init.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/string.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/mm.h>
  15. #include <linux/hugetlb.h>
  16. #include <linux/slab.h>
  17. #include <linux/initrd.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <asm/head.h>
  26. #include <asm/system.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/oplib.h>
  31. #include <asm/iommu.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/dma.h>
  37. #include <asm/starfire.h>
  38. #include <asm/tlb.h>
  39. #include <asm/spitfire.h>
  40. #include <asm/sections.h>
  41. #include <asm/tsb.h>
  42. #include <asm/hypervisor.h>
  43. extern void device_scan(void);
  44. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  45. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  46. #define KPTE_BITMAP_BYTES \
  47. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  48. unsigned long kern_linear_pte_xor[2] __read_mostly;
  49. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  50. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  51. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  52. */
  53. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  54. /* A special kernel TSB for 4MB and 256MB linear mappings. */
  55. struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  56. #define MAX_BANKS 32
  57. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  58. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  59. static int pavail_ents __initdata;
  60. static int pavail_rescan_ents __initdata;
  61. static int cmp_p64(const void *a, const void *b)
  62. {
  63. const struct linux_prom64_registers *x = a, *y = b;
  64. if (x->phys_addr > y->phys_addr)
  65. return 1;
  66. if (x->phys_addr < y->phys_addr)
  67. return -1;
  68. return 0;
  69. }
  70. static void __init read_obp_memory(const char *property,
  71. struct linux_prom64_registers *regs,
  72. int *num_ents)
  73. {
  74. int node = prom_finddevice("/memory");
  75. int prop_size = prom_getproplen(node, property);
  76. int ents, ret, i;
  77. ents = prop_size / sizeof(struct linux_prom64_registers);
  78. if (ents > MAX_BANKS) {
  79. prom_printf("The machine has more %s property entries than "
  80. "this kernel can support (%d).\n",
  81. property, MAX_BANKS);
  82. prom_halt();
  83. }
  84. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  85. if (ret == -1) {
  86. prom_printf("Couldn't get %s property from /memory.\n");
  87. prom_halt();
  88. }
  89. *num_ents = ents;
  90. /* Sanitize what we got from the firmware, by page aligning
  91. * everything.
  92. */
  93. for (i = 0; i < ents; i++) {
  94. unsigned long base, size;
  95. base = regs[i].phys_addr;
  96. size = regs[i].reg_size;
  97. size &= PAGE_MASK;
  98. if (base & ~PAGE_MASK) {
  99. unsigned long new_base = PAGE_ALIGN(base);
  100. size -= new_base - base;
  101. if ((long) size < 0L)
  102. size = 0UL;
  103. base = new_base;
  104. }
  105. regs[i].phys_addr = base;
  106. regs[i].reg_size = size;
  107. }
  108. sort(regs, ents, sizeof(struct linux_prom64_registers),
  109. cmp_p64, NULL);
  110. }
  111. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  112. /* Kernel physical address base and size in bytes. */
  113. unsigned long kern_base __read_mostly;
  114. unsigned long kern_size __read_mostly;
  115. /* get_new_mmu_context() uses "cache + 1". */
  116. DEFINE_SPINLOCK(ctx_alloc_lock);
  117. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  118. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  119. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  120. /* References to special section boundaries */
  121. extern char _start[], _end[];
  122. /* Initial ramdisk setup */
  123. extern unsigned long sparc_ramdisk_image64;
  124. extern unsigned int sparc_ramdisk_image;
  125. extern unsigned int sparc_ramdisk_size;
  126. struct page *mem_map_zero __read_mostly;
  127. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  128. unsigned long sparc64_kern_pri_context __read_mostly;
  129. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  130. unsigned long sparc64_kern_sec_context __read_mostly;
  131. int bigkernel = 0;
  132. kmem_cache_t *pgtable_cache __read_mostly;
  133. static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
  134. {
  135. clear_page(addr);
  136. }
  137. void pgtable_cache_init(void)
  138. {
  139. pgtable_cache = kmem_cache_create("pgtable_cache",
  140. PAGE_SIZE, PAGE_SIZE,
  141. SLAB_HWCACHE_ALIGN |
  142. SLAB_MUST_HWCACHE_ALIGN,
  143. zero_ctor,
  144. NULL);
  145. if (!pgtable_cache) {
  146. prom_printf("pgtable_cache_init(): Could not create!\n");
  147. prom_halt();
  148. }
  149. }
  150. #ifdef CONFIG_DEBUG_DCFLUSH
  151. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  152. #ifdef CONFIG_SMP
  153. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  154. #endif
  155. #endif
  156. inline void flush_dcache_page_impl(struct page *page)
  157. {
  158. BUG_ON(tlb_type == hypervisor);
  159. #ifdef CONFIG_DEBUG_DCFLUSH
  160. atomic_inc(&dcpage_flushes);
  161. #endif
  162. #ifdef DCACHE_ALIASING_POSSIBLE
  163. __flush_dcache_page(page_address(page),
  164. ((tlb_type == spitfire) &&
  165. page_mapping(page) != NULL));
  166. #else
  167. if (page_mapping(page) != NULL &&
  168. tlb_type == spitfire)
  169. __flush_icache_page(__pa(page_address(page)));
  170. #endif
  171. }
  172. #define PG_dcache_dirty PG_arch_1
  173. #define PG_dcache_cpu_shift 24UL
  174. #define PG_dcache_cpu_mask (256UL - 1UL)
  175. #if NR_CPUS > 256
  176. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  177. #endif
  178. #define dcache_dirty_cpu(page) \
  179. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  180. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  181. {
  182. unsigned long mask = this_cpu;
  183. unsigned long non_cpu_bits;
  184. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  185. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  186. __asm__ __volatile__("1:\n\t"
  187. "ldx [%2], %%g7\n\t"
  188. "and %%g7, %1, %%g1\n\t"
  189. "or %%g1, %0, %%g1\n\t"
  190. "casx [%2], %%g7, %%g1\n\t"
  191. "cmp %%g7, %%g1\n\t"
  192. "membar #StoreLoad | #StoreStore\n\t"
  193. "bne,pn %%xcc, 1b\n\t"
  194. " nop"
  195. : /* no outputs */
  196. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  197. : "g1", "g7");
  198. }
  199. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  200. {
  201. unsigned long mask = (1UL << PG_dcache_dirty);
  202. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  203. "1:\n\t"
  204. "ldx [%2], %%g7\n\t"
  205. "srlx %%g7, %4, %%g1\n\t"
  206. "and %%g1, %3, %%g1\n\t"
  207. "cmp %%g1, %0\n\t"
  208. "bne,pn %%icc, 2f\n\t"
  209. " andn %%g7, %1, %%g1\n\t"
  210. "casx [%2], %%g7, %%g1\n\t"
  211. "cmp %%g7, %%g1\n\t"
  212. "membar #StoreLoad | #StoreStore\n\t"
  213. "bne,pn %%xcc, 1b\n\t"
  214. " nop\n"
  215. "2:"
  216. : /* no outputs */
  217. : "r" (cpu), "r" (mask), "r" (&page->flags),
  218. "i" (PG_dcache_cpu_mask),
  219. "i" (PG_dcache_cpu_shift)
  220. : "g1", "g7");
  221. }
  222. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  223. {
  224. unsigned long tsb_addr = (unsigned long) ent;
  225. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  226. tsb_addr = __pa(tsb_addr);
  227. __tsb_insert(tsb_addr, tag, pte);
  228. }
  229. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  230. unsigned long _PAGE_SZBITS __read_mostly;
  231. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  232. {
  233. struct mm_struct *mm;
  234. struct tsb *tsb;
  235. unsigned long tag;
  236. if (tlb_type != hypervisor) {
  237. unsigned long pfn = pte_pfn(pte);
  238. unsigned long pg_flags;
  239. struct page *page;
  240. if (pfn_valid(pfn) &&
  241. (page = pfn_to_page(pfn), page_mapping(page)) &&
  242. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  243. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  244. PG_dcache_cpu_mask);
  245. int this_cpu = get_cpu();
  246. /* This is just to optimize away some function calls
  247. * in the SMP case.
