x86.c 121 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  72. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  73. struct kvm_cpuid_entry2 __user *entries);
  74. struct kvm_x86_ops *kvm_x86_ops;
  75. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  76. int ignore_msrs = 0;
  77. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  78. struct kvm_stats_debugfs_item debugfs_entries[] = {
  79. { "pf_fixed", VCPU_STAT(pf_fixed) },
  80. { "pf_guest", VCPU_STAT(pf_guest) },
  81. { "tlb_flush", VCPU_STAT(tlb_flush) },
  82. { "invlpg", VCPU_STAT(invlpg) },
  83. { "exits", VCPU_STAT(exits) },
  84. { "io_exits", VCPU_STAT(io_exits) },
  85. { "mmio_exits", VCPU_STAT(mmio_exits) },
  86. { "signal_exits", VCPU_STAT(signal_exits) },
  87. { "irq_window", VCPU_STAT(irq_window_exits) },
  88. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  89. { "halt_exits", VCPU_STAT(halt_exits) },
  90. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  91. { "hypercalls", VCPU_STAT(hypercalls) },
  92. { "request_irq", VCPU_STAT(request_irq_exits) },
  93. { "irq_exits", VCPU_STAT(irq_exits) },
  94. { "host_state_reload", VCPU_STAT(host_state_reload) },
  95. { "efer_reload", VCPU_STAT(efer_reload) },
  96. { "fpu_reload", VCPU_STAT(fpu_reload) },
  97. { "insn_emulation", VCPU_STAT(insn_emulation) },
  98. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  99. { "irq_injections", VCPU_STAT(irq_injections) },
  100. { "nmi_injections", VCPU_STAT(nmi_injections) },
  101. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  102. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  103. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  104. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  105. { "mmu_flooded", VM_STAT(mmu_flooded) },
  106. { "mmu_recycled", VM_STAT(mmu_recycled) },
  107. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  108. { "mmu_unsync", VM_STAT(mmu_unsync) },
  109. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  110. { "largepages", VM_STAT(lpages) },
  111. { NULL }
  112. };
  113. unsigned long segment_base(u16 selector)
  114. {
  115. struct descriptor_table gdt;
  116. struct desc_struct *d;
  117. unsigned long table_base;
  118. unsigned long v;
  119. if (selector == 0)
  120. return 0;
  121. kvm_get_gdt(&gdt);
  122. table_base = gdt.base;
  123. if (selector & 4) { /* from ldt */
  124. u16 ldt_selector = kvm_read_ldt();
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = get_desc_base(d);
  129. #ifdef CONFIG_X86_64
  130. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  131. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  132. #endif
  133. return v;
  134. }
  135. EXPORT_SYMBOL_GPL(segment_base);
  136. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  137. {
  138. if (irqchip_in_kernel(vcpu->kvm))
  139. return vcpu->arch.apic_base;
  140. else
  141. return vcpu->arch.apic_base;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  144. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  145. {
  146. /* TODO: reserve bits check */
  147. if (irqchip_in_kernel(vcpu->kvm))
  148. kvm_lapic_set_base(vcpu, data);
  149. else
  150. vcpu->arch.apic_base = data;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  153. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  154. {
  155. WARN_ON(vcpu->arch.exception.pending);
  156. vcpu->arch.exception.pending = true;
  157. vcpu->arch.exception.has_error_code = false;
  158. vcpu->arch.exception.nr = nr;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  161. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  162. u32 error_code)
  163. {
  164. ++vcpu->stat.pf_guest;
  165. if (vcpu->arch.exception.pending) {
  166. switch(vcpu->arch.exception.nr) {
  167. case DF_VECTOR:
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. return;
  171. case PF_VECTOR:
  172. vcpu->arch.exception.nr = DF_VECTOR;
  173. vcpu->arch.exception.error_code = 0;
  174. return;
  175. default:
  176. /* replace previous exception with a new one in a hope
  177. that instruction re-execution will regenerate lost
  178. exception */
  179. vcpu->arch.exception.pending = false;
  180. break;
  181. }
  182. }
  183. vcpu->arch.cr2 = addr;
  184. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  185. }
  186. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  187. {
  188. vcpu->arch.nmi_pending = 1;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  191. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  192. {
  193. WARN_ON(vcpu->arch.exception.pending);
  194. vcpu->arch.exception.pending = true;
  195. vcpu->arch.exception.has_error_code = true;
  196. vcpu->arch.exception.nr = nr;
  197. vcpu->arch.exception.error_code = error_code;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  200. /*
  201. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  202. * a #GP and return false.
  203. */
  204. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  205. {
  206. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  207. return true;
  208. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  209. return false;
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  212. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  213. {
  214. unsigned long rflags;
  215. rflags = kvm_x86_ops->get_rflags(vcpu);
  216. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  217. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  218. return rflags;
  219. }
  220. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  221. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  222. {
  223. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  224. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  225. kvm_x86_ops->set_rflags(vcpu, rflags);
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  228. /*
  229. * Load the pae pdptrs. Return true is they are all valid.
  230. */
  231. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  232. {
  233. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  234. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  235. int i;
  236. int ret;
  237. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  238. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  239. offset * sizeof(u64), sizeof(pdpte));
  240. if (ret < 0) {
  241. ret = 0;
  242. goto out;
  243. }
  244. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  245. if (is_present_gpte(pdpte[i]) &&
  246. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  247. ret = 0;
  248. goto out;
  249. }
  250. }
  251. ret = 1;
  252. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  253. __set_bit(VCPU_EXREG_PDPTR,
  254. (unsigned long *)&vcpu->arch.regs_avail);
  255. __set_bit(VCPU_EXREG_PDPTR,
  256. (unsigned long *)&vcpu->arch.regs_dirty);
  257. out:
  258. return ret;
  259. }
  260. EXPORT_SYMBOL_GPL(load_pdptrs);
  261. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  262. {
  263. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  264. bool changed = true;
  265. int r;
  266. if (is_long_mode(vcpu) || !is_pae(vcpu))
  267. return false;
  268. if (!test_bit(VCPU_EXREG_PDPTR,
  269. (unsigned long *)&vcpu->arch.regs_avail))
  270. return true;
  271. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  272. if (r < 0)
  273. goto out;
  274. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  275. out:
  276. return changed;
  277. }
  278. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  279. {
  280. if (cr0 & CR0_RESERVED_BITS) {
  281. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  282. cr0, vcpu->arch.cr0);
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  287. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  292. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  293. "and a clear PE flag\n");
  294. kvm_inject_gp(vcpu, 0);
  295. return;
  296. }
  297. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  298. #ifdef CONFIG_X86_64
  299. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  300. int cs_db, cs_l;
  301. if (!is_pae(vcpu)) {
  302. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  303. "in long mode while PAE is disabled\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  308. if (cs_l) {
  309. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  310. "in long mode while CS.L == 1\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. } else
  315. #endif
  316. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  317. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  318. "reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. }
  323. kvm_x86_ops->set_cr0(vcpu, cr0);
  324. vcpu->arch.cr0 = cr0;
  325. kvm_mmu_reset_context(vcpu);
  326. return;
  327. }
  328. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  329. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  330. {
  331. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  332. }
  333. EXPORT_SYMBOL_GPL(kvm_lmsw);
  334. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  335. {
  336. unsigned long old_cr4 = vcpu->arch.cr4;
  337. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  338. if (cr4 & CR4_RESERVED_BITS) {
  339. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  340. kvm_inject_gp(vcpu, 0);
  341. return;
  342. }
  343. if (is_long_mode(vcpu)) {
  344. if (!(cr4 & X86_CR4_PAE)) {
  345. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  346. "in long mode\n");
  347. kvm_inject_gp(vcpu, 0);
  348. return;
  349. }
  350. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  351. && ((cr4 ^ old_cr4) & pdptr_bits)
  352. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  353. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  354. kvm_inject_gp(vcpu, 0);
  355. return;
  356. }
  357. if (cr4 & X86_CR4_VMXE) {
  358. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  359. kvm_inject_gp(vcpu, 0);
  360. return;
  361. }
  362. kvm_x86_ops->set_cr4(vcpu, cr4);
  363. vcpu->arch.cr4 = cr4;
  364. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  365. kvm_mmu_reset_context(vcpu);
  366. }
  367. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  368. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  369. {
  370. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  371. kvm_mmu_sync_roots(vcpu);
  372. kvm_mmu_flush_tlb(vcpu);
  373. return;
  374. }
  375. if (is_long_mode(vcpu)) {
  376. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  377. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  378. kvm_inject_gp(vcpu, 0);
  379. return;
  380. }
  381. } else {
  382. if (is_pae(vcpu)) {
  383. if (cr3 & CR3_PAE_RESERVED_BITS) {
  384. printk(KERN_DEBUG
  385. "set_cr3: #GP, reserved bits\n");
  386. kvm_inject_gp(vcpu, 0);
  387. return;
  388. }
  389. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  390. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  391. "reserved bits\n");
  392. kvm_inject_gp(vcpu, 0);
  393. return;
  394. }
  395. }
  396. /*
  397. * We don't check reserved bits in nonpae mode, because
  398. * this isn't enforced, and VMware depends on this.
  399. */
  400. }
  401. /*
  402. * Does the new cr3 value map to physical memory? (Note, we
  403. * catch an invalid cr3 even in real-mode, because it would
  404. * cause trouble later on when we turn on paging anyway.)
  405. *
  406. * A real CPU would silently accept an invalid cr3 and would
  407. * attempt to use it - with largely undefined (and often hard
  408. * to debug) behavior on the guest side.
  409. */
  410. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  411. kvm_inject_gp(vcpu, 0);
  412. else {
  413. vcpu->arch.cr3 = cr3;
  414. vcpu->arch.mmu.new_cr3(vcpu);
  415. }
  416. }
  417. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  418. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  419. {
  420. if (cr8 & CR8_RESERVED_BITS) {
  421. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  422. kvm_inject_gp(vcpu, 0);
  423. return;
  424. }
  425. if (irqchip_in_kernel(vcpu->kvm))
  426. kvm_lapic_set_tpr(vcpu, cr8);
  427. else
  428. vcpu->arch.cr8 = cr8;
  429. }
  430. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  431. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  432. {
  433. if (irqchip_in_kernel(vcpu->kvm))
  434. return kvm_lapic_get_cr8(vcpu);
  435. else
  436. return vcpu->arch.cr8;
  437. }
  438. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  439. static inline u32 bit(int bitno)
  440. {
  441. return 1 << (bitno & 31);
  442. }
  443. /*
  444. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  445. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  446. *
  447. * This list is modified at module load time to reflect the
  448. * capabilities of the host cpu. This capabilities test skips MSRs that are
  449. * kvm-specific. Those are put in the beginning of the list.
  450. */
  451. #define KVM_SAVE_MSRS_BEGIN 2
  452. static u32 msrs_to_save[] = {
  453. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  454. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  455. MSR_K6_STAR,
  456. #ifdef CONFIG_X86_64
  457. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  458. #endif
  459. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  460. };
  461. static unsigned num_msrs_to_save;
  462. static u32 emulated_msrs[] = {
  463. MSR_IA32_MISC_ENABLE,
  464. };
  465. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  466. {
  467. if (efer & efer_reserved_bits) {
  468. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  469. efer);
  470. kvm_inject_gp(vcpu, 0);
  471. return;
  472. }
  473. if (is_paging(vcpu)
  474. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  475. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  476. kvm_inject_gp(vcpu, 0);
  477. return;
  478. }
  479. if (efer & EFER_FFXSR) {
  480. struct kvm_cpuid_entry2 *feat;
  481. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  482. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  483. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  484. kvm_inject_gp(vcpu, 0);
  485. return;
  486. }
  487. }
  488. if (efer & EFER_SVME) {
  489. struct kvm_cpuid_entry2 *feat;
  490. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  491. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  492. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  493. kvm_inject_gp(vcpu, 0);
  494. return;
  495. }
  496. }
  497. kvm_x86_ops->set_efer(vcpu, efer);
  498. efer &= ~EFER_LMA;
  499. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  500. vcpu->arch.shadow_efer = efer;
  501. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  502. kvm_mmu_reset_context(vcpu);
  503. }
  504. void kvm_enable_efer_bits(u64 mask)
  505. {
  506. efer_reserved_bits &= ~mask;
  507. }
  508. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  509. /*
  510. * Writes msr value into into the appropriate "register".
  511. * Returns 0 on success, non-0 otherwise.
  512. * Assumes vcpu_load() was already called.
  513. */
  514. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  515. {
  516. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  517. }
  518. /*
  519. * Adapt set_msr() to msr_io()'s calling convention
  520. */
  521. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  522. {
  523. return kvm_set_msr(vcpu, index, *data);
  524. }
  525. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  526. {
  527. static int version;
  528. struct pvclock_wall_clock wc;
  529. struct timespec now, sys, boot;
  530. if (!wall_clock)
  531. return;
  532. version++;
  533. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  534. /*
  535. * The guest calculates current wall clock time by adding
  536. * system time (updated by kvm_write_guest_time below) to the
  537. * wall clock specified here. guest system time equals host
  538. * system time for us, thus we must fill in host boot time here.
  539. */
  540. now = current_kernel_time();
  541. ktime_get_ts(&sys);
  542. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  543. wc.sec = boot.tv_sec;
  544. wc.nsec = boot.tv_nsec;
  545. wc.version = version;
  546. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  547. version++;
  548. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  549. }
  550. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  551. {
  552. uint32_t quotient, remainder;
  553. /* Don't try to replace with do_div(), this one calculates
  554. * "(dividend << 32) / divisor" */
  555. __asm__ ( "divl %4"
  556. : "=a" (quotient), "=d" (remainder)
  557. : "0" (0), "1" (dividend), "r" (divisor) );
  558. return quotient;
  559. }
  560. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  561. {
  562. uint64_t nsecs = 1000000000LL;
  563. int32_t shift = 0;
  564. uint64_t tps64;
  565. uint32_t tps32;
  566. tps64 = tsc_khz * 1000LL;
  567. while (tps64 > nsecs*2) {
  568. tps64 >>= 1;
  569. shift--;
  570. }
  571. tps32 = (uint32_t)tps64;
  572. while (tps32 <= (uint32_t)nsecs) {
  573. tps32 <<= 1;
  574. shift++;
  575. }
  576. hv_clock->tsc_shift = shift;
  577. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  578. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  579. __func__, tsc_khz, hv_clock->tsc_shift,
  580. hv_clock->tsc_to_system_mul);
  581. }
  582. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  583. static void kvm_write_guest_time(struct kvm_vcpu *v)
  584. {
  585. struct timespec ts;
  586. unsigned long flags;
  587. struct kvm_vcpu_arch *vcpu = &v->arch;
  588. void *shared_kaddr;
  589. unsigned long this_tsc_khz;
  590. if ((!vcpu->time_page))
  591. return;
  592. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  593. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  594. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  595. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  596. }
  597. put_cpu_var(cpu_tsc_khz);
  598. /* Keep irq disabled to prevent changes to the clock */
  599. local_irq_save(flags);
  600. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  601. ktime_get_ts(&ts);
  602. local_irq_restore(flags);
  603. /* With all the info we got, fill in the values */
  604. vcpu->hv_clock.system_time = ts.tv_nsec +
  605. (NSEC_PER_SEC * (u64)ts.tv_sec);
  606. /*
  607. * The interface expects us to write an even number signaling that the
  608. * update is finished. Since the guest won't see the intermediate
  609. * state, we just increase by 2 at the end.
