;
  117. unsigned long base;
  118. u32 limit;
  119. u32 ar;
  120. } tr, es, ds, fs, gs;
  121. struct {
  122. bool pending;
  123. u8 vector;
  124. unsigned rip;
  125. } irq;
  126. } rmode;
  127. int vpid;
  128. bool emulation_required;
  129. /* Support for vnmi-less CPUs */
  130. int soft_vnmi_blocked;
  131. ktime_t entry_time;
  132. s64 vnmi_blocked_time;
  133. u32 exit_reason;
  134. bool rdtscp_enabled;
  135. };
  136. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  137. {
  138. return container_of(vcpu, struct vcpu_vmx, vcpu);
  139. }
  140. static int init_rmode(struct kvm *kvm);
  141. static u64 construct_eptp(unsigned long root_hpa);
  142. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  143. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  144. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  145. static unsigned long *vmx_io_bitmap_a;
  146. static unsigned long *vmx_io_bitmap_b;
  147. static unsigned long *vmx_msr_bitmap_legacy;
  148. static unsigned long *vmx_msr_bitmap_longmode;
  149. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  150. static DEFINE_SPINLOCK(vmx_vpid_lock);
  151. static struct vmcs_config {
  152. int size;
  153. int order;
  154. u32 revision_id;
  155. u32 pin_based_exec_ctrl;
  156. u32 cpu_based_exec_ctrl;
  157. u32 cpu_based_2nd_exec_ctrl;
  158. u32 vmexit_ctrl;
  159. u32 vmentry_ctrl;
  160. } vmcs_config;
  161. static struct vmx_capability {
  162. u32 ept;
  163. u32 vpid;
  164. } vmx_capability;
  165. #define VMX_SEGMENT_FIELD(seg) \
  166. [VCPU_SREG_##seg] = { \
  167. .selector = GUEST_##seg##_SELECTOR, \
  168. .base = GUEST_##seg##_BASE, \
  169. .limit = GUEST_##seg##_LIMIT, \
  170. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  171. }
  172. static struct kvm_vmx_segment_field {
  173. unsigned selector;
  174. unsigned base;
  175. unsigned limit;
  176. unsigned ar_bytes;
  177. } kvm_vmx_segment_fields[] = {
  178. VMX_SEGMENT_FIELD(CS),
  179. VMX_SEGMENT_FIELD(DS),
  180. VMX_SEGMENT_FIELD(ES),
  181. VMX_SEGMENT_FIELD(FS),
  182. VMX_SEGMENT_FIELD(GS),
  183. VMX_SEGMENT_FIELD(SS),
  184. VMX_SEGMENT_FIELD(TR),
  185. VMX_SEGMENT_FIELD(LDTR),
  186. };
  187. static u64 host_efer;
  188. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  189. /*
  190. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  191. * away by decrementing the array size.
  192. */
  193. static const u32 vmx_msr_index[] = {
  194. #ifdef CONFIG_X86_64
  195. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  196. #endif
  197. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  198. };
  199. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  200. static inline int is_page_fault(u32 intr_info)
  201. {
  202. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  203. INTR_INFO_VALID_MASK)) ==
  204. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  205. }
  206. static inline int is_no_device(u32 intr_info)
  207. {
  208. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  209. INTR_INFO_VALID_MASK)) ==
  210. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  211. }
  212. static inline int is_invalid_opcode(u32 intr_info)
  213. {
  214. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  215. INTR_INFO_VALID_MASK)) ==
  216. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  217. }
  218. static inline int is_external_interrupt(u32 intr_info)
  219. {
  220. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  221. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  222. }
  223. static inline int is_machine_check(u32 intr_info)
  224. {
  225. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  226. INTR_INFO_VALID_MASK)) ==
  227. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  228. }
  229. static inline int cpu_has_vmx_msr_bitmap(void)
  230. {
  231. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  232. }
  233. static inline int cpu_has_vmx_tpr_shadow(void)
  234. {
  235. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  236. }
  237. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  238. {
  239. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  240. }
  241. static inline int cpu_has_secondary_exec_ctrls(void)
  242. {
  243. return vmcs_config.cpu_based_exec_ctrl &
  244. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  245. }
  246. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  247. {
  248. return vmcs_config.cpu_based_2nd_exec_ctrl &
  249. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  250. }
  251. static inline bool cpu_has_vmx_flexpriority(void)
  252. {
  253. return cpu_has_vmx_tpr_shadow() &&
  254. cpu_has_vmx_virtualize_apic_accesses();
  255. }
  256. static inline bool cpu_has_vmx_ept_execute_only(void)
  257. {
  258. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  259. }
  260. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  261. {
  262. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  263. }
  264. static inline bool cpu_has_vmx_eptp_writeback(void)
  265. {
  266. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  267. }
  268. static inline bool cpu_has_vmx_ept_2m_page(void)
  269. {
  270. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  271. }
  272. static inline int cpu_has_vmx_invept_individual_addr(void)
  273. {
  274. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  275. }
  276. static inline int cpu_has_vmx_invept_context(void)
  277. {
  278. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  279. }
  280. static inline int cpu_has_vmx_invept_global(void)
  281. {
  282. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  283. }
  284. static inline int cpu_has_vmx_ept(void)
  285. {
  286. return vmcs_config.cpu_based_2nd_exec_ctrl &
  287. SECONDARY_EXEC_ENABLE_EPT;
  288. }
  289. static inline int cpu_has_vmx_unrestricted_guest(void)
  290. {
  291. return vmcs_config.cpu_based_2nd_exec_ctrl &
  292. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  293. }
  294. static inline int cpu_has_vmx_ple(void)
  295. {
  296. return vmcs_config.cpu_based_2nd_exec_ctrl &
  297. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  298. }
  299. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  300. {
  301. return flexpriority_enabled &&
  302. (cpu_has_vmx_virtualize_apic_accesses()) &&
  303. (irqchip_in_kernel(kvm));
  304. }
  305. static inline int cpu_has_vmx_vpid(void)
  306. {
  307. return vmcs_config.cpu_based_2nd_exec_ctrl &
  308. SECONDARY_EXEC_ENABLE_VPID;
  309. }
  310. static inline int cpu_has_vmx_rdtscp(void)
  311. {
  312. return vmcs_config.cpu_based_2nd_exec_ctrl &
  313. SECONDARY_EXEC_RDTSCP;
  314. }
  315. static inline int cpu_has_virtual_nmis(void)
  316. {
  317. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  318. }
  319. static inline bool report_flexpriority(void)
  320. {
  321. return flexpriority_enabled;
  322. }
  323. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  324. {
  325. int i;
  326. for (i = 0; i < vmx->nmsrs; ++i)
  327. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  328. return i;
  329. return -1;
  330. }
  331. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  332. {
  333. struct {
  334. u64 vpid : 16;
  335. u64 rsvd : 48;
  336. u64 gva;
  337. } operand = { vpid, 0, gva };
  338. asm volatile (__ex(ASM_VMX_INVVPID)
  339. /* CF==1 or ZF==1 --> rc = -1 */
  340. "; ja 1f ; ud2 ; 1:"
  341. : : "a"(&operand), "c"(ext) : "cc", "memory");
  342. }
  343. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  344. {
  345. struct {
  346. u64 eptp, gpa;
  347. } operand = {eptp, gpa};
  348. asm volatile (__ex(ASM_VMX_INVEPT)
  349. /* CF==1 or ZF==1 --> rc = -1 */
  350. "; ja 1f ; ud2 ; 1:\n"
  351. : : "a" (&operand), "c" (ext) : "cc", "memory");
  352. }
  353. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  354. {
  355. int i;
  356. i = __find_msr_index(vmx, msr);
  357. if (i >= 0)
  358. return &vmx->guest_msrs[i];
  359. return NULL;
  360. }
  361. static void vmcs_clear(struct vmcs *vmcs)
  362. {
  363. u64 phys_addr = __pa(vmcs);
  364. u8 error;
  365. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  366. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  367. : "cc", "memory");
  368. if (error)
  369. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  370. vmcs, phys_addr);
  371. }
  372. static void __vcpu_clear(void *arg)
  373. {
  374. struct vcpu_vmx *vmx = arg;
  375. int cpu = raw_smp_processor_id();
  376. if (vmx->vcpu.cpu == cpu)
  377. vmcs_clear(vmx->vmcs);
  378. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  379. per_cpu(current_vmcs, cpu) = NULL;
  380. rdtscll(vmx->vcpu.arch.host_tsc);
  381. list_del(&vmx->local_vcpus_link);
  382. vmx->vcpu.cpu = -1;
  383. vmx->launched = 0;
  384. }
  385. static void vcpu_clear(struct vcpu_vmx *vmx)
  386. {
  387. if (vmx->vcpu.cpu == -1)
  388. return;
  389. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  390. }
  391. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  392. {
  393. if (vmx->vpid == 0)
  394. return;
  395. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  396. }
  397. static inline void ept_sync_global(void)
  398. {
  399. if (cpu_has_vmx_invept_global())
  400. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  401. }
  402. static inline void ept_sync_context(u64 eptp)
  403. {
  404. if (enable_ept) {
  405. if (cpu_has_vmx_invept_context())
  406. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  407. else
  408. ept_sync_global();
  409. }
  410. }
  411. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  412. {
  413. if (enable_ept) {
  414. if (cpu_has_vmx_invept_individual_addr())
  415. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  416. eptp, gpa);
  417. else
  418. ept_sync_context(eptp);
  419. }
  420. }
  421. static unsigned long vmcs_readl(unsigned long field)
  422. {
  423. unsigned long value;
  424. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  425. : "=a"(value) : "d"(field) : "cc");
  426. return value;
  427. }
  428. static u16 vmcs_read16(unsigned long field)
  429. {
  430. return vmcs_readl(field);
  431. }
  432. static u32 vmcs_read32(unsigned long field)
  433. {
  434. return vmcs_readl(field);
  435. }
  436. static u64 vmcs_read64(unsigned long field)
  437. {
  438. #ifdef CONFIG_X86_64
  439. return vmcs_readl(field);
  440. #else
  441. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  442. #endif
  443. }
  444. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  445. {
  446. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  447. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  448. dump_stack();
  449. }
  450. static void vmcs_writel(unsigned long field, unsigned long value)
  451. {
  452. u8 error;
  453. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  454. : "=q"(error) : "a"(value), "d"(field) : "cc");
  455. if (unlikely(error))
  456. vmwrite_error(field, value);
  457. }
  458. static void vmcs_write16(unsigned long field, u16 value)
  459. {
  460. vmcs_writel(field, value);
  461. }
  462. static void vmcs_write32(unsigned long field, u32 value)
  463. {
  464. vmcs_writel(field, value);
  465. }
  466. static void vmcs_write64(unsigned long field, u64 value)
  467. {
  468. vmcs_writel(field, value);
  469. #ifndef CONFIG_X86_64
  470. asm volatile ("");
  471. vmcs_writel(field+1, value >> 32);
  472. #endif
  473. }
  474. static void vmcs_clear_bits(unsigned long field, u32 mask)
  475. {
  476. vmcs_writel(field, vmcs_readl(field) & ~mask);
  477. }
  478. static void vmcs_set_bits(unsigned long field, u32 mask)
  479. {
  480. vmcs_writel(field, vmcs_readl(field) | mask);
  481. }
  482. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  483. {
  484. u32 eb;
  485. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  486. if (!vcpu->fpu_active)
  487. eb |= 1u << NM_VECTOR;
  488. /*
  489. * Unconditionally intercept #DB so we can maintain dr6 without
  490. * reading it every exit.
  491. */
  492. eb |= 1u << DB_VECTOR;
  493. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  494. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  495. eb |= 1u << BP_VECTOR;
  496. }
  497. if (to_vmx(vcpu)->rmode.vm86_active)
  498. eb = ~0;
  499. if (enable_ept)
  500. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  501. vmcs_write32(EXCEPTION_BITMAP, eb);
  502. }
  503. static void reload_tss(void)
  504. {
  505. /*
  506. * VT restores TR but not its size. Useless.
  507. */
  508. struct descriptor_table gdt;
  509. struct desc_struct *descs;
  510. kvm_get_gdt(&gdt);
  511. descs = (void *)gdt.base;
  512. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  513. load_TR_desc();
  514. }
  515. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  516. {
  517. u64 guest_efer;
  518. u64 ignore_bits;
  519. guest_efer = vmx->vcpu.arch.shadow_efer;
  520. /*
  521. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  522. * outside long mode
  523. */
  524. ignore_bits = EFER_NX | EFER_SCE;
  525. #ifdef CONFIG_X86_64
  526. ignore_bits |= EFER_LMA | EFER_LME;
  527. /* SCE is meaningful only in long mode on Intel */
  528. if (guest_efer & EFER_LMA)
  529. ignore_bits &= ~(u64)EFER_SCE;
  530. #endif
  531. guest_efer &= ~ignore_bits;
  532. guest_efer |= host_efer & ignore_bits;
  533. vmx->guest_msrs[efer_offset].data = guest_efer;
  534. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  535. return true;
  536. }
  537. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  538. {
  539. struct vcpu_vmx *vmx = to_vmx(vcpu);
  540. int i;
  541. if (vmx->host_state.loaded)
  542. return;
  543. vmx->host_state.loaded = 1;
  544. /*
  545. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  546. * allow segment selectors with cpl > 0 or ti == 1.