  248. */
  249. if (cpu == this_cpu)
  250. flush_dcache_page_impl(page);
  251. else
  252. smp_flush_dcache_page_impl(page, cpu);
  253. clear_dcache_dirty_cpu(page, cpu);
  254. put_cpu();
  255. }
  256. }
  257. mm = vma->vm_mm;
  258. tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
  259. (mm->context.tsb_nentries - 1UL)];
  260. tag = (address >> 22UL);
  261. tsb_insert(tsb, tag, pte_val(pte));
  262. }
  263. void flush_dcache_page(struct page *page)
  264. {
  265. struct address_space *mapping;
  266. int this_cpu;
  267. if (tlb_type == hypervisor)
  268. return;
  269. /* Do not bother with the expensive D-cache flush if it
  270. * is merely the zero page. The 'bigcore' testcase in GDB
  271. * causes this case to run millions of times.
  272. */
  273. if (page == ZERO_PAGE(0))
  274. return;
  275. this_cpu = get_cpu();
  276. mapping = page_mapping(page);
  277. if (mapping && !mapping_mapped(mapping)) {
  278. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  279. if (dirty) {
  280. int dirty_cpu = dcache_dirty_cpu(page);
  281. if (dirty_cpu == this_cpu)
  282. goto out;
  283. smp_flush_dcache_page_impl(page, dirty_cpu);
  284. }
  285. set_dcache_dirty(page, this_cpu);
  286. } else {
  287. /* We could delay the flush for the !page_mapping
  288. * case too. But that case is for exec env/arg
  289. * pages and those are %99 certainly going to get
  290. * faulted into the tlb (and thus flushed) anyways.
  291. */
  292. flush_dcache_page_impl(page);
  293. }
  294. out:
  295. put_cpu();
  296. }
  297. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  298. {
  299. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  300. if (tlb_type == spitfire) {
  301. unsigned long kaddr;
  302. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  303. __flush_icache_page(__get_phys(kaddr));
  304. }
  305. }
  306. void show_mem(void)
  307. {
  308. printk("Mem-info:\n");
  309. show_free_areas();
  310. printk("Free swap: %6ldkB\n",
  311. nr_swap_pages << (PAGE_SHIFT-10));
  312. printk("%ld pages of RAM\n", num_physpages);
  313. printk("%d free pages\n", nr_free_pages());
  314. }
  315. void mmu_info(struct seq_file *m)
  316. {
  317. if (tlb_type == cheetah)
  318. seq_printf(m, "MMU Type\t: Cheetah\n");
  319. else if (tlb_type == cheetah_plus)
  320. seq_printf(m, "MMU Type\t: Cheetah+\n");
  321. else if (tlb_type == spitfire)
  322. seq_printf(m, "MMU Type\t: Spitfire\n");
  323. else if (tlb_type == hypervisor)
  324. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  325. else
  326. seq_printf(m, "MMU Type\t: ???\n");
  327. #ifdef CONFIG_DEBUG_DCFLUSH
  328. seq_printf(m, "DCPageFlushes\t: %d\n",
  329. atomic_read(&dcpage_flushes));
  330. #ifdef CONFIG_SMP
  331. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  332. atomic_read(&dcpage_flushes_xcall));
  333. #endif /* CONFIG_SMP */
  334. #endif /* CONFIG_DEBUG_DCFLUSH */
  335. }
  336. struct linux_prom_translation {
  337. unsigned long virt;
  338. unsigned long size;
  339. unsigned long data;
  340. };
  341. /* Exported for kernel TLB miss handling in ktlb.S */
  342. struct linux_prom_translation prom_trans[512] __read_mostly;
  343. unsigned int prom_trans_ents __read_mostly;
  344. /* Exported for SMP bootup purposes. */
  345. unsigned long kern_locked_tte_data;
  346. /* The obp translations are saved based on 8k pagesize, since obp can
  347. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  348. * HI_OBP_ADDRESS range are handled in ktlb.S.