  610. */
  611. vcpu->hv_clock.version += 2;
  612. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  613. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  614. sizeof(vcpu->hv_clock));
  615. kunmap_atomic(shared_kaddr, KM_USER0);
  616. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  617. }
  618. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  619. {
  620. struct kvm_vcpu_arch *vcpu = &v->arch;
  621. if (!vcpu->time_page)
  622. return 0;
  623. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  624. return 1;
  625. }
  626. static bool msr_mtrr_valid(unsigned msr)
  627. {
  628. switch (msr) {
  629. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  630. case MSR_MTRRfix64K_00000:
  631. case MSR_MTRRfix16K_80000:
  632. case MSR_MTRRfix16K_A0000:
  633. case MSR_MTRRfix4K_C0000:
  634. case MSR_MTRRfix4K_C8000:
  635. case MSR_MTRRfix4K_D0000:
  636. case MSR_MTRRfix4K_D8000:
  637. case MSR_MTRRfix4K_E0000:
  638. case MSR_MTRRfix4K_E8000:
  639. case MSR_MTRRfix4K_F0000:
  640. case MSR_MTRRfix4K_F8000:
  641. case MSR_MTRRdefType:
  642. case MSR_IA32_CR_PAT:
  643. return true;
  644. case 0x2f8:
  645. return true;
  646. }
  647. return false;
  648. }
  649. static bool valid_pat_type(unsigned t)
  650. {
  651. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  652. }
  653. static bool valid_mtrr_type(unsigned t)
  654. {
  655. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  656. }
  657. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  658. {
  659. int i;
  660. if (!msr_mtrr_valid(msr))
  661. return false;
  662. if (msr == MSR_IA32_CR_PAT) {
  663. for (i = 0; i < 8; i++)
  664. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  665. return false;
  666. return true;
  667. } else if (msr == MSR_MTRRdefType) {
  668. if (data & ~0xcff)
  669. return false;
  670. return valid_mtrr_type(data & 0xff);
  671. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  672. for (i = 0; i < 8 ; i++)
  673. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  674. return false;
  675. return true;
  676. }
  677. /* variable MTRRs */
  678. return valid_mtrr_type(data & 0xff);
  679. }
  680. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  681. {
  682. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  683. if (!mtrr_valid(vcpu, msr, data))
  684. return 1;
  685. if (msr == MSR_MTRRdefType) {
  686. vcpu->arch.mtrr_state.def_type = data;
  687. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  688. } else if (msr == MSR_MTRRfix64K_00000)
  689. p[0] = data;
  690. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  691. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  692. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  693. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  694. else if (msr == MSR_IA32_CR_PAT)
  695. vcpu->arch.pat = data;
  696. else { /* Variable MTRRs */
  697. int idx, is_mtrr_mask;
  698. u64 *pt;
  699. idx = (msr - 0x200) / 2;
  700. is_mtrr_mask = msr - 0x200 - 2 * idx;
  701. if (!is_mtrr_mask)
  702. pt =
  703. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  704. else
  705. pt =
  706. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  707. *pt = data;
  708. }
  709. kvm_mmu_reset_context(vcpu);
  710. return 0;
  711. }
  712. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  713. {
  714. u64 mcg_cap = vcpu->arch.mcg_cap;
  715. unsigned bank_num = mcg_cap & 0xff;
  716. switch (msr) {
  717. case MSR_IA32_MCG_STATUS:
  718. vcpu->arch.mcg_status = data;
  719. break;
  720. case MSR_IA32_MCG_CTL:
  721. if (!(mcg_cap & MCG_CTL_P))
  722. return 1;
  723. if (data != 0 && data != ~(u64)0)
  724. return -1;
  725. vcpu->arch.mcg_ctl = data;
  726. break;
  727. default:
  728. if (msr >= MSR_IA32_MC0_CTL &&
  729. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  730. u32 offset = msr - MSR_IA32_MC0_CTL;
  731. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  732. if ((offset & 0x3) == 0 &&
  733. data != 0 && data != ~(u64)0)
  734. return -1;
  735. vcpu->arch.mce_banks[offset] = data;
  736. break;
  737. }
  738. return 1;
  739. }
  740. return 0;
  741. }
  742. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  743. {
  744. switch (msr) {
  745. case MSR_EFER:
  746. set_efer(vcpu, data);
  747. break;
  748. case MSR_K7_HWCR:
  749. data &= ~(u64)0x40; /* ignore flush filter disable */
  750. if (data != 0) {
  751. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  752. data);
  753. return 1;
  754. }
  755. break;
  756. case MSR_FAM10H_MMIO_CONF_BASE:
  757. if (data != 0) {
  758. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  759. "0x%llx\n", data);
  760. return 1;
  761. }
  762. break;
  763. case MSR_AMD64_NB_CFG:
  764. break;
  765. case MSR_IA32_DEBUGCTLMSR:
  766. if (!data) {
  767. /* We support the non-activated case already */
  768. break;
  769. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  770. /* Values other than LBR and BTF are vendor-specific,
  771. thus reserved and should throw a #GP */
  772. return 1;
  773. }
  774. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  775. __func__, data);
  776. break;
  777. case MSR_IA32_UCODE_REV:
  778. case MSR_IA32_UCODE_WRITE:
  779. case MSR_VM_HSAVE_PA:
  780. case MSR_AMD64_PATCH_LOADER:
  781. break;
  782. case 0x200 ... 0x2ff:
  783. return set_msr_mtrr(vcpu, msr, data);
  784. case MSR_IA32_APICBASE:
  785. kvm_set_apic_base(vcpu, data);
  786. break;
  787. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  788. return kvm_x2apic_msr_write(vcpu, msr, data);
  789. case MSR_IA32_MISC_ENABLE:
  790. vcpu->arch.ia32_misc_enable_msr = data;
  791. break;
  792. case MSR_KVM_WALL_CLOCK:
  793. vcpu->kvm->arch.wall_clock = data;
  794. kvm_write_wall_clock(vcpu->kvm, data);
  795. break;
  796. case MSR_KVM_SYSTEM_TIME: {
  797. if (vcpu->arch.time_page) {
  798. kvm_release_page_dirty(vcpu->arch.time_page);
  799. vcpu->arch.time_page = NULL;
  800. }
  801. vcpu->arch.time = data;
  802. /* we verify if the enable bit is set... */
  803. if (!(data & 1))
  804. break;
  805. /* ...but clean it before doing the actual write */
  806. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  807. vcpu->arch.time_page =
  808. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  809. if (is_error_page(vcpu->arch.time_page)) {
  810. kvm_release_page_clean(vcpu->arch.time_page);
  811. vcpu->arch.time_page = NULL;
  812. }
  813. kvm_request_guest_time_update(vcpu);
  814. break;
  815. }
  816. case MSR_IA32_MCG_CTL:
  817. case MSR_IA32_MCG_STATUS:
  818. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  819. return set_msr_mce(vcpu, msr, data);
  820. /* Performance counters are not protected by a CPUID bit,
  821. * so we should check all of them in the generic path for the sake of
  822. * cross vendor migration.
  823. * Writing a zero into the event select MSRs disables them,
  824. * which we perfectly emulate ;-). Any other value should be at least
  825. * reported, some guests depend on them.
  826. */
  827. case MSR_P6_EVNTSEL0:
  828. case MSR_P6_EVNTSEL1:
  829. case MSR_K7_EVNTSEL0:
  830. case MSR_K7_EVNTSEL1:
  831. case MSR_K7_EVNTSEL2:
  832. case MSR_K7_EVNTSEL3:
  833. if (data != 0)
  834. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  835. "0x%x data 0x%llx\n", msr, data);
  836. break;
  837. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  838. * so we ignore writes to make it happy.
  839. */
  840. case MSR_P6_PERFCTR0:
  841. case MSR_P6_PERFCTR1:
  842. case MSR_K7_PERFCTR0:
  843. case MSR_K7_PERFCTR1:
  844. case MSR_K7_PERFCTR2:
  845. case MSR_K7_PERFCTR3:
  846. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  847. "0x%x data 0x%llx\n", msr, data);
  848. break;
  849. default:
  850. if (!ignore_msrs) {
  851. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  852. msr, data);
  853. return 1;
  854. } else {
  855. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  856. msr, data);
  857. break;
  858. }
  859. }
  860. return 0;
  861. }
  862. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  863. /*
  864. * Reads an msr value (of 'msr_index') into 'pdata'.
  865. * Returns 0 on success, non-0 otherwise.
  866. * Assumes vcpu_load() was already called.
  867. */
  868. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  869. {
  870. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  871. }
  872. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  873. {
  874. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  875. if (!msr_mtrr_valid(msr))
  876. return 1;
  877. if (msr == MSR_MTRRdefType)
  878. *pdata = vcpu->arch.mtrr_state.def_type +
  879. (vcpu->arch.mtrr_state.enabled << 10);
  880. else if (msr == MSR_MTRRfix64K_00000)
  881. *pdata = p[0];
  882. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  883. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  884. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  885. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  886. else if (msr == MSR_IA32_CR_PAT)
  887. *pdata = vcpu->arch.pat;
  888. else { /* Variable MTRRs */
  889. int idx, is_mtrr_mask;
  890. u64 *pt;
  891. idx = (msr - 0x200) / 2;
  892. is_mtrr_mask = msr - 0x200 - 2 * idx;
  893. if (!is_mtrr_mask)
  894. pt =
  895. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  896. else
  897. pt =
  898. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  899. *pdata = *pt;
  900. }
  901. return 0;
  902. }
  903. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  904. {
  905. u64 data;
  906. u64 mcg_cap = vcpu->arch.mcg_cap;
  907. unsigned bank_num = mcg_cap & 0xff;
  908. switch (msr) {
  909. case MSR_IA32_P5_MC_ADDR:
  910. case MSR_IA32_P5_MC_TYPE:
  911. data = 0;
  912. break;
  913. case MSR_IA32_MCG_CAP:
  914. data = vcpu->arch.mcg_cap;
  915. break;
  916. case MSR_IA32_MCG_CTL:
  917. if (!(mcg_cap & MCG_CTL_P))
  918. return 1;
  919. data = vcpu->arch.mcg_ctl;
  920. break;
  921. case MSR_IA32_MCG_STATUS:
  922. data = vcpu->arch.mcg_status;
  923. break;
  924. default:
  925. if (msr >= MSR_IA32_MC0_CTL &&
  926. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  927. u32 offset = msr - MSR_IA32_MC0_CTL;
  928. data = vcpu->arch.mce_banks[offset];
  929. break;
  930. }
  931. return 1;
  932. }
  933. *pdata = data;
  934. return 0;
  935. }
  936. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  937. {
  938. u64 data;
  939. switch (msr) {
  940. case MSR_IA32_PLATFORM_ID:
  941. case MSR_IA32_UCODE_REV:
  942. case MSR_IA32_EBL_CR_POWERON:
  943. case MSR_IA32_DEBUGCTLMSR:
  944. case MSR_IA32_LASTBRANCHFROMIP:
  945. case MSR_IA32_LASTBRANCHTOIP:
  946. case MSR_IA32_LASTINTFROMIP:
  947. case MSR_IA32_LASTINTTOIP:
  948. case MSR_K8_SYSCFG:
  949. case MSR_K7_HWCR:
  950. case MSR_VM_HSAVE_PA:
  951. case MSR_P6_PERFCTR0:
  952. case MSR_P6_PERFCTR1:
  953. case MSR_P6_EVNTSEL0:
  954. case MSR_P6_EVNTSEL1:
  955. case MSR_K7_EVNTSEL0:
  956. case MSR_K7_PERFCTR0:
  957. case MSR_K8_INT_PENDING_MSG:
  958. case MSR_AMD64_NB_CFG:
  959. case MSR_FAM10H_MMIO_CONF_BASE:
  960. data = 0;
  961. break;
  962. case MSR_MTRRcap:
  963. data = 0x500 | KVM_NR_VAR_MTRR;
  964. break;
  965. case 0x200 ... 0x2ff:
  966. return get_msr_mtrr(vcpu, msr, pdata);
  967. case 0xcd: /* fsb frequency */
  968. data = 3;
  969. break;
  970. case MSR_IA32_APICBASE:
  971. data = kvm_get_apic_base(vcpu);
  972. break;
  973. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  974. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  975. break;
  976. case MSR_IA32_MISC_ENABLE:
  977. data = vcpu->arch.ia32_misc_enable_msr;
  978. break;
  979. case MSR_IA32_PERF_STATUS:
  980. /* TSC increment by tick */
  981. data = 1000ULL;
  982. /* CPU multiplier */
  983. data |= (((uint64_t)4ULL) << 40);
  984. break;
  985. case MSR_EFER:
  986. data = vcpu->arch.shadow_efer;
  987. break;
  988. case MSR_KVM_WALL_CLOCK:
  989. data = vcpu->kvm->arch.wall_clock;
  990. break;
  991. case MSR_KVM_SYSTEM_TIME:
  992. data = vcpu->arch.time;
  993. break;
  994. case MSR_IA32_P5_MC_ADDR:
  995. case MSR_IA32_P5_MC_TYPE:
  996. case MSR_IA32_MCG_CAP:
  997. case MSR_IA32_MCG_CTL:
  998. case MSR_IA32_MCG_STATUS:
  999. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1000. return get_msr_mce(vcpu, msr, pdata);
  1001. default:
  1002. if (!ignore_msrs) {
  1003. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1004. return 1;
  1005. } else {
  1006. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1007. data = 0;
  1008. }
  1009. break;
  1010. }
  1011. *pdata = data;
  1012. return 0;
  1013. }
  1014. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1015. /*
  1016. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1017. *
  1018. * @return number of msrs set successfully.
  1019. */
  1020. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1021. struct kvm_msr_entry *entries,
  1022. int (*do_msr)(struct kvm_vcpu *vcpu,
  1023. unsigned index, u64 *data))
  1024. {
  1025. int i;
  1026. vcpu_load(vcpu);
  1027. down_read(&vcpu->kvm->slots_lock);
  1028. for (i = 0; i < msrs->nmsrs; ++i)
  1029. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1030. break;
  1031. up_read(&vcpu->kvm->slots_lock);
  1032. vcpu_put(vcpu);
  1033. return i;
  1034. }
  1035. /*
  1036. * Read or write a bunch of msrs. Parameters are user addresses.
  1037. *
  1038. * @return number of msrs set successfully.
