skd_main.c 151 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951
  1. /* Copyright 2012 STEC, Inc.
  2. *
  3. * This file is licensed under the terms of the 3-clause
  4. * BSD License (http://opensource.org/licenses/BSD-3-Clause)
  5. * or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
  6. * at your option. Both licenses are also available in the LICENSE file
  7. * distributed with this project. This file may not be copied, modified,
  8. * or distributed except in accordance with those terms.
  9. * Gordoni Waidhofer <gwaidhofer@stec-inc.com>
  10. * Initial Driver Design!
  11. * Thomas Swann <tswann@stec-inc.com>
  12. * Interrupt handling.
  13. * Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
  14. * biomode implementation.
  15. * Akhil Bhansali <abhansali@stec-inc.com>
  16. * Added support for DISCARD / FLUSH and FUA.
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/init.h>
  21. #include <linux/pci.h>
  22. #include <linux/slab.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/sched.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/compiler.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/bitops.h>
  30. #include <linux/delay.h>
  31. #include <linux/time.h>
  32. #include <linux/hdreg.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/completion.h>
  35. #include <linux/scatterlist.h>
  36. #include <linux/version.h>
  37. #include <linux/err.h>
  38. #include <linux/scatterlist.h>
  39. #include <linux/aer.h>
  40. #include <linux/ctype.h>
  41. #include <linux/wait.h>
  42. #include <linux/uio.h>
  43. #include <scsi/scsi.h>
  44. #include <scsi/scsi_host.h>
  45. #include <scsi/scsi_tcq.h>
  46. #include <scsi/scsi_cmnd.h>
  47. #include <scsi/sg.h>
  48. #include <linux/io.h>
  49. #include <linux/uaccess.h>
  50. #include <asm-generic/unaligned.h>
  51. #include "skd_s1120.h"
  52. static int skd_dbg_level;
  53. static int skd_isr_comp_limit = 4;
  54. enum {
  55. STEC_LINK_2_5GTS = 0,
  56. STEC_LINK_5GTS = 1,
  57. STEC_LINK_8GTS = 2,
  58. STEC_LINK_UNKNOWN = 0xFF
  59. };
  60. enum {
  61. SKD_FLUSH_INITIALIZER,
  62. SKD_FLUSH_ZERO_SIZE_FIRST,
  63. SKD_FLUSH_DATA_SECOND,
  64. };
  65. #define SKD_ASSERT(expr) \
  66. do { \
  67. if (unlikely(!(expr))) { \
  68. pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
  69. # expr, __FILE__, __func__, __LINE__); \
  70. } \
  71. } while (0)
  72. #define DRV_NAME "skd"
  73. #define DRV_VERSION "2.2.1"
  74. #define DRV_BUILD_ID "0260"
  75. #define PFX DRV_NAME ": "
  76. #define DRV_BIN_VERSION 0x100
  77. #define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
  78. MODULE_AUTHOR("bug-reports: support@stec-inc.com");
  79. MODULE_LICENSE("Dual BSD/GPL");
  80. MODULE_DESCRIPTION("STEC s1120 PCIe SSD block/BIO driver (b" DRV_BUILD_ID ")");
  81. MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
  82. #define PCI_VENDOR_ID_STEC 0x1B39
  83. #define PCI_DEVICE_ID_S1120 0x0001
  84. #define SKD_FUA_NV (1 << 1)
  85. #define SKD_MINORS_PER_DEVICE 16
  86. #define SKD_MAX_QUEUE_DEPTH 200u
  87. #define SKD_PAUSE_TIMEOUT (5 * 1000)
  88. #define SKD_N_FITMSG_BYTES (512u)
  89. #define SKD_N_SPECIAL_CONTEXT 32u
  90. #define SKD_N_SPECIAL_FITMSG_BYTES (128u)
  91. /* SG elements are 32 bytes, so we can make this 4096 and still be under the
  92. * 128KB limit. That allows 4096*4K = 16M xfer size