  547. */
  548. vmx->host_state.ldt_sel = kvm_read_ldt();
  549. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  550. vmx->host_state.fs_sel = kvm_read_fs();
  551. if (!(vmx->host_state.fs_sel & 7)) {
  552. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  553. vmx->host_state.fs_reload_needed = 0;
  554. } else {
  555. vmcs_write16(HOST_FS_SELECTOR, 0);
  556. vmx->host_state.fs_reload_needed = 1;
  557. }
  558. vmx->host_state.gs_sel = kvm_read_gs();
  559. if (!(vmx->host_state.gs_sel & 7))
  560. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  561. else {
  562. vmcs_write16(HOST_GS_SELECTOR, 0);
  563. vmx->host_state.gs_ldt_reload_needed = 1;
  564. }
  565. #ifdef CONFIG_X86_64
  566. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  567. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  568. #else
  569. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  570. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  571. #endif
  572. #ifdef CONFIG_X86_64
  573. if (is_long_mode(&vmx->vcpu)) {
  574. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  575. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  576. }
  577. #endif
  578. for (i = 0; i < vmx->save_nmsrs; ++i)
  579. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  580. vmx->guest_msrs[i].data,
  581. vmx->guest_msrs[i].mask);
  582. }
  583. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  584. {
  585. unsigned long flags;
  586. if (!vmx->host_state.loaded)
  587. return;
  588. ++vmx->vcpu.stat.host_state_reload;
  589. vmx->host_state.loaded = 0;
  590. if (vmx->host_state.fs_reload_needed)
  591. kvm_load_fs(vmx->host_state.fs_sel);
  592. if (vmx->host_state.gs_ldt_reload_needed) {
  593. kvm_load_ldt(vmx->host_state.ldt_sel);
  594. /*
  595. * If we have to reload gs, we must take care to
  596. * preserve our gs base.
  597. */
  598. local_irq_save(flags);
  599. kvm_load_gs(vmx->host_state.gs_sel);
  600. #ifdef CONFIG_X86_64
  601. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  602. #endif
  603. local_irq_restore(flags);
  604. }
  605. reload_tss();
  606. #ifdef CONFIG_X86_64
  607. if (is_long_mode(&vmx->vcpu)) {
  608. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  609. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  610. }
  611. #endif
  612. }
  613. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  614. {
  615. preempt_disable();
  616. __vmx_load_host_state(vmx);
  617. preempt_enable();
  618. }
  619. /*
  620. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  621. * vcpu mutex is already taken.
  622. */
  623. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  624. {
  625. struct vcpu_vmx *vmx = to_vmx(vcpu);
  626. u64 phys_addr = __pa(vmx->vmcs);
  627. u64 tsc_this, delta, new_offset;
  628. if (vcpu->cpu != cpu) {
  629. vcpu_clear(vmx);
  630. kvm_migrate_timers(vcpu);
  631. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  632. local_irq_disable();
  633. list_add(&vmx->local_vcpus_link,
  634. &per_cpu(vcpus_on_cpu, cpu));
  635. local_irq_enable();
  636. }
  637. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  638. u8 error;
  639. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  640. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  641. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  642. : "cc");
  643. if (error)
  644. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  645. vmx->vmcs, phys_addr);
  646. }
  647. if (vcpu->cpu != cpu) {
  648. struct descriptor_table dt;
  649. unsigned long sysenter_esp;
  650. vcpu->cpu = cpu;
  651. /*
  652. * Linux uses per-cpu TSS and GDT, so set these when switching
  653. * processors.
  654. */
  655. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  656. kvm_get_gdt(&dt);
  657. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  658. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  659. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  660. /*
  661. * Make sure the time stamp counter is monotonous.
  662. */
  663. rdtscll(tsc_this);
  664. if (tsc_this < vcpu->arch.host_tsc) {
  665. delta = vcpu->arch.host_tsc - tsc_this;
  666. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  667. vmcs_write64(TSC_OFFSET, new_offset);
  668. }
  669. }
  670. }
  671. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  672. {
  673. __vmx_load_host_state(to_vmx(vcpu));
  674. }
  675. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  676. {
  677. if (vcpu->fpu_active)
  678. return;
  679. vcpu->fpu_active = 1;
  680. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  681. if (vcpu->arch.cr0 & X86_CR0_TS)
  682. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  683. update_exception_bitmap(vcpu);
  684. }
  685. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  686. {
  687. if (!vcpu->fpu_active)
  688. return;
  689. vcpu->fpu_active = 0;
  690. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  691. update_exception_bitmap(vcpu);
  692. }
  693. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  694. {
  695. unsigned long rflags;
  696. rflags = vmcs_readl(GUEST_RFLAGS);
  697. if (to_vmx(vcpu)->rmode.vm86_active)
  698. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  699. return rflags;
  700. }
  701. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  702. {
  703. if (to_vmx(vcpu)->rmode.vm86_active)
  704. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  705. vmcs_writel(GUEST_RFLAGS, rflags);
  706. }
  707. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  708. {
  709. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  710. int ret = 0;
  711. if (interruptibility & GUEST_INTR_STATE_STI)
  712. ret |= X86_SHADOW_INT_STI;
  713. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  714. ret |= X86_SHADOW_INT_MOV_SS;
  715. return ret & mask;
  716. }
  717. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  718. {
  719. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  720. u32 interruptibility = interruptibility_old;
  721. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  722. if (mask & X86_SHADOW_INT_MOV_SS)
  723. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  724. if (mask & X86_SHADOW_INT_STI)
  725. interruptibility |= GUEST_INTR_STATE_STI;
  726. if ((interruptibility != interruptibility_old))
  727. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  728. }
  729. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  730. {
  731. unsigned long rip;
  732. rip = kvm_rip_read(vcpu);
  733. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  734. kvm_rip_write(vcpu, rip);
  735. /* skipping an emulated instruction also counts */
  736. vmx_set_interrupt_shadow(vcpu, 0);
  737. }
  738. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  739. bool has_error_code, u32 error_code)
  740. {
  741. struct vcpu_vmx *vmx = to_vmx(vcpu);
  742. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  743. if (has_error_code) {
  744. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  745. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  746. }
  747. if (vmx->rmode.vm86_active) {
  748. vmx->rmode.irq.pending = true;
  749. vmx->rmode.irq.vector = nr;
  750. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  751. if (kvm_exception_is_soft(nr))
  752. vmx->rmode.irq.rip +=
  753. vmx->vcpu.arch.event_exit_inst_len;
  754. intr_info |= INTR_TYPE_SOFT_INTR;
  755. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  756. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  757. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  758. return;
  759. }
  760. if (kvm_exception_is_soft(nr)) {
  761. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  762. vmx->vcpu.arch.event_exit_inst_len);
  763. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  764. } else
  765. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  766. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  767. }
  768. static bool vmx_rdtscp_supported(void)
  769. {
  770. return cpu_has_vmx_rdtscp();
  771. }
  772. /*
  773. * Swap MSR entry in host/guest MSR entry array.
  774. */
  775. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  776. {
  777. struct shared_msr_entry tmp;
  778. tmp = vmx->guest_msrs[to];
  779. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  780. vmx->guest_msrs[from] = tmp;
  781. }
  782. /*
  783. * Set up the vmcs to automatically save and restore system
  784. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  785. * mode, as fiddling with msrs is very expensive.
  786. */
  787. static void setup_msrs(struct vcpu_vmx *vmx)
  788. {
  789. int save_nmsrs, index;
  790. unsigned long *msr_bitmap;
  791. vmx_load_host_state(vmx);
  792. save_nmsrs = 0;
  793. #ifdef CONFIG_X86_64
  794. if (is_long_mode(&vmx->vcpu)) {
  795. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  796. if (index >= 0)
  797. move_msr_up(vmx, index, save_nmsrs++);
  798. index = __find_msr_index(vmx, MSR_LSTAR);
  799. if (index >= 0)
  800. move_msr_up(vmx, index, save_nmsrs++);
  801. index = __find_msr_index(vmx, MSR_CSTAR);
  802. if (index >= 0)
  803. move_msr_up(vmx, index, save_nmsrs++);
  804. index = __find_msr_index(vmx, MSR_TSC_AUX);
  805. if (index >= 0 && vmx->rdtscp_enabled)
  806. move_msr_up(vmx, index, save_nmsrs++);
  807. /*
  808. * MSR_K6_STAR is only needed on long mode guests, and only
  809. * if efer.sce is enabled.
  810. */
  811. index = __find_msr_index(vmx, MSR_K6_STAR);
  812. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  813. move_msr_up(vmx, index, save_nmsrs++);
  814. }
  815. #endif
  816. index = __find_msr_index(vmx, MSR_EFER);
  817. if (index >= 0 && update_transition_efer(vmx, index))
  818. move_msr_up(vmx, index, save_nmsrs++);
  819. vmx->save_nmsrs = save_nmsrs;
  820. if (cpu_has_vmx_msr_bitmap()) {
  821. if (is_long_mode(&vmx->vcpu))
  822. msr_bitmap = vmx_msr_bitmap_longmode;
  823. else
  824. msr_bitmap = vmx_msr_bitmap_legacy;
  825. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  826. }
  827. }
  828. /*
  829. * reads and returns guest's timestamp counter "register"
  830. * guest_tsc = host_tsc + tsc_offset -- 21.3
  831. */
  832. static u64 guest_read_tsc(void)
  833. {
  834. u64 host_tsc, tsc_offset;
  835. rdtscll(host_tsc);
  836. tsc_offset = vmcs_read64(TSC_OFFSET);
  837. return host_tsc + tsc_offset;
  838. }
  839. /*
  840. * writes 'guest_tsc' into guest's timestamp counter "register"
  841. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  842. */
  843. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  844. {
  845. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  846. }
  847. /*
  848. * Reads an msr value (of 'msr_index') into 'pdata'.
  849. * Returns 0 on success, non-0 otherwise.
  850. * Assumes vcpu_load() was already called.
  851. */
  852. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  853. {
  854. u64 data;
  855. struct shared_msr_entry *msr;
  856. if (!pdata) {
  857. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  858. return -EINVAL;
  859. }
  860. switch (msr_index) {
  861. #ifdef CONFIG_X86_64
  862. case MSR_FS_BASE:
  863. data = vmcs_readl(GUEST_FS_BASE);
  864. break;
  865. case MSR_GS_BASE:
  866. data = vmcs_readl(GUEST_GS_BASE);
  867. break;
  868. case MSR_KERNEL_GS_BASE:
  869. vmx_load_host_state(to_vmx(vcpu));
  870. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  871. break;
  872. #endif
  873. case MSR_EFER:
  874. return kvm_get_msr_common(vcpu, msr_index, pdata);
  875. case MSR_IA32_TSC:
  876. data = guest_read_tsc();
  877. break;
  878. case MSR_IA32_SYSENTER_CS:
  879. data = vmcs_read32(GUEST_SYSENTER_CS);
  880. break;
  881. case MSR_IA32_SYSENTER_EIP:
  882. data = vmcs_readl(GUEST_SYSENTER_EIP);
  883. break;
  884. case MSR_IA32_SYSENTER_ESP:
  885. data = vmcs_readl(GUEST_SYSENTER_ESP);
  886. break;
  887. case MSR_TSC_AUX:
  888. if (!to_vmx(vcpu)->rdtscp_enabled)
  889. return 1;
  890. /* Otherwise falls through */
  891. default:
  892. vmx_load_host_state(to_vmx(vcpu));
  893. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  894. if (msr) {
  895. vmx_load_host_state(to_vmx(vcpu));
  896. data = msr->data;
  897. break;
  898. }
  899. return kvm_get_msr_common(vcpu, msr_index, pdata);
  900. }
  901. *pdata = data;
  902. return 0;
  903. }
  904. /*
  905. * Writes msr value into into the appropriate "register".
  906. * Returns 0 on success, non-0 otherwise.
  907. * Assumes vcpu_load() was already called.
  908. */
  909. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  910. {
  911. struct vcpu_vmx *vmx = to_vmx(vcpu);
  912. struct shared_msr_entry *msr;
  913. u64 host_tsc;
  914. int ret = 0;
  915. switch (msr_index) {
  916. case MSR_EFER:
  917. vmx_load_host_state(vmx);
  918. ret = kvm_set_msr_common(vcpu, msr_index, data);
  919. break;
  920. #ifdef CONFIG_X86_64
  921. case MSR_FS_BASE:
  922. vmcs_writel(GUEST_FS_BASE, data);
  923. break;
  924. case MSR_GS_BASE:
  925. vmcs_writel(GUEST_GS_BASE, data);
  926. break;
  927. case MSR_KERNEL_GS_BASE:
  928. vmx_load_host_state(vmx);
  929. vmx->msr_guest_kernel_gs_base = data;
  930. break;
  931. #endif
  932. case MSR_IA32_SYSENTER_CS:
  933. vmcs_write32(GUEST_SYSENTER_CS, data);
  934. break;
  935. case MSR_IA32_SYSENTER_EIP:
  936. vmcs_writel(GUEST_SYSENTER_EIP, data);
  937. break;
  938. case MSR_IA32_SYSENTER_ESP:
  939. vmcs_writel(GUEST_SYSENTER_ESP, data);
  940. break;
  941. case MSR_IA32_TSC:
  942. rdtscll(host_tsc);
  943. guest_write_tsc(data, host_tsc);
  944. break;
  945. case MSR_IA32_CR_PAT:
  946. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  947. vmcs_write64(GUEST_IA32_PAT, data);
  948. vcpu->arch.pat = data;
  949. break;
  950. }
  951. ret = kvm_set_msr_common(vcpu, msr_index, data);
  952. break;
  953. case MSR_TSC_AUX:
  954. if (!vmx->rdtscp_enabled)
  955. return 1;
  956. /* Check reserved bit, higher 32 bits should be zero */
  957. if ((data >> 32) != 0)
  958. return 1;
  959. /* Otherwise falls through */
  960. default:
  961. msr = find_msr_entry(vmx, msr_index);
  962. if (msr) {
  963. vmx_load_host_state(vmx);
  964. msr->data = data;
  965. break;
  966. }
  967. ret = kvm_set_msr_common(vcpu, msr_index, data);
  968. }
  969. return ret;
  970. }
  971. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  972. {
  973. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  974. switch (reg) {
  975. case VCPU_REGS_RSP:
  976. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  977. break;
  978. case VCPU_REGS_RIP:
  979. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  980. break;
  981. case VCPU_EXREG_PDPTR:
  982. if (enable_ept)
  983. ept_save_pdptrs(vcpu);
  984. break;
  985. default:
  986. break;
  987. }
  988. }
  989. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  990. {
  991. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  992. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  993. else
  994. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  995. update_exception_bitmap(vcpu);
  996. }
  997. static __init int cpu_has_kvm_support(void)
  998. {
  999. return cpu_has_vmx();
  1000. }
  1001. static __init int vmx_disabled_by_bios(void)
  1002. {
  1003. u64 msr;
  1004. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1005. return (msr & (FEATURE_CONTROL_LOCKED |
  1006. FEATURE_CONTROL_VMXON_ENABLED))
  1007. == FEATURE_CONTROL_LOCKED;
  1008. /* locked but not enabled */
  1009. }
  1010. static int hardware_enable(void *garbage)
  1011. {
  1012. int cpu = raw_smp_processor_id();
  1013. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1014. u64 old;
  1015. if (read_cr4() & X86_CR4_VMXE)
  1016. return -EBUSY;
  1017. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1018. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1019. if ((old & (FEATURE_CONTROL_LOCKED |
  1020. FEATURE_CONTROL_VMXON_ENABLED))
  1021. != (FEATURE_CONTROL_LOCKED |
  1022. FEATURE_CONTROL_VMXON_ENABLED))
  1023. /* enable and lock */
  1024. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1025. FEATURE_CONTROL_LOCKED |
  1026. FEATURE_CONTROL_VMXON_ENABLED);
  1027. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1028. asm volatile (ASM_VMX_VMXON_RAX
  1029. : : "a"(&phys_addr), "m"(phys_addr)
  1030. : "memory", "cc");
  1031. ept_sync_global();
  1032. return 0;
  1033. }
  1034. static void vmclear_local_vcpus(void)
  1035. {
  1036. int cpu = raw_smp_processor_id();
  1037. struct vcpu_vmx *vmx, *n;
  1038. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1039. local_vcpus_link)
  1040. __vcpu_clear(vmx);
  1041. }
  1042. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1043. * tricks.