  1039. */
  1040. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1041. int (*do_msr)(struct kvm_vcpu *vcpu,
  1042. unsigned index, u64 *data),
  1043. int writeback)
  1044. {
  1045. struct kvm_msrs msrs;
  1046. struct kvm_msr_entry *entries;
  1047. int r, n;
  1048. unsigned size;
  1049. r = -EFAULT;
  1050. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1051. goto out;
  1052. r = -E2BIG;
  1053. if (msrs.nmsrs >= MAX_IO_MSRS)
  1054. goto out;
  1055. r = -ENOMEM;
  1056. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1057. entries = vmalloc(size);
  1058. if (!entries)
  1059. goto out;
  1060. r = -EFAULT;
  1061. if (copy_from_user(entries, user_msrs->entries, size))
  1062. goto out_free;
  1063. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1064. if (r < 0)
  1065. goto out_free;
  1066. r = -EFAULT;
  1067. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1068. goto out_free;
  1069. r = n;
  1070. out_free:
  1071. vfree(entries);
  1072. out:
  1073. return r;
  1074. }
  1075. int kvm_dev_ioctl_check_extension(long ext)
  1076. {
  1077. int r;
  1078. switch (ext) {
  1079. case KVM_CAP_IRQCHIP:
  1080. case KVM_CAP_HLT:
  1081. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1082. case KVM_CAP_SET_TSS_ADDR:
  1083. case KVM_CAP_EXT_CPUID:
  1084. case KVM_CAP_CLOCKSOURCE:
  1085. case KVM_CAP_PIT:
  1086. case KVM_CAP_NOP_IO_DELAY:
  1087. case KVM_CAP_MP_STATE:
  1088. case KVM_CAP_SYNC_MMU:
  1089. case KVM_CAP_REINJECT_CONTROL:
  1090. case KVM_CAP_IRQ_INJECT_STATUS:
  1091. case KVM_CAP_ASSIGN_DEV_IRQ:
  1092. case KVM_CAP_IRQFD:
  1093. case KVM_CAP_IOEVENTFD:
  1094. case KVM_CAP_PIT2:
  1095. case KVM_CAP_PIT_STATE2:
  1096. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1097. r = 1;
  1098. break;
  1099. case KVM_CAP_COALESCED_MMIO:
  1100. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1101. break;
  1102. case KVM_CAP_VAPIC:
  1103. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1104. break;
  1105. case KVM_CAP_NR_VCPUS:
  1106. r = KVM_MAX_VCPUS;
  1107. break;
  1108. case KVM_CAP_NR_MEMSLOTS:
  1109. r = KVM_MEMORY_SLOTS;
  1110. break;
  1111. case KVM_CAP_PV_MMU: /* obsolete */
  1112. r = 0;
  1113. break;
  1114. case KVM_CAP_IOMMU:
  1115. r = iommu_found();
  1116. break;
  1117. case KVM_CAP_MCE:
  1118. r = KVM_MAX_MCE_BANKS;
  1119. break;
  1120. default:
  1121. r = 0;
  1122. break;
  1123. }
  1124. return r;
  1125. }
  1126. long kvm_arch_dev_ioctl(struct file *filp,
  1127. unsigned int ioctl, unsigned long arg)
  1128. {
  1129. void __user *argp = (void __user *)arg;
  1130. long r;
  1131. switch (ioctl) {
  1132. case KVM_GET_MSR_INDEX_LIST: {
  1133. struct kvm_msr_list __user *user_msr_list = argp;
  1134. struct kvm_msr_list msr_list;
  1135. unsigned n;
  1136. r = -EFAULT;
  1137. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1138. goto out;
  1139. n = msr_list.nmsrs;
  1140. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1141. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1142. goto out;
  1143. r = -E2BIG;
  1144. if (n < msr_list.nmsrs)
  1145. goto out;
  1146. r = -EFAULT;
  1147. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1148. num_msrs_to_save * sizeof(u32)))
  1149. goto out;
  1150. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1151. &emulated_msrs,
  1152. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1153. goto out;
  1154. r = 0;
  1155. break;
  1156. }
  1157. case KVM_GET_SUPPORTED_CPUID: {
  1158. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1159. struct kvm_cpuid2 cpuid;
  1160. r = -EFAULT;
  1161. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1162. goto out;
  1163. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1164. cpuid_arg->entries);
  1165. if (r)
  1166. goto out;
  1167. r = -EFAULT;
  1168. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1169. goto out;
  1170. r = 0;
  1171. break;
  1172. }
  1173. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1174. u64 mce_cap;
  1175. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1176. r = -EFAULT;
  1177. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1178. goto out;
  1179. r = 0;
  1180. break;
  1181. }
  1182. default:
  1183. r = -EINVAL;
  1184. }
  1185. out:
  1186. return r;
  1187. }
  1188. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1189. {
  1190. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1191. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0))
  1192. per_cpu(cpu_tsc_khz, cpu) = cpufreq_quick_get(cpu);
  1193. kvm_request_guest_time_update(vcpu);
  1194. }
  1195. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1196. {
  1197. kvm_x86_ops->vcpu_put(vcpu);
  1198. kvm_put_guest_fpu(vcpu);
  1199. }
  1200. static int is_efer_nx(void)
  1201. {
  1202. unsigned long long efer = 0;
  1203. rdmsrl_safe(MSR_EFER, &efer);
  1204. return efer & EFER_NX;
  1205. }
  1206. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1207. {
  1208. int i;
  1209. struct kvm_cpuid_entry2 *e, *entry;
  1210. entry = NULL;
  1211. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1212. e = &vcpu->arch.cpuid_entries[i];
  1213. if (e->function == 0x80000001) {
  1214. entry = e;
  1215. break;
  1216. }
  1217. }
  1218. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1219. entry->edx &= ~(1 << 20);
  1220. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1221. }
  1222. }
  1223. /* when an old userspace process fills a new kernel module */
  1224. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1225. struct kvm_cpuid *cpuid,
  1226. struct kvm_cpuid_entry __user *entries)
  1227. {
  1228. int r, i;
  1229. struct kvm_cpuid_entry *cpuid_entries;
  1230. r = -E2BIG;
  1231. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1232. goto out;
  1233. r = -ENOMEM;
  1234. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1235. if (!cpuid_entries)
  1236. goto out;
  1237. r = -EFAULT;
  1238. if (copy_from_user(cpuid_entries, entries,
  1239. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1240. goto out_free;
  1241. for (i = 0; i < cpuid->nent; i++) {
  1242. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1243. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1244. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1245. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1246. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1247. vcpu->arch.cpuid_entries[i].index = 0;
  1248. vcpu->arch.cpuid_entries[i].flags = 0;
  1249. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1250. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1251. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1252. }
  1253. vcpu->arch.cpuid_nent = cpuid->nent;
  1254. cpuid_fix_nx_cap(vcpu);
  1255. r = 0;
  1256. kvm_apic_set_version(vcpu);
  1257. out_free:
  1258. vfree(cpuid_entries);
  1259. out:
  1260. return r;
  1261. }
  1262. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1263. struct kvm_cpuid2 *cpuid,
  1264. struct kvm_cpuid_entry2 __user *entries)
  1265. {
  1266. int r;
  1267. r = -E2BIG;
  1268. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1269. goto out;
  1270. r = -EFAULT;
  1271. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1272. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1273. goto out;
  1274. vcpu->arch.cpuid_nent = cpuid->nent;
  1275. kvm_apic_set_version(vcpu);
  1276. return 0;
  1277. out:
  1278. return r;
  1279. }
  1280. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1281. struct kvm_cpuid2 *cpuid,
  1282. struct kvm_cpuid_entry2 __user *entries)
  1283. {
  1284. int r;
  1285. r = -E2BIG;
  1286. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1287. goto out;
  1288. r = -EFAULT;
  1289. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1290. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1291. goto out;
  1292. return 0;
  1293. out:
  1294. cpuid->nent = vcpu->arch.cpuid_nent;
  1295. return r;
  1296. }
  1297. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1298. u32 index)
  1299. {
  1300. entry->function = function;
  1301. entry->index = index;
  1302. cpuid_count(entry->function, entry->index,
  1303. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1304. entry->flags = 0;
  1305. }
  1306. #define F(x) bit(X86_FEATURE_##x)
  1307. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1308. u32 index, int *nent, int maxnent)
  1309. {
  1310. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1311. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1312. #ifdef CONFIG_X86_64
  1313. unsigned f_lm = F(LM);
  1314. #else
  1315. unsigned f_lm = 0;
  1316. #endif
  1317. /* cpuid 1.edx */
  1318. const u32 kvm_supported_word0_x86_features =
  1319. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1320. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1321. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1322. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1323. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1324. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1325. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1326. 0 /* HTT, TM, Reserved, PBE */;
  1327. /* cpuid 0x80000001.edx */
  1328. const u32 kvm_supported_word1_x86_features =
  1329. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1330. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1331. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1332. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1333. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1334. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1335. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1336. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1337. /* cpuid 1.ecx */
  1338. const u32 kvm_supported_word4_x86_features =
  1339. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1340. 0 /* DS-CPL, VMX, SMX, EST */ |
  1341. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1342. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1343. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1344. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1345. 0 /* Reserved, XSAVE, OSXSAVE */;
  1346. /* cpuid 0x80000001.ecx */
  1347. const u32 kvm_supported_word6_x86_features =
  1348. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1349. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1350. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1351. 0 /* SKINIT */ | 0 /* WDT */;
  1352. /* all calls to cpuid_count() should be made on the same cpu */
  1353. get_cpu();
  1354. do_cpuid_1_ent(entry, function, index);
  1355. ++*nent;
  1356. switch (function) {
  1357. case 0:
  1358. entry->eax = min(entry->eax, (u32)0xb);
  1359. break;
  1360. case 1:
  1361. entry->edx &= kvm_supported_word0_x86_features;
  1362. entry->ecx &= kvm_supported_word4_x86_features;
  1363. /* we support x2apic emulation even if host does not support
  1364. * it since we emulate x2apic in software */
  1365. entry->ecx |= F(X2APIC);
  1366. break;
  1367. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1368. * may return different values. This forces us to get_cpu() before
  1369. * issuing the first command, and also to emulate this annoying behavior
  1370. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1371. case 2: {
  1372. int t, times = entry->eax & 0xff;
  1373. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1374. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1375. for (t = 1; t < times && *nent < maxnent; ++t) {
  1376. do_cpuid_1_ent(&entry[t], function, 0);
  1377. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1378. ++*nent;
  1379. }
  1380. break;
  1381. }
  1382. /* function 4 and 0xb have additional index. */
  1383. case 4: {
  1384. int i, cache_type;
  1385. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1386. /* read more entries until cache_type is zero */
  1387. for (i = 1; *nent < maxnent; ++i) {
  1388. cache_type = entry[i - 1].eax & 0x1f;
  1389. if (!cache_type)
  1390. break;
  1391. do_cpuid_1_ent(&entry[i], function, i);
  1392. entry[i].flags |=
  1393. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1394. ++*nent;
  1395. }
  1396. break;
  1397. }
  1398. case 0xb: {
  1399. int i, level_type;
  1400. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1401. /* read more entries until level_type is zero */
  1402. for (i = 1; *nent < maxnent; ++i) {
  1403. level_type = entry[i - 1].ecx & 0xff00;
  1404. if (!level_type)
  1405. break;
  1406. do_cpuid_1_ent(&entry[i], function, i);
  1407. entry[i].flags |=
  1408. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1409. ++*nent;
  1410. }
  1411. break;
  1412. }
  1413. case 0x80000000:
  1414. entry->eax = min(entry->eax, 0x8000001a);
  1415. break;
  1416. case 0x80000001:
  1417. entry->edx &= kvm_supported_word1_x86_features;
  1418. entry->ecx &= kvm_supported_word6_x86_features;
  1419. break;
  1420. }
  1421. put_cpu();
  1422. }
  1423. #undef F
  1424. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1425. struct kvm_cpuid_entry2 __user *entries)
  1426. {
  1427. struct kvm_cpuid_entry2 *cpuid_entries;
  1428. int limit, nent = 0, r = -E2BIG;
  1429. u32 func;
  1430. if (cpuid->nent < 1)
  1431. goto out;
  1432. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1433. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1434. r = -ENOMEM;
  1435. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1436. if (!cpuid_entries)
  1437. goto out;
  1438. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1439. limit = cpuid_entries[0].eax;
  1440. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1441. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1442. &nent, cpuid->nent);
  1443. r = -E2BIG;
  1444. if (nent >= cpuid->nent)
  1445. goto out_free;
  1446. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1447. limit = cpuid_entries[nent - 1].eax;
  1448. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1449. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1450. &nent, cpuid->nent);
  1451. r = -E2BIG;
  1452. if (nent >= cpuid->nent)
  1453. goto out_free;
  1454. r = -EFAULT;
  1455. if (copy_to_user(entries, cpuid_entries,
  1456. nent * sizeof(struct kvm_cpuid_entry2)))
  1457. goto out_free;
  1458. cpuid->nent = nent;
  1459. r = 0;
  1460. out_free:
  1461. vfree(cpuid_entries);
  1462. out:
  1463. return r;
  1464. }
  1465. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1466. struct kvm_lapic_state *s)
  1467. {
  1468. vcpu_load(vcpu);
  1469. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1470. vcpu_put(vcpu);
  1471. return 0;
  1472. }
  1473. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1474. struct kvm_lapic_state *s)
  1475. {
  1476. vcpu_load(vcpu);
  1477. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1478. kvm_apic_post_state_restore(vcpu);
  1479. update_cr8_intercept(vcpu);
  1480. vcpu_put(vcpu);
  1481. return 0;
  1482. }
  1483. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1484. struct kvm_interrupt *irq)
  1485. {
  1486. if (irq->irq < 0 || irq->irq >= 256)
  1487. return -EINVAL;
  1488. if (irqchip_in_kernel(vcpu->kvm))
  1489. return -ENXIO;
  1490. vcpu_load(vcpu);
  1491. kvm_queue_interrupt(vcpu, irq->irq, false);
  1492. vcpu_put(vcpu);
  1493. return 0;
  1494. }
  1495. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1496. {
  1497. vcpu_load(vcpu);
  1498. kvm_inject_nmi(vcpu);
  1499. vcpu_put(vcpu);
  1500. return 0;
  1501. }
  1502. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1503. struct kvm_tpr_access_ctl *tac)
  1504. {
  1505. if (tac->flags)
  1506. return -EINVAL;
  1507. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1508. return 0;
  1509. }
  1510. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1511. u64 mcg_cap)
  1512. {
  1513. int r;
  1514. unsigned bank_num = mcg_cap & 0xff, bank;
  1515. r = -EINVAL;
  1516. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1517. goto out;
  1518. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1519. goto out;
  1520. r = 0;
  1521. vcpu->arch.mcg_cap = mcg_cap;
  1522. /* Init IA32_MCG_CTL to all 1s */
  1523. if (mcg_cap & MCG_CTL_P)
  1524. vcpu->arch.mcg_ctl = ~(u64)0;
  1525. /* Init IA32_MCi_CTL to all 1s */
  1526. for (bank = 0; bank < bank_num; bank++)
  1527. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1528. out:
  1529. return r;
  1530. }
  1531. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1532. struct kvm_x86_mce *mce)
  1533. {
  1534. u64 mcg_cap = vcpu->arch.mcg_cap;
  1535. unsigned bank_num = mcg_cap & 0xff;
  1536. u64 *banks = vcpu->arch.mce_banks;
  1537. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1538. return -EINVAL;
  1539. /*
  1540. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1541. * reporting is disabled
  1542. */
  1543. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1544. vcpu->arch.mcg_ctl != ~(u64)0)
  1545. return 0;
  1546. banks += 4 * mce->bank;
  1547. /*
  1548. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1549. * reporting is disabled for the bank
  1550. */
  1551. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1552. return 0;
  1553. if (mce->status & MCI_STATUS_UC) {
  1554. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1555. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1556. printk(KERN_DEBUG "kvm: set_mce: "
  1557. "injects mce exception while "
  1558. "previous one is in progress!\n");
  1559. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1560. return 0;
  1561. }
  1562. if (banks[1] & MCI_STATUS_VAL)
  1563. mce->status |= MCI_STATUS_OVER;
  1564. banks[2] = mce->addr;
  1565. banks[3] = mce->misc;
  1566. vcpu->arch.mcg_status = mce->mcg_status;
  1567. banks[1] = mce->status;
  1568. kvm_queue_exception(vcpu, MC_VECTOR);
  1569. } else if (!(banks[1] & MCI_STATUS_VAL)
  1570. || !(banks[1] & MCI_STATUS_UC)) {
  1571. if (banks[1] & MCI_STATUS_VAL)
  1572. mce->status |= MCI_STATUS_OVER;
  1573. banks[2] = mce->addr;
  1574. banks[3] = mce->misc;
  1575. banks[1] = mce->status;
  1576. } else
  1577. banks[1] |= MCI_STATUS_OVER;
  1578. return 0;
  1579. }
  1580. long kvm_arch_vcpu_ioctl(struct file *filp,
  1581. unsigned int ioctl, unsigned long arg)
  1582. {
  1583. struct kvm_vcpu *vcpu = filp->private_data;
  1584. void __user *argp = (void __user *)arg;
  1585. int r;
  1586. struct kvm_lapic_state *lapic = NULL;
  1587. switch (ioctl) {
  1588. case KVM_GET_LAPIC: {
  1589. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1590. r = -ENOMEM;
  1591. if (!lapic)
  1592. goto out;
  1593. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1594. if (r)
  1595. goto out;
  1596. r = -EFAULT;
  1597. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1598. goto out;
  1599. r = 0;
  1600. break;
  1601. }
  1602. case KVM_SET_LAPIC: {
  1603. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1604. r = -ENOMEM;
  1605. if (!lapic)
  1606. goto out;
  1607. r = -EFAULT;
  1608. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1609. goto out;
  1610. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1611. if (r)
  1612. goto out;
  1613. r = 0;
  1614. break;
  1615. }
  1616. case KVM_INTERRUPT: {
  1617. struct kvm_interrupt irq;
  1618. r = -EFAULT;
  1619. if (copy_from_user(&irq, argp, sizeof irq))
  1620. goto out;
  1621. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1622. if (r)
  1623. goto out;
  1624. r = 0;
  1625. break;
  1626. }
  1627. case KVM_NMI: {
  1628. r = kvm_vcpu_ioctl_nmi(vcpu);
  1629. if (r)
  1630. goto out;
  1631. r = 0;
  1632. break;
  1633. }
  1634. case KVM_SET_CPUID: {
  1635. struct kvm_cpuid __user *cpuid_arg = argp;
  1636. struct kvm_cpuid cpuid;
  1637. r = -EFAULT;
  1638. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1639. goto out;
  1640. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1641. if (r)
  1642. goto out;
  1643. break;
  1644. }
  1645. case KVM_SET_CPUID2: {
  1646. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1647. struct kvm_cpuid2 cpuid;
  1648. r = -EFAULT;
  1649. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1650. goto out;
  1651. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1652. cpuid_arg->entries);
  1653. if (r)
  1654. goto out;
  1655. break;
  1656. }
  1657. case KVM_GET_CPUID2: {
  1658. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1659. struct kvm_cpuid2 cpuid;
  1660. r = -EFAULT;
  1661. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1662. goto out;
  1663. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1664. cpuid_arg->entries);
  1665. if (r)
  1666. goto out;
  1667. r = -EFAULT;
  1668. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1669. goto out;
  1670. r = 0;
  1671. break;
  1672. }
  1673. case KVM_GET_MSRS:
  1674. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1675. break;
  1676. case KVM_SET_MSRS:
  1677. r = msr_io(vcpu, argp, do_set_msr, 0);
  1678. break;
  1679. case KVM_TPR_ACCESS_REPORTING: {
  1680. struct kvm_tpr_access_ctl tac;
  1681. r = -EFAULT;
  1682. if (copy_from_user(&tac, argp, sizeof tac))
  1683. goto out;
  1684. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1685. if (r)
  1686. goto out;
  1687. r = -EFAULT;
  1688. if (copy_to_user(argp, &tac, sizeof tac))
  1689. goto out;
  1690. r = 0;
  1691. break;
  1692. };
  1693. case KVM_SET_VAPIC_ADDR: {
  1694. struct kvm_vapic_addr va;
  1695. r = -EINVAL;
  1696. if (!irqchip_in_kernel(vcpu->kvm))
  1697. goto out;
  1698. r = -EFAULT;
  1699. if (copy_from_user(&va, argp, sizeof va))
  1700. goto out;
  1701. r = 0;
  1702. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1703. break;
  1704. }
  1705. case KVM_X86_SETUP_MCE: {
  1706. u64 mcg_cap;
  1707. r = -EFAULT;
  1708. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1709. goto out;
  1710. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1711. break;
  1712. }
  1713. case KVM_X86_SET_MCE: {
  1714. struct kvm_x86_mce mce;
  1715. r = -EFAULT;
  1716. if (copy_from_user(&mce, argp, sizeof mce))
  1717. goto out;
  1718. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1719. break;
  1720. }
  1721. default:
  1722. r = -EINVAL;
  1723. }
  1724. out:
  1725. kfree(lapic);
  1726. return r;
  1727. }
  1728. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1729. {
  1730. int ret;
  1731. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1732. return -1;
  1733. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1734. return ret;
  1735. }
  1736. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1737. u64 ident_addr)
  1738. {
  1739. kvm->arch.ept_identity_map_addr = ident_addr;
  1740. return 0;
  1741. }
  1742. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1743. u32 kvm_nr_mmu_pages)
  1744. {
  1745. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1746. return -EINVAL;
  1747. down_write(&kvm->slots_lock);
  1748. spin_lock(&kvm->mmu_lock);
  1749. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1750. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1751. spin_unlock(&kvm->mmu_lock);
  1752. up_write(&kvm->slots_lock);
  1753. return 0;
  1754. }
  1755. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1756. {
  1757. return kvm->arch.n_alloc_mmu_pages;
  1758. }
  1759. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1760. {
  1761. int i;
  1762. struct kvm_mem_alias *alias;
  1763. for (i = 0; i < kvm->arch.naliases; ++i) {
  1764. alias = &kvm->arch.aliases[i];
  1765. if (gfn >= alias->base_gfn
  1766. && gfn < alias->base_gfn + alias->npages)
  1767. return alias->target_gfn + gfn - alias->base_gfn;
  1768. }
  1769. return gfn;
  1770. }
  1771. /*
  1772. * Set a new alias region. Aliases map a portion of physical memory into
  1773. * another portion. This is useful for memory windows, for example the PC
  1774. * VGA region.