  93. */
  94. #define SKD_N_SG_PER_REQ_DEFAULT 256u
  95. #define SKD_N_SG_PER_SPECIAL 256u
  96. #define SKD_N_COMPLETION_ENTRY 256u
  97. #define SKD_N_READ_CAP_BYTES (8u)
  98. #define SKD_N_INTERNAL_BYTES (512u)
  99. /* 5 bits of uniqifier, 0xF800 */
  100. #define SKD_ID_INCR (0x400)
  101. #define SKD_ID_TABLE_MASK (3u << 8u)
  102. #define SKD_ID_RW_REQUEST (0u << 8u)
  103. #define SKD_ID_INTERNAL (1u << 8u)
  104. #define SKD_ID_SPECIAL_REQUEST (2u << 8u)
  105. #define SKD_ID_FIT_MSG (3u << 8u)
  106. #define SKD_ID_SLOT_MASK 0x00FFu
  107. #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
  108. #define SKD_N_TIMEOUT_SLOT 4u
  109. #define SKD_TIMEOUT_SLOT_MASK 3u
  110. #define SKD_N_MAX_SECTORS 2048u
  111. #define SKD_MAX_RETRIES 2u
  112. #define SKD_TIMER_SECONDS(seconds) (seconds)
  113. #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
  114. #define INQ_STD_NBYTES 36
  115. #define SKD_DISCARD_CDB_LENGTH 24
  116. enum skd_drvr_state {
  117. SKD_DRVR_STATE_LOAD,
  118. SKD_DRVR_STATE_IDLE,
  119. SKD_DRVR_STATE_BUSY,
  120. SKD_DRVR_STATE_STARTING,
  121. SKD_DRVR_STATE_ONLINE,
  122. SKD_DRVR_STATE_PAUSING,
  123. SKD_DRVR_STATE_PAUSED,
  124. SKD_DRVR_STATE_DRAINING_TIMEOUT,
  125. SKD_DRVR_STATE_RESTARTING,
  126. SKD_DRVR_STATE_RESUMING,
  127. SKD_DRVR_STATE_STOPPING,
  128. SKD_DRVR_STATE_FAULT,
  129. SKD_DRVR_STATE_DISAPPEARED,
  130. SKD_DRVR_STATE_PROTOCOL_MISMATCH,
  131. SKD_DRVR_STATE_BUSY_ERASE,
  132. SKD_DRVR_STATE_BUSY_SANITIZE,
  133. SKD_DRVR_STATE_BUSY_IMMINENT,
  134. SKD_DRVR_STATE_WAIT_BOOT,
  135. SKD_DRVR_STATE_SYNCING,
  136. };
  137. #define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
  138. #define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
  139. #define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
  140. #define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
  141. #define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
  142. #define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
  143. #define SKD_START_WAIT_SECONDS 90u
  144. enum skd_req_state {
  145. SKD_REQ_STATE_IDLE,
  146. SKD_REQ_STATE_SETUP,
  147. SKD_REQ_STATE_BUSY,
  148. SKD_REQ_STATE_COMPLETED,
  149. SKD_REQ_STATE_TIMEOUT,
  150. SKD_REQ_STATE_ABORTED,
  151. };
  152. enum skd_fit_msg_state {
  153. SKD_MSG_STATE_IDLE,
  154. SKD_MSG_STATE_BUSY,
  155. };
  156. enum skd_check_status_action {
  157. SKD_CHECK_STATUS_REPORT_GOOD,
  158. SKD_CHECK_STATUS_REPORT_SMART_ALERT,
  159. SKD_CHECK_STATUS_REQUEUE_REQUEST,
  160. SKD_CHECK_STATUS_REPORT_ERROR,
  161. SKD_CHECK_STATUS_BUSY_IMMINENT,
  162. };
  163. struct skd_fitmsg_context {
  164. enum skd_fit_msg_state state;
  165. struct skd_fitmsg_context *next;
  166. u32 id;
  167. u16 outstanding;
  168. u32 length;
  169. u32 offset;
  170. u8 *msg_buf;
  171. dma_addr_t mb_dma_address;
  172. };
  173. struct skd_request_context {
  174. enum skd_req_state state;
  175. struct skd_request_context *next;
  176. u16 id;
  177. u32 fitmsg_id;
  178. struct request *req;
  179. struct bio *bio;
  180. unsigned long start_time;
  181. u8 flush_cmd;
  182. u8 discard_page;
  183. u32 timeout_stamp;
  184. u8 sg_data_dir;
  185. struct scatterlist *sg;
  186. u32 n_sg;
  187. u32 sg_byte_count;
  188. struct fit_sg_descriptor *sksg_list;
  189. dma_addr_t sksg_dma_address;
  190. struct fit_completion_entry_v1 completion;