  1044. */
  1045. static void kvm_cpu_vmxoff(void)
  1046. {
  1047. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1048. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1049. }
  1050. static void hardware_disable(void *garbage)
  1051. {
  1052. vmclear_local_vcpus();
  1053. kvm_cpu_vmxoff();
  1054. }
  1055. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1056. u32 msr, u32 *result)
  1057. {
  1058. u32 vmx_msr_low, vmx_msr_high;
  1059. u32 ctl = ctl_min | ctl_opt;
  1060. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1061. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1062. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1063. /* Ensure minimum (required) set of control bits are supported. */
  1064. if (ctl_min & ~ctl)
  1065. return -EIO;
  1066. *result = ctl;
  1067. return 0;
  1068. }
  1069. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1070. {
  1071. u32 vmx_msr_low, vmx_msr_high;
  1072. u32 min, opt, min2, opt2;
  1073. u32 _pin_based_exec_control = 0;
  1074. u32 _cpu_based_exec_control = 0;
  1075. u32 _cpu_based_2nd_exec_control = 0;
  1076. u32 _vmexit_control = 0;
  1077. u32 _vmentry_control = 0;
  1078. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1079. opt = PIN_BASED_VIRTUAL_NMIS;
  1080. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1081. &_pin_based_exec_control) < 0)
  1082. return -EIO;
  1083. min = CPU_BASED_HLT_EXITING |
  1084. #ifdef CONFIG_X86_64
  1085. CPU_BASED_CR8_LOAD_EXITING |
  1086. CPU_BASED_CR8_STORE_EXITING |
  1087. #endif
  1088. CPU_BASED_CR3_LOAD_EXITING |
  1089. CPU_BASED_CR3_STORE_EXITING |
  1090. CPU_BASED_USE_IO_BITMAPS |
  1091. CPU_BASED_MOV_DR_EXITING |
  1092. CPU_BASED_USE_TSC_OFFSETING |
  1093. CPU_BASED_MWAIT_EXITING |
  1094. CPU_BASED_MONITOR_EXITING |
  1095. CPU_BASED_INVLPG_EXITING;
  1096. opt = CPU_BASED_TPR_SHADOW |
  1097. CPU_BASED_USE_MSR_BITMAPS |
  1098. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1099. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1100. &_cpu_based_exec_control) < 0)
  1101. return -EIO;
  1102. #ifdef CONFIG_X86_64
  1103. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1104. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1105. ~CPU_BASED_CR8_STORE_EXITING;
  1106. #endif
  1107. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1108. min2 = 0;
  1109. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1110. SECONDARY_EXEC_WBINVD_EXITING |
  1111. SECONDARY_EXEC_ENABLE_VPID |
  1112. SECONDARY_EXEC_ENABLE_EPT |
  1113. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1114. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1115. SECONDARY_EXEC_RDTSCP;
  1116. if (adjust_vmx_controls(min2, opt2,
  1117. MSR_IA32_VMX_PROCBASED_CTLS2,
  1118. &_cpu_based_2nd_exec_control) < 0)
  1119. return -EIO;
  1120. }
  1121. #ifndef CONFIG_X86_64
  1122. if (!(_cpu_based_2nd_exec_control &
  1123. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1124. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1125. #endif
  1126. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1127. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1128. enabled */
  1129. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1130. CPU_BASED_CR3_STORE_EXITING |
  1131. CPU_BASED_INVLPG_EXITING);
  1132. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1133. vmx_capability.ept, vmx_capability.vpid);
  1134. }
  1135. min = 0;
  1136. #ifdef CONFIG_X86_64
  1137. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1138. #endif
  1139. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1140. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1141. &_vmexit_control) < 0)
  1142. return -EIO;
  1143. min = 0;
  1144. opt = VM_ENTRY_LOAD_IA32_PAT;
  1145. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1146. &_vmentry_control) < 0)
  1147. return -EIO;
  1148. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1149. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1150. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1151. return -EIO;
  1152. #ifdef CONFIG_X86_64
  1153. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1154. if (vmx_msr_high & (1u<<16))
  1155. return -EIO;
  1156. #endif
  1157. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1158. if (((vmx_msr_high >> 18) & 15) != 6)
  1159. return -EIO;
  1160. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1161. vmcs_conf->order = get_order(vmcs_config.size);
  1162. vmcs_conf->revision_id = vmx_msr_low;
  1163. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1164. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1165. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1166. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1167. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1168. return 0;
  1169. }
  1170. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1171. {
  1172. int node = cpu_to_node(cpu);
  1173. struct page *pages;
  1174. struct vmcs *vmcs;
  1175. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1176. if (!pages)
  1177. return NULL;
  1178. vmcs = page_address(pages);
  1179. memset(vmcs, 0, vmcs_config.size);
  1180. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1181. return vmcs;
  1182. }
  1183. static struct vmcs *alloc_vmcs(void)
  1184. {
  1185. return alloc_vmcs_cpu(raw_smp_processor_id());
  1186. }
  1187. static void free_vmcs(struct vmcs *vmcs)
  1188. {
  1189. free_pages((unsigned long)vmcs, vmcs_config.order);
  1190. }
  1191. static void free_kvm_area(void)
  1192. {
  1193. int cpu;
  1194. for_each_possible_cpu(cpu) {
  1195. free_vmcs(per_cpu(vmxarea, cpu));
  1196. per_cpu(vmxarea, cpu) = NULL;
  1197. }
  1198. }
  1199. static __init int alloc_kvm_area(void)
  1200. {
  1201. int cpu;
  1202. for_each_possible_cpu(cpu) {
  1203. struct vmcs *vmcs;
  1204. vmcs = alloc_vmcs_cpu(cpu);
  1205. if (!vmcs) {
  1206. free_kvm_area();
  1207. return -ENOMEM;
  1208. }
  1209. per_cpu(vmxarea, cpu) = vmcs;
  1210. }
  1211. return 0;
  1212. }
  1213. static __init int hardware_setup(void)
  1214. {
  1215. if (setup_vmcs_config(&vmcs_config) < 0)
  1216. return -EIO;
  1217. if (boot_cpu_has(X86_FEATURE_NX))
  1218. kvm_enable_efer_bits(EFER_NX);
  1219. if (!cpu_has_vmx_vpid())
  1220. enable_vpid = 0;
  1221. if (!cpu_has_vmx_ept()) {
  1222. enable_ept = 0;
  1223. enable_unrestricted_guest = 0;
  1224. }
  1225. if (!cpu_has_vmx_unrestricted_guest())
  1226. enable_unrestricted_guest = 0;
  1227. if (!cpu_has_vmx_flexpriority())
  1228. flexpriority_enabled = 0;
  1229. if (!cpu_has_vmx_tpr_shadow())
  1230. kvm_x86_ops->update_cr8_intercept = NULL;
  1231. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1232. kvm_disable_largepages();
  1233. if (!cpu_has_vmx_ple())
  1234. ple_gap = 0;
  1235. return alloc_kvm_area();
  1236. }
  1237. static __exit void hardware_unsetup(void)
  1238. {
  1239. free_kvm_area();
  1240. }
  1241. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1242. {
  1243. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1244. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1245. vmcs_write16(sf->selector, save->selector);
  1246. vmcs_writel(sf->base, save->base);
  1247. vmcs_write32(sf->limit, save->limit);
  1248. vmcs_write32(sf->ar_bytes, save->ar);
  1249. } else {
  1250. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1251. << AR_DPL_SHIFT;
  1252. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1253. }
  1254. }
  1255. static void enter_pmode(struct kvm_vcpu *vcpu)
  1256. {
  1257. unsigned long flags;
  1258. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1259. vmx->emulation_required = 1;
  1260. vmx->rmode.vm86_active = 0;
  1261. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1262. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1263. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1264. flags = vmcs_readl(GUEST_RFLAGS);
  1265. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1266. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1267. vmcs_writel(GUEST_RFLAGS, flags);
  1268. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1269. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1270. update_exception_bitmap(vcpu);
  1271. if (emulate_invalid_guest_state)
  1272. return;
  1273. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1274. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1275. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1276. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1277. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1278. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1279. vmcs_write16(GUEST_CS_SELECTOR,
  1280. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1281. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1282. }
  1283. static gva_t rmode_tss_base(struct kvm *kvm)
  1284. {
  1285. if (!kvm->arch.tss_addr) {
  1286. struct kvm_memslots *slots;
  1287. gfn_t base_gfn;
  1288. slots = rcu_dereference(kvm->memslots);
  1289. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1290. kvm->memslots->memslots[0].npages - 3;
  1291. return base_gfn << PAGE_SHIFT;
  1292. }
  1293. return kvm->arch.tss_addr;
  1294. }
  1295. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1296. {
  1297. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1298. save->selector = vmcs_read16(sf->selector);
  1299. save->base = vmcs_readl(sf->base);
  1300. save->limit = vmcs_read32(sf->limit);
  1301. save->ar = vmcs_read32(sf->ar_bytes);
  1302. vmcs_write16(sf->selector, save->base >> 4);
  1303. vmcs_write32(sf->base, save->base & 0xfffff);
  1304. vmcs_write32(sf->limit, 0xffff);
  1305. vmcs_write32(sf->ar_bytes, 0xf3);
  1306. }
  1307. static void enter_rmode(struct kvm_vcpu *vcpu)
  1308. {
  1309. unsigned long flags;
  1310. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1311. if (enable_unrestricted_guest)
  1312. return;
  1313. vmx->emulation_required = 1;
  1314. vmx->rmode.vm86_active = 1;
  1315. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1316. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1317. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1318. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1319. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1320. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1321. flags = vmcs_readl(GUEST_RFLAGS);
  1322. vmx->rmode.save_iopl
  1323. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1324. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1325. vmcs_writel(GUEST_RFLAGS, flags);
  1326. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1327. update_exception_bitmap(vcpu);
  1328. if (emulate_invalid_guest_state)
  1329. goto continue_rmode;
  1330. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1331. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1332. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1333. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1334. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1335. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1336. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1337. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1338. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1339. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1340. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1341. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1342. continue_rmode:
  1343. kvm_mmu_reset_context(vcpu);
  1344. init_rmode(vcpu->kvm);
  1345. }
  1346. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1347. {
  1348. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1349. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1350. if (!msr)
  1351. return;
  1352. /*
  1353. * Force kernel_gs_base reloading before EFER changes, as control
  1354. * of this msr depends on is_long_mode().