  349. */
  350. static inline int in_obp_range(unsigned long vaddr)
  351. {
  352. return (vaddr >= LOW_OBP_ADDRESS &&
  353. vaddr < HI_OBP_ADDRESS);
  354. }
  355. static int cmp_ptrans(const void *a, const void *b)
  356. {
  357. const struct linux_prom_translation *x = a, *y = b;
  358. if (x->virt > y->virt)
  359. return 1;
  360. if (x->virt < y->virt)
  361. return -1;
  362. return 0;
  363. }
  364. /* Read OBP translations property into 'prom_trans[]'. */
  365. static void __init read_obp_translations(void)
  366. {
  367. int n, node, ents, first, last, i;
  368. node = prom_finddevice("/virtual-memory");
  369. n = prom_getproplen(node, "translations");
  370. if (unlikely(n == 0 || n == -1)) {
  371. prom_printf("prom_mappings: Couldn't get size.\n");
  372. prom_halt();
  373. }
  374. if (unlikely(n > sizeof(prom_trans))) {
  375. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  376. prom_halt();
  377. }
  378. if ((n = prom_getproperty(node, "translations",
  379. (char *)&prom_trans[0],
  380. sizeof(prom_trans))) == -1) {
  381. prom_printf("prom_mappings: Couldn't get property.\n");
  382. prom_halt();
  383. }
  384. n = n / sizeof(struct linux_prom_translation);
  385. ents = n;
  386. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  387. cmp_ptrans, NULL);
  388. /* Now kick out all the non-OBP entries. */
  389. for (i = 0; i < ents; i++) {
  390. if (in_obp_range(prom_trans[i].virt))
  391. break;
  392. }
  393. first = i;
  394. for (; i < ents; i++) {
  395. if (!in_obp_range(prom_trans[i].virt))
  396. break;
  397. }
  398. last = i;
  399. for (i = 0; i < (last - first); i++) {
  400. struct linux_prom_translation *src = &prom_trans[i + first];
  401. struct linux_prom_translation *dest = &prom_trans[i];
  402. *dest = *src;
  403. }
  404. for (; i < ents; i++) {
  405. struct linux_prom_translation *dest = &prom_trans[i];
  406. dest->virt = dest->size = dest->data = 0x0UL;
  407. }
  408. prom_trans_ents = last - first;
  409. if (tlb_type == spitfire) {
  410. /* Clear diag TTE bits. */
  411. for (i = 0; i < prom_trans_ents; i++)
  412. prom_trans[i].data &= ~0x0003fe0000000000UL;
  413. }
  414. }
  415. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  416. unsigned long pte,
  417. unsigned long mmu)
  418. {
  419. register unsigned long func asm("%o5");
  420. register unsigned long arg0 asm("%o0");
  421. register unsigned long arg1 asm("%o1");
  422. register unsigned long arg2 asm("%o2");
  423. register unsigned long arg3 asm("%o3");
  424. func = HV_FAST_MMU_MAP_PERM_ADDR;
  425. arg0 = vaddr;
  426. arg1 = 0;
  427. arg2 = pte;
  428. arg3 = mmu;
  429. __asm__ __volatile__("ta 0x80"
  430. : "=&r" (func), "=&r" (arg0),
  431. "=&r" (arg1), "=&r" (arg2),
  432. "=&r" (arg3)
  433. : "0" (func), "1" (arg0), "2" (arg1),
  434. "3" (arg2), "4" (arg3));
  435. if (arg0 != 0) {
  436. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  437. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  438. prom_halt();
  439. }
  440. }
  441. static unsigned long kern_large_tte(unsigned long paddr);
  442. static void __init remap_kernel(void)
  443. {
  444. unsigned long phys_page, tte_vaddr, tte_data;
  445. int tlb_ent = sparc64_highest_locked_tlbent();
  446. tte_vaddr = (unsigned long) KERNBASE;
  447. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  448. tte_data = kern_large_tte(phys_page);
  449. kern_locked_tte_data = tte_data;
  450. /* Now lock us into the TLBs via Hypervisor or OBP. */
  451. if (tlb_type == hypervisor) {
  452. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  453. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  454. if (bigkernel) {
  455. tte_vaddr += 0x400000;
  456. tte_data += 0x400000;
  457. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  458. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  459. }
  460. } else {
  461. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  462. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  463. if (bigkernel) {
  464. tlb_ent -= 1;
  465. prom_dtlb_load(tlb_ent,
  466. tte_data + 0x400000,
  467. tte_vaddr + 0x400000);
  468. prom_itlb_load(tlb_ent,
  469. tte_data + 0x400000,
  470. tte_vaddr + 0x400000);
  471. }
  472. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  473. }
  474. if (tlb_type == cheetah_plus) {
  475. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  476. CTX_CHEETAH_PLUS_NUC);
  477. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  478. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  479. }
  480. }
  481. static void __init inherit_prom_mappings(void)
  482. {
  483. read_obp_translations();
  484. /* Now fixup OBP's idea about where we really are mapped. */
  485. prom_printf("Remapping the kernel... ");
  486. remap_kernel();
  487. prom_printf("done.\n");
  488. }
  489. void prom_world(int enter)
  490. {
  491. if (!enter)
  492. set_fs((mm_segment_t) { get_thread_current_ds() });
  493. __asm__ __volatile__("flushw");
  494. }
  495. #ifdef DCACHE_ALIASING_POSSIBLE
  496. void __flush_dcache_range(unsigned long start, unsigned long end)
  497. {
  498. unsigned long va;
  499. if (tlb_type == spitfire) {
  500. int n = 0;
  501. for (va = start; va < end; va += 32) {
  502. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  503. if (++n >= 512)
  504. break;
  505. }
  506. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  507. start = __pa(start);
  508. end = __pa(end);
  509. for (va = start; va < end; va += 32)
  510. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  511. "membar #Sync"
  512. : /* no outputs */
  513. : "r" (va),
  514. "i" (ASI_DCACHE_INVALIDATE));
  515. }
  516. }
  517. #endif /* DCACHE_ALIASING_POSSIBLE */
  518. /* Caller does TLB context flushing on local CPU if necessary.
  519. * The caller also ensures that CTX_VALID(mm->context) is false.
  520. *
  521. * We must be careful about boundary cases so that we never
  522. * let the user have CTX 0 (nucleus) or we ever use a CTX
  523. * version of zero (and thus NO_CONTEXT would not be caught
  524. * by version mis-match tests in mmu_context.h).
  525. *
  526. * Always invoked with interrupts disabled.
  527. */
  528. void get_new_mmu_context(struct mm_struct *mm)
  529. {
  530. unsigned long ctx, new_ctx;
  531. unsigned long orig_pgsz_bits;
  532. unsigned long flags;
  533. int new_version;
  534. spin_lock_irqsave(&ctx_alloc_lock, flags);
  535. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  536. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  537. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  538. new_version = 0;
  539. if (new_ctx >= (1 << CTX_NR_BITS)) {
  540. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  541. if (new_ctx >= ctx) {
  542. int i;
  543. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  544. CTX_FIRST_VERSION;
  545. if (new_ctx == 1)
  546. new_ctx = CTX_FIRST_VERSION;
  547. /* Don't call memset, for 16 entries that's just
  548. * plain silly...