  191. struct fit_comp_error_info err_info;
  192. };
  193. #define SKD_DATA_DIR_HOST_TO_CARD 1
  194. #define SKD_DATA_DIR_CARD_TO_HOST 2
  195. #define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
  196. struct skd_special_context {
  197. struct skd_request_context req;
  198. u8 orphaned;
  199. void *data_buf;
  200. dma_addr_t db_dma_address;
  201. u8 *msg_buf;
  202. dma_addr_t mb_dma_address;
  203. };
  204. struct skd_sg_io {
  205. fmode_t mode;
  206. void __user *argp;
  207. struct sg_io_hdr sg;
  208. u8 cdb[16];
  209. u32 dxfer_len;
  210. u32 iovcnt;
  211. struct sg_iovec *iov;
  212. struct sg_iovec no_iov_iov;
  213. struct skd_special_context *skspcl;
  214. };
  215. typedef enum skd_irq_type {
  216. SKD_IRQ_LEGACY,
  217. SKD_IRQ_MSI,
  218. SKD_IRQ_MSIX
  219. } skd_irq_type_t;
  220. #define SKD_MAX_BARS 2
  221. struct skd_device {
  222. volatile void __iomem *mem_map[SKD_MAX_BARS];
  223. resource_size_t mem_phys[SKD_MAX_BARS];
  224. u32 mem_size[SKD_MAX_BARS];
  225. skd_irq_type_t irq_type;
  226. u32 msix_count;
  227. struct skd_msix_entry *msix_entries;
  228. struct pci_dev *pdev;
  229. int pcie_error_reporting_is_enabled;
  230. spinlock_t lock;
  231. struct gendisk *disk;
  232. struct request_queue *queue;
  233. struct device *class_dev;
  234. int gendisk_on;
  235. int sync_done;
  236. atomic_t device_count;
  237. u32 devno;
  238. u32 major;
  239. char name[32];
  240. char isr_name[30];
  241. enum skd_drvr_state state;
  242. u32 drive_state;
  243. u32 in_flight;
  244. u32 cur_max_queue_depth;
  245. u32 queue_low_water_mark;
  246. u32 dev_max_queue_depth;
  247. u32 num_fitmsg_context;
  248. u32 num_req_context;
  249. u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
  250. u32 timeout_stamp;
  251. struct skd_fitmsg_context *skmsg_free_list;
  252. struct skd_fitmsg_context *skmsg_table;
  253. struct skd_request_context *skreq_free_list;
  254. struct skd_request_context *skreq_table;
  255. struct skd_special_context *skspcl_free_list;
  256. struct skd_special_context *skspcl_table;
  257. struct skd_special_context internal_skspcl;
  258. u32 read_cap_blocksize;
  259. u32 read_cap_last_lba;
  260. int read_cap_is_valid;
  261. int inquiry_is_valid;
  262. u8 inq_serial_num[13]; /*12 chars plus null term */
  263. u8 id_str[80]; /* holds a composite name (pci + sernum) */
  264. u8 skcomp_cycle;
  265. u32 skcomp_ix;
  266. struct fit_completion_entry_v1 *skcomp_table;
  267. struct fit_comp_error_info *skerr_table;
  268. dma_addr_t cq_dma_address;
  269. wait_queue_head_t waitq;
  270. struct timer_list timer;
  271. u32 timer_countdown;
  272. u32 timer_substate;
  273. int n_special;
  274. int sgs_per_request;
  275. u32 last_mtd;
  276. u32 proto_ver;
  277. int dbg_level;
  278. u32 connect_time_stamp;
  279. int connect_retries;
  280. #define SKD_MAX_CONNECT_RETRIES 16
  281. u32 drive_jiffies;
  282. u32 timo_slot;
  283. struct work_struct completion_worker;
  284. struct bio_list bio_queue;
  285. int queue_stopped;
  286. struct list_head flush_list;
  287. };
  288. #define SKD_FLUSH_JOB "skd-flush-jobs"
  289. struct kmem_cache *skd_flush_slab;
  290. /*
  291. * These commands hold "nonzero size FLUSH bios",
  292. * which are enqueud in skdev->flush_list during
  293. * completion of "zero size FLUSH commands".