  1775. */
  1776. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1777. struct kvm_memory_alias *alias)
  1778. {
  1779. int r, n;
  1780. struct kvm_mem_alias *p;
  1781. r = -EINVAL;
  1782. /* General sanity checks */
  1783. if (alias->memory_size & (PAGE_SIZE - 1))
  1784. goto out;
  1785. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1786. goto out;
  1787. if (alias->slot >= KVM_ALIAS_SLOTS)
  1788. goto out;
  1789. if (alias->guest_phys_addr + alias->memory_size
  1790. < alias->guest_phys_addr)
  1791. goto out;
  1792. if (alias->target_phys_addr + alias->memory_size
  1793. < alias->target_phys_addr)
  1794. goto out;
  1795. down_write(&kvm->slots_lock);
  1796. spin_lock(&kvm->mmu_lock);
  1797. p = &kvm->arch.aliases[alias->slot];
  1798. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1799. p->npages = alias->memory_size >> PAGE_SHIFT;
  1800. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1801. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1802. if (kvm->arch.aliases[n - 1].npages)
  1803. break;
  1804. kvm->arch.naliases = n;
  1805. spin_unlock(&kvm->mmu_lock);
  1806. kvm_mmu_zap_all(kvm);
  1807. up_write(&kvm->slots_lock);
  1808. return 0;
  1809. out:
  1810. return r;
  1811. }
  1812. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1813. {
  1814. int r;
  1815. r = 0;
  1816. switch (chip->chip_id) {
  1817. case KVM_IRQCHIP_PIC_MASTER:
  1818. memcpy(&chip->chip.pic,
  1819. &pic_irqchip(kvm)->pics[0],
  1820. sizeof(struct kvm_pic_state));
  1821. break;
  1822. case KVM_IRQCHIP_PIC_SLAVE:
  1823. memcpy(&chip->chip.pic,
  1824. &pic_irqchip(kvm)->pics[1],
  1825. sizeof(struct kvm_pic_state));
  1826. break;
  1827. case KVM_IRQCHIP_IOAPIC:
  1828. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1829. break;
  1830. default:
  1831. r = -EINVAL;
  1832. break;
  1833. }
  1834. return r;
  1835. }
  1836. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1837. {
  1838. int r;
  1839. r = 0;
  1840. switch (chip->chip_id) {
  1841. case KVM_IRQCHIP_PIC_MASTER:
  1842. spin_lock(&pic_irqchip(kvm)->lock);
  1843. memcpy(&pic_irqchip(kvm)->pics[0],
  1844. &chip->chip.pic,
  1845. sizeof(struct kvm_pic_state));
  1846. spin_unlock(&pic_irqchip(kvm)->lock);
  1847. break;
  1848. case KVM_IRQCHIP_PIC_SLAVE:
  1849. spin_lock(&pic_irqchip(kvm)->lock);
  1850. memcpy(&pic_irqchip(kvm)->pics[1],
  1851. &chip->chip.pic,
  1852. sizeof(struct kvm_pic_state));
  1853. spin_unlock(&pic_irqchip(kvm)->lock);
  1854. break;
  1855. case KVM_IRQCHIP_IOAPIC:
  1856. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  1857. break;
  1858. default:
  1859. r = -EINVAL;
  1860. break;
  1861. }
  1862. kvm_pic_update_irq(pic_irqchip(kvm));
  1863. return r;
  1864. }
  1865. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1866. {
  1867. int r = 0;
  1868. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1869. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1870. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1871. return r;
  1872. }
  1873. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1874. {
  1875. int r = 0;
  1876. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1877. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1878. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1879. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1880. return r;
  1881. }
  1882. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1883. {
  1884. int r = 0;
  1885. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1886. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1887. sizeof(ps->channels));
  1888. ps->flags = kvm->arch.vpit->pit_state.flags;
  1889. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1890. return r;
  1891. }
  1892. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1893. {
  1894. int r = 0, start = 0;
  1895. u32 prev_legacy, cur_legacy;
  1896. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1897. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1898. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1899. if (!prev_legacy && cur_legacy)
  1900. start = 1;
  1901. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1902. sizeof(kvm->arch.vpit->pit_state.channels));
  1903. kvm->arch.vpit->pit_state.flags = ps->flags;
  1904. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1905. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1906. return r;
  1907. }
  1908. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1909. struct kvm_reinject_control *control)
  1910. {
  1911. if (!kvm->arch.vpit)
  1912. return -ENXIO;
  1913. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1914. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1915. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1916. return 0;
  1917. }
  1918. /*
  1919. * Get (and clear) the dirty memory log for a memory slot.
  1920. */
  1921. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1922. struct kvm_dirty_log *log)
  1923. {
  1924. int r;
  1925. int n;
  1926. struct kvm_memory_slot *memslot;
  1927. int is_dirty = 0;
  1928. down_write(&kvm->slots_lock);
  1929. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1930. if (r)
  1931. goto out;
  1932. /* If nothing is dirty, don't bother messing with page tables. */
  1933. if (is_dirty) {
  1934. spin_lock(&kvm->mmu_lock);
  1935. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1936. spin_unlock(&kvm->mmu_lock);
  1937. memslot = &kvm->memslots[log->slot];
  1938. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1939. memset(memslot->dirty_bitmap, 0, n);
  1940. }
  1941. r = 0;
  1942. out:
  1943. up_write(&kvm->slots_lock);
  1944. return r;
  1945. }
  1946. long kvm_arch_vm_ioctl(struct file *filp,
  1947. unsigned int ioctl, unsigned long arg)
  1948. {
  1949. struct kvm *kvm = filp->private_data;
  1950. void __user *argp = (void __user *)arg;
  1951. int r = -ENOTTY;
  1952. /*
  1953. * This union makes it completely explicit to gcc-3.x
  1954. * that these two variables' stack usage should be
  1955. * combined, not added together.
  1956. */
  1957. union {
  1958. struct kvm_pit_state ps;
  1959. struct kvm_pit_state2 ps2;
  1960. struct kvm_memory_alias alias;
  1961. struct kvm_pit_config pit_config;
  1962. } u;
  1963. switch (ioctl) {
  1964. case KVM_SET_TSS_ADDR:
  1965. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1966. if (r < 0)
  1967. goto out;
  1968. break;
  1969. case KVM_SET_IDENTITY_MAP_ADDR: {
  1970. u64 ident_addr;
  1971. r = -EFAULT;
  1972. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1973. goto out;
  1974. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1975. if (r < 0)
  1976. goto out;
  1977. break;
  1978. }
  1979. case KVM_SET_MEMORY_REGION: {
  1980. struct kvm_memory_region kvm_mem;
  1981. struct kvm_userspace_memory_region kvm_userspace_mem;
  1982. r = -EFAULT;
  1983. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1984. goto out;
  1985. kvm_userspace_mem.slot = kvm_mem.slot;
  1986. kvm_userspace_mem.flags = kvm_mem.flags;
  1987. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1988. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1989. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1990. if (r)
  1991. goto out;
  1992. break;
  1993. }
  1994. case KVM_SET_NR_MMU_PAGES:
  1995. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1996. if (r)
  1997. goto out;
  1998. break;
  1999. case KVM_GET_NR_MMU_PAGES:
  2000. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2001. break;
  2002. case KVM_SET_MEMORY_ALIAS:
  2003. r = -EFAULT;
  2004. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2005. goto out;
  2006. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2007. if (r)
  2008. goto out;
  2009. break;
  2010. case KVM_CREATE_IRQCHIP:
  2011. r = -ENOMEM;
  2012. kvm->arch.vpic = kvm_create_pic(kvm);
  2013. if (kvm->arch.vpic) {
  2014. r = kvm_ioapic_init(kvm);
  2015. if (r) {
  2016. kfree(kvm->arch.vpic);
  2017. kvm->arch.vpic = NULL;
  2018. goto out;
  2019. }
  2020. } else
  2021. goto out;
  2022. r = kvm_setup_default_irq_routing(kvm);
  2023. if (r) {
  2024. kfree(kvm->arch.vpic);
  2025. kfree(kvm->arch.vioapic);
  2026. goto out;
  2027. }
  2028. break;
  2029. case KVM_CREATE_PIT:
  2030. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2031. goto create_pit;
  2032. case KVM_CREATE_PIT2:
  2033. r = -EFAULT;
  2034. if (copy_from_user(&u.pit_config, argp,
  2035. sizeof(struct kvm_pit_config)))
  2036. goto out;
  2037. create_pit:
  2038. down_write(&kvm->slots_lock);
  2039. r = -EEXIST;
  2040. if (kvm->arch.vpit)
  2041. goto create_pit_unlock;
  2042. r = -ENOMEM;
  2043. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2044. if (kvm->arch.vpit)
  2045. r = 0;
  2046. create_pit_unlock:
  2047. up_write(&kvm->slots_lock);
  2048. break;
  2049. case KVM_IRQ_LINE_STATUS:
  2050. case KVM_IRQ_LINE: {
  2051. struct kvm_irq_level irq_event;
  2052. r = -EFAULT;
  2053. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2054. goto out;
  2055. if (irqchip_in_kernel(kvm)) {
  2056. __s32 status;
  2057. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2058. irq_event.irq, irq_event.level);
  2059. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2060. irq_event.status = status;
  2061. if (copy_to_user(argp, &irq_event,
  2062. sizeof irq_event))
  2063. goto out;
  2064. }
  2065. r = 0;
  2066. }
  2067. break;
  2068. }
  2069. case KVM_GET_IRQCHIP: {
  2070. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2071. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2072. r = -ENOMEM;
  2073. if (!chip)
  2074. goto out;
  2075. r = -EFAULT;
  2076. if (copy_from_user(chip, argp, sizeof *chip))
  2077. goto get_irqchip_out;
  2078. r = -ENXIO;
  2079. if (!irqchip_in_kernel(kvm))
  2080. goto get_irqchip_out;
  2081. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2082. if (r)
  2083. goto get_irqchip_out;
  2084. r = -EFAULT;
  2085. if (copy_to_user(argp, chip, sizeof *chip))
  2086. goto get_irqchip_out;
  2087. r = 0;
  2088. get_irqchip_out:
  2089. kfree(chip);
  2090. if (r)
  2091. goto out;
  2092. break;
  2093. }
  2094. case KVM_SET_IRQCHIP: {
  2095. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2096. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2097. r = -ENOMEM;
  2098. if (!chip)
  2099. goto out;
  2100. r = -EFAULT;
  2101. if (copy_from_user(chip, argp, sizeof *chip))
  2102. goto set_irqchip_out;
  2103. r = -ENXIO;
  2104. if (!irqchip_in_kernel(kvm))
  2105. goto set_irqchip_out;
  2106. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2107. if (r)
  2108. goto set_irqchip_out;
  2109. r = 0;
  2110. set_irqchip_out:
  2111. kfree(chip);
  2112. if (r)
  2113. goto out;
  2114. break;
  2115. }
  2116. case KVM_GET_PIT: {
  2117. r = -EFAULT;
  2118. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2119. goto out;
  2120. r = -ENXIO;
  2121. if (!kvm->arch.vpit)
  2122. goto out;
  2123. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2124. if (r)
  2125. goto out;
  2126. r = -EFAULT;
  2127. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2128. goto out;
  2129. r = 0;
  2130. break;
  2131. }
  2132. case KVM_SET_PIT: {
  2133. r = -EFAULT;
  2134. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2135. goto out;
  2136. r = -ENXIO;
  2137. if (!kvm->arch.vpit)
  2138. goto out;
  2139. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2140. if (r)
  2141. goto out;
  2142. r = 0;
  2143. break;
  2144. }
  2145. case KVM_GET_PIT2: {
  2146. r = -ENXIO;
  2147. if (!kvm->arch.vpit)
  2148. goto out;
  2149. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2150. if (r)
  2151. goto out;
  2152. r = -EFAULT;
  2153. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2154. goto out;
  2155. r = 0;
  2156. break;
  2157. }
  2158. case KVM_SET_PIT2: {
  2159. r = -EFAULT;
  2160. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2161. goto out;
  2162. r = -ENXIO;
  2163. if (!kvm->arch.vpit)
  2164. goto out;
  2165. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2166. if (r)
  2167. goto out;
  2168. r = 0;
  2169. break;
  2170. }
  2171. case KVM_REINJECT_CONTROL: {
  2172. struct kvm_reinject_control control;
  2173. r = -EFAULT;
  2174. if (copy_from_user(&control, argp, sizeof(control)))
  2175. goto out;
  2176. r = kvm_vm_ioctl_reinject(kvm, &control);
  2177. if (r)
  2178. goto out;
  2179. r = 0;
  2180. break;
  2181. }
  2182. default:
  2183. ;
  2184. }
  2185. out:
  2186. return r;
  2187. }
  2188. static void kvm_init_msr_list(void)
  2189. {
  2190. u32 dummy[2];
  2191. unsigned i, j;
  2192. /* skip the first msrs in the list. KVM-specific */
  2193. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2194. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2195. continue;
  2196. if (j < i)
  2197. msrs_to_save[j] = msrs_to_save[i];
  2198. j++;
  2199. }
  2200. num_msrs_to_save = j;
  2201. }
  2202. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2203. const void *v)
  2204. {
  2205. if (vcpu->arch.apic &&
  2206. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2207. return 0;
  2208. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2209. }
  2210. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2211. {
  2212. if (vcpu->arch.apic &&
  2213. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2214. return 0;
  2215. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2216. }
  2217. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2218. struct kvm_vcpu *vcpu)
  2219. {
  2220. void *data = val;
  2221. int r = X86EMUL_CONTINUE;
  2222. while (bytes) {
  2223. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2224. unsigned offset = addr & (PAGE_SIZE-1);
  2225. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2226. int ret;
  2227. if (gpa == UNMAPPED_GVA) {
  2228. r = X86EMUL_PROPAGATE_FAULT;
  2229. goto out;
  2230. }
  2231. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2232. if (ret < 0) {
  2233. r = X86EMUL_UNHANDLEABLE;
  2234. goto out;
  2235. }
  2236. bytes -= toread;
  2237. data += toread;
  2238. addr += toread;
  2239. }
  2240. out:
  2241. return r;
  2242. }
  2243. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2244. struct kvm_vcpu *vcpu)
  2245. {
  2246. void *data = val;
  2247. int r = X86EMUL_CONTINUE;
  2248. while (bytes) {
  2249. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2250. unsigned offset = addr & (PAGE_SIZE-1);
  2251. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2252. int ret;
  2253. if (gpa == UNMAPPED_GVA) {
  2254. r = X86EMUL_PROPAGATE_FAULT;
  2255. goto out;
  2256. }
  2257. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2258. if (ret < 0) {
  2259. r = X86EMUL_UNHANDLEABLE;
  2260. goto out;
  2261. }
  2262. bytes -= towrite;
  2263. data += towrite;
  2264. addr += towrite;
  2265. }
  2266. out:
  2267. return r;
  2268. }
  2269. static int emulator_read_emulated(unsigned long addr,
  2270. void *val,
  2271. unsigned int bytes,
  2272. struct kvm_vcpu *vcpu)
  2273. {
  2274. gpa_t gpa;
  2275. if (vcpu->mmio_read_completed) {
  2276. memcpy(val, vcpu->mmio_data, bytes);
  2277. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2278. vcpu->mmio_phys_addr, *(u64 *)val);
  2279. vcpu->mmio_read_completed = 0;
  2280. return X86EMUL_CONTINUE;
  2281. }
  2282. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2283. /* For APIC access vmexit */
  2284. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2285. goto mmio;
  2286. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2287. == X86EMUL_CONTINUE)
  2288. return X86EMUL_CONTINUE;
  2289. if (gpa == UNMAPPED_GVA)
  2290. return X86EMUL_PROPAGATE_FAULT;
  2291. mmio:
  2292. /*
  2293. * Is this MMIO handled locally?