  549. */
  550. mmu_context_bmap[0] = 3;
  551. mmu_context_bmap[1] = 0;
  552. mmu_context_bmap[2] = 0;
  553. mmu_context_bmap[3] = 0;
  554. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  555. mmu_context_bmap[i + 0] = 0;
  556. mmu_context_bmap[i + 1] = 0;
  557. mmu_context_bmap[i + 2] = 0;
  558. mmu_context_bmap[i + 3] = 0;
  559. }
  560. new_version = 1;
  561. goto out;
  562. }
  563. }
  564. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  565. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  566. out:
  567. tlb_context_cache = new_ctx;
  568. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  569. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  570. if (unlikely(new_version))
  571. smp_new_mmu_context_version();
  572. }
  573. void sparc_ultra_dump_itlb(void)
  574. {
  575. int slot;
  576. if (tlb_type == spitfire) {
  577. printk ("Contents of itlb: ");
  578. for (slot = 0; slot < 14; slot++) printk (" ");
  579. printk ("%2x:%016lx,%016lx\n",
  580. 0,
  581. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  582. for (slot = 1; slot < 64; slot+=3) {
  583. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  584. slot,
  585. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  586. slot+1,
  587. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  588. slot+2,
  589. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  590. }
  591. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  592. printk ("Contents of itlb0:\n");
  593. for (slot = 0; slot < 16; slot+=2) {
  594. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  595. slot,
  596. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  597. slot+1,
  598. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  599. }
  600. printk ("Contents of itlb2:\n");
  601. for (slot = 0; slot < 128; slot+=2) {
  602. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  603. slot,
  604. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  605. slot+1,
  606. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  607. }
  608. }
  609. }
  610. void sparc_ultra_dump_dtlb(void)
  611. {
  612. int slot;
  613. if (tlb_type == spitfire) {
  614. printk ("Contents of dtlb: ");
  615. for (slot = 0; slot < 14; slot++) printk (" ");
  616. printk ("%2x:%016lx,%016lx\n", 0,
  617. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  618. for (slot = 1; slot < 64; slot+=3) {
  619. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  620. slot,
  621. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  622. slot+1,
  623. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  624. slot+2,
  625. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  626. }
  627. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  628. printk ("Contents of dtlb0:\n");
  629. for (slot = 0; slot < 16; slot+=2) {
  630. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  631. slot,
  632. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  633. slot+1,
  634. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  635. }
  636. printk ("Contents of dtlb2:\n");
  637. for (slot = 0; slot < 512; slot+=2) {
  638. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  639. slot,
  640. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  641. slot+1,
  642. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  643. }
  644. if (tlb_type == cheetah_plus) {
  645. printk ("Contents of dtlb3:\n");
  646. for (slot = 0; slot < 512; slot+=2) {
  647. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  648. slot,
  649. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  650. slot+1,
  651. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  652. }
  653. }
  654. }
  655. }
  656. extern unsigned long cmdline_memory_size;
  657. /* Find a free area for the bootmem map, avoiding the kernel image
  658. * and the initial ramdisk.
  659. */
  660. static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
  661. unsigned long end_pfn)
  662. {
  663. unsigned long avoid_start, avoid_end, bootmap_size;
  664. int i;
  665. bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
  666. bootmap_size = ALIGN(bootmap_size, sizeof(long));
  667. avoid_start = avoid_end = 0;
  668. #ifdef CONFIG_BLK_DEV_INITRD
  669. avoid_start = initrd_start;
  670. avoid_end = PAGE_ALIGN(initrd_end);
  671. #endif
  672. #ifdef CONFIG_DEBUG_BOOTMEM
  673. prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
  674. kern_base, PAGE_ALIGN(kern_base + kern_size),
  675. avoid_start, avoid_end);
  676. #endif
  677. for (i = 0; i < pavail_ents; i++) {
  678. unsigned long start, end;
  679. start = pavail[i].phys_addr;
  680. end = start + pavail[i].reg_size;
  681. while (start < end) {
  682. if (start >= kern_base &&
  683. start < PAGE_ALIGN(kern_base + kern_size)) {
  684. start = PAGE_ALIGN(kern_base + kern_size);
  685. continue;
  686. }
  687. if (start >= avoid_start && start < avoid_end) {
  688. start = avoid_end;
  689. continue;
  690. }
  691. if ((end - start) < bootmap_size)
  692. break;
  693. if (start < kern_base &&
  694. (start + bootmap_size) > kern_base) {
  695. start = PAGE_ALIGN(kern_base + kern_size);
  696. continue;
  697. }
  698. if (start < avoid_start &&
  699. (start + bootmap_size) > avoid_start) {
  700. start = avoid_end;
  701. continue;
  702. }
  703. /* OK, it doesn't overlap anything, use it. */
  704. #ifdef CONFIG_DEBUG_BOOTMEM
  705. prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
  706. start >> PAGE_SHIFT, start);
  707. #endif
  708. return start >> PAGE_SHIFT;
  709. }
  710. }
  711. prom_printf("Cannot find free area for bootmap, aborting.\n");
  712. prom_halt();
  713. }
  714. static unsigned long __init bootmem_init(unsigned long *pages_avail,
  715. unsigned long phys_base)
  716. {
  717. unsigned long bootmap_size, end_pfn;
  718. unsigned long end_of_phys_memory = 0UL;
  719. unsigned long bootmap_pfn, bytes_avail, size;
  720. int i;
  721. #ifdef CONFIG_DEBUG_BOOTMEM
  722. prom_printf("bootmem_init: Scan pavail, ");
  723. #endif
  724. bytes_avail = 0UL;
  725. for (i = 0; i < pavail_ents; i++) {
  726. end_of_phys_memory = pavail[i].phys_addr +
  727. pavail[i].reg_size;
  728. bytes_avail += pavail[i].reg_size;
  729. if (cmdline_memory_size) {
  730. if (bytes_avail > cmdline_memory_size) {
  731. unsigned long slack = bytes_avail - cmdline_memory_size;
  732. bytes_avail -= slack;
  733. end_of_phys_memory -= slack;
  734. pavail[i].reg_size -= slack;
  735. if ((long)pavail[i].reg_size <= 0L) {
  736. pavail[i].phys_addr = 0xdeadbeefUL;
  737. pavail[i].reg_size = 0UL;
  738. pavail_ents = i;
  739. } else {
  740. pavail[i+1].reg_size = 0Ul;
  741. pavail[i+1].phys_addr = 0xdeadbeefUL;
  742. pavail_ents = i + 1;
  743. }
  744. break;
  745. }
  746. }
  747. }
  748. *pages_avail = bytes_avail >> PAGE_SHIFT;
  749. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  750. #ifdef CONFIG_BLK_DEV_INITRD
  751. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  752. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  753. unsigned long ramdisk_image = sparc_ramdisk_image ?