  294. * It will be active in biomode.
  295. */
  296. struct skd_flush_cmd {
  297. void *cmd;
  298. struct list_head flist;
  299. };
  300. #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
  301. #define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
  302. #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
  303. static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
  304. {
  305. u32 val;
  306. if (likely(skdev->dbg_level < 2))
  307. return readl(skdev->mem_map[1] + offset);
  308. else {
  309. barrier();
  310. val = readl(skdev->mem_map[1] + offset);
  311. barrier();
  312. pr_debug("%s:%s:%d offset %x = %x\n",
  313. skdev->name, __func__, __LINE__, offset, val);
  314. return val;
  315. }
  316. }
  317. static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
  318. u32 offset)
  319. {
  320. if (likely(skdev->dbg_level < 2)) {
  321. writel(val, skdev->mem_map[1] + offset);
  322. barrier();
  323. } else {
  324. barrier();
  325. writel(val, skdev->mem_map[1] + offset);
  326. barrier();
  327. pr_debug("%s:%s:%d offset %x = %x\n",
  328. skdev->name, __func__, __LINE__, offset, val);
  329. }
  330. }
  331. static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
  332. u32 offset)
  333. {
  334. if (likely(skdev->dbg_level < 2)) {
  335. writeq(val, skdev->mem_map[1] + offset);
  336. barrier();
  337. } else {
  338. barrier();
  339. writeq(val, skdev->mem_map[1] + offset);
  340. barrier();
  341. pr_debug("%s:%s:%d offset %x = %016llx\n",
  342. skdev->name, __func__, __LINE__, offset, val);
  343. }
  344. }
  345. #define SKD_IRQ_DEFAULT SKD_IRQ_MSI
  346. static int skd_isr_type = SKD_IRQ_DEFAULT;
  347. module_param(skd_isr_type, int, 0444);
  348. MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
  349. " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
  350. #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
  351. static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  352. module_param(skd_max_req_per_msg, int, 0444);
  353. MODULE_PARM_DESC(skd_max_req_per_msg,
  354. "Maximum SCSI requests packed in a single message."
  355. " (1-14, default==1)");
  356. #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
  357. #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
  358. static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  359. module_param(skd_max_queue_depth, int, 0444);
  360. MODULE_PARM_DESC(skd_max_queue_depth,
  361. "Maximum SCSI requests issued to s1120."
  362. " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
  363. static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  364. module_param(skd_sgs_per_request, int, 0444);
  365. MODULE_PARM_DESC(skd_sgs_per_request,
  366. "Maximum SG elements per block request."