  1355. */
  1356. vmx_load_host_state(to_vmx(vcpu));
  1357. vcpu->arch.shadow_efer = efer;
  1358. if (!msr)
  1359. return;
  1360. if (efer & EFER_LMA) {
  1361. vmcs_write32(VM_ENTRY_CONTROLS,
  1362. vmcs_read32(VM_ENTRY_CONTROLS) |
  1363. VM_ENTRY_IA32E_MODE);
  1364. msr->data = efer;
  1365. } else {
  1366. vmcs_write32(VM_ENTRY_CONTROLS,
  1367. vmcs_read32(VM_ENTRY_CONTROLS) &
  1368. ~VM_ENTRY_IA32E_MODE);
  1369. msr->data = efer & ~EFER_LME;
  1370. }
  1371. setup_msrs(vmx);
  1372. }
  1373. #ifdef CONFIG_X86_64
  1374. static void enter_lmode(struct kvm_vcpu *vcpu)
  1375. {
  1376. u32 guest_tr_ar;
  1377. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1378. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1379. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1380. __func__);
  1381. vmcs_write32(GUEST_TR_AR_BYTES,
  1382. (guest_tr_ar & ~AR_TYPE_MASK)
  1383. | AR_TYPE_BUSY_64_TSS);
  1384. }
  1385. vcpu->arch.shadow_efer |= EFER_LMA;
  1386. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1387. }
  1388. static void exit_lmode(struct kvm_vcpu *vcpu)
  1389. {
  1390. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1391. vmcs_write32(VM_ENTRY_CONTROLS,
  1392. vmcs_read32(VM_ENTRY_CONTROLS)
  1393. & ~VM_ENTRY_IA32E_MODE);
  1394. }
  1395. #endif
  1396. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1397. {
  1398. vpid_sync_vcpu_all(to_vmx(vcpu));
  1399. if (enable_ept)
  1400. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1401. }
  1402. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1403. {
  1404. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1405. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1406. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1407. }
  1408. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1409. {
  1410. if (!test_bit(VCPU_EXREG_PDPTR,
  1411. (unsigned long *)&vcpu->arch.regs_dirty))
  1412. return;
  1413. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1414. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1415. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1416. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1417. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1418. }
  1419. }
  1420. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1421. {
  1422. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1423. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1424. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1425. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1426. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1427. }
  1428. __set_bit(VCPU_EXREG_PDPTR,
  1429. (unsigned long *)&vcpu->arch.regs_avail);
  1430. __set_bit(VCPU_EXREG_PDPTR,
  1431. (unsigned long *)&vcpu->arch.regs_dirty);
  1432. }
  1433. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1434. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1435. unsigned long cr0,
  1436. struct kvm_vcpu *vcpu)
  1437. {
  1438. if (!(cr0 & X86_CR0_PG)) {
  1439. /* From paging/starting to nonpaging */
  1440. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1441. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1442. (CPU_BASED_CR3_LOAD_EXITING |
  1443. CPU_BASED_CR3_STORE_EXITING));
  1444. vcpu->arch.cr0 = cr0;
  1445. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1446. } else if (!is_paging(vcpu)) {
  1447. /* From nonpaging to paging */
  1448. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1449. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1450. ~(CPU_BASED_CR3_LOAD_EXITING |
  1451. CPU_BASED_CR3_STORE_EXITING));
  1452. vcpu->arch.cr0 = cr0;
  1453. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1454. }
  1455. if (!(cr0 & X86_CR0_WP))
  1456. *hw_cr0 &= ~X86_CR0_WP;
  1457. }
  1458. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1459. {
  1460. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1461. unsigned long hw_cr0;
  1462. if (enable_unrestricted_guest)
  1463. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1464. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1465. else
  1466. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1467. vmx_fpu_deactivate(vcpu);
  1468. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1469. enter_pmode(vcpu);
  1470. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1471. enter_rmode(vcpu);
  1472. #ifdef CONFIG_X86_64
  1473. if (vcpu->arch.shadow_efer & EFER_LME) {
  1474. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1475. enter_lmode(vcpu);
  1476. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1477. exit_lmode(vcpu);
  1478. }
  1479. #endif
  1480. if (enable_ept)
  1481. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1482. vmcs_writel(CR0_READ_SHADOW, cr0);
  1483. vmcs_writel(GUEST_CR0, hw_cr0);
  1484. vcpu->arch.cr0 = cr0;
  1485. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1486. vmx_fpu_activate(vcpu);
  1487. }
  1488. static u64 construct_eptp(unsigned long root_hpa)
  1489. {
  1490. u64 eptp;
  1491. /* TODO write the value reading from MSR */
  1492. eptp = VMX_EPT_DEFAULT_MT |
  1493. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1494. eptp |= (root_hpa & PAGE_MASK);
  1495. return eptp;
  1496. }
  1497. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1498. {
  1499. unsigned long guest_cr3;
  1500. u64 eptp;
  1501. guest_cr3 = cr3;
  1502. if (enable_ept) {
  1503. eptp = construct_eptp(cr3);
  1504. vmcs_write64(EPT_POINTER, eptp);
  1505. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1506. vcpu->kvm->arch.ept_identity_map_addr;
  1507. ept_load_pdptrs(vcpu);
  1508. }
  1509. vmx_flush_tlb(vcpu);
  1510. vmcs_writel(GUEST_CR3, guest_cr3);
  1511. if (vcpu->arch.cr0 & X86_CR0_PE)
  1512. vmx_fpu_deactivate(vcpu);
  1513. }
  1514. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1515. {
  1516. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1517. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1518. vcpu->arch.cr4 = cr4;
  1519. if (enable_ept) {
  1520. if (!is_paging(vcpu)) {
  1521. hw_cr4 &= ~X86_CR4_PAE;
  1522. hw_cr4 |= X86_CR4_PSE;
  1523. } else if (!(cr4 & X86_CR4_PAE)) {
  1524. hw_cr4 &= ~X86_CR4_PAE;
  1525. }
  1526. }
  1527. vmcs_writel(CR4_READ_SHADOW, cr4);
  1528. vmcs_writel(GUEST_CR4, hw_cr4);
  1529. }
  1530. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1531. {
  1532. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1533. return vmcs_readl(sf->base);
  1534. }
  1535. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1536. struct kvm_segment *var, int seg)
  1537. {
  1538. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1539. u32 ar;
  1540. var->base = vmcs_readl(sf->base);
  1541. var->limit = vmcs_read32(sf->limit);
  1542. var->selector = vmcs_read16(sf->selector);
  1543. ar = vmcs_read32(sf->ar_bytes);
  1544. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1545. ar = 0;
  1546. var->type = ar & 15;
  1547. var->s = (ar >> 4) & 1;
  1548. var->dpl = (ar >> 5) & 3;
  1549. var->present = (ar >> 7) & 1;
  1550. var->avl = (ar >> 12) & 1;
  1551. var->l = (ar >> 13) & 1;
  1552. var->db = (ar >> 14) & 1;
  1553. var->g = (ar >> 15) & 1;
  1554. var->unusable = (ar >> 16) & 1;
  1555. }
  1556. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1557. {
  1558. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1559. return 0;
  1560. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1561. return 3;
  1562. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1563. }
  1564. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1565. {
  1566. u32 ar;
  1567. if (var->unusable)
  1568. ar = 1 << 16;
  1569. else {
  1570. ar = var->type & 15;
  1571. ar |= (var->s & 1) << 4;
  1572. ar |= (var->dpl & 3) << 5;
  1573. ar |= (var->present & 1) << 7;
  1574. ar |= (var->avl & 1) << 12;
  1575. ar |= (var->l & 1) << 13;
  1576. ar |= (var->db & 1) << 14;
  1577. ar |= (var->g & 1) << 15;
  1578. }
  1579. if (ar == 0) /* a 0 value means unusable */
  1580. ar = AR_UNUSABLE_MASK;
  1581. return ar;
  1582. }
  1583. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1584. struct kvm_segment *var, int seg)
  1585. {
  1586. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1587. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1588. u32 ar;
  1589. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1590. vmx->rmode.tr.selector = var->selector;
  1591. vmx->rmode.tr.base = var->base;
  1592. vmx->rmode.tr.limit = var->limit;
  1593. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1594. return;
  1595. }
  1596. vmcs_writel(sf->base, var->base);
  1597. vmcs_write32(sf->limit, var->limit);
  1598. vmcs_write16(sf->selector, var->selector);
  1599. if (vmx->rmode.vm86_active && var->s) {
  1600. /*
  1601. * Hack real-mode segments into vm86 compatibility.
  1602. */
  1603. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1604. vmcs_writel(sf->base, 0xf0000);
  1605. ar = 0xf3;
  1606. } else
  1607. ar = vmx_segment_access_rights(var);
  1608. /*
  1609. * Fix the "Accessed" bit in AR field of segment registers for older
  1610. * qemu binaries.
  1611. * IA32 arch specifies that at the time of processor reset the
  1612. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1613. * is setting it to 0 in the usedland code. This causes invalid guest
  1614. * state vmexit when "unrestricted guest" mode is turned on.
  1615. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1616. * tree. Newer qemu binaries with that qemu fix would not need this
  1617. * kvm hack.
  1618. */
  1619. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1620. ar |= 0x1; /* Accessed */
  1621. vmcs_write32(sf->ar_bytes, ar);
  1622. }
  1623. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1624. {
  1625. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1626. *db = (ar >> 14) & 1;
  1627. *l = (ar >> 13) & 1;
  1628. }
  1629. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1630. {
  1631. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1632. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1633. }
  1634. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1635. {
  1636. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1637. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1638. }
  1639. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1640. {
  1641. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1642. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1643. }
  1644. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1645. {
  1646. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1647. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1648. }
  1649. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1650. {
  1651. struct kvm_segment var;
  1652. u32 ar;
  1653. vmx_get_segment(vcpu, &var, seg);
  1654. ar = vmx_segment_access_rights(&var);
  1655. if (var.base != (var.selector << 4))
  1656. return false;
  1657. if (var.limit != 0xffff)
  1658. return false;
  1659. if (ar != 0xf3)
  1660. return false;
  1661. return true;
  1662. }
  1663. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1664. {
  1665. struct kvm_segment cs;
  1666. unsigned int cs_rpl;
  1667. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1668. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1669. if (cs.unusable)
  1670. return false;
  1671. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1672. return false;
  1673. if (!cs.s)
  1674. return false;
  1675. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1676. if (cs.dpl > cs_rpl)
  1677. return false;
  1678. } else {
  1679. if (cs.dpl != cs_rpl)
  1680. return false;
  1681. }
  1682. if (!cs.present)
  1683. return false;
  1684. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1685. return true;
  1686. }
  1687. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1688. {
  1689. struct kvm_segment ss;
  1690. unsigned int ss_rpl;
  1691. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1692. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1693. if (ss.unusable)
  1694. return true;
  1695. if (ss.type != 3 && ss.type != 7)
  1696. return false;
  1697. if (!ss.s)
  1698. return false;
  1699. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1700. return false;
  1701. if (!ss.present)
  1702. return false;
  1703. return true;
  1704. }
  1705. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1706. {
  1707. struct kvm_segment var;
  1708. unsigned int rpl;
  1709. vmx_get_segment(vcpu, &var, seg);
  1710. rpl = var.selector & SELECTOR_RPL_MASK;
  1711. if (var.unusable)
  1712. return true;
  1713. if (!var.s)
  1714. return false;
  1715. if (!var.present)
  1716. return false;
  1717. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1718. if (var.dpl < rpl) /* DPL < RPL */
  1719. return false;
  1720. }
  1721. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1722. * rights flags
  1723. */
  1724. return true;
  1725. }
  1726. static bool tr_valid(struct kvm_vcpu *vcpu)
  1727. {
  1728. struct kvm_segment tr;
  1729. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1730. if (tr.unusable)
  1731. return false;
  1732. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1733. return false;
  1734. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1735. return false;
  1736. if (!tr.present)
  1737. return false;
  1738. return true;
  1739. }
  1740. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1741. {
  1742. struct kvm_segment ldtr;
  1743. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1744. if (ldtr.unusable)
  1745. return true;
  1746. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1747. return false;
  1748. if (ldtr.type != 2)
  1749. return false;
  1750. if (!ldtr.present)
  1751. return false;
  1752. return true;
  1753. }
  1754. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1755. {
  1756. struct kvm_segment cs, ss;
  1757. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1758. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1759. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1760. (ss.selector & SELECTOR_RPL_MASK));
  1761. }
  1762. /*
  1763. * Check if guest state is valid. Returns true if valid, false if
  1764. * not.
  1765. * We assume that registers are always usable
  1766. */
  1767. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1768. {
  1769. /* real mode guest state checks */
  1770. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1771. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1772. return false;
  1773. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1774. return false;
  1775. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1776. return false;
  1777. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1778. return false;
  1779. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1780. return false;
  1781. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1782. return false;
  1783. } else {
  1784. /* protected mode guest state checks */
  1785. if (!cs_ss_rpl_check(vcpu))
  1786. return false;
  1787. if (!code_segment_valid(vcpu))
  1788. return false;
  1789. if (!stack_segment_valid(vcpu))
  1790. return false;
  1791. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1792. return false;
  1793. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1794. return false;
  1795. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1796. return false;
  1797. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1798. return false;
  1799. if (!tr_valid(vcpu))
  1800. return false;
  1801. if (!ldtr_valid(vcpu))
  1802. return false;
  1803. }
  1804. /* TODO:
  1805. * - Add checks on RIP
  1806. * - Add checks on RFLAGS
  1807. */
  1808. return true;
  1809. }
  1810. static int init_rmode_tss(struct kvm *kvm)
  1811. {
  1812. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1813. u16 data = 0;
  1814. int ret = 0;
  1815. int r;
  1816. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1817. if (r < 0)
  1818. goto out;
  1819. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1820. r = kvm_write_guest_page(kvm, fn++, &data,
  1821. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1822. if (r < 0)
  1823. goto out;
  1824. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1825. if (r < 0)
  1826. goto out;
  1827. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1828. if (r < 0)
  1829. goto out;
  1830. data = ~0;
  1831. r = kvm_write_guest_page(kvm, fn, &data,
  1832. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1833. sizeof(u8));
  1834. if (r < 0)
  1835. goto out;
  1836. ret = 1;
  1837. out:
  1838. return ret;
  1839. }
  1840. static int init_rmode_identity_map(struct kvm *kvm)
  1841. {
  1842. int i, r, ret;
  1843. pfn_t identity_map_pfn;
  1844. u32 tmp;
  1845. if (!enable_ept)
  1846. return 1;
  1847. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1848. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1849. "haven't been allocated!\n");
  1850. return 0;
  1851. }
  1852. if (likely(kvm->arch.ept_identity_pagetable_done))
  1853. return 1;
  1854. ret = 0;
  1855. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1856. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1857. if (r < 0)
  1858. goto out;
  1859. /* Set up identity-mapping pagetable for EPT in real mode */
  1860. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1861. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1862. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1863. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1864. &tmp, i * sizeof(tmp), sizeof(tmp));
  1865. if (r < 0)
  1866. goto out;
  1867. }
  1868. kvm->arch.ept_identity_pagetable_done = true;
  1869. ret = 1;
  1870. out:
  1871. return ret;
  1872. }
  1873. static void seg_setup(int seg)
  1874. {
  1875. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1876. unsigned int ar;
  1877. vmcs_write16(sf->selector, 0);
  1878. vmcs_writel(sf->base, 0);
  1879. vmcs_write32(sf->limit, 0xffff);
  1880. if (enable_unrestricted_guest) {
  1881. ar = 0x93;
  1882. if (seg == VCPU_SREG_CS)
  1883. ar |= 0x08; /* code segment */
  1884. } else
  1885. ar = 0xf3;
  1886. vmcs_write32(sf->ar_bytes, ar);
  1887. }
  1888. static int alloc_apic_access_page(struct kvm *kvm)
  1889. {
  1890. struct kvm_userspace_memory_region kvm_userspace_mem;
  1891. int r = 0;
  1892. mutex_lock(&kvm->slots_lock);
  1893. if (kvm->arch.apic_access_page)
  1894. goto out;
  1895. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1896. kvm_userspace_mem.flags = 0;
  1897. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1898. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1899. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1900. if (r)
  1901. goto out;
  1902. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1903. out:
  1904. mutex_unlock(&kvm->slots_lock);
  1905. return r;
  1906. }
  1907. static int alloc_identity_pagetable(struct kvm *kvm)
  1908. {
  1909. struct kvm_userspace_memory_region kvm_userspace_mem;
  1910. int r = 0;
  1911. mutex_lock(&kvm->slots_lock);
  1912. if (kvm->arch.ept_identity_pagetable)
  1913. goto out;
  1914. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1915. kvm_userspace_mem.flags = 0;
  1916. kvm_userspace_mem.guest_phys_addr =
  1917. kvm->arch.ept_identity_map_addr;
  1918. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1919. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1920. if (r)
  1921. goto out;
  1922. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1923. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1924. out:
  1925. mutex_unlock(&kvm->slots_lock);
  1926. return r;
  1927. }
  1928. static void allocate_vpid(struct vcpu_vmx *vmx)
  1929. {
  1930. int vpid;
  1931. vmx->vpid = 0;
  1932. if (!enable_vpid)
  1933. return;
  1934. spin_lock(&vmx_vpid_lock);
  1935. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1936. if (vpid < VMX_NR_VPIDS) {
  1937. vmx->vpid = vpid;
  1938. __set_bit(vpid, vmx_vpid_bitmap);
  1939. }
  1940. spin_unlock(&vmx_vpid_lock);
  1941. }
  1942. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1943. {
  1944. int f = sizeof(unsigned long);
  1945. if (!cpu_has_vmx_msr_bitmap())
  1946. return;
  1947. /*
  1948. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1949. * have the write-low and read-high bitmap offsets the wrong way round.