  754. sparc_ramdisk_image : sparc_ramdisk_image64;
  755. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  756. ramdisk_image -= KERNBASE;
  757. initrd_start = ramdisk_image + phys_base;
  758. initrd_end = initrd_start + sparc_ramdisk_size;
  759. if (initrd_end > end_of_phys_memory) {
  760. printk(KERN_CRIT "initrd extends beyond end of memory "
  761. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  762. initrd_end, end_of_phys_memory);
  763. initrd_start = 0;
  764. initrd_end = 0;
  765. }
  766. }
  767. #endif
  768. /* Initialize the boot-time allocator. */
  769. max_pfn = max_low_pfn = end_pfn;
  770. min_low_pfn = (phys_base >> PAGE_SHIFT);
  771. bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
  772. #ifdef CONFIG_DEBUG_BOOTMEM
  773. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  774. min_low_pfn, bootmap_pfn, max_low_pfn);
  775. #endif
  776. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
  777. min_low_pfn, end_pfn);
  778. /* Now register the available physical memory with the
  779. * allocator.
  780. */
  781. for (i = 0; i < pavail_ents; i++) {
  782. #ifdef CONFIG_DEBUG_BOOTMEM
  783. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  784. i, pavail[i].phys_addr, pavail[i].reg_size);
  785. #endif
  786. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  787. }
  788. #ifdef CONFIG_BLK_DEV_INITRD
  789. if (initrd_start) {
  790. size = initrd_end - initrd_start;
  791. /* Resert the initrd image area. */
  792. #ifdef CONFIG_DEBUG_BOOTMEM
  793. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  794. initrd_start, initrd_end);
  795. #endif
  796. reserve_bootmem(initrd_start, size);
  797. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  798. initrd_start += PAGE_OFFSET;
  799. initrd_end += PAGE_OFFSET;
  800. }
  801. #endif
  802. /* Reserve the kernel text/data/bss. */
  803. #ifdef CONFIG_DEBUG_BOOTMEM
  804. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  805. #endif
  806. reserve_bootmem(kern_base, kern_size);
  807. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  808. /* Reserve the bootmem map. We do not account for it
  809. * in pages_avail because we will release that memory
  810. * in free_all_bootmem.
  811. */
  812. size = bootmap_size;
  813. #ifdef CONFIG_DEBUG_BOOTMEM
  814. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  815. (bootmap_pfn << PAGE_SHIFT), size);
  816. #endif
  817. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  818. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  819. for (i = 0; i < pavail_ents; i++) {
  820. unsigned long start_pfn, end_pfn;
  821. start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
  822. end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
  823. #ifdef CONFIG_DEBUG_BOOTMEM
  824. prom_printf("memory_present(0, %lx, %lx)\n",
  825. start_pfn, end_pfn);
  826. #endif
  827. memory_present(0, start_pfn, end_pfn);
  828. }
  829. sparse_init();
  830. return end_pfn;
  831. }
  832. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  833. static int pall_ents __initdata;
  834. #ifdef CONFIG_DEBUG_PAGEALLOC
  835. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  836. {
  837. unsigned long vstart = PAGE_OFFSET + pstart;
  838. unsigned long vend = PAGE_OFFSET + pend;
  839. unsigned long alloc_bytes = 0UL;
  840. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  841. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  842. vstart, vend);
  843. prom_halt();
  844. }
  845. while (vstart < vend) {
  846. unsigned long this_end, paddr = __pa(vstart);
  847. pgd_t *pgd = pgd_offset_k(vstart);
  848. pud_t *pud;
  849. pmd_t *pmd;
  850. pte_t *pte;
  851. pud = pud_offset(pgd, vstart);
  852. if (pud_none(*pud)) {
  853. pmd_t *new;
  854. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  855. alloc_bytes += PAGE_SIZE;
  856. pud_populate(&init_mm, pud, new);
  857. }
  858. pmd = pmd_offset(pud, vstart);
  859. if (!pmd_present(*pmd)) {
  860. pte_t *new;
  861. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  862. alloc_bytes += PAGE_SIZE;
  863. pmd_populate_kernel(&init_mm, pmd, new);
  864. }
  865. pte = pte_offset_kernel(pmd, vstart);
  866. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  867. if (this_end > vend)
  868. this_end = vend;
  869. while (vstart < this_end) {
  870. pte_val(*pte) = (paddr | pgprot_val(prot));
  871. vstart += PAGE_SIZE;
  872. paddr += PAGE_SIZE;
  873. pte++;
  874. }
  875. }
  876. return alloc_bytes;
  877. }
  878. extern unsigned int kvmap_linear_patch[1];
  879. #endif /* CONFIG_DEBUG_PAGEALLOC */
  880. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  881. {
  882. const unsigned long shift_256MB = 28;
  883. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  884. const unsigned long size_256MB = (1UL << shift_256MB);
  885. while (start < end) {
  886. long remains;
  887. remains = end - start;
  888. if (remains < size_256MB)
  889. break;
  890. if (start & mask_256MB) {
  891. start = (start + size_256MB) & ~mask_256MB;
  892. continue;
  893. }
  894. while (remains >= size_256MB) {
  895. unsigned long index = start >> shift_256MB;
  896. __set_bit(index, kpte_linear_bitmap);
  897. start += size_256MB;
  898. remains -= size_256MB;
  899. }
  900. }
  901. }
  902. static void __init kernel_physical_mapping_init(void)
  903. {
  904. unsigned long i;
  905. #ifdef CONFIG_DEBUG_PAGEALLOC
  906. unsigned long mem_alloced = 0UL;
  907. #endif
  908. read_obp_memory("reg", &pall[0], &pall_ents);
  909. for (i = 0; i < pall_ents; i++) {
  910. unsigned long phys_start, phys_end;
  911. phys_start = pall[i].phys_addr;
  912. phys_end = phys_start + pall[i].reg_size;
  913. mark_kpte_bitmap(phys_start, phys_end);
  914. #ifdef CONFIG_DEBUG_PAGEALLOC
  915. mem_alloced += kernel_map_range(phys_start, phys_end,
  916. PAGE_KERNEL);
  917. #endif
  918. }
  919. #ifdef CONFIG_DEBUG_PAGEALLOC
  920. printk("Allocated %ld bytes for kernel page tables.\n",
  921. mem_alloced);
  922. kvmap_linear_patch[0] = 0x01000000; /* nop */
  923. flushi(&kvmap_linear_patch[0]);
  924. __flush_tlb_all();
  925. #endif
  926. }
  927. #ifdef CONFIG_DEBUG_PAGEALLOC
  928. void kernel_map_pages(struct page *page, int numpages, int enable)
  929. {
  930. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  931. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  932. kernel_map_range(phys_start, phys_end,
  933. (enable ? PAGE_KERNEL : __pgprot(0)));
  934. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  935. PAGE_OFFSET + phys_end);
  936. /* we should perform an IPI and flush all tlbs,
  937. * but that can deadlock->flush only current cpu.