  367. " (1-4096, default==256)");
  368. static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  369. module_param(skd_max_pass_thru, int, 0444);
  370. MODULE_PARM_DESC(skd_max_pass_thru,
  371. "Maximum SCSI pass-thru at a time." " (1-50, default==32)");
  372. module_param(skd_dbg_level, int, 0444);
  373. MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
  374. module_param(skd_isr_comp_limit, int, 0444);
  375. MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
  376. static int skd_bio;
  377. module_param(skd_bio, int, 0444);
  378. MODULE_PARM_DESC(skd_bio,
  379. "Register as a bio device instead of block (0, 1) default=0");
  380. /* Major device number dynamically assigned. */
  381. static u32 skd_major;
  382. static struct skd_device *skd_construct(struct pci_dev *pdev);
  383. static void skd_destruct(struct skd_device *skdev);
  384. static const struct block_device_operations skd_blockdev_ops;
  385. static void skd_send_fitmsg(struct skd_device *skdev,
  386. struct skd_fitmsg_context *skmsg);
  387. static void skd_send_special_fitmsg(struct skd_device *skdev,
  388. struct skd_special_context *skspcl);
  389. static void skd_request_fn(struct request_queue *rq);
  390. static void skd_end_request(struct skd_device *skdev,
  391. struct skd_request_context *skreq, int error);
  392. static int skd_preop_sg_list(struct skd_device *skdev,
  393. struct skd_request_context *skreq);
  394. static void skd_postop_sg_list(struct skd_device *skdev,
  395. struct skd_request_context *skreq);
  396. static void skd_restart_device(struct skd_device *skdev);
  397. static int skd_quiesce_dev(struct skd_device *skdev);
  398. static int skd_unquiesce_dev(struct skd_device *skdev);
  399. static void skd_release_special(struct skd_device *skdev,
  400. struct skd_special_context *skspcl);
  401. static void skd_disable_interrupts(struct skd_device *skdev);
  402. static void skd_isr_fwstate(struct skd_device *skdev);
  403. static void skd_recover_requests(struct skd_device *skdev, int requeue);
  404. static void skd_soft_reset(struct skd_device *skdev);
  405. static const char *skd_name(struct skd_device *skdev);
  406. const char *skd_drive_state_to_str(int state);
  407. const char *skd_skdev_state_to_str(enum skd_drvr_state state);
  408. static void skd_log_skdev(struct skd_device *skdev, const char *event);
  409. static void skd_log_skmsg(struct skd_device *skdev,
  410. struct skd_fitmsg_context *skmsg, const char *event);
  411. static void skd_log_skreq(struct skd_device *skdev,
  412. struct skd_request_context *skreq, const char *event);
  413. /* FLUSH FUA flag handling. */
  414. static int skd_flush_cmd_enqueue(struct skd_device *, void *);
  415. static void *skd_flush_cmd_dequeue(struct skd_device *);
  416. /*
  417. *****************************************************************************
  418. * READ/WRITE REQUESTS
  419. *****************************************************************************
  420. */
  421. static void skd_stop_queue(struct skd_device *skdev)
  422. {
  423. if (!skd_bio)
  424. blk_stop_queue(skdev->queue);
  425. else
  426. skdev->queue_stopped = 1;
  427. }
  428. static void skd_unstop_queue(struct skd_device *skdev)
  429. {
  430. if (!skd_bio)
  431. queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
  432. else
  433. skdev->queue_stopped = 0;
  434. }
  435. static void skd_start_queue(struct skd_device *skdev)
  436. {
  437. if (!skd_bio) {