  1950. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1951. */
  1952. if (msr <= 0x1fff) {
  1953. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1954. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1955. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1956. msr &= 0x1fff;
  1957. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1958. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1959. }
  1960. }
  1961. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1962. {
  1963. if (!longmode_only)
  1964. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1965. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1966. }
  1967. /*
  1968. * Sets up the vmcs for emulated real mode.
  1969. */
  1970. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1971. {
  1972. u32 host_sysenter_cs, msr_low, msr_high;
  1973. u32 junk;
  1974. u64 host_pat, tsc_this, tsc_base;
  1975. unsigned long a;
  1976. struct descriptor_table dt;
  1977. int i;
  1978. unsigned long kvm_vmx_return;
  1979. u32 exec_control;
  1980. /* I/O */
  1981. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1982. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1983. if (cpu_has_vmx_msr_bitmap())
  1984. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1985. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1986. /* Control */
  1987. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1988. vmcs_config.pin_based_exec_ctrl);
  1989. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1990. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1991. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1992. #ifdef CONFIG_X86_64
  1993. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1994. CPU_BASED_CR8_LOAD_EXITING;
  1995. #endif
  1996. }
  1997. if (!enable_ept)
  1998. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1999. CPU_BASED_CR3_LOAD_EXITING |
  2000. CPU_BASED_INVLPG_EXITING;
  2001. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2002. if (cpu_has_secondary_exec_ctrls()) {
  2003. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2004. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2005. exec_control &=
  2006. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2007. if (vmx->vpid == 0)
  2008. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2009. if (!enable_ept) {
  2010. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2011. enable_unrestricted_guest = 0;
  2012. }
  2013. if (!enable_unrestricted_guest)
  2014. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2015. if (!ple_gap)
  2016. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2017. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2018. }
  2019. if (ple_gap) {
  2020. vmcs_write32(PLE_GAP, ple_gap);
  2021. vmcs_write32(PLE_WINDOW, ple_window);
  2022. }
  2023. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2024. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2025. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2026. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2027. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2028. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2029. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2030. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2031. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2032. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2033. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2034. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2035. #ifdef CONFIG_X86_64
  2036. rdmsrl(MSR_FS_BASE, a);
  2037. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2038. rdmsrl(MSR_GS_BASE, a);
  2039. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2040. #else
  2041. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2042. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2043. #endif
  2044. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2045. kvm_get_idt(&dt);
  2046. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2047. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2048. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2049. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2050. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2051. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2052. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2053. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2054. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2055. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2056. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2057. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2058. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2059. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2060. host_pat = msr_low | ((u64) msr_high << 32);
  2061. vmcs_write64(HOST_IA32_PAT, host_pat);
  2062. }
  2063. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2064. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2065. host_pat = msr_low | ((u64) msr_high << 32);
  2066. /* Write the default value follow host pat */
  2067. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2068. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2069. vmx->vcpu.arch.pat = host_pat;
  2070. }
  2071. for (i = 0; i < NR_VMX_MSR; ++i) {
  2072. u32 index = vmx_msr_index[i];
  2073. u32 data_low, data_high;
  2074. int j = vmx->nmsrs;
  2075. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2076. continue;
  2077. if (wrmsr_safe(index, data_low, data_high) < 0)
  2078. continue;
  2079. vmx->guest_msrs[j].index = i;
  2080. vmx->guest_msrs[j].data = 0;
  2081. vmx->guest_msrs[j].mask = -1ull;
  2082. ++vmx->nmsrs;
  2083. }
  2084. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2085. /* 22.2.1, 20.8.1 */
  2086. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2087. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2088. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2089. if (enable_ept)
  2090. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2091. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2092. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2093. rdtscll(tsc_this);
  2094. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2095. tsc_base = tsc_this;
  2096. guest_write_tsc(0, tsc_base);
  2097. return 0;
  2098. }
  2099. static int init_rmode(struct kvm *kvm)
  2100. {
  2101. if (!init_rmode_tss(kvm))
  2102. return 0;
  2103. if (!init_rmode_identity_map(kvm))
  2104. return 0;
  2105. return 1;
  2106. }
  2107. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2108. {
  2109. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2110. u64 msr;
  2111. int ret, idx;
  2112. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2113. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2114. if (!init_rmode(vmx->vcpu.kvm)) {
  2115. ret = -ENOMEM;
  2116. goto out;
  2117. }
  2118. vmx->rmode.vm86_active = 0;
  2119. vmx->soft_vnmi_blocked = 0;
  2120. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2121. kvm_set_cr8(&vmx->vcpu, 0);
  2122. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2123. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2124. msr |= MSR_IA32_APICBASE_BSP;
  2125. kvm_set_apic_base(&vmx->vcpu, msr);
  2126. fx_init(&vmx->vcpu);
  2127. seg_setup(VCPU_SREG_CS);
  2128. /*
  2129. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2130. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2131. */
  2132. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2133. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2134. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2135. } else {
  2136. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2137. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2138. }
  2139. seg_setup(VCPU_SREG_DS);
  2140. seg_setup(VCPU_SREG_ES);
  2141. seg_setup(VCPU_SREG_FS);
  2142. seg_setup(VCPU_SREG_GS);
  2143. seg_setup(VCPU_SREG_SS);
  2144. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2145. vmcs_writel(GUEST_TR_BASE, 0);
  2146. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2147. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2148. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2149. vmcs_writel(GUEST_LDTR_BASE, 0);
  2150. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2151. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2152. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2153. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2154. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2155. vmcs_writel(GUEST_RFLAGS, 0x02);
  2156. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2157. kvm_rip_write(vcpu, 0xfff0);
  2158. else
  2159. kvm_rip_write(vcpu, 0);
  2160. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2161. vmcs_writel(GUEST_DR7, 0x400);
  2162. vmcs_writel(GUEST_GDTR_BASE, 0);
  2163. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2164. vmcs_writel(GUEST_IDTR_BASE, 0);
  2165. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2166. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2167. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2168. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2169. /* Special registers */
  2170. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2171. setup_msrs(vmx);
  2172. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2173. if (cpu_has_vmx_tpr_shadow()) {
  2174. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2175. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2176. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2177. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2178. vmcs_write32(TPR_THRESHOLD, 0);
  2179. }
  2180. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2181. vmcs_write64(APIC_ACCESS_ADDR,
  2182. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2183. if (vmx->vpid != 0)
  2184. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2185. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2186. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2187. vmx_set_cr4(&vmx->vcpu, 0);
  2188. vmx_set_efer(&vmx->vcpu, 0);
  2189. vmx_fpu_activate(&vmx->vcpu);
  2190. update_exception_bitmap(&vmx->vcpu);
  2191. vpid_sync_vcpu_all(vmx);
  2192. ret = 0;
  2193. /* HACK: Don't enable emulation on guest boot/reset */
  2194. vmx->emulation_required = 0;
  2195. out:
  2196. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2197. return ret;
  2198. }
  2199. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2200. {
  2201. u32 cpu_based_vm_exec_control;
  2202. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2203. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2204. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2205. }
  2206. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2207. {
  2208. u32 cpu_based_vm_exec_control;
  2209. if (!cpu_has_virtual_nmis()) {
  2210. enable_irq_window(vcpu);
  2211. return;
  2212. }
  2213. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2214. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2215. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2216. }
  2217. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2218. {
  2219. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2220. uint32_t intr;
  2221. int irq = vcpu->arch.interrupt.nr;
  2222. trace_kvm_inj_virq(irq);
  2223. ++vcpu->stat.irq_injections;
  2224. if (vmx->rmode.vm86_active) {
  2225. vmx->rmode.irq.pending = true;
  2226. vmx->rmode.irq.vector = irq;
  2227. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2228. if (vcpu->arch.interrupt.soft)
  2229. vmx->rmode.irq.rip +=
  2230. vmx->vcpu.arch.event_exit_inst_len;
  2231. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2232. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2233. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2234. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2235. return;
  2236. }
  2237. intr = irq | INTR_INFO_VALID_MASK;
  2238. if (vcpu->arch.interrupt.soft) {
  2239. intr |= INTR_TYPE_SOFT_INTR;
  2240. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2241. vmx->vcpu.arch.event_exit_inst_len);
  2242. } else
  2243. intr |= INTR_TYPE_EXT_INTR;
  2244. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2245. }
  2246. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2247. {
  2248. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2249. if (!cpu_has_virtual_nmis()) {
  2250. /*
  2251. * Tracking the NMI-blocked state in software is built upon
  2252. * finding the next open IRQ window. This, in turn, depends on
  2253. * well-behaving guests: They have to keep IRQs disabled at
  2254. * least as long as the NMI handler runs. Otherwise we may
  2255. * cause NMI nesting, maybe breaking the guest. But as this is
  2256. * highly unlikely, we can live with the residual risk.
  2257. */
  2258. vmx->soft_vnmi_blocked = 1;
  2259. vmx->vnmi_blocked_time = 0;
  2260. }
  2261. ++vcpu->stat.nmi_injections;
  2262. if (vmx->rmode.vm86_active) {
  2263. vmx->rmode.irq.pending = true;
  2264. vmx->rmode.irq.vector = NMI_VECTOR;
  2265. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2266. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2267. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2268. INTR_INFO_VALID_MASK);
  2269. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2270. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2271. return;
  2272. }
  2273. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2274. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2275. }
  2276. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2277. {
  2278. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2279. return 0;
  2280. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2281. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2282. GUEST_INTR_STATE_NMI));
  2283. }
  2284. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2285. {
  2286. if (!cpu_has_virtual_nmis())
  2287. return to_vmx(vcpu)->soft_vnmi_blocked;
  2288. else
  2289. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2290. GUEST_INTR_STATE_NMI);
  2291. }
  2292. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2293. {
  2294. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2295. if (!cpu_has_virtual_nmis()) {
  2296. if (vmx->soft_vnmi_blocked != masked) {
  2297. vmx->soft_vnmi_blocked = masked;
  2298. vmx->vnmi_blocked_time = 0;
  2299. }
  2300. } else {
  2301. if (masked)
  2302. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2303. GUEST_INTR_STATE_NMI);
  2304. else
  2305. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2306. GUEST_INTR_STATE_NMI);
  2307. }
  2308. }
  2309. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2310. {
  2311. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2312. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2313. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2314. }
  2315. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2316. {
  2317. int ret;
  2318. struct kvm_userspace_memory_region tss_mem = {
  2319. .slot = TSS_PRIVATE_MEMSLOT,
  2320. .guest_phys_addr = addr,
  2321. .memory_size = PAGE_SIZE * 3,
  2322. .flags = 0,
  2323. };
  2324. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2325. if (ret)
  2326. return ret;
  2327. kvm->arch.tss_addr = addr;
  2328. return 0;
  2329. }
  2330. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2331. int vec, u32 err_code)
  2332. {
  2333. /*
  2334. * Instruction with address size override prefix opcode 0x67
  2335. * Cause the #SS fault with 0 error code in VM86 mode.
  2336. */
  2337. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2338. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2339. return 1;
  2340. /*
  2341. * Forward all other exceptions that are valid in real mode.
  2342. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2343. * the required debugging infrastructure rework.
  2344. */
  2345. switch (vec) {
  2346. case DB_VECTOR:
  2347. if (vcpu->guest_debug &
  2348. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2349. return 0;
  2350. kvm_queue_exception(vcpu, vec);
  2351. return 1;
  2352. case BP_VECTOR:
  2353. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2354. return 0;
  2355. /* fall through */
  2356. case DE_VECTOR:
  2357. case OF_VECTOR:
  2358. case BR_VECTOR:
  2359. case UD_VECTOR:
  2360. case DF_VECTOR:
  2361. case SS_VECTOR:
  2362. case GP_VECTOR:
  2363. case MF_VECTOR:
  2364. kvm_queue_exception(vcpu, vec);
  2365. return 1;
  2366. }
  2367. return 0;
  2368. }
  2369. /*
  2370. * Trigger machine check on the host. We assume all the MSRs are already set up
  2371. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2372. * We pass a fake environment to the machine check handler because we want
  2373. * the guest to be always treated like user space, no matter what context
  2374. * it used internally.