  938. */
  939. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  940. PAGE_OFFSET + phys_end);
  941. }
  942. #endif
  943. unsigned long __init find_ecache_flush_span(unsigned long size)
  944. {
  945. int i;
  946. for (i = 0; i < pavail_ents; i++) {
  947. if (pavail[i].reg_size >= size)
  948. return pavail[i].phys_addr;
  949. }
  950. return ~0UL;
  951. }
  952. static void __init tsb_phys_patch(void)
  953. {
  954. struct tsb_ldquad_phys_patch_entry *pquad;
  955. struct tsb_phys_patch_entry *p;
  956. pquad = &__tsb_ldquad_phys_patch;
  957. while (pquad < &__tsb_ldquad_phys_patch_end) {
  958. unsigned long addr = pquad->addr;
  959. if (tlb_type == hypervisor)
  960. *(unsigned int *) addr = pquad->sun4v_insn;
  961. else
  962. *(unsigned int *) addr = pquad->sun4u_insn;
  963. wmb();
  964. __asm__ __volatile__("flush %0"
  965. : /* no outputs */
  966. : "r" (addr));
  967. pquad++;
  968. }
  969. p = &__tsb_phys_patch;
  970. while (p < &__tsb_phys_patch_end) {
  971. unsigned long addr = p->addr;
  972. *(unsigned int *) addr = p->insn;
  973. wmb();
  974. __asm__ __volatile__("flush %0"
  975. : /* no outputs */
  976. : "r" (addr));
  977. p++;
  978. }
  979. }
  980. /* Don't mark as init, we give this to the Hypervisor. */
  981. static struct hv_tsb_descr ktsb_descr[2];
  982. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  983. static void __init sun4v_ktsb_init(void)
  984. {
  985. unsigned long ktsb_pa;
  986. /* First KTSB for PAGE_SIZE mappings. */
  987. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  988. switch (PAGE_SIZE) {
  989. case 8 * 1024:
  990. default:
  991. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  992. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  993. break;
  994. case 64 * 1024:
  995. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  996. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  997. break;
  998. case 512 * 1024:
  999. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1000. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1001. break;
  1002. case 4 * 1024 * 1024:
  1003. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1004. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1005. break;
  1006. };
  1007. ktsb_descr[0].assoc = 1;
  1008. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1009. ktsb_descr[0].ctx_idx = 0;
  1010. ktsb_descr[0].tsb_base = ktsb_pa;
  1011. ktsb_descr[0].resv = 0;
  1012. /* Second KTSB for 4MB/256MB mappings. */
  1013. ktsb_pa = (kern_base +
  1014. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1015. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1016. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1017. HV_PGSZ_MASK_256MB);
  1018. ktsb_descr[1].assoc = 1;
  1019. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1020. ktsb_descr[1].ctx_idx = 0;
  1021. ktsb_descr[1].tsb_base = ktsb_pa;
  1022. ktsb_descr[1].resv = 0;
  1023. }
  1024. void __cpuinit sun4v_ktsb_register(void)
  1025. {
  1026. register unsigned long func asm("%o5");
  1027. register unsigned long arg0 asm("%o0");
  1028. register unsigned long arg1 asm("%o1");
  1029. unsigned long pa;
  1030. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1031. func = HV_FAST_MMU_TSB_CTX0;
  1032. arg0 = 2;
  1033. arg1 = pa;
  1034. __asm__ __volatile__("ta %6"
  1035. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  1036. : "0" (func), "1" (arg0), "2" (arg1),
  1037. "i" (HV_FAST_TRAP));
  1038. }
  1039. /* paging_init() sets up the page tables */
  1040. extern void cheetah_ecache_flush_init(void);
  1041. extern void sun4v_patch_tlb_handlers(void);
  1042. static unsigned long last_valid_pfn;
  1043. pgd_t swapper_pg_dir[2048];
  1044. static void sun4u_pgprot_init(void);
  1045. static void sun4v_pgprot_init(void);
  1046. void __init paging_init(void)
  1047. {
  1048. unsigned long end_pfn, pages_avail, shift, phys_base;
  1049. unsigned long real_end, i;
  1050. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1051. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1052. /* Invalidate both kernel TSBs. */
  1053. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1054. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1055. if (tlb_type == hypervisor)
  1056. sun4v_pgprot_init();
  1057. else
  1058. sun4u_pgprot_init();
  1059. if (tlb_type == cheetah_plus ||
  1060. tlb_type == hypervisor)
  1061. tsb_phys_patch();
  1062. if (tlb_type == hypervisor) {
  1063. sun4v_patch_tlb_handlers();
  1064. sun4v_ktsb_init();
  1065. }
  1066. /* Find available physical memory... */
  1067. read_obp_memory("available", &pavail[0], &pavail_ents);
  1068. phys_base = 0xffffffffffffffffUL;
  1069. for (i = 0; i < pavail_ents; i++)
  1070. phys_base = min(phys_base, pavail[i].phys_addr);
  1071. set_bit(0, mmu_context_bmap);
  1072. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1073. real_end = (unsigned long)_end;
  1074. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1075. bigkernel = 1;
  1076. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1077. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1078. prom_halt();
  1079. }
  1080. /* Set kernel pgd to upper alias so physical page computations
  1081. * work.
  1082. */
  1083. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1084. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1085. /* Now can init the kernel/bad page tables. */
  1086. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1087. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1088. inherit_prom_mappings();
  1089. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1090. setup_tba();
  1091. __flush_tlb_all();
  1092. if (tlb_type == hypervisor)
  1093. sun4v_ktsb_register();
  1094. /* Setup bootmem... */
  1095. pages_avail = 0;
  1096. last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
  1097. max_mapnr = last_valid_pfn;
  1098. kernel_physical_mapping_init();
  1099. {
  1100. unsigned long zones_size[MAX_NR_ZONES];
  1101. unsigned long zholes_size[MAX_NR_ZONES];
  1102. int znum;
  1103. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1104. zones_size[znum] = zholes_size[znum] = 0;
  1105. zones_size[ZONE_DMA] = end_pfn;
  1106. zholes_size[ZONE_DMA] = end_pfn - pages_avail;
  1107. free_area_init_node(0, &contig_page_data, zones_size,
  1108. __pa(PAGE_OFFSET) >> PAGE_SHIFT,
  1109. zholes_size);
  1110. }
  1111. device_scan();
  1112. }
  1113. static void __init taint_real_pages(void)
  1114. {
  1115. int i;
  1116. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1117. /* Find changes discovered in the physmem available rescan and
  1118. * reserve the lost portions in the bootmem maps.