  2294. */
  2295. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2296. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2297. return X86EMUL_CONTINUE;
  2298. }
  2299. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2300. vcpu->mmio_needed = 1;
  2301. vcpu->mmio_phys_addr = gpa;
  2302. vcpu->mmio_size = bytes;
  2303. vcpu->mmio_is_write = 0;
  2304. return X86EMUL_UNHANDLEABLE;
  2305. }
  2306. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2307. const void *val, int bytes)
  2308. {
  2309. int ret;
  2310. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2311. if (ret < 0)
  2312. return 0;
  2313. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2314. return 1;
  2315. }
  2316. static int emulator_write_emulated_onepage(unsigned long addr,
  2317. const void *val,
  2318. unsigned int bytes,
  2319. struct kvm_vcpu *vcpu)
  2320. {
  2321. gpa_t gpa;
  2322. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2323. if (gpa == UNMAPPED_GVA) {
  2324. kvm_inject_page_fault(vcpu, addr, 2);
  2325. return X86EMUL_PROPAGATE_FAULT;
  2326. }
  2327. /* For APIC access vmexit */
  2328. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2329. goto mmio;
  2330. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2331. return X86EMUL_CONTINUE;
  2332. mmio:
  2333. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2334. /*
  2335. * Is this MMIO handled locally?
  2336. */
  2337. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2338. return X86EMUL_CONTINUE;
  2339. vcpu->mmio_needed = 1;
  2340. vcpu->mmio_phys_addr = gpa;
  2341. vcpu->mmio_size = bytes;
  2342. vcpu->mmio_is_write = 1;
  2343. memcpy(vcpu->mmio_data, val, bytes);
  2344. return X86EMUL_CONTINUE;
  2345. }
  2346. int emulator_write_emulated(unsigned long addr,
  2347. const void *val,
  2348. unsigned int bytes,
  2349. struct kvm_vcpu *vcpu)
  2350. {
  2351. /* Crossing a page boundary? */
  2352. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2353. int rc, now;
  2354. now = -addr & ~PAGE_MASK;
  2355. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2356. if (rc != X86EMUL_CONTINUE)
  2357. return rc;
  2358. addr += now;
  2359. val += now;
  2360. bytes -= now;
  2361. }
  2362. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2363. }
  2364. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2365. static int emulator_cmpxchg_emulated(unsigned long addr,
  2366. const void *old,
  2367. const void *new,
  2368. unsigned int bytes,
  2369. struct kvm_vcpu *vcpu)
  2370. {
  2371. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2372. #ifndef CONFIG_X86_64
  2373. /* guests cmpxchg8b have to be emulated atomically */
  2374. if (bytes == 8) {
  2375. gpa_t gpa;
  2376. struct page *page;
  2377. char *kaddr;
  2378. u64 val;
  2379. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2380. if (gpa == UNMAPPED_GVA ||
  2381. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2382. goto emul_write;
  2383. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2384. goto emul_write;
  2385. val = *(u64 *)new;
  2386. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2387. kaddr = kmap_atomic(page, KM_USER0);
  2388. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2389. kunmap_atomic(kaddr, KM_USER0);
  2390. kvm_release_page_dirty(page);
  2391. }
  2392. emul_write:
  2393. #endif
  2394. return emulator_write_emulated(addr, new, bytes, vcpu);
  2395. }
  2396. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2397. {
  2398. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2399. }
  2400. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2401. {
  2402. kvm_mmu_invlpg(vcpu, address);
  2403. return X86EMUL_CONTINUE;
  2404. }
  2405. int emulate_clts(struct kvm_vcpu *vcpu)
  2406. {
  2407. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2408. return X86EMUL_CONTINUE;
  2409. }
  2410. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2411. {
  2412. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2413. switch (dr) {
  2414. case 0 ... 3:
  2415. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2416. return X86EMUL_CONTINUE;
  2417. default:
  2418. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2419. return X86EMUL_UNHANDLEABLE;
  2420. }
  2421. }
  2422. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2423. {
  2424. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2425. int exception;
  2426. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2427. if (exception) {
  2428. /* FIXME: better handling */
  2429. return X86EMUL_UNHANDLEABLE;
  2430. }
  2431. return X86EMUL_CONTINUE;
  2432. }
  2433. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2434. {
  2435. u8 opcodes[4];
  2436. unsigned long rip = kvm_rip_read(vcpu);
  2437. unsigned long rip_linear;
  2438. if (!printk_ratelimit())
  2439. return;
  2440. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2441. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2442. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2443. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2444. }
  2445. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2446. static struct x86_emulate_ops emulate_ops = {
  2447. .read_std = kvm_read_guest_virt,
  2448. .read_emulated = emulator_read_emulated,
  2449. .write_emulated = emulator_write_emulated,
  2450. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2451. };
  2452. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2453. {
  2454. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2455. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2456. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2457. vcpu->arch.regs_dirty = ~0;
  2458. }
  2459. int emulate_instruction(struct kvm_vcpu *vcpu,
  2460. unsigned long cr2,
  2461. u16 error_code,
  2462. int emulation_type)
  2463. {
  2464. int r, shadow_mask;
  2465. struct decode_cache *c;
  2466. struct kvm_run *run = vcpu->run;
  2467. kvm_clear_exception_queue(vcpu);
  2468. vcpu->arch.mmio_fault_cr2 = cr2;
  2469. /*
  2470. * TODO: fix emulate.c to use guest_read/write_register
  2471. * instead of direct ->regs accesses, can save hundred cycles
  2472. * on Intel for instructions that don't read/change RSP, for
  2473. * for example.
  2474. */
  2475. cache_all_regs(vcpu);
  2476. vcpu->mmio_is_write = 0;
  2477. vcpu->arch.pio.string = 0;
  2478. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2479. int cs_db, cs_l;
  2480. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2481. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2482. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2483. vcpu->arch.emulate_ctxt.mode =
  2484. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2485. ? X86EMUL_MODE_REAL : cs_l
  2486. ? X86EMUL_MODE_PROT64 : cs_db
  2487. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2488. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2489. /* Only allow emulation of specific instructions on #UD
  2490. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2491. c = &vcpu->arch.emulate_ctxt.decode;
  2492. if (emulation_type & EMULTYPE_TRAP_UD) {
  2493. if (!c->twobyte)
  2494. return EMULATE_FAIL;
  2495. switch (c->b) {
  2496. case 0x01: /* VMMCALL */
  2497. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2498. return EMULATE_FAIL;
  2499. break;
  2500. case 0x34: /* sysenter */
  2501. case 0x35: /* sysexit */
  2502. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2503. return EMULATE_FAIL;
  2504. break;
  2505. case 0x05: /* syscall */
  2506. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2507. return EMULATE_FAIL;
  2508. break;
  2509. default:
  2510. return EMULATE_FAIL;
  2511. }
  2512. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2513. return EMULATE_FAIL;
  2514. }
  2515. ++vcpu->stat.insn_emulation;
  2516. if (r) {
  2517. ++vcpu->stat.insn_emulation_fail;
  2518. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2519. return EMULATE_DONE;
  2520. return EMULATE_FAIL;
  2521. }
  2522. }
  2523. if (emulation_type & EMULTYPE_SKIP) {
  2524. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2525. return EMULATE_DONE;
  2526. }
  2527. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2528. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2529. if (r == 0)
  2530. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2531. if (vcpu->arch.pio.string)
  2532. return EMULATE_DO_MMIO;
  2533. if ((r || vcpu->mmio_is_write) && run) {
  2534. run->exit_reason = KVM_EXIT_MMIO;
  2535. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2536. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2537. run->mmio.len = vcpu->mmio_size;
  2538. run->mmio.is_write = vcpu->mmio_is_write;
  2539. }
  2540. if (r) {
  2541. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2542. return EMULATE_DONE;
  2543. if (!vcpu->mmio_needed) {
  2544. kvm_report_emulation_failure(vcpu, "mmio");
  2545. return EMULATE_FAIL;
  2546. }
  2547. return EMULATE_DO_MMIO;
  2548. }
  2549. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2550. if (vcpu->mmio_is_write) {
  2551. vcpu->mmio_needed = 0;
  2552. return EMULATE_DO_MMIO;
  2553. }
  2554. return EMULATE_DONE;
  2555. }
  2556. EXPORT_SYMBOL_GPL(emulate_instruction);
  2557. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2558. {
  2559. void *p = vcpu->arch.pio_data;
  2560. gva_t q = vcpu->arch.pio.guest_gva;
  2561. unsigned bytes;
  2562. int ret;
  2563. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2564. if (vcpu->arch.pio.in)
  2565. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2566. else
  2567. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2568. return ret;
  2569. }
  2570. int complete_pio(struct kvm_vcpu *vcpu)
  2571. {
  2572. struct kvm_pio_request *io = &vcpu->arch.pio;
  2573. long delta;
  2574. int r;
  2575. unsigned long val;
  2576. if (!io->string) {
  2577. if (io->in) {
  2578. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2579. memcpy(&val, vcpu->arch.pio_data, io->size);
  2580. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2581. }
  2582. } else {
  2583. if (io->in) {
  2584. r = pio_copy_data(vcpu);
  2585. if (r)
  2586. return r;
  2587. }
  2588. delta = 1;
  2589. if (io->rep) {
  2590. delta *= io->cur_count;
  2591. /*
  2592. * The size of the register should really depend on
  2593. * current address size.
  2594. */
  2595. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2596. val -= delta;
  2597. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2598. }
  2599. if (io->down)
  2600. delta = -delta;
  2601. delta *= io->size;
  2602. if (io->in) {
  2603. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2604. val += delta;
  2605. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2606. } else {
  2607. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2608. val += delta;
  2609. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2610. }
  2611. }
  2612. io->count -= io->cur_count;
  2613. io->cur_count = 0;
  2614. return 0;
  2615. }
  2616. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2617. {
  2618. /* TODO: String I/O for in kernel device */
  2619. int r;
  2620. if (vcpu->arch.pio.in)
  2621. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2622. vcpu->arch.pio.size, pd);
  2623. else
  2624. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2625. vcpu->arch.pio.size, pd);
  2626. return r;
  2627. }
  2628. static int pio_string_write(struct kvm_vcpu *vcpu)
  2629. {
  2630. struct kvm_pio_request *io = &vcpu->arch.pio;
  2631. void *pd = vcpu->arch.pio_data;
  2632. int i, r = 0;
  2633. for (i = 0; i < io->cur_count; i++) {
  2634. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2635. io->port, io->size, pd)) {
  2636. r = -EOPNOTSUPP;
  2637. break;
  2638. }
  2639. pd += io->size;
  2640. }
  2641. return r;
  2642. }
  2643. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2644. {
  2645. unsigned long val;
  2646. vcpu->run->exit_reason = KVM_EXIT_IO;
  2647. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2648. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2649. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2650. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2651. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2652. vcpu->arch.pio.in = in;
  2653. vcpu->arch.pio.string = 0;
  2654. vcpu->arch.pio.down = 0;
  2655. vcpu->arch.pio.rep = 0;
  2656. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2657. size, 1);
  2658. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2659. memcpy(vcpu->arch.pio_data, &val, 4);
  2660. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2661. complete_pio(vcpu);
  2662. return 1;
  2663. }
  2664. return 0;
  2665. }
  2666. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2667. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2668. int size, unsigned long count, int down,
  2669. gva_t address, int rep, unsigned port)
  2670. {
  2671. unsigned now, in_page;
  2672. int ret = 0;
  2673. vcpu->run->exit_reason = KVM_EXIT_IO;
  2674. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2675. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2676. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2677. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2678. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2679. vcpu->arch.pio.in = in;
  2680. vcpu->arch.pio.string = 1;
  2681. vcpu->arch.pio.down = down;
  2682. vcpu->arch.pio.rep = rep;
  2683. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2684. size, count);
  2685. if (!count) {
  2686. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2687. return 1;
  2688. }
  2689. if (!down)
  2690. in_page = PAGE_SIZE - offset_in_page(address);
  2691. else
  2692. in_page = offset_in_page(address) + size;
  2693. now = min(count, (unsigned long)in_page / size);
  2694. if (!now)
  2695. now = 1;
  2696. if (down) {
  2697. /*
  2698. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2699. */
  2700. pr_unimpl(vcpu, "guest string pio down\n");
  2701. kvm_inject_gp(vcpu, 0);
  2702. return 1;
  2703. }
  2704. vcpu->run->io.count = now;
  2705. vcpu->arch.pio.cur_count = now;
  2706. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2707. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2708. vcpu->arch.pio.guest_gva = address;
  2709. if (!vcpu->arch.pio.in) {
  2710. /* string PIO write */
  2711. ret = pio_copy_data(vcpu);
  2712. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2713. kvm_inject_gp(vcpu, 0);
  2714. return 1;
  2715. }
  2716. if (ret == 0 && !pio_string_write(vcpu)) {
  2717. complete_pio(vcpu);
  2718. if (vcpu->arch.pio.count == 0)
  2719. ret = 1;
  2720. }
  2721. }
  2722. /* no string PIO read support yet */
  2723. return ret;
  2724. }
  2725. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2726. static void bounce_off(void *info)
  2727. {
  2728. /* nothing */
  2729. }
  2730. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2731. void *data)
  2732. {
  2733. struct cpufreq_freqs *freq = data;
  2734. struct kvm *kvm;
  2735. struct kvm_vcpu *vcpu;
  2736. int i, send_ipi = 0;
  2737. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2738. return 0;
  2739. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2740. return 0;
  2741. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2742. spin_lock(&kvm_lock);
  2743. list_for_each_entry(kvm, &vm_list, vm_list) {
  2744. kvm_for_each_vcpu(i, vcpu, kvm) {
  2745. if (vcpu->cpu != freq->cpu)
  2746. continue;
  2747. if (!kvm_request_guest_time_update(vcpu))
  2748. continue;
  2749. if (vcpu->cpu != smp_processor_id())
  2750. send_ipi++;
  2751. }
  2752. }
  2753. spin_unlock(&kvm_lock);
  2754. if (freq->old < freq->new && send_ipi) {
  2755. /*
  2756. * We upscale the frequency. Must make the guest
  2757. * doesn't see old kvmclock values while running with
  2758. * the new frequency, otherwise we risk the guest sees
  2759. * time go backwards.