  2375. */
  2376. static void kvm_machine_check(void)
  2377. {
  2378. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2379. struct pt_regs regs = {
  2380. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2381. .flags = X86_EFLAGS_IF,
  2382. };
  2383. do_machine_check(&regs, 0);
  2384. #endif
  2385. }
  2386. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2387. {
  2388. /* already handled by vcpu_run */
  2389. return 1;
  2390. }
  2391. static int handle_exception(struct kvm_vcpu *vcpu)
  2392. {
  2393. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2394. struct kvm_run *kvm_run = vcpu->run;
  2395. u32 intr_info, ex_no, error_code;
  2396. unsigned long cr2, rip, dr6;
  2397. u32 vect_info;
  2398. enum emulation_result er;
  2399. vect_info = vmx->idt_vectoring_info;
  2400. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2401. if (is_machine_check(intr_info))
  2402. return handle_machine_check(vcpu);
  2403. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2404. !is_page_fault(intr_info)) {
  2405. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2406. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2407. vcpu->run->internal.ndata = 2;
  2408. vcpu->run->internal.data[0] = vect_info;
  2409. vcpu->run->internal.data[1] = intr_info;
  2410. return 0;
  2411. }
  2412. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2413. return 1; /* already handled by vmx_vcpu_run() */
  2414. if (is_no_device(intr_info)) {
  2415. vmx_fpu_activate(vcpu);
  2416. return 1;
  2417. }
  2418. if (is_invalid_opcode(intr_info)) {
  2419. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2420. if (er != EMULATE_DONE)
  2421. kvm_queue_exception(vcpu, UD_VECTOR);
  2422. return 1;
  2423. }
  2424. error_code = 0;
  2425. rip = kvm_rip_read(vcpu);
  2426. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2427. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2428. if (is_page_fault(intr_info)) {
  2429. /* EPT won't cause page fault directly */
  2430. if (enable_ept)
  2431. BUG();
  2432. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2433. trace_kvm_page_fault(cr2, error_code);
  2434. if (kvm_event_needs_reinjection(vcpu))
  2435. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2436. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2437. }
  2438. if (vmx->rmode.vm86_active &&
  2439. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2440. error_code)) {
  2441. if (vcpu->arch.halt_request) {
  2442. vcpu->arch.halt_request = 0;
  2443. return kvm_emulate_halt(vcpu);
  2444. }
  2445. return 1;
  2446. }
  2447. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2448. switch (ex_no) {
  2449. case DB_VECTOR:
  2450. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2451. if (!(vcpu->guest_debug &
  2452. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2453. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2454. kvm_queue_exception(vcpu, DB_VECTOR);
  2455. return 1;
  2456. }
  2457. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2458. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2459. /* fall through */
  2460. case BP_VECTOR:
  2461. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2462. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2463. kvm_run->debug.arch.exception = ex_no;
  2464. break;
  2465. default:
  2466. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2467. kvm_run->ex.exception = ex_no;
  2468. kvm_run->ex.error_code = error_code;
  2469. break;
  2470. }
  2471. return 0;
  2472. }
  2473. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2474. {
  2475. ++vcpu->stat.irq_exits;
  2476. return 1;
  2477. }
  2478. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2479. {
  2480. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2481. return 0;
  2482. }
  2483. static int handle_io(struct kvm_vcpu *vcpu)
  2484. {
  2485. unsigned long exit_qualification;
  2486. int size, in, string;
  2487. unsigned port;
  2488. ++vcpu->stat.io_exits;
  2489. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2490. string = (exit_qualification & 16) != 0;
  2491. if (string) {
  2492. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2493. return 0;
  2494. return 1;
  2495. }
  2496. size = (exit_qualification & 7) + 1;
  2497. in = (exit_qualification & 8) != 0;
  2498. port = exit_qualification >> 16;
  2499. skip_emulated_instruction(vcpu);
  2500. return kvm_emulate_pio(vcpu, in, size, port);
  2501. }
  2502. static void
  2503. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2504. {
  2505. /*
  2506. * Patch in the VMCALL instruction:
  2507. */
  2508. hypercall[0] = 0x0f;
  2509. hypercall[1] = 0x01;
  2510. hypercall[2] = 0xc1;
  2511. }
  2512. static int handle_cr(struct kvm_vcpu *vcpu)
  2513. {
  2514. unsigned long exit_qualification, val;
  2515. int cr;
  2516. int reg;
  2517. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2518. cr = exit_qualification & 15;
  2519. reg = (exit_qualification >> 8) & 15;
  2520. switch ((exit_qualification >> 4) & 3) {
  2521. case 0: /* mov to cr */
  2522. val = kvm_register_read(vcpu, reg);
  2523. trace_kvm_cr_write(cr, val);
  2524. switch (cr) {
  2525. case 0:
  2526. kvm_set_cr0(vcpu, val);
  2527. skip_emulated_instruction(vcpu);
  2528. return 1;
  2529. case 3:
  2530. kvm_set_cr3(vcpu, val);
  2531. skip_emulated_instruction(vcpu);
  2532. return 1;
  2533. case 4:
  2534. kvm_set_cr4(vcpu, val);
  2535. skip_emulated_instruction(vcpu);
  2536. return 1;
  2537. case 8: {
  2538. u8 cr8_prev = kvm_get_cr8(vcpu);
  2539. u8 cr8 = kvm_register_read(vcpu, reg);
  2540. kvm_set_cr8(vcpu, cr8);
  2541. skip_emulated_instruction(vcpu);
  2542. if (irqchip_in_kernel(vcpu->kvm))
  2543. return 1;
  2544. if (cr8_prev <= cr8)
  2545. return 1;
  2546. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2547. return 0;
  2548. }
  2549. };
  2550. break;
  2551. case 2: /* clts */
  2552. vmx_fpu_deactivate(vcpu);
  2553. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2554. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2555. vmx_fpu_activate(vcpu);
  2556. skip_emulated_instruction(vcpu);
  2557. return 1;
  2558. case 1: /*mov from cr*/
  2559. switch (cr) {
  2560. case 3:
  2561. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2562. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2563. skip_emulated_instruction(vcpu);
  2564. return 1;
  2565. case 8:
  2566. val = kvm_get_cr8(vcpu);
  2567. kvm_register_write(vcpu, reg, val);
  2568. trace_kvm_cr_read(cr, val);
  2569. skip_emulated_instruction(vcpu);
  2570. return 1;
  2571. }
  2572. break;
  2573. case 3: /* lmsw */
  2574. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2575. skip_emulated_instruction(vcpu);
  2576. return 1;
  2577. default:
  2578. break;
  2579. }
  2580. vcpu->run->exit_reason = 0;
  2581. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2582. (int)(exit_qualification >> 4) & 3, cr);
  2583. return 0;
  2584. }
  2585. static int handle_dr(struct kvm_vcpu *vcpu)
  2586. {
  2587. unsigned long exit_qualification;
  2588. unsigned long val;
  2589. int dr, reg;
  2590. if (!kvm_require_cpl(vcpu, 0))
  2591. return 1;
  2592. dr = vmcs_readl(GUEST_DR7);
  2593. if (dr & DR7_GD) {
  2594. /*
  2595. * As the vm-exit takes precedence over the debug trap, we
  2596. * need to emulate the latter, either for the host or the
  2597. * guest debugging itself.
  2598. */
  2599. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2600. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2601. vcpu->run->debug.arch.dr7 = dr;
  2602. vcpu->run->debug.arch.pc =
  2603. vmcs_readl(GUEST_CS_BASE) +
  2604. vmcs_readl(GUEST_RIP);
  2605. vcpu->run->debug.arch.exception = DB_VECTOR;
  2606. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2607. return 0;
  2608. } else {
  2609. vcpu->arch.dr7 &= ~DR7_GD;
  2610. vcpu->arch.dr6 |= DR6_BD;
  2611. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2612. kvm_queue_exception(vcpu, DB_VECTOR);
  2613. return 1;
  2614. }
  2615. }
  2616. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2617. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2618. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2619. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2620. switch (dr) {
  2621. case 0 ... 3:
  2622. val = vcpu->arch.db[dr];
  2623. break;
  2624. case 6:
  2625. val = vcpu->arch.dr6;
  2626. break;
  2627. case 7:
  2628. val = vcpu->arch.dr7;
  2629. break;
  2630. default:
  2631. val = 0;
  2632. }
  2633. kvm_register_write(vcpu, reg, val);
  2634. } else {
  2635. val = vcpu->arch.regs[reg];
  2636. switch (dr) {
  2637. case 0 ... 3:
  2638. vcpu->arch.db[dr] = val;
  2639. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2640. vcpu->arch.eff_db[dr] = val;
  2641. break;
  2642. case 4 ... 5:
  2643. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  2644. kvm_queue_exception(vcpu, UD_VECTOR);
  2645. break;
  2646. case 6:
  2647. if (val & 0xffffffff00000000ULL) {
  2648. kvm_queue_exception(vcpu, GP_VECTOR);
  2649. break;
  2650. }
  2651. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2652. break;
  2653. case 7:
  2654. if (val & 0xffffffff00000000ULL) {
  2655. kvm_queue_exception(vcpu, GP_VECTOR);
  2656. break;
  2657. }
  2658. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2659. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2660. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2661. vcpu->arch.switch_db_regs =
  2662. (val & DR7_BP_EN_MASK);
  2663. }
  2664. break;
  2665. }
  2666. }
  2667. skip_emulated_instruction(vcpu);
  2668. return 1;
  2669. }
  2670. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2671. {
  2672. kvm_emulate_cpuid(vcpu);
  2673. return 1;
  2674. }
  2675. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2676. {
  2677. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2678. u64 data;
  2679. if (vmx_get_msr(vcpu, ecx, &data)) {
  2680. kvm_inject_gp(vcpu, 0);
  2681. return 1;
  2682. }
  2683. trace_kvm_msr_read(ecx, data);
  2684. /* FIXME: handling of bits 32:63 of rax, rdx */
  2685. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2686. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2687. skip_emulated_instruction(vcpu);
  2688. return 1;
  2689. }
  2690. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2691. {
  2692. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2693. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2694. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2695. trace_kvm_msr_write(ecx, data);
  2696. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2697. kvm_inject_gp(vcpu, 0);
  2698. return 1;
  2699. }
  2700. skip_emulated_instruction(vcpu);
  2701. return 1;
  2702. }
  2703. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2704. {
  2705. return 1;
  2706. }
  2707. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2708. {
  2709. u32 cpu_based_vm_exec_control;
  2710. /* clear pending irq */
  2711. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2712. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2713. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2714. ++vcpu->stat.irq_window_exits;
  2715. /*
  2716. * If the user space waits to inject interrupts, exit as soon as
  2717. * possible
  2718. */
  2719. if (!irqchip_in_kernel(vcpu->kvm) &&
  2720. vcpu->run->request_interrupt_window &&
  2721. !kvm_cpu_has_interrupt(vcpu)) {
  2722. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2723. return 0;
  2724. }
  2725. return 1;
  2726. }
  2727. static int handle_halt(struct kvm_vcpu *vcpu)
  2728. {
  2729. skip_emulated_instruction(vcpu);
  2730. return kvm_emulate_halt(vcpu);
  2731. }
  2732. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2733. {
  2734. skip_emulated_instruction(vcpu);
  2735. kvm_emulate_hypercall(vcpu);
  2736. return 1;
  2737. }
  2738. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2739. {
  2740. kvm_queue_exception(vcpu, UD_VECTOR);
  2741. return 1;
  2742. }
  2743. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2744. {
  2745. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2746. kvm_mmu_invlpg(vcpu, exit_qualification);
  2747. skip_emulated_instruction(vcpu);
  2748. return 1;
  2749. }
  2750. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2751. {
  2752. skip_emulated_instruction(vcpu);
  2753. /* TODO: Add support for VT-d/pass-through device */
  2754. return 1;
  2755. }
  2756. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2757. {
  2758. unsigned long exit_qualification;
  2759. enum emulation_result er;
  2760. unsigned long offset;
  2761. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2762. offset = exit_qualification & 0xffful;
  2763. er = emulate_instruction(vcpu, 0, 0, 0);
  2764. if (er != EMULATE_DONE) {
  2765. printk(KERN_ERR
  2766. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2767. offset);
  2768. return -ENOEXEC;
  2769. }
  2770. return 1;
  2771. }
  2772. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2773. {
  2774. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2775. unsigned long exit_qualification;
  2776. u16 tss_selector;
  2777. int reason, type, idt_v;
  2778. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2779. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2780. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2781. reason = (u32)exit_qualification >> 30;
  2782. if (reason == TASK_SWITCH_GATE && idt_v) {
  2783. switch (type) {
  2784. case INTR_TYPE_NMI_INTR:
  2785. vcpu->arch.nmi_injected = false;
  2786. if (cpu_has_virtual_nmis())
  2787. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2788. GUEST_INTR_STATE_NMI);
  2789. break;
  2790. case INTR_TYPE_EXT_INTR:
  2791. case INTR_TYPE_SOFT_INTR:
  2792. kvm_clear_interrupt_queue(vcpu);
  2793. break;
  2794. case INTR_TYPE_HARD_EXCEPTION:
  2795. case INTR_TYPE_SOFT_EXCEPTION:
  2796. kvm_clear_exception_queue(vcpu);
  2797. break;
  2798. default:
  2799. break;
  2800. }
  2801. }
  2802. tss_selector = exit_qualification;
  2803. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2804. type != INTR_TYPE_EXT_INTR &&
  2805. type != INTR_TYPE_NMI_INTR))
  2806. skip_emulated_instruction(vcpu);
  2807. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2808. return 0;
  2809. /* clear all local breakpoint enable flags */
  2810. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2811. /*
  2812. * TODO: What about debug traps on tss switch?