  1119. */
  1120. for (i = 0; i < pavail_ents; i++) {
  1121. unsigned long old_start, old_end;
  1122. old_start = pavail[i].phys_addr;
  1123. old_end = old_start +
  1124. pavail[i].reg_size;
  1125. while (old_start < old_end) {
  1126. int n;
  1127. for (n = 0; pavail_rescan_ents; n++) {
  1128. unsigned long new_start, new_end;
  1129. new_start = pavail_rescan[n].phys_addr;
  1130. new_end = new_start +
  1131. pavail_rescan[n].reg_size;
  1132. if (new_start <= old_start &&
  1133. new_end >= (old_start + PAGE_SIZE)) {
  1134. set_bit(old_start >> 22,
  1135. sparc64_valid_addr_bitmap);
  1136. goto do_next_page;
  1137. }
  1138. }
  1139. reserve_bootmem(old_start, PAGE_SIZE);
  1140. do_next_page:
  1141. old_start += PAGE_SIZE;
  1142. }
  1143. }
  1144. }
  1145. void __init mem_init(void)
  1146. {
  1147. unsigned long codepages, datapages, initpages;
  1148. unsigned long addr, last;
  1149. int i;
  1150. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1151. i += 1;
  1152. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1153. if (sparc64_valid_addr_bitmap == NULL) {
  1154. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1155. prom_halt();
  1156. }
  1157. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1158. addr = PAGE_OFFSET + kern_base;
  1159. last = PAGE_ALIGN(kern_size) + addr;
  1160. while (addr < last) {
  1161. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1162. addr += PAGE_SIZE;
  1163. }
  1164. taint_real_pages();
  1165. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1166. #ifdef CONFIG_DEBUG_BOOTMEM
  1167. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1168. #endif
  1169. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1170. /*
  1171. * Set up the zero page, mark it reserved, so that page count
  1172. * is not manipulated when freeing the page from user ptes.
  1173. */
  1174. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1175. if (mem_map_zero == NULL) {
  1176. prom_printf("paging_init: Cannot alloc zero page.\n");
  1177. prom_halt();
  1178. }
  1179. SetPageReserved(mem_map_zero);
  1180. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1181. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1182. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1183. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1184. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1185. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1186. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1187. nr_free_pages() << (PAGE_SHIFT-10),
  1188. codepages << (PAGE_SHIFT-10),
  1189. datapages << (PAGE_SHIFT-10),
  1190. initpages << (PAGE_SHIFT-10),
  1191. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1192. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1193. cheetah_ecache_flush_init();
  1194. }
  1195. void free_initmem(void)
  1196. {
  1197. unsigned long addr, initend;
  1198. /*
  1199. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1200. */
  1201. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1202. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1203. for (; addr < initend; addr += PAGE_SIZE) {
  1204. unsigned long page;
  1205. struct page *p;
  1206. page = (addr +
  1207. ((unsigned long) __va(kern_base)) -
  1208. ((unsigned long) KERNBASE));
  1209. memset((void *)addr, 0xcc, PAGE_SIZE);
  1210. p = virt_to_page(page);
  1211. ClearPageReserved(p);
  1212. set_page_count(p, 1);
  1213. __free_page(p);
  1214. num_physpages++;
  1215. totalram_pages++;
  1216. }
  1217. }
  1218. #ifdef CONFIG_BLK_DEV_INITRD
  1219. void free_initrd_mem(unsigned long start, unsigned long end)
  1220. {
  1221. if (start < end)
  1222. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1223. for (; start < end; start += PAGE_SIZE) {
  1224. struct page *p = virt_to_page(start);
  1225. ClearPageReserved(p);
  1226. set_page_count(p, 1);
  1227. __free_page(p);
  1228. num_physpages++;
  1229. totalram_pages++;
  1230. }
  1231. }
  1232. #endif
  1233. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1234. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1235. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1236. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1237. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1238. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1239. pgprot_t PAGE_KERNEL __read_mostly;
  1240. EXPORT_SYMBOL(PAGE_KERNEL);
  1241. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1242. pgprot_t PAGE_COPY __read_mostly;
  1243. pgprot_t PAGE_SHARED __read_mostly;
  1244. EXPORT_SYMBOL(PAGE_SHARED);
  1245. pgprot_t PAGE_EXEC __read_mostly;
  1246. unsigned long pg_iobits __read_mostly;
  1247. unsigned long _PAGE_IE __read_mostly;
  1248. unsigned long _PAGE_E __read_mostly;
  1249. EXPORT_SYMBOL(_PAGE_E);
  1250. unsigned long _PAGE_CACHE __read_mostly;
  1251. EXPORT_SYMBOL(_PAGE_CACHE);
  1252. static void prot_init_common(unsigned long page_none,
  1253. unsigned long page_shared,
  1254. unsigned long page_copy,
  1255. unsigned long page_readonly,
  1256. unsigned long page_exec_bit)
  1257. {
  1258. PAGE_COPY = __pgprot(page_copy);
  1259. PAGE_SHARED = __pgprot(page_shared);
  1260. protection_map[0x0] = __pgprot(page_none);
  1261. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1262. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1263. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1264. protection_map[0x4] = __pgprot(page_readonly);
  1265. protection_map[0x5] = __pgprot(page_readonly);
  1266. protection_map[0x6] = __pgprot(page_copy);
  1267. protection_map[0x7] = __pgprot(page_copy);
  1268. protection_map[0x8] = __pgprot(page_none);
  1269. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1270. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1271. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1272. protection_map[0xc] = __pgprot(page_readonly);
  1273. protection_map[0xd] = __pgprot(page_readonly);
  1274. protection_map[0xe] = __pgprot(page_shared);
  1275. protection_map[0xf] = __pgprot(page_shared);
  1276. }
  1277. static void __init sun4u_pgprot_init(void)
  1278. {
  1279. unsigned long page_none, page_shared, page_copy, page_readonly;
  1280. unsigned long page_exec_bit;
  1281. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1282. _PAGE_CACHE_4U | _PAGE_P_4U |
  1283. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1284. _PAGE_EXEC_4U);
  1285. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1286. _PAGE_CACHE_4U | _PAGE_P_4U |
  1287. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1288. _PAGE_EXEC_4U | _PAGE_L_4U);
  1289. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1290. _PAGE_IE = _PAGE_IE_4U;
  1291. _PAGE_E = _PAGE_E_4U;
  1292. _PAGE_CACHE = _PAGE_CACHE_4U;
  1293. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1294. __ACCESS_BITS_4U | _PAGE_E_4U);
  1295. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1296. 0xfffff80000000000;
  1297. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1298. _PAGE_P_4U | _PAGE_W_4U);
  1299. /* XXX Should use 256MB on Panther. XXX */