  2760. *
  2761. * In case we update the frequency for another cpu
  2762. * (which might be in guest context) send an interrupt
  2763. * to kick the cpu out of guest context. Next time
  2764. * guest context is entered kvmclock will be updated,
  2765. * so the guest will not see stale values.
  2766. */
  2767. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2768. }
  2769. return 0;
  2770. }
  2771. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2772. .notifier_call = kvmclock_cpufreq_notifier
  2773. };
  2774. static void kvm_timer_init(void)
  2775. {
  2776. int cpu;
  2777. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2778. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2779. CPUFREQ_TRANSITION_NOTIFIER);
  2780. for_each_online_cpu(cpu)
  2781. per_cpu(cpu_tsc_khz, cpu) = cpufreq_get(cpu);
  2782. } else {
  2783. for_each_possible_cpu(cpu)
  2784. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2785. }
  2786. }
  2787. int kvm_arch_init(void *opaque)
  2788. {
  2789. int r;
  2790. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2791. if (kvm_x86_ops) {
  2792. printk(KERN_ERR "kvm: already loaded the other module\n");
  2793. r = -EEXIST;
  2794. goto out;
  2795. }
  2796. if (!ops->cpu_has_kvm_support()) {
  2797. printk(KERN_ERR "kvm: no hardware support\n");
  2798. r = -EOPNOTSUPP;
  2799. goto out;
  2800. }
  2801. if (ops->disabled_by_bios()) {
  2802. printk(KERN_ERR "kvm: disabled by bios\n");
  2803. r = -EOPNOTSUPP;
  2804. goto out;
  2805. }
  2806. r = kvm_mmu_module_init();
  2807. if (r)
  2808. goto out;
  2809. kvm_init_msr_list();
  2810. kvm_x86_ops = ops;
  2811. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2812. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2813. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2814. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2815. kvm_timer_init();
  2816. return 0;
  2817. out:
  2818. return r;
  2819. }
  2820. void kvm_arch_exit(void)
  2821. {
  2822. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2823. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2824. CPUFREQ_TRANSITION_NOTIFIER);
  2825. kvm_x86_ops = NULL;
  2826. kvm_mmu_module_exit();
  2827. }
  2828. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2829. {
  2830. ++vcpu->stat.halt_exits;
  2831. if (irqchip_in_kernel(vcpu->kvm)) {
  2832. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2833. return 1;
  2834. } else {
  2835. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2836. return 0;
  2837. }
  2838. }
  2839. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2840. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2841. unsigned long a1)
  2842. {
  2843. if (is_long_mode(vcpu))
  2844. return a0;
  2845. else
  2846. return a0 | ((gpa_t)a1 << 32);
  2847. }
  2848. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2849. {
  2850. unsigned long nr, a0, a1, a2, a3, ret;
  2851. int r = 1;
  2852. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2853. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2854. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2855. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2856. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2857. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2858. if (!is_long_mode(vcpu)) {
  2859. nr &= 0xFFFFFFFF;
  2860. a0 &= 0xFFFFFFFF;
  2861. a1 &= 0xFFFFFFFF;
  2862. a2 &= 0xFFFFFFFF;
  2863. a3 &= 0xFFFFFFFF;
  2864. }
  2865. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2866. ret = -KVM_EPERM;
  2867. goto out;
  2868. }
  2869. switch (nr) {
  2870. case KVM_HC_VAPIC_POLL_IRQ:
  2871. ret = 0;
  2872. break;
  2873. case KVM_HC_MMU_OP:
  2874. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2875. break;
  2876. default:
  2877. ret = -KVM_ENOSYS;
  2878. break;
  2879. }
  2880. out:
  2881. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2882. ++vcpu->stat.hypercalls;
  2883. return r;
  2884. }
  2885. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2886. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2887. {
  2888. char instruction[3];
  2889. int ret = 0;
  2890. unsigned long rip = kvm_rip_read(vcpu);
  2891. /*
  2892. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2893. * to ensure that the updated hypercall appears atomically across all
  2894. * VCPUs.
  2895. */
  2896. kvm_mmu_zap_all(vcpu->kvm);
  2897. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2898. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2899. != X86EMUL_CONTINUE)
  2900. ret = -EFAULT;
  2901. return ret;
  2902. }
  2903. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2904. {
  2905. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2906. }
  2907. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2908. {
  2909. struct descriptor_table dt = { limit, base };
  2910. kvm_x86_ops->set_gdt(vcpu, &dt);
  2911. }
  2912. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2913. {
  2914. struct descriptor_table dt = { limit, base };
  2915. kvm_x86_ops->set_idt(vcpu, &dt);
  2916. }
  2917. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2918. unsigned long *rflags)
  2919. {
  2920. kvm_lmsw(vcpu, msw);
  2921. *rflags = kvm_get_rflags(vcpu);
  2922. }
  2923. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2924. {
  2925. unsigned long value;
  2926. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2927. switch (cr) {
  2928. case 0:
  2929. value = vcpu->arch.cr0;
  2930. break;
  2931. case 2:
  2932. value = vcpu->arch.cr2;
  2933. break;
  2934. case 3:
  2935. value = vcpu->arch.cr3;
  2936. break;
  2937. case 4:
  2938. value = vcpu->arch.cr4;
  2939. break;
  2940. case 8:
  2941. value = kvm_get_cr8(vcpu);
  2942. break;
  2943. default:
  2944. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2945. return 0;
  2946. }
  2947. return value;
  2948. }
  2949. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2950. unsigned long *rflags)
  2951. {
  2952. switch (cr) {
  2953. case 0:
  2954. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2955. *rflags = kvm_get_rflags(vcpu);
  2956. break;
  2957. case 2:
  2958. vcpu->arch.cr2 = val;
  2959. break;
  2960. case 3:
  2961. kvm_set_cr3(vcpu, val);
  2962. break;
  2963. case 4:
  2964. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2965. break;
  2966. case 8:
  2967. kvm_set_cr8(vcpu, val & 0xfUL);
  2968. break;
  2969. default:
  2970. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2971. }
  2972. }
  2973. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2974. {
  2975. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2976. int j, nent = vcpu->arch.cpuid_nent;
  2977. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2978. /* when no next entry is found, the current entry[i] is reselected */
  2979. for (j = i + 1; ; j = (j + 1) % nent) {
  2980. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2981. if (ej->function == e->function) {
  2982. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2983. return j;
  2984. }
  2985. }
  2986. return 0; /* silence gcc, even though control never reaches here */
  2987. }
  2988. /* find an entry with matching function, matching index (if needed), and that
  2989. * should be read next (if it's stateful) */
  2990. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2991. u32 function, u32 index)
  2992. {
  2993. if (e->function != function)
  2994. return 0;
  2995. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2996. return 0;
  2997. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2998. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2999. return 0;
  3000. return 1;
  3001. }
  3002. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3003. u32 function, u32 index)
  3004. {
  3005. int i;
  3006. struct kvm_cpuid_entry2 *best = NULL;
  3007. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3008. struct kvm_cpuid_entry2 *e;
  3009. e = &vcpu->arch.cpuid_entries[i];
  3010. if (is_matching_cpuid_entry(e, function, index)) {
  3011. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3012. move_to_next_stateful_cpuid_entry(vcpu, i);
  3013. best = e;
  3014. break;
  3015. }
  3016. /*
  3017. * Both basic or both extended?
  3018. */
  3019. if (((e->function ^ function) & 0x80000000) == 0)
  3020. if (!best || e->function > best->function)
  3021. best = e;
  3022. }
  3023. return best;
  3024. }
  3025. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3026. {
  3027. struct kvm_cpuid_entry2 *best;
  3028. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3029. if (best)
  3030. return best->eax & 0xff;
  3031. return 36;
  3032. }
  3033. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3034. {
  3035. u32 function, index;
  3036. struct kvm_cpuid_entry2 *best;
  3037. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3038. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3039. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3040. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3041. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3042. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3043. best = kvm_find_cpuid_entry(vcpu, function, index);
  3044. if (best) {
  3045. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3046. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3047. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3048. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3049. }
  3050. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3051. trace_kvm_cpuid(function,
  3052. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3053. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3054. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3055. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3056. }
  3057. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3058. /*
  3059. * Check if userspace requested an interrupt window, and that the
  3060. * interrupt window is open.
  3061. *
  3062. * No need to exit to userspace if we already have an interrupt queued.
  3063. */
  3064. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3065. {
  3066. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3067. vcpu->run->request_interrupt_window &&
  3068. kvm_arch_interrupt_allowed(vcpu));
  3069. }
  3070. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3071. {
  3072. struct kvm_run *kvm_run = vcpu->run;
  3073. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3074. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3075. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3076. if (irqchip_in_kernel(vcpu->kvm))
  3077. kvm_run->ready_for_interrupt_injection = 1;
  3078. else
  3079. kvm_run->ready_for_interrupt_injection =
  3080. kvm_arch_interrupt_allowed(vcpu) &&
  3081. !kvm_cpu_has_interrupt(vcpu) &&
  3082. !kvm_event_needs_reinjection(vcpu);
  3083. }
  3084. static void vapic_enter(struct kvm_vcpu *vcpu)
  3085. {
  3086. struct kvm_lapic *apic = vcpu->arch.apic;
  3087. struct page *page;
  3088. if (!apic || !apic->vapic_addr)
  3089. return;
  3090. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3091. vcpu->arch.apic->vapic_page = page;
  3092. }
  3093. static void vapic_exit(struct kvm_vcpu *vcpu)
  3094. {
  3095. struct kvm_lapic *apic = vcpu->arch.apic;
  3096. if (!apic || !apic->vapic_addr)
  3097. return;
  3098. down_read(&vcpu->kvm->slots_lock);
  3099. kvm_release_page_dirty(apic->vapic_page);
  3100. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3101. up_read(&vcpu->kvm->slots_lock);
  3102. }
  3103. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3104. {
  3105. int max_irr, tpr;
  3106. if (!kvm_x86_ops->update_cr8_intercept)
  3107. return;
  3108. if (!vcpu->arch.apic)
  3109. return;
  3110. if (!vcpu->arch.apic->vapic_addr)
  3111. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3112. else
  3113. max_irr = -1;
  3114. if (max_irr != -1)
  3115. max_irr >>= 4;
  3116. tpr = kvm_lapic_get_cr8(vcpu);
  3117. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3118. }
  3119. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3120. {
  3121. /* try to reinject previous events if any */
  3122. if (vcpu->arch.exception.pending) {
  3123. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3124. vcpu->arch.exception.has_error_code,
  3125. vcpu->arch.exception.error_code);
  3126. return;
  3127. }
  3128. if (vcpu->arch.nmi_injected) {
  3129. kvm_x86_ops->set_nmi(vcpu);
  3130. return;
  3131. }
  3132. if (vcpu->arch.interrupt.pending) {
  3133. kvm_x86_ops->set_irq(vcpu);
  3134. return;
  3135. }
  3136. /* try to inject new event if pending */
  3137. if (vcpu->arch.nmi_pending) {
  3138. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3139. vcpu->arch.nmi_pending = false;
  3140. vcpu->arch.nmi_injected = true;
  3141. kvm_x86_ops->set_nmi(vcpu);
  3142. }
  3143. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3144. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3145. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3146. false);
  3147. kvm_x86_ops->set_irq(vcpu);
  3148. }
  3149. }
  3150. }
  3151. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3152. {
  3153. int r;
  3154. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3155. vcpu->run->request_interrupt_window;
  3156. if (vcpu->requests)
  3157. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3158. kvm_mmu_unload(vcpu);
  3159. r = kvm_mmu_reload(vcpu);
  3160. if (unlikely(r))
  3161. goto out;
  3162. if (vcpu->requests) {
  3163. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3164. __kvm_migrate_timers(vcpu);
  3165. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3166. kvm_write_guest_time(vcpu);
  3167. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3168. kvm_mmu_sync_roots(vcpu);
  3169. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3170. kvm_x86_ops->tlb_flush(vcpu);
  3171. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3172. &vcpu->requests)) {
  3173. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3174. r = 0;
  3175. goto out;
  3176. }
  3177. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3178. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3179. r = 0;
  3180. goto out;
  3181. }
  3182. }
  3183. preempt_disable();
  3184. kvm_x86_ops->prepare_guest_switch(vcpu);
  3185. kvm_load_guest_fpu(vcpu);
  3186. local_irq_disable();
  3187. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3188. smp_mb__after_clear_bit();
  3189. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3190. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3191. local_irq_enable();
  3192. preempt_enable();
  3193. r = 1;
  3194. goto out;
  3195. }
  3196. inject_pending_event(vcpu);
  3197. /* enable NMI/IRQ window open exits if needed */
  3198. if (vcpu->arch.nmi_pending)
  3199. kvm_x86_ops->enable_nmi_window(vcpu);
  3200. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3201. kvm_x86_ops->enable_irq_window(vcpu);
  3202. if (kvm_lapic_enabled(vcpu)) {
  3203. update_cr8_intercept(vcpu);
  3204. kvm_lapic_sync_to_vapic(vcpu);
  3205. }
  3206. up_read(&vcpu->kvm->slots_lock);
  3207. kvm_guest_enter();
  3208. if (unlikely(vcpu->arch.switch_db_regs)) {
  3209. set_debugreg(0, 7);
  3210. set_debugreg(vcpu->arch.eff_db[0], 0);
  3211. set_debugreg(vcpu->arch.eff_db[1], 1);
  3212. set_debugreg(vcpu->arch.eff_db[2], 2);
  3213. set_debugreg(vcpu->arch.eff_db[3], 3);
  3214. }
  3215. trace_kvm_entry(vcpu->vcpu_id);
  3216. kvm_x86_ops->run(vcpu);
  3217. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3218. set_debugreg(current->thread.debugreg0, 0);
  3219. set_debugreg(current->thread.debugreg1, 1);
  3220. set_debugreg(current->thread.debugreg2, 2);
  3221. set_debugreg(current->thread.debugreg3, 3);
  3222. set_debugreg(current->thread.debugreg6, 6);
  3223. set_debugreg(current->thread.debugreg7, 7);
  3224. }
  3225. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3226. local_irq_enable();
  3227. ++vcpu->stat.exits;
  3228. /*
  3229. * We must have an instruction between local_irq_enable() and
  3230. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3231. * the interrupt shadow. The stat.exits increment will do nicely.