  438. blk_start_queue(skdev->queue);
  439. } else {
  440. pr_err("(%s): Starting queue\n", skd_name(skdev));
  441. skdev->queue_stopped = 0;
  442. skd_request_fn(skdev->queue);
  443. }
  444. }
  445. static int skd_queue_stopped(struct skd_device *skdev)
  446. {
  447. if (!skd_bio)
  448. return blk_queue_stopped(skdev->queue);
  449. else
  450. return skdev->queue_stopped;
  451. }
  452. static void skd_fail_all_pending_blk(struct skd_device *skdev)
  453. {
  454. struct request_queue *q = skdev->queue;
  455. struct request *req;
  456. for (;; ) {
  457. req = blk_peek_request(q);
  458. if (req == NULL)
  459. break;
  460. blk_start_request(req);
  461. __blk_end_request_all(req, -EIO);
  462. }
  463. }
  464. static void skd_fail_all_pending_bio(struct skd_device *skdev)
  465. {
  466. struct bio *bio;
  467. int error = -EIO;
  468. for (;; ) {
  469. bio = bio_list_pop(&skdev->bio_queue);
  470. if (bio == NULL)
  471. break;
  472. bio_endio(bio, error);
  473. }
  474. }
  475. static void skd_fail_all_pending(struct skd_device *skdev)
  476. {
  477. if (!skd_bio)
  478. skd_fail_all_pending_blk(skdev);
  479. else
  480. skd_fail_all_pending_bio(skdev);
  481. }
  482. static void skd_make_request(struct request_queue *q, struct bio *bio)
  483. {
  484. struct skd_device *skdev = q->queuedata;
  485. unsigned long flags;
  486. spin_lock_irqsave(&skdev->lock, flags);
  487. bio_list_add(&skdev->bio_queue, bio);
  488. skd_request_fn(skdev->queue);
  489. spin_unlock_irqrestore(&skdev->lock, flags);
  490. }
  491. static void
  492. skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
  493. int data_dir, unsigned lba,
  494. unsigned count)
  495. {
  496. if (data_dir == READ)
  497. scsi_req->cdb[0] = 0x28;
  498. else
  499. scsi_req->cdb[0] = 0x2a;
  500. scsi_req->cdb[1] = 0;
  501. scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
  502. scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
  503. scsi_req->cdb[4] = (lba & 0xff00) >> 8;
  504. scsi_req->cdb[5] = (lba & 0xff);
  505. scsi_req->cdb[6] = 0;
  506. scsi_req->cdb[7] = (count & 0xff00) >> 8;
  507. scsi_req->cdb[8] = count & 0xff;
  508. scsi_req->cdb[9] = 0;
  509. }
  510. static void
  511. skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
  512. struct skd_request_context *skreq)
  513. {
  514. skreq->flush_cmd = 1;
  515. scsi_req->cdb[0] = 0x35;
  516. scsi_req->cdb[1] = 0;
  517. scsi_req->cdb[2] = 0;
  518. scsi_req->cdb[3] = 0;
  519. scsi_req->cdb[4] = 0;
  520. scsi_req->cdb[5] = 0;
  521. scsi_req->cdb[6] = 0;
  522. scsi_req->cdb[7] = 0;
  523. scsi_req->cdb[8] = 0;
  524. scsi_req->cdb[9] = 0;
  525. }
  526. static void
  527. skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
  528. struct skd_request_context *skreq,
  529. struct page *page,
  530. u32 lba, u32 count)
  531. {
  532. char *buf;
  533. unsigned long len;
  534. struct request *req;
  535. buf = page_address(page);
  536. len = SKD_DISCARD_CDB_LENGTH;
  537. scsi_req->cdb[0] = UNMAP;
  538. scsi_req->cdb[8] = len;
  539. put_unaligned_be16(6 + 16, &buf[0]);
  540. put_unaligned_be16(16, &buf[2]);
  541. put_unaligned_be64(lba, &buf[8]);
  542. put_unaligned_be32(count, &buf[16]);
  543. if (!skd_bio) {
  544. req = skreq->req;
  545. blk_add_request_payload(req, page, len);
  546. req->buffer = buf;
  547. } else {
  548. skreq->bio->bi_io_vec->bv_page = page;
  549. skreq->bio->bi_io_vec->bv_offset = 0;
  550. skreq->bio->bi_io_vec->bv_len = len;