  2813. * Are we supposed to inject them and update dr6?
  2814. */
  2815. return 1;
  2816. }
  2817. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2818. {
  2819. unsigned long exit_qualification;
  2820. gpa_t gpa;
  2821. int gla_validity;
  2822. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2823. if (exit_qualification & (1 << 6)) {
  2824. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2825. return -EINVAL;
  2826. }
  2827. gla_validity = (exit_qualification >> 7) & 0x3;
  2828. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2829. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2830. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2831. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2832. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2833. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2834. (long unsigned int)exit_qualification);
  2835. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2836. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2837. return 0;
  2838. }
  2839. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2840. trace_kvm_page_fault(gpa, exit_qualification);
  2841. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2842. }
  2843. static u64 ept_rsvd_mask(u64 spte, int level)
  2844. {
  2845. int i;
  2846. u64 mask = 0;
  2847. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2848. mask |= (1ULL << i);
  2849. if (level > 2)
  2850. /* bits 7:3 reserved */
  2851. mask |= 0xf8;
  2852. else if (level == 2) {
  2853. if (spte & (1ULL << 7))
  2854. /* 2MB ref, bits 20:12 reserved */
  2855. mask |= 0x1ff000;
  2856. else
  2857. /* bits 6:3 reserved */
  2858. mask |= 0x78;
  2859. }
  2860. return mask;
  2861. }
  2862. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2863. int level)
  2864. {
  2865. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2866. /* 010b (write-only) */
  2867. WARN_ON((spte & 0x7) == 0x2);
  2868. /* 110b (write/execute) */
  2869. WARN_ON((spte & 0x7) == 0x6);
  2870. /* 100b (execute-only) and value not supported by logical processor */
  2871. if (!cpu_has_vmx_ept_execute_only())
  2872. WARN_ON((spte & 0x7) == 0x4);
  2873. /* not 000b */
  2874. if ((spte & 0x7)) {
  2875. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2876. if (rsvd_bits != 0) {
  2877. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2878. __func__, rsvd_bits);
  2879. WARN_ON(1);
  2880. }
  2881. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2882. u64 ept_mem_type = (spte & 0x38) >> 3;
  2883. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2884. ept_mem_type == 7) {
  2885. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2886. __func__, ept_mem_type);
  2887. WARN_ON(1);
  2888. }
  2889. }
  2890. }
  2891. }
  2892. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2893. {
  2894. u64 sptes[4];
  2895. int nr_sptes, i;
  2896. gpa_t gpa;
  2897. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2898. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2899. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2900. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2901. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2902. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2903. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2904. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2905. return 0;
  2906. }
  2907. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2908. {
  2909. u32 cpu_based_vm_exec_control;
  2910. /* clear pending NMI */
  2911. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2912. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2913. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2914. ++vcpu->stat.nmi_window_exits;
  2915. return 1;
  2916. }
  2917. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2918. {
  2919. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2920. enum emulation_result err = EMULATE_DONE;
  2921. int ret = 1;
  2922. while (!guest_state_valid(vcpu)) {
  2923. err = emulate_instruction(vcpu, 0, 0, 0);
  2924. if (err == EMULATE_DO_MMIO) {
  2925. ret = 0;
  2926. goto out;
  2927. }
  2928. if (err != EMULATE_DONE) {
  2929. kvm_report_emulation_failure(vcpu, "emulation failure");
  2930. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2931. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2932. vcpu->run->internal.ndata = 0;
  2933. ret = 0;
  2934. goto out;
  2935. }
  2936. if (signal_pending(current))
  2937. goto out;
  2938. if (need_resched())
  2939. schedule();
  2940. }
  2941. vmx->emulation_required = 0;
  2942. out:
  2943. return ret;
  2944. }
  2945. /*
  2946. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2947. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2948. */
  2949. static int handle_pause(struct kvm_vcpu *vcpu)
  2950. {
  2951. skip_emulated_instruction(vcpu);
  2952. kvm_vcpu_on_spin(vcpu);
  2953. return 1;
  2954. }
  2955. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2956. {
  2957. kvm_queue_exception(vcpu, UD_VECTOR);
  2958. return 1;
  2959. }
  2960. /*
  2961. * The exit handlers return 1 if the exit was handled fully and guest execution
  2962. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2963. * to be done to userspace and return 0.
  2964. */
  2965. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2966. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2967. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2968. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2969. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2970. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2971. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2972. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2973. [EXIT_REASON_CPUID] = handle_cpuid,
  2974. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2975. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2976. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2977. [EXIT_REASON_HLT] = handle_halt,
  2978. [EXIT_REASON_INVLPG] = handle_invlpg,
  2979. [EXIT_REASON_VMCALL] = handle_vmcall,
  2980. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2981. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2982. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2983. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2984. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2985. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2986. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2987. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2988. [EXIT_REASON_VMON] = handle_vmx_insn,
  2989. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2990. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2991. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2992. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2993. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2994. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2995. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2996. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2997. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  2998. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  2999. };
  3000. static const int kvm_vmx_max_exit_handlers =
  3001. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3002. /*
  3003. * The guest has exited. See if we can fix it or if we need userspace
  3004. * assistance.
  3005. */
  3006. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3007. {
  3008. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3009. u32 exit_reason = vmx->exit_reason;
  3010. u32 vectoring_info = vmx->idt_vectoring_info;
  3011. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  3012. /* If guest state is invalid, start emulating */
  3013. if (vmx->emulation_required && emulate_invalid_guest_state)
  3014. return handle_invalid_guest_state(vcpu);
  3015. /* Access CR3 don't cause VMExit in paging mode, so we need
  3016. * to sync with guest real CR3. */
  3017. if (enable_ept && is_paging(vcpu))
  3018. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3019. if (unlikely(vmx->fail)) {
  3020. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3021. vcpu->run->fail_entry.hardware_entry_failure_reason
  3022. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3023. return 0;
  3024. }
  3025. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3026. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3027. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3028. exit_reason != EXIT_REASON_TASK_SWITCH))
  3029. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3030. "(0x%x) and exit reason is 0x%x\n",
  3031. __func__, vectoring_info, exit_reason);
  3032. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3033. if (vmx_interrupt_allowed(vcpu)) {
  3034. vmx->soft_vnmi_blocked = 0;
  3035. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3036. vcpu->arch.nmi_pending) {
  3037. /*
  3038. * This CPU don't support us in finding the end of an
  3039. * NMI-blocked window if the guest runs with IRQs
  3040. * disabled. So we pull the trigger after 1 s of
  3041. * futile waiting, but inform the user about this.
  3042. */
  3043. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3044. "state on VCPU %d after 1 s timeout\n",
  3045. __func__, vcpu->vcpu_id);
  3046. vmx->soft_vnmi_blocked = 0;
  3047. }
  3048. }
  3049. if (exit_reason < kvm_vmx_max_exit_handlers
  3050. && kvm_vmx_exit_handlers[exit_reason])
  3051. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3052. else {
  3053. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3054. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3055. }
  3056. return 0;
  3057. }
  3058. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3059. {
  3060. if (irr == -1 || tpr < irr) {
  3061. vmcs_write32(TPR_THRESHOLD, 0);
  3062. return;
  3063. }
  3064. vmcs_write32(TPR_THRESHOLD, irr);
  3065. }
  3066. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3067. {
  3068. u32 exit_intr_info;
  3069. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3070. bool unblock_nmi;
  3071. u8 vector;
  3072. int type;
  3073. bool idtv_info_valid;
  3074. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3075. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3076. /* Handle machine checks before interrupts are enabled */
  3077. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3078. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3079. && is_machine_check(exit_intr_info)))
  3080. kvm_machine_check();
  3081. /* We need to handle NMIs before interrupts are enabled */
  3082. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3083. (exit_intr_info & INTR_INFO_VALID_MASK))
  3084. asm("int $2");
  3085. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3086. if (cpu_has_virtual_nmis()) {
  3087. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3088. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3089. /*
  3090. * SDM 3: 27.7.1.2 (September 2008)
  3091. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3092. * a guest IRET fault.
  3093. * SDM 3: 23.2.2 (September 2008)
  3094. * Bit 12 is undefined in any of the following cases:
  3095. * If the VM exit sets the valid bit in the IDT-vectoring
  3096. * information field.
  3097. * If the VM exit is due to a double fault.
  3098. */
  3099. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3100. vector != DF_VECTOR && !idtv_info_valid)
  3101. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3102. GUEST_INTR_STATE_NMI);
  3103. } else if (unlikely(vmx->soft_vnmi_blocked))
  3104. vmx->vnmi_blocked_time +=
  3105. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3106. vmx->vcpu.arch.nmi_injected = false;
  3107. kvm_clear_exception_queue(&vmx->vcpu);
  3108. kvm_clear_interrupt_queue(&vmx->vcpu);
  3109. if (!idtv_info_valid)
  3110. return;
  3111. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3112. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3113. switch (type) {
  3114. case INTR_TYPE_NMI_INTR:
  3115. vmx->vcpu.arch.nmi_injected = true;
  3116. /*
  3117. * SDM 3: 27.7.1.2 (September 2008)
  3118. * Clear bit "block by NMI" before VM entry if a NMI
  3119. * delivery faulted.
  3120. */
  3121. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3122. GUEST_INTR_STATE_NMI);
  3123. break;
  3124. case INTR_TYPE_SOFT_EXCEPTION:
  3125. vmx->vcpu.arch.event_exit_inst_len =
  3126. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3127. /* fall through */
  3128. case INTR_TYPE_HARD_EXCEPTION:
  3129. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3130. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3131. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3132. } else
  3133. kvm_queue_exception(&vmx->vcpu, vector);
  3134. break;
  3135. case INTR_TYPE_SOFT_INTR:
  3136. vmx->vcpu.arch.event_exit_inst_len =
  3137. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3138. /* fall through */
  3139. case INTR_TYPE_EXT_INTR:
  3140. kvm_queue_interrupt(&vmx->vcpu, vector,
  3141. type == INTR_TYPE_SOFT_INTR);
  3142. break;
  3143. default:
  3144. break;
  3145. }
  3146. }
  3147. /*
  3148. * Failure to inject an interrupt should give us the information
  3149. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3150. * when fetching the interrupt redirection bitmap in the real-mode
  3151. * tss, this doesn't happen. So we do it ourselves.