  3232. * But we need to prevent reordering, hence this barrier():
  3233. */
  3234. barrier();
  3235. kvm_guest_exit();
  3236. preempt_enable();
  3237. down_read(&vcpu->kvm->slots_lock);
  3238. /*
  3239. * Profile KVM exit RIPs:
  3240. */
  3241. if (unlikely(prof_on == KVM_PROFILING)) {
  3242. unsigned long rip = kvm_rip_read(vcpu);
  3243. profile_hit(KVM_PROFILING, (void *)rip);
  3244. }
  3245. kvm_lapic_sync_from_vapic(vcpu);
  3246. r = kvm_x86_ops->handle_exit(vcpu);
  3247. out:
  3248. return r;
  3249. }
  3250. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3251. {
  3252. int r;
  3253. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3254. pr_debug("vcpu %d received sipi with vector # %x\n",
  3255. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3256. kvm_lapic_reset(vcpu);
  3257. r = kvm_arch_vcpu_reset(vcpu);
  3258. if (r)
  3259. return r;
  3260. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3261. }
  3262. down_read(&vcpu->kvm->slots_lock);
  3263. vapic_enter(vcpu);
  3264. r = 1;
  3265. while (r > 0) {
  3266. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3267. r = vcpu_enter_guest(vcpu);
  3268. else {
  3269. up_read(&vcpu->kvm->slots_lock);
  3270. kvm_vcpu_block(vcpu);
  3271. down_read(&vcpu->kvm->slots_lock);
  3272. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3273. {
  3274. switch(vcpu->arch.mp_state) {
  3275. case KVM_MP_STATE_HALTED:
  3276. vcpu->arch.mp_state =
  3277. KVM_MP_STATE_RUNNABLE;
  3278. case KVM_MP_STATE_RUNNABLE:
  3279. break;
  3280. case KVM_MP_STATE_SIPI_RECEIVED:
  3281. default:
  3282. r = -EINTR;
  3283. break;
  3284. }
  3285. }
  3286. }
  3287. if (r <= 0)
  3288. break;
  3289. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3290. if (kvm_cpu_has_pending_timer(vcpu))
  3291. kvm_inject_pending_timer_irqs(vcpu);
  3292. if (dm_request_for_irq_injection(vcpu)) {
  3293. r = -EINTR;
  3294. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3295. ++vcpu->stat.request_irq_exits;
  3296. }
  3297. if (signal_pending(current)) {
  3298. r = -EINTR;
  3299. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3300. ++vcpu->stat.signal_exits;
  3301. }
  3302. if (need_resched()) {
  3303. up_read(&vcpu->kvm->slots_lock);
  3304. kvm_resched(vcpu);
  3305. down_read(&vcpu->kvm->slots_lock);
  3306. }
  3307. }
  3308. up_read(&vcpu->kvm->slots_lock);
  3309. post_kvm_run_save(vcpu);
  3310. vapic_exit(vcpu);
  3311. return r;
  3312. }
  3313. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3314. {
  3315. int r;
  3316. sigset_t sigsaved;
  3317. vcpu_load(vcpu);
  3318. if (vcpu->sigset_active)
  3319. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3320. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3321. kvm_vcpu_block(vcpu);
  3322. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3323. r = -EAGAIN;
  3324. goto out;
  3325. }
  3326. /* re-sync apic's tpr */
  3327. if (!irqchip_in_kernel(vcpu->kvm))
  3328. kvm_set_cr8(vcpu, kvm_run->cr8);
  3329. if (vcpu->arch.pio.cur_count) {
  3330. r = complete_pio(vcpu);
  3331. if (r)
  3332. goto out;
  3333. }
  3334. #if CONFIG_HAS_IOMEM
  3335. if (vcpu->mmio_needed) {
  3336. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3337. vcpu->mmio_read_completed = 1;
  3338. vcpu->mmio_needed = 0;
  3339. down_read(&vcpu->kvm->slots_lock);
  3340. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3341. EMULTYPE_NO_DECODE);
  3342. up_read(&vcpu->kvm->slots_lock);
  3343. if (r == EMULATE_DO_MMIO) {
  3344. /*
  3345. * Read-modify-write. Back to userspace.
  3346. */
  3347. r = 0;
  3348. goto out;
  3349. }
  3350. }
  3351. #endif
  3352. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3353. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3354. kvm_run->hypercall.ret);
  3355. r = __vcpu_run(vcpu);
  3356. out:
  3357. if (vcpu->sigset_active)
  3358. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3359. vcpu_put(vcpu);
  3360. return r;
  3361. }
  3362. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3363. {
  3364. vcpu_load(vcpu);
  3365. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3366. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3367. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3368. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3369. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3370. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3371. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3372. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3373. #ifdef CONFIG_X86_64
  3374. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3375. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3376. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3377. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3378. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3379. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3380. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3381. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3382. #endif
  3383. regs->rip = kvm_rip_read(vcpu);
  3384. regs->rflags = kvm_get_rflags(vcpu);
  3385. vcpu_put(vcpu);
  3386. return 0;
  3387. }
  3388. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3389. {
  3390. vcpu_load(vcpu);
  3391. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3392. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3393. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3394. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3395. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3396. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3397. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3398. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3399. #ifdef CONFIG_X86_64
  3400. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3401. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3402. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3403. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3404. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3405. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3406. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3407. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3408. #endif
  3409. kvm_rip_write(vcpu, regs->rip);
  3410. kvm_set_rflags(vcpu, regs->rflags);
  3411. vcpu->arch.exception.pending = false;
  3412. vcpu_put(vcpu);
  3413. return 0;
  3414. }
  3415. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3416. struct kvm_segment *var, int seg)
  3417. {
  3418. kvm_x86_ops->get_segment(vcpu, var, seg);
  3419. }
  3420. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3421. {
  3422. struct kvm_segment cs;
  3423. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3424. *db = cs.db;
  3425. *l = cs.l;
  3426. }
  3427. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3428. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3429. struct kvm_sregs *sregs)
  3430. {
  3431. struct descriptor_table dt;
  3432. vcpu_load(vcpu);
  3433. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3434. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3435. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3436. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3437. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3438. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3439. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3440. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3441. kvm_x86_ops->get_idt(vcpu, &dt);
  3442. sregs->idt.limit = dt.limit;
  3443. sregs->idt.base = dt.base;
  3444. kvm_x86_ops->get_gdt(vcpu, &dt);
  3445. sregs->gdt.limit = dt.limit;
  3446. sregs->gdt.base = dt.base;
  3447. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3448. sregs->cr0 = vcpu->arch.cr0;
  3449. sregs->cr2 = vcpu->arch.cr2;
  3450. sregs->cr3 = vcpu->arch.cr3;
  3451. sregs->cr4 = vcpu->arch.cr4;
  3452. sregs->cr8 = kvm_get_cr8(vcpu);
  3453. sregs->efer = vcpu->arch.shadow_efer;
  3454. sregs->apic_base = kvm_get_apic_base(vcpu);
  3455. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3456. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3457. set_bit(vcpu->arch.interrupt.nr,
  3458. (unsigned long *)sregs->interrupt_bitmap);
  3459. vcpu_put(vcpu);
  3460. return 0;
  3461. }
  3462. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3463. struct kvm_mp_state *mp_state)
  3464. {
  3465. vcpu_load(vcpu);
  3466. mp_state->mp_state = vcpu->arch.mp_state;
  3467. vcpu_put(vcpu);
  3468. return 0;
  3469. }
  3470. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3471. struct kvm_mp_state *mp_state)
  3472. {
  3473. vcpu_load(vcpu);
  3474. vcpu->arch.mp_state = mp_state->mp_state;
  3475. vcpu_put(vcpu);
  3476. return 0;
  3477. }
  3478. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3479. struct kvm_segment *var, int seg)
  3480. {
  3481. kvm_x86_ops->set_segment(vcpu, var, seg);
  3482. }
  3483. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3484. struct kvm_segment *kvm_desct)
  3485. {
  3486. kvm_desct->base = get_desc_base(seg_desc);
  3487. kvm_desct->limit = get_desc_limit(seg_desc);
  3488. if (seg_desc->g) {
  3489. kvm_desct->limit <<= 12;
  3490. kvm_desct->limit |= 0xfff;
  3491. }
  3492. kvm_desct->selector = selector;
  3493. kvm_desct->type = seg_desc->type;
  3494. kvm_desct->present = seg_desc->p;
  3495. kvm_desct->dpl = seg_desc->dpl;
  3496. kvm_desct->db = seg_desc->d;
  3497. kvm_desct->s = seg_desc->s;
  3498. kvm_desct->l = seg_desc->l;
  3499. kvm_desct->g = seg_desc->g;
  3500. kvm_desct->avl = seg_desc->avl;
  3501. if (!selector)
  3502. kvm_desct->unusable = 1;
  3503. else
  3504. kvm_desct->unusable = 0;
  3505. kvm_desct->padding = 0;
  3506. }
  3507. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3508. u16 selector,
  3509. struct descriptor_table *dtable)
  3510. {
  3511. if (selector & 1 << 2) {
  3512. struct kvm_segment kvm_seg;
  3513. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3514. if (kvm_seg.unusable)
  3515. dtable->limit = 0;
  3516. else
  3517. dtable->limit = kvm_seg.limit;
  3518. dtable->base = kvm_seg.base;
  3519. }
  3520. else
  3521. kvm_x86_ops->get_gdt(vcpu, dtable);
  3522. }
  3523. /* allowed just for 8 bytes segments */
  3524. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3525. struct desc_struct *seg_desc)
  3526. {
  3527. struct descriptor_table dtable;
  3528. u16 index = selector >> 3;
  3529. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3530. if (dtable.limit < index * 8 + 7) {
  3531. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3532. return 1;
  3533. }
  3534. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3535. }
  3536. /* allowed just for 8 bytes segments */
  3537. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3538. struct desc_struct *seg_desc)
  3539. {
  3540. struct descriptor_table dtable;
  3541. u16 index = selector >> 3;
  3542. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3543. if (dtable.limit < index * 8 + 7)
  3544. return 1;
  3545. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3546. }
  3547. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3548. struct desc_struct *seg_desc)
  3549. {
  3550. u32 base_addr = get_desc_base(seg_desc);
  3551. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3552. }
  3553. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3554. {
  3555. struct kvm_segment kvm_seg;
  3556. kvm_get_segment(vcpu, &kvm_seg, seg);
  3557. return kvm_seg.selector;
  3558. }
  3559. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3560. u16 selector,
  3561. struct kvm_segment *kvm_seg)
  3562. {
  3563. struct desc_struct seg_desc;
  3564. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3565. return 1;
  3566. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3567. return 0;
  3568. }
  3569. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3570. {
  3571. struct kvm_segment segvar = {
  3572. .base = selector << 4,
  3573. .limit = 0xffff,
  3574. .selector = selector,
  3575. .type = 3,
  3576. .present = 1,
  3577. .dpl = 3,
  3578. .db = 0,
  3579. .s = 1,
  3580. .l = 0,
  3581. .g = 0,
  3582. .avl = 0,
  3583. .unusable = 0,
  3584. };
  3585. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3586. return 0;
  3587. }
  3588. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3589. {
  3590. return (seg != VCPU_SREG_LDTR) &&
  3591. (seg != VCPU_SREG_TR) &&
  3592. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3593. }
  3594. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3595. int type_bits, int seg)
  3596. {
  3597. struct kvm_segment kvm_seg;
  3598. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3599. return kvm_load_realmode_segment(vcpu, selector, seg);
  3600. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3601. return 1;
  3602. kvm_seg.type |= type_bits;
  3603. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3604. seg != VCPU_SREG_LDTR)
  3605. if (!kvm_seg.s)
  3606. kvm_seg.unusable = 1;
  3607. kvm_set_segment(vcpu, &kvm_seg, seg);
  3608. return 0;
  3609. }
  3610. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3611. struct tss_segment_32 *tss)
  3612. {
  3613. tss->cr3 = vcpu->arch.cr3;
  3614. tss->eip = kvm_rip_read(vcpu);
  3615. tss->eflags = kvm_get_rflags(vcpu);
  3616. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3617. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3618. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3619. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3620. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3621. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3622. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3623. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3624. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3625. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3626. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3627. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3628. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3629. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3630. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3631. }
  3632. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3633. struct tss_segment_32 *tss)
  3634. {
  3635. kvm_set_cr3(vcpu, tss->cr3);
  3636. kvm_rip_write(vcpu, tss->eip);
  3637. kvm_set_rflags(vcpu, tss->eflags | 2);
  3638. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3639. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3640. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3641. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3642. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3643. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3644. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3645. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3646. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3647. return 1;
  3648. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3649. return 1;
  3650. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3651. return 1;
  3652. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3653. return 1;
  3654. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3655. return 1;
  3656. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3657. return 1;
  3658. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3659. return 1;
  3660. return 0;
  3661. }
  3662. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3663. struct tss_segment_16 *tss)
  3664. {
  3665. tss->ip = kvm_rip_read(vcpu);
  3666. tss->flag = kvm_get_rflags(vcpu);
  3667. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3668. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3669. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3670. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3671. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3672. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3673. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3674. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3675. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3676. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3677. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3678. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3679. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3680. }
  3681. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3682. struct tss_segment_16 *tss)
  3683. {
  3684. kvm_rip_write(vcpu, tss->ip);
  3685. kvm_set_rflags(vcpu, tss->flag | 2);
  3686. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3687. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3688. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3689. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3690. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3691. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3692. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3693. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3694. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3695. return 1;
  3696. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3697. return 1;
  3698. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3699. return 1;
  3700. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3701. return 1;
  3702. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3703. return 1;
  3704. return 0;
  3705. }
  3706. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3707. u16 old_tss_sel, u32 old_tss_base,
  3708. struct desc_struct *nseg_desc)
  3709. {
  3710. struct tss_segment_16 tss_segment_16;
  3711. int ret = 0;
  3712. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3713. sizeof tss_segment_16))
  3714. goto out;
  3715. save_state_to_tss16(vcpu, &tss_segment_16);
  3716. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3717. sizeof tss_segment_16))
  3718. goto out;
  3719. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3720. &tss_segment_16, sizeof tss_segment_16))
  3721. goto out;
  3722. if (old_tss_sel != 0xffff) {
  3723. tss_segment_16.prev_task_link = old_tss_sel;
  3724. if (kvm_write_guest(vcpu->kvm,
  3725. get_tss_base_addr(vcpu, nseg_desc),
  3726. &tss_segment_16.prev_task_link,
  3727. sizeof tss_segment_16.prev_task_link))
  3728. goto out;
  3729. }
  3730. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3731. goto out;
  3732. ret = 1;
  3733. out:
  3734. return ret;
  3735. }
  3736. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3737. u16 old_tss_sel, u32 old_tss_base,
  3738. struct desc_struct *nseg_desc)
  3739. {
  3740. struct tss_segment_32 tss_segment_32;
  3741. int ret = 0;
  3742. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3743. sizeof tss_segment_32))
  3744. goto out;
  3745. save_state_to_tss32(vcpu, &tss_segment_32);
  3746. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3747. sizeof tss_segment_32))
  3748. goto out;
  3749. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3750. &tss_segment_32, sizeof tss_segment_32))
  3751. goto out;
  3752. if (old_tss_sel != 0xffff) {
  3753. tss_segment_32.prev_task_link = old_tss_sel;
  3754. if (kvm_write_guest(vcpu->kvm,
  3755. get_tss_base_addr(vcpu, nseg_desc),
  3756. &tss_segment_32.prev_task_link,
  3757. sizeof tss_segment_32.prev_task_link))
  3758. goto out;
  3759. }
  3760. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3761. goto out;
  3762. ret = 1;
  3763. out:
  3764. return ret;
  3765. }
  3766. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3767. {
  3768. struct kvm_segment tr_seg;
  3769. struct desc_struct cseg_desc;
  3770. struct desc_struct nseg_desc;
  3771. int ret = 0;
  3772. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3773. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3774. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3775. /* FIXME: Handle errors. Failure to read either TSS or their
  3776. * descriptors should generate a pagefault.