  1300. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1301. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1302. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1303. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1304. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1305. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1306. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1307. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1308. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1309. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1310. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1311. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1312. page_exec_bit = _PAGE_EXEC_4U;
  1313. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1314. page_exec_bit);
  1315. }
  1316. static void __init sun4v_pgprot_init(void)
  1317. {
  1318. unsigned long page_none, page_shared, page_copy, page_readonly;
  1319. unsigned long page_exec_bit;
  1320. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1321. _PAGE_CACHE_4V | _PAGE_P_4V |
  1322. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1323. _PAGE_EXEC_4V);
  1324. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1325. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1326. _PAGE_IE = _PAGE_IE_4V;
  1327. _PAGE_E = _PAGE_E_4V;
  1328. _PAGE_CACHE = _PAGE_CACHE_4V;
  1329. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1330. 0xfffff80000000000;
  1331. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1332. _PAGE_P_4V | _PAGE_W_4V);
  1333. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1334. 0xfffff80000000000;
  1335. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1336. _PAGE_P_4V | _PAGE_W_4V);
  1337. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1338. __ACCESS_BITS_4V | _PAGE_E_4V);
  1339. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1340. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1341. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1342. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1343. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1344. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1345. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1346. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1347. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1348. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1349. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1350. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1351. page_exec_bit = _PAGE_EXEC_4V;
  1352. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1353. page_exec_bit);
  1354. }
  1355. unsigned long pte_sz_bits(unsigned long sz)
  1356. {
  1357. if (tlb_type == hypervisor) {
  1358. switch (sz) {
  1359. case 8 * 1024:
  1360. default:
  1361. return _PAGE_SZ8K_4V;
  1362. case 64 * 1024:
  1363. return _PAGE_SZ64K_4V;
  1364. case 512 * 1024:
  1365. return _PAGE_SZ512K_4V;
  1366. case 4 * 1024 * 1024:
  1367. return _PAGE_SZ4MB_4V;
  1368. };
  1369. } else {
  1370. switch (sz) {
  1371. case 8 * 1024:
  1372. default:
  1373. return _PAGE_SZ8K_4U;
  1374. case 64 * 1024:
  1375. return _PAGE_SZ64K_4U;
  1376. case 512 * 1024:
  1377. return _PAGE_SZ512K_4U;
  1378. case 4 * 1024 * 1024:
  1379. return _PAGE_SZ4MB_4U;
  1380. };
  1381. }
  1382. }
  1383. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1384. {
  1385. pte_t pte;
  1386. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1387. pte_val(pte) |= (((unsigned long)space) << 32);
  1388. pte_val(pte) |= pte_sz_bits(page_size);
  1389. return pte;
  1390. }
  1391. static unsigned long kern_large_tte(unsigned long paddr)
  1392. {
  1393. unsigned long val;
  1394. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1395. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1396. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1397. if (tlb_type == hypervisor)
  1398. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1399. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1400. _PAGE_EXEC_4V | _PAGE_W_4V);
  1401. return val | paddr;
  1402. }
  1403. /*
  1404. * Translate PROM's mapping we capture at boot time into physical address.
  1405. * The second parameter is only set from prom_callback() invocations.
  1406. */
  1407. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1408. {
  1409. unsigned long mask;
  1410. int i;
  1411. mask = _PAGE_PADDR_4U;
  1412. if (tlb_type == hypervisor)
  1413. mask = _PAGE_PADDR_4V;
  1414. for (i = 0; i < prom_trans_ents; i++) {
  1415. struct linux_prom_translation *p = &prom_trans[i];
  1416. if (promva >= p->virt &&
  1417. promva < (p->virt + p->size)) {
  1418. unsigned long base = p->data & mask;
  1419. if (error)
  1420. *error = 0;
  1421. return base + (promva & (8192 - 1));
  1422. }
  1423. }
  1424. if (error)
  1425. *error = 1;
  1426. return 0UL;
  1427. }
  1428. /* XXX We should kill off this ugly thing at so me point. XXX */
  1429. unsigned long sun4u_get_pte(unsigned long addr)
  1430. {
  1431. pgd_t *pgdp;
  1432. pud_t *pudp;
  1433. pmd_t *pmdp;
  1434. pte_t *ptep;
  1435. unsigned long mask = _PAGE_PADDR_4U;
  1436. if (tlb_type == hypervisor)
  1437. mask = _PAGE_PADDR_4V;
  1438. if (addr >= PAGE_OFFSET)
  1439. return addr & mask;
  1440. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1441. return prom_virt_to_phys(addr, NULL);
  1442. pgdp = pgd_offset_k(addr);
  1443. pudp = pud_offset(pgdp, addr);
  1444. pmdp = pmd_offset(pudp, addr);
  1445. ptep = pte_offset_kernel(pmdp, addr);
  1446. return pte_val(*ptep) & mask;
  1447. }
  1448. /* If not locked, zap it. */
  1449. void __flush_tlb_all(void)
  1450. {
  1451. unsigned long pstate;
  1452. int i;
  1453. __asm__ __volatile__("flushw\n\t"
  1454. "rdpr %%pstate, %0\n\t"
  1455. "wrpr %0, %1, %%pstate"
  1456. : "=r" (pstate)
  1457. : "i" (PSTATE_IE));
  1458. if (tlb_type == spitfire) {
  1459. for (i = 0; i < 64; i++) {
  1460. /* Spitfire Errata #32 workaround */
  1461. /* NOTE: Always runs on spitfire, so no
  1462. * cheetah+ page size encodings.
  1463. */
  1464. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1465. "flush %%g6"
  1466. : /* No outputs */
  1467. : "r" (0),
  1468. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1469. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1470. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1471. "membar #Sync"
  1472. : /* no outputs */
  1473. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1474. spitfire_put_dtlb_data(i, 0x0UL);
  1475. }
  1476. /* Spitfire Errata #32 workaround */
  1477. /* NOTE: Always runs on spitfire, so no
  1478. * cheetah+ page size encodings.
  1479. */
  1480. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1481. "flush %%g6"
  1482. : /* No outputs */
  1483. : "r" (0),
  1484. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1485. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1486. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1487. "membar #Sync"
  1488. : /* no outputs */
  1489. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1490. spitfire_put_itlb_data(i, 0x0UL);
  1491. }
  1492. }
  1493. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1494. cheetah_flush_dtlb_all();
  1495. cheetah_flush_itlb_all();
  1496. }
  1497. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1498. : : "r" (pstate));
  1499. }