  3152. */
  3153. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3154. {
  3155. vmx->rmode.irq.pending = 0;
  3156. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3157. return;
  3158. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3159. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3160. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3161. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3162. return;
  3163. }
  3164. vmx->idt_vectoring_info =
  3165. VECTORING_INFO_VALID_MASK
  3166. | INTR_TYPE_EXT_INTR
  3167. | vmx->rmode.irq.vector;
  3168. }
  3169. #ifdef CONFIG_X86_64
  3170. #define R "r"
  3171. #define Q "q"
  3172. #else
  3173. #define R "e"
  3174. #define Q "l"
  3175. #endif
  3176. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3177. {
  3178. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3179. /* Record the guest's net vcpu time for enforced NMI injections. */
  3180. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3181. vmx->entry_time = ktime_get();
  3182. /* Don't enter VMX if guest state is invalid, let the exit handler
  3183. start emulation until we arrive back to a valid state */
  3184. if (vmx->emulation_required && emulate_invalid_guest_state)
  3185. return;
  3186. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3187. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3188. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3189. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3190. /* When single-stepping over STI and MOV SS, we must clear the
  3191. * corresponding interruptibility bits in the guest state. Otherwise
  3192. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3193. * exceptions being set, but that's not correct for the guest debugging
  3194. * case. */
  3195. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3196. vmx_set_interrupt_shadow(vcpu, 0);
  3197. /*
  3198. * Loading guest fpu may have cleared host cr0.ts
  3199. */
  3200. vmcs_writel(HOST_CR0, read_cr0());
  3201. if (vcpu->arch.switch_db_regs)
  3202. set_debugreg(vcpu->arch.dr6, 6);
  3203. asm(
  3204. /* Store host registers */
  3205. "push %%"R"dx; push %%"R"bp;"
  3206. "push %%"R"cx \n\t"
  3207. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3208. "je 1f \n\t"
  3209. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3210. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3211. "1: \n\t"
  3212. /* Reload cr2 if changed */
  3213. "mov %c[cr2](%0), %%"R"ax \n\t"
  3214. "mov %%cr2, %%"R"dx \n\t"
  3215. "cmp %%"R"ax, %%"R"dx \n\t"
  3216. "je 2f \n\t"
  3217. "mov %%"R"ax, %%cr2 \n\t"
  3218. "2: \n\t"
  3219. /* Check if vmlaunch of vmresume is needed */
  3220. "cmpl $0, %c[launched](%0) \n\t"
  3221. /* Load guest registers. Don't clobber flags. */
  3222. "mov %c[rax](%0), %%"R"ax \n\t"
  3223. "mov %c[rbx](%0), %%"R"bx \n\t"
  3224. "mov %c[rdx](%0), %%"R"dx \n\t"
  3225. "mov %c[rsi](%0), %%"R"si \n\t"
  3226. "mov %c[rdi](%0), %%"R"di \n\t"
  3227. "mov %c[rbp](%0), %%"R"bp \n\t"
  3228. #ifdef CONFIG_X86_64
  3229. "mov %c[r8](%0), %%r8 \n\t"
  3230. "mov %c[r9](%0), %%r9 \n\t"
  3231. "mov %c[r10](%0), %%r10 \n\t"
  3232. "mov %c[r11](%0), %%r11 \n\t"
  3233. "mov %c[r12](%0), %%r12 \n\t"
  3234. "mov %c[r13](%0), %%r13 \n\t"
  3235. "mov %c[r14](%0), %%r14 \n\t"
  3236. "mov %c[r15](%0), %%r15 \n\t"
  3237. #endif
  3238. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3239. /* Enter guest mode */
  3240. "jne .Llaunched \n\t"
  3241. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3242. "jmp .Lkvm_vmx_return \n\t"
  3243. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3244. ".Lkvm_vmx_return: "
  3245. /* Save guest registers, load host registers, keep flags */
  3246. "xchg %0, (%%"R"sp) \n\t"
  3247. "mov %%"R"ax, %c[rax](%0) \n\t"
  3248. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3249. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3250. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3251. "mov %%"R"si, %c[rsi](%0) \n\t"
  3252. "mov %%"R"di, %c[rdi](%0) \n\t"
  3253. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3254. #ifdef CONFIG_X86_64
  3255. "mov %%r8, %c[r8](%0) \n\t"
  3256. "mov %%r9, %c[r9](%0) \n\t"
  3257. "mov %%r10, %c[r10](%0) \n\t"
  3258. "mov %%r11, %c[r11](%0) \n\t"
  3259. "mov %%r12, %c[r12](%0) \n\t"
  3260. "mov %%r13, %c[r13](%0) \n\t"
  3261. "mov %%r14, %c[r14](%0) \n\t"
  3262. "mov %%r15, %c[r15](%0) \n\t"
  3263. #endif
  3264. "mov %%cr2, %%"R"ax \n\t"
  3265. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3266. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3267. "setbe %c[fail](%0) \n\t"
  3268. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3269. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3270. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3271. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3272. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3273. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3274. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3275. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3276. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3277. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3278. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3279. #ifdef CONFIG_X86_64
  3280. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3281. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3282. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3283. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3284. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3285. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3286. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3287. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3288. #endif
  3289. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3290. : "cc", "memory"
  3291. , R"bx", R"di", R"si"
  3292. #ifdef CONFIG_X86_64
  3293. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3294. #endif
  3295. );
  3296. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3297. | (1 << VCPU_EXREG_PDPTR));
  3298. vcpu->arch.regs_dirty = 0;
  3299. if (vcpu->arch.switch_db_regs)
  3300. get_debugreg(vcpu->arch.dr6, 6);
  3301. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3302. if (vmx->rmode.irq.pending)
  3303. fixup_rmode_irq(vmx);
  3304. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3305. vmx->launched = 1;
  3306. vmx_complete_interrupts(vmx);
  3307. }
  3308. #undef R
  3309. #undef Q
  3310. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3311. {
  3312. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3313. if (vmx->vmcs) {
  3314. vcpu_clear(vmx);
  3315. free_vmcs(vmx->vmcs);
  3316. vmx->vmcs = NULL;
  3317. }
  3318. }
  3319. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3320. {
  3321. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3322. spin_lock(&vmx_vpid_lock);
  3323. if (vmx->vpid != 0)
  3324. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3325. spin_unlock(&vmx_vpid_lock);
  3326. vmx_free_vmcs(vcpu);
  3327. kfree(vmx->guest_msrs);
  3328. kvm_vcpu_uninit(vcpu);
  3329. kmem_cache_free(kvm_vcpu_cache, vmx);
  3330. }
  3331. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3332. {
  3333. int err;
  3334. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3335. int cpu;
  3336. if (!vmx)
  3337. return ERR_PTR(-ENOMEM);
  3338. allocate_vpid(vmx);
  3339. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3340. if (err)
  3341. goto free_vcpu;
  3342. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3343. if (!vmx->guest_msrs) {
  3344. err = -ENOMEM;
  3345. goto uninit_vcpu;
  3346. }
  3347. vmx->vmcs = alloc_vmcs();
  3348. if (!vmx->vmcs)
  3349. goto free_msrs;
  3350. vmcs_clear(vmx->vmcs);
  3351. cpu = get_cpu();
  3352. vmx_vcpu_load(&vmx->vcpu, cpu);
  3353. err = vmx_vcpu_setup(vmx);
  3354. vmx_vcpu_put(&vmx->vcpu);
  3355. put_cpu();
  3356. if (err)
  3357. goto free_vmcs;
  3358. if (vm_need_virtualize_apic_accesses(kvm))
  3359. if (alloc_apic_access_page(kvm) != 0)
  3360. goto free_vmcs;
  3361. if (enable_ept) {
  3362. if (!kvm->arch.ept_identity_map_addr)
  3363. kvm->arch.ept_identity_map_addr =
  3364. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3365. if (alloc_identity_pagetable(kvm) != 0)
  3366. goto free_vmcs;
  3367. }
  3368. return &vmx->vcpu;
  3369. free_vmcs:
  3370. free_vmcs(vmx->vmcs);
  3371. free_msrs:
  3372. kfree(vmx->guest_msrs);
  3373. uninit_vcpu:
  3374. kvm_vcpu_uninit(&vmx->vcpu);
  3375. free_vcpu:
  3376. kmem_cache_free(kvm_vcpu_cache, vmx);
  3377. return ERR_PTR(err);
  3378. }
  3379. static void __init vmx_check_processor_compat(void *rtn)
  3380. {
  3381. struct vmcs_config vmcs_conf;
  3382. *(int *)rtn = 0;
  3383. if (setup_vmcs_config(&vmcs_conf) < 0)
  3384. *(int *)rtn = -EIO;
  3385. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3386. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3387. smp_processor_id());
  3388. *(int *)rtn = -EIO;
  3389. }
  3390. }
  3391. static int get_ept_level(void)
  3392. {
  3393. return VMX_EPT_DEFAULT_GAW + 1;
  3394. }
  3395. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3396. {
  3397. u64 ret;
  3398. /* For VT-d and EPT combination
  3399. * 1. MMIO: always map as UC
  3400. * 2. EPT with VT-d:
  3401. * a. VT-d without snooping control feature: can't guarantee the
  3402. * result, try to trust guest.
  3403. * b. VT-d with snooping control feature: snooping control feature of
  3404. * VT-d engine can guarantee the cache correctness. Just set it
  3405. * to WB to keep consistent with host. So the same as item 3.
  3406. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3407. * consistent with host MTRR
  3408. */
  3409. if (is_mmio)
  3410. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3411. else if (vcpu->kvm->arch.iommu_domain &&
  3412. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3413. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3414. VMX_EPT_MT_EPTE_SHIFT;
  3415. else
  3416. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3417. | VMX_EPT_IGMT_BIT;
  3418. return ret;
  3419. }
  3420. #define _ER(x) { EXIT_REASON_##x, #x }
  3421. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3422. _ER(EXCEPTION_NMI),
  3423. _ER(EXTERNAL_INTERRUPT),
  3424. _ER(TRIPLE_FAULT),
  3425. _ER(PENDING_INTERRUPT),
  3426. _ER(NMI_WINDOW),
  3427. _ER(TASK_SWITCH),
  3428. _ER(CPUID),
  3429. _ER(HLT),
  3430. _ER(INVLPG),
  3431. _ER(RDPMC),
  3432. _ER(RDTSC),
  3433. _ER(VMCALL),
  3434. _ER(VMCLEAR),
  3435. _ER(VMLAUNCH),
  3436. _ER(VMPTRLD),
  3437. _ER(VMPTRST),
  3438. _ER(VMREAD),
  3439. _ER(VMRESUME),
  3440. _ER(VMWRITE),
  3441. _ER(VMOFF),
  3442. _ER(VMON),
  3443. _ER(CR_ACCESS),
  3444. _ER(DR_ACCESS),
  3445. _ER(IO_INSTRUCTION),
  3446. _ER(MSR_READ),
  3447. _ER(MSR_WRITE),
  3448. _ER(MWAIT_INSTRUCTION),
  3449. _ER(MONITOR_INSTRUCTION),
  3450. _ER(PAUSE_INSTRUCTION),
  3451. _ER(MCE_DURING_VMENTRY),
  3452. _ER(TPR_BELOW_THRESHOLD),
  3453. _ER(APIC_ACCESS),
  3454. _ER(EPT_VIOLATION),
  3455. _ER(EPT_MISCONFIG),
  3456. _ER(WBINVD),
  3457. { -1, NULL }
  3458. };
  3459. #undef _ER
  3460. static int vmx_get_lpage_level(void)
  3461. {
  3462. return PT_DIRECTORY_LEVEL;
  3463. }
  3464. static inline u32 bit(int bitno)
  3465. {
  3466. return 1 << (bitno & 31);
  3467. }
  3468. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3469. {
  3470. struct kvm_cpuid_entry2 *best;
  3471. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3472. u32 exec_control;
  3473. vmx->rdtscp_enabled = false;
  3474. if (vmx_rdtscp_supported()) {
  3475. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3476. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3477. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3478. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3479. vmx->rdtscp_enabled = true;
  3480. else {
  3481. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3482. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3483. exec_control);
  3484. }
  3485. }
  3486. }
  3487. }
  3488. static struct kvm_x86_ops vmx_x86_ops = {
  3489. .cpu_has_kvm_support = cpu_has_kvm_support,
  3490. .disabled_by_bios = vmx_disabled_by_bios,
  3491. .hardware_setup = hardware_setup,
  3492. .hardware_unsetup = hardware_unsetup,
  3493. .check_processor_compatibility = vmx_check_processor_compat,
  3494. .hardware_enable = hardware_enable,
  3495. .hardware_disable = hardware_disable,
  3496. .cpu_has_accelerated_tpr = report_flexpriority,
  3497. .vcpu_create = vmx_create_vcpu,
  3498. .vcpu_free = vmx_free_vcpu,
  3499. .vcpu_reset = vmx_vcpu_reset,
  3500. .prepare_guest_switch = vmx_save_host_state,
  3501. .vcpu_load = vmx_vcpu_load,
  3502. .vcpu_put = vmx_vcpu_put,
  3503. .set_guest_debug = set_guest_debug,
  3504. .get_msr = vmx_get_msr,
  3505. .set_msr = vmx_set_msr,
  3506. .get_segment_base = vmx_get_segment_base,
  3507. .get_segment = vmx_get_segment,
  3508. .set_segment = vmx_set_segment,
  3509. .get_cpl = vmx_get_cpl,
  3510. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3511. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3512. .set_cr0 = vmx_set_cr0,
  3513. .set_cr3 = vmx_set_cr3,
  3514. .set_cr4 = vmx_set_cr4,
  3515. .set_efer = vmx_set_efer,
  3516. .get_idt = vmx_get_idt,
  3517. .set_idt = vmx_set_idt,
  3518. .get_gdt = vmx_get_gdt,
  3519. .set_gdt = vmx_set_gdt,
  3520. .cache_reg = vmx_cache_reg,
  3521. .get_rflags = vmx_get_rflags,
  3522. .set_rflags = vmx_set_rflags,
  3523. .tlb_flush = vmx_flush_tlb,
  3524. .run = vmx_vcpu_run,
  3525. .handle_exit = vmx_handle_exit,
  3526. .skip_emulated_instruction = skip_emulated_instruction,
  3527. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3528. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3529. .patch_hypercall = vmx_patch_hypercall,
  3530. .set_irq = vmx_inject_irq,
  3531. .set_nmi = vmx_inject_nmi,
  3532. .queue_exception = vmx_queue_exception,
  3533. .interrupt_allowed = vmx_interrupt_allowed,
  3534. .nmi_allowed = vmx_nmi_allowed,
  3535. .get_nmi_mask = vmx_get_nmi_mask,
  3536. .set_nmi_mask = vmx_set_nmi_mask,
  3537. .enable_nmi_window = enable_nmi_window,
  3538. .enable_irq_window = enable_irq_window,
  3539. .update_cr8_intercept = update_cr8_intercept,
  3540. .set_tss_addr = vmx_set_tss_addr,
  3541. .get_tdp_level = get_ept_level,
  3542. .get_mt_mask = vmx_get_mt_mask,
  3543. .exit_reasons_str = vmx_exit_reasons_str,
  3544. .get_lpage_level = vmx_get_lpage_level,
  3545. .cpuid_update = vmx_cpuid_update,
  3546. .rdtscp_supported = vmx_rdtscp_supported,
  3547. };
  3548. static int __init vmx_init(void)
  3549. {
  3550. int r, i;
  3551. rdmsrl_safe(MSR_EFER, &host_efer);
  3552. for (i = 0; i < NR_VMX_MSR; ++i)
  3553. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3554. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3555. if (!vmx_io_bitmap_a)
  3556. return -ENOMEM;
  3557. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3558. if (!vmx_io_bitmap_b) {
  3559. r = -ENOMEM;
  3560. goto out;
  3561. }
  3562. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3563. if (!vmx_msr_bitmap_legacy) {
  3564. r = -ENOMEM;
  3565. goto out1;
  3566. }
  3567. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3568. if (!vmx_msr_bitmap_longmode) {
  3569. r = -ENOMEM;
  3570. goto out2;
  3571. }
  3572. /*
  3573. * Allow direct access to the PC debug port (it is often used for I/O
  3574. * delays, but the vmexits simply slow things down).
  3575. */
  3576. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3577. clear_bit(0x80, vmx_io_bitmap_a);
  3578. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3579. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3580. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3581. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3582. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3583. if (r)
  3584. goto out3;
  3585. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3586. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3587. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3588. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3589. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3590. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3591. if (enable_ept) {
  3592. bypass_guest_pf = 0;
  3593. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3594. VMX_EPT_WRITABLE_MASK);
  3595. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3596. VMX_EPT_EXECUTABLE_MASK);
  3597. kvm_enable_tdp();
  3598. } else
  3599. kvm_disable_tdp();
  3600. if (bypass_guest_pf)
  3601. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3602. return 0;
  3603. out3:
  3604. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3605. out2:
  3606. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3607. out1:
  3608. free_page((unsigned long)vmx_io_bitmap_b);
  3609. out:
  3610. free_page((unsigned long)vmx_io_bitmap_a);
  3611. return r;
  3612. }
  3613. static void __exit vmx_exit(void)
  3614. {
  3615. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3616. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3617. free_page((unsigned long)vmx_io_bitmap_b);
  3618. free_page((unsigned long)vmx_io_bitmap_a);
  3619. kvm_exit();
  3620. }
  3621. module_init(vmx_init)
  3622. module_exit(vmx_exit)