  3777. */
  3778. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3779. goto out;
  3780. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3781. goto out;
  3782. if (reason != TASK_SWITCH_IRET) {
  3783. int cpl;
  3784. cpl = kvm_x86_ops->get_cpl(vcpu);
  3785. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3786. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3787. return 1;
  3788. }
  3789. }
  3790. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3791. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3792. return 1;
  3793. }
  3794. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3795. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3796. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3797. }
  3798. if (reason == TASK_SWITCH_IRET) {
  3799. u32 eflags = kvm_get_rflags(vcpu);
  3800. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3801. }
  3802. /* set back link to prev task only if NT bit is set in eflags
  3803. note that old_tss_sel is not used afetr this point */
  3804. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3805. old_tss_sel = 0xffff;
  3806. /* set back link to prev task only if NT bit is set in eflags
  3807. note that old_tss_sel is not used afetr this point */
  3808. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3809. old_tss_sel = 0xffff;
  3810. if (nseg_desc.type & 8)
  3811. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3812. old_tss_base, &nseg_desc);
  3813. else
  3814. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3815. old_tss_base, &nseg_desc);
  3816. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3817. u32 eflags = kvm_get_rflags(vcpu);
  3818. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3819. }
  3820. if (reason != TASK_SWITCH_IRET) {
  3821. nseg_desc.type |= (1 << 1);
  3822. save_guest_segment_descriptor(vcpu, tss_selector,
  3823. &nseg_desc);
  3824. }
  3825. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3826. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3827. tr_seg.type = 11;
  3828. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3829. out:
  3830. return ret;
  3831. }
  3832. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3833. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3834. struct kvm_sregs *sregs)
  3835. {
  3836. int mmu_reset_needed = 0;
  3837. int pending_vec, max_bits;
  3838. struct descriptor_table dt;
  3839. vcpu_load(vcpu);
  3840. dt.limit = sregs->idt.limit;
  3841. dt.base = sregs->idt.base;
  3842. kvm_x86_ops->set_idt(vcpu, &dt);
  3843. dt.limit = sregs->gdt.limit;
  3844. dt.base = sregs->gdt.base;
  3845. kvm_x86_ops->set_gdt(vcpu, &dt);
  3846. vcpu->arch.cr2 = sregs->cr2;
  3847. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3848. vcpu->arch.cr3 = sregs->cr3;
  3849. kvm_set_cr8(vcpu, sregs->cr8);
  3850. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3851. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3852. kvm_set_apic_base(vcpu, sregs->apic_base);
  3853. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3854. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3855. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3856. vcpu->arch.cr0 = sregs->cr0;
  3857. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3858. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3859. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3860. load_pdptrs(vcpu, vcpu->arch.cr3);
  3861. if (mmu_reset_needed)
  3862. kvm_mmu_reset_context(vcpu);
  3863. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3864. pending_vec = find_first_bit(
  3865. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3866. if (pending_vec < max_bits) {
  3867. kvm_queue_interrupt(vcpu, pending_vec, false);
  3868. pr_debug("Set back pending irq %d\n", pending_vec);
  3869. if (irqchip_in_kernel(vcpu->kvm))
  3870. kvm_pic_clear_isr_ack(vcpu->kvm);
  3871. }
  3872. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3873. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3874. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3875. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3876. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3877. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3878. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3879. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3880. update_cr8_intercept(vcpu);
  3881. /* Older userspace won't unhalt the vcpu on reset. */
  3882. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3883. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3884. !(vcpu->arch.cr0 & X86_CR0_PE))
  3885. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3886. vcpu_put(vcpu);
  3887. return 0;
  3888. }
  3889. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3890. struct kvm_guest_debug *dbg)
  3891. {
  3892. unsigned long rflags;
  3893. int i;
  3894. vcpu_load(vcpu);
  3895. /*
  3896. * Read rflags as long as potentially injected trace flags are still
  3897. * filtered out.
  3898. */
  3899. rflags = kvm_get_rflags(vcpu);
  3900. vcpu->guest_debug = dbg->control;
  3901. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  3902. vcpu->guest_debug = 0;
  3903. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3904. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3905. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3906. vcpu->arch.switch_db_regs =
  3907. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3908. } else {
  3909. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3910. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3911. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3912. }
  3913. /*
  3914. * Trigger an rflags update that will inject or remove the trace
  3915. * flags.
  3916. */
  3917. kvm_set_rflags(vcpu, rflags);
  3918. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3919. if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
  3920. kvm_queue_exception(vcpu, DB_VECTOR);
  3921. else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
  3922. kvm_queue_exception(vcpu, BP_VECTOR);
  3923. vcpu_put(vcpu);
  3924. return 0;
  3925. }
  3926. /*
  3927. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3928. * we have asm/x86/processor.h
  3929. */
  3930. struct fxsave {
  3931. u16 cwd;
  3932. u16 swd;
  3933. u16 twd;
  3934. u16 fop;
  3935. u64 rip;
  3936. u64 rdp;
  3937. u32 mxcsr;
  3938. u32 mxcsr_mask;
  3939. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3940. #ifdef CONFIG_X86_64
  3941. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3942. #else
  3943. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3944. #endif
  3945. };
  3946. /*
  3947. * Translate a guest virtual address to a guest physical address.
  3948. */
  3949. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3950. struct kvm_translation *tr)
  3951. {
  3952. unsigned long vaddr = tr->linear_address;
  3953. gpa_t gpa;
  3954. vcpu_load(vcpu);
  3955. down_read(&vcpu->kvm->slots_lock);
  3956. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3957. up_read(&vcpu->kvm->slots_lock);
  3958. tr->physical_address = gpa;
  3959. tr->valid = gpa != UNMAPPED_GVA;
  3960. tr->writeable = 1;
  3961. tr->usermode = 0;
  3962. vcpu_put(vcpu);
  3963. return 0;
  3964. }
  3965. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3966. {
  3967. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3968. vcpu_load(vcpu);
  3969. memcpy(fpu->fpr, fxsave->st_space, 128);
  3970. fpu->fcw = fxsave->cwd;
  3971. fpu->fsw = fxsave->swd;
  3972. fpu->ftwx = fxsave->twd;
  3973. fpu->last_opcode = fxsave->fop;
  3974. fpu->last_ip = fxsave->rip;
  3975. fpu->last_dp = fxsave->rdp;
  3976. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3977. vcpu_put(vcpu);
  3978. return 0;
  3979. }
  3980. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3981. {
  3982. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3983. vcpu_load(vcpu);
  3984. memcpy(fxsave->st_space, fpu->fpr, 128);
  3985. fxsave->cwd = fpu->fcw;
  3986. fxsave->swd = fpu->fsw;
  3987. fxsave->twd = fpu->ftwx;
  3988. fxsave->fop = fpu->last_opcode;
  3989. fxsave->rip = fpu->last_ip;
  3990. fxsave->rdp = fpu->last_dp;
  3991. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3992. vcpu_put(vcpu);
  3993. return 0;
  3994. }
  3995. void fx_init(struct kvm_vcpu *vcpu)
  3996. {
  3997. unsigned after_mxcsr_mask;
  3998. /*
  3999. * Touch the fpu the first time in non atomic context as if
  4000. * this is the first fpu instruction the exception handler
  4001. * will fire before the instruction returns and it'll have to
  4002. * allocate ram with GFP_KERNEL.
  4003. */
  4004. if (!used_math())
  4005. kvm_fx_save(&vcpu->arch.host_fx_image);
  4006. /* Initialize guest FPU by resetting ours and saving into guest's */
  4007. preempt_disable();
  4008. kvm_fx_save(&vcpu->arch.host_fx_image);
  4009. kvm_fx_finit();
  4010. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4011. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4012. preempt_enable();
  4013. vcpu->arch.cr0 |= X86_CR0_ET;
  4014. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4015. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4016. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4017. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4018. }
  4019. EXPORT_SYMBOL_GPL(fx_init);
  4020. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4021. {
  4022. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4023. return;
  4024. vcpu->guest_fpu_loaded = 1;
  4025. kvm_fx_save(&vcpu->arch.host_fx_image);
  4026. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4027. }
  4028. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4029. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4030. {
  4031. if (!vcpu->guest_fpu_loaded)
  4032. return;
  4033. vcpu->guest_fpu_loaded = 0;
  4034. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4035. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4036. ++vcpu->stat.fpu_reload;
  4037. }
  4038. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4039. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4040. {
  4041. if (vcpu->arch.time_page) {
  4042. kvm_release_page_dirty(vcpu->arch.time_page);
  4043. vcpu->arch.time_page = NULL;
  4044. }
  4045. kvm_x86_ops->vcpu_free(vcpu);
  4046. }
  4047. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4048. unsigned int id)
  4049. {
  4050. return kvm_x86_ops->vcpu_create(kvm, id);
  4051. }
  4052. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4053. {
  4054. int r;
  4055. /* We do fxsave: this must be aligned. */
  4056. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4057. vcpu->arch.mtrr_state.have_fixed = 1;
  4058. vcpu_load(vcpu);
  4059. r = kvm_arch_vcpu_reset(vcpu);
  4060. if (r == 0)
  4061. r = kvm_mmu_setup(vcpu);
  4062. vcpu_put(vcpu);
  4063. if (r < 0)
  4064. goto free_vcpu;
  4065. return 0;
  4066. free_vcpu:
  4067. kvm_x86_ops->vcpu_free(vcpu);
  4068. return r;
  4069. }
  4070. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4071. {
  4072. vcpu_load(vcpu);
  4073. kvm_mmu_unload(vcpu);
  4074. vcpu_put(vcpu);
  4075. kvm_x86_ops->vcpu_free(vcpu);
  4076. }
  4077. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4078. {
  4079. vcpu->arch.nmi_pending = false;
  4080. vcpu->arch.nmi_injected = false;
  4081. vcpu->arch.switch_db_regs = 0;
  4082. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4083. vcpu->arch.dr6 = DR6_FIXED_1;
  4084. vcpu->arch.dr7 = DR7_FIXED_1;
  4085. return kvm_x86_ops->vcpu_reset(vcpu);
  4086. }
  4087. int kvm_arch_hardware_enable(void *garbage)
  4088. {
  4089. /*
  4090. * Since this may be called from a hotplug notifcation,
  4091. * we can't get the CPU frequency directly.
  4092. */
  4093. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4094. int cpu = raw_smp_processor_id();
  4095. per_cpu(cpu_tsc_khz, cpu) = 0;
  4096. }
  4097. return kvm_x86_ops->hardware_enable(garbage);
  4098. }
  4099. void kvm_arch_hardware_disable(void *garbage)
  4100. {
  4101. kvm_x86_ops->hardware_disable(garbage);
  4102. }
  4103. int kvm_arch_hardware_setup(void)
  4104. {
  4105. return kvm_x86_ops->hardware_setup();
  4106. }
  4107. void kvm_arch_hardware_unsetup(void)
  4108. {
  4109. kvm_x86_ops->hardware_unsetup();
  4110. }
  4111. void kvm_arch_check_processor_compat(void *rtn)
  4112. {
  4113. kvm_x86_ops->check_processor_compatibility(rtn);
  4114. }
  4115. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4116. {
  4117. struct page *page;
  4118. struct kvm *kvm;
  4119. int r;
  4120. BUG_ON(vcpu->kvm == NULL);
  4121. kvm = vcpu->kvm;
  4122. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4123. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4124. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4125. else
  4126. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4127. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4128. if (!page) {
  4129. r = -ENOMEM;
  4130. goto fail;
  4131. }
  4132. vcpu->arch.pio_data = page_address(page);
  4133. r = kvm_mmu_create(vcpu);
  4134. if (r < 0)
  4135. goto fail_free_pio_data;
  4136. if (irqchip_in_kernel(kvm)) {
  4137. r = kvm_create_lapic(vcpu);
  4138. if (r < 0)
  4139. goto fail_mmu_destroy;
  4140. }
  4141. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4142. GFP_KERNEL);
  4143. if (!vcpu->arch.mce_banks) {
  4144. r = -ENOMEM;
  4145. goto fail_mmu_destroy;
  4146. }
  4147. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4148. return 0;
  4149. fail_mmu_destroy:
  4150. kvm_mmu_destroy(vcpu);
  4151. fail_free_pio_data:
  4152. free_page((unsigned long)vcpu->arch.pio_data);
  4153. fail:
  4154. return r;
  4155. }
  4156. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4157. {
  4158. kvm_free_lapic(vcpu);
  4159. down_read(&vcpu->kvm->slots_lock);
  4160. kvm_mmu_destroy(vcpu);
  4161. up_read(&vcpu->kvm->slots_lock);
  4162. free_page((unsigned long)vcpu->arch.pio_data);
  4163. }
  4164. struct kvm *kvm_arch_create_vm(void)
  4165. {
  4166. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4167. if (!kvm)
  4168. return ERR_PTR(-ENOMEM);
  4169. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4170. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4171. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4172. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4173. rdtscll(kvm->arch.vm_init_tsc);
  4174. return kvm;
  4175. }
  4176. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4177. {
  4178. vcpu_load(vcpu);
  4179. kvm_mmu_unload(vcpu);
  4180. vcpu_put(vcpu);
  4181. }
  4182. static void kvm_free_vcpus(struct kvm *kvm)
  4183. {
  4184. unsigned int i;
  4185. struct kvm_vcpu *vcpu;
  4186. /*
  4187. * Unpin any mmu pages first.
  4188. */
  4189. kvm_for_each_vcpu(i, vcpu, kvm)
  4190. kvm_unload_vcpu_mmu(vcpu);
  4191. kvm_for_each_vcpu(i, vcpu, kvm)
  4192. kvm_arch_vcpu_free(vcpu);
  4193. mutex_lock(&kvm->lock);
  4194. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4195. kvm->vcpus[i] = NULL;
  4196. atomic_set(&kvm->online_vcpus, 0);
  4197. mutex_unlock(&kvm->lock);
  4198. }
  4199. void kvm_arch_sync_events(struct kvm *kvm)
  4200. {
  4201. kvm_free_all_assigned_devices(kvm);
  4202. }
  4203. void kvm_arch_destroy_vm(struct kvm *kvm)
  4204. {
  4205. kvm_iommu_unmap_guest(kvm);
  4206. kvm_free_pit(kvm);
  4207. kfree(kvm->arch.vpic);
  4208. kfree(kvm->arch.vioapic);
  4209. kvm_free_vcpus(kvm);
  4210. kvm_free_physmem(kvm);
  4211. if (kvm->arch.apic_access_page)
  4212. put_page(kvm->arch.apic_access_page);
  4213. if (kvm->arch.ept_identity_pagetable)
  4214. put_page(kvm->arch.ept_identity_pagetable);
  4215. kfree(kvm);
  4216. }
  4217. int kvm_arch_set_memory_region(struct kvm *kvm,
  4218. struct kvm_userspace_memory_region *mem,
  4219. struct kvm_memory_slot old,
  4220. int user_alloc)
  4221. {
  4222. int npages = mem->memory_size >> PAGE_SHIFT;
  4223. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4224. /*To keep backward compatibility with older userspace,
  4225. *x86 needs to hanlde !user_alloc case.
  4226. */
  4227. if (!user_alloc) {
  4228. if (npages && !old.rmap) {
  4229. unsigned long userspace_addr;
  4230. down_write(&current->mm->mmap_sem);
  4231. userspace_addr = do_mmap(NULL, 0,
  4232. npages * PAGE_SIZE,
  4233. PROT_READ | PROT_WRITE,
  4234. MAP_PRIVATE | MAP_ANONYMOUS,
  4235. 0);
  4236. up_write(&current->mm->mmap_sem);
  4237. if (IS_ERR((void *)userspace_addr))
  4238. return PTR_ERR((void *)userspace_addr);
  4239. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4240. spin_lock(&kvm->mmu_lock);
  4241. memslot->userspace_addr = userspace_addr;
  4242. spin_unlock(&kvm->mmu_lock);
  4243. } else {
  4244. if (!old.user_alloc && old.rmap) {
  4245. int ret;
  4246. down_write(&current->mm->mmap_sem);
  4247. ret = do_munmap(current->mm, old.userspace_addr,
  4248. old.npages * PAGE_SIZE);
  4249. up_write(&current->mm->mmap_sem);
  4250. if (ret < 0)
  4251. printk(KERN_WARNING
  4252. "kvm_vm_ioctl_set_memory_region: "
  4253. "failed to munmap memory\n");
  4254. }
  4255. }
  4256. }
  4257. spin_lock(&kvm->mmu_lock);
  4258. if (!kvm->arch.n_requested_mmu_pages) {
  4259. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4260. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4261. }
  4262. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4263. spin_unlock(&kvm->mmu_lock);
  4264. return 0;
  4265. }
  4266. void kvm_arch_flush_shadow(struct kvm *kvm)
  4267. {
  4268. kvm_mmu_zap_all(kvm);
  4269. kvm_reload_remote_mmus(kvm);
  4270. }
  4271. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4272. {
  4273. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4274. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4275. || vcpu->arch.nmi_pending ||
  4276. (kvm_arch_interrupt_allowed(vcpu) &&
  4277. kvm_cpu_has_interrupt(vcpu));
  4278. }
  4279. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4280. {
  4281. int me;
  4282. int cpu = vcpu->cpu;
  4283. if (waitqueue_active(&vcpu->wq)) {
  4284. wake_up_interruptible(&vcpu->wq);
  4285. ++vcpu->stat.halt_wakeup;
  4286. }
  4287. me = get_cpu();
  4288. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4289. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4290. smp_send_reschedule(cpu);
  4291. put_cpu();
  4292. }
  4293. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4294. {
  4295. return kvm_x86_ops->interrupt_allowed(vcpu);
  4296. }
  4297. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4298. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4299. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4300. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4301. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4302. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4303. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4304. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);