  551. skreq->bio->bi_vcnt = 1;
  552. skreq->bio->bi_phys_segments = 1;
  553. }
  554. }
  555. static void skd_request_fn_not_online(struct request_queue *q);
  556. static void skd_request_fn(struct request_queue *q)
  557. {
  558. struct skd_device *skdev = q->queuedata;
  559. struct skd_fitmsg_context *skmsg = NULL;
  560. struct fit_msg_hdr *fmh = NULL;
  561. struct skd_request_context *skreq;
  562. struct request *req = NULL;
  563. struct bio *bio = NULL;
  564. struct skd_scsi_request *scsi_req;
  565. struct page *page;
  566. unsigned long io_flags;
  567. int error;
  568. u32 lba;
  569. u32 count;
  570. int data_dir;
  571. u32 be_lba;
  572. u32 be_count;
  573. u64 be_dmaa;
  574. u64 cmdctxt;
  575. u32 timo_slot;
  576. void *cmd_ptr;
  577. int flush, fua;
  578. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  579. skd_request_fn_not_online(q);
  580. return;
  581. }
  582. if (skd_queue_stopped(skdev)) {
  583. if (skdev->skmsg_free_list == NULL ||
  584. skdev->skreq_free_list == NULL ||
  585. skdev->in_flight >= skdev->queue_low_water_mark)
  586. /* There is still some kind of shortage */
  587. return;
  588. skd_unstop_queue(skdev);
  589. }
  590. /*
  591. * Stop conditions:
  592. * - There are no more native requests
  593. * - There are already the maximum number of requests in progress
  594. * - There are no more skd_request_context entries
  595. * - There are no more FIT msg buffers
  596. */
  597. for (;; ) {
  598. flush = fua = 0;
  599. if (!skd_bio) {
  600. req = blk_peek_request(q);
  601. /* Are there any native requests to start? */
  602. if (req == NULL)
  603. break;
  604. lba = (u32)blk_rq_pos(req);
  605. count = blk_rq_sectors(req);
  606. data_dir = rq_data_dir(req);
  607. io_flags = req->cmd_flags;
  608. if (io_flags & REQ_FLUSH)
  609. flush++;
  610. if (io_flags & REQ_FUA)
  611. fua++;
  612. pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
  613. "count=%u(0x%x) dir=%d\n",
  614. skdev->name, __func__, __LINE__,
  615. req, lba, lba, count, count, data_dir);
  616. } else {
  617. if (!list_empty(&skdev->flush_list)) {
  618. /* Process data part of FLUSH request. */
  619. bio = (struct bio *)skd_flush_cmd_dequeue(skdev);
  620. flush++;
  621. pr_debug("%s:%s:%d processing FLUSH request with data.\n",
  622. skdev->name, __func__, __LINE__);
  623. } else {
  624. /* peek at our bio queue */
  625. bio = bio_list_peek(&skdev->bio_queue);
  626. }
  627. /* Are there any native requests to start? */
  628. if (bio == NULL)
  629. break;
  630. lba = (u32)bio->bi_sector;
  631. count = bio_sectors(bio);
  632. data_dir = bio_data_dir(bio);
  633. io_flags = bio->bi_rw;
  634. pr_debug("%s:%s:%d new bio=%p lba=%u(0x%x) "
  635. "count=%u(0x%x) dir=%d\n",
  636. skdev->name, __func__, __LINE__,
  637. bio, lba, lba, count, count, data_dir);
  638. if (io_flags & REQ_FLUSH)
  639. flush++;
  640. if (io_flags & REQ_FUA)
  641. fua++;
  642. }
  643. /* At this point we know there is a request
  644. * (from our bio q or req q depending on the way
  645. * the driver is built do checks for resources.
  646. */
  647. /* Are too many requets already in progress? */
  648. if (skdev->in_flight >= skdev->cur_max_queue_depth) {
  649. pr_debug("%s:%s:%d qdepth %d, limit %d\n",
  650. skdev->name, __func__, __LINE__,
  651. skdev->in_flight, skdev->cur_max_queue_depth);
  652. break;
  653. }
  654. /* Is a skd_request_context available? */
  655. skreq = skdev->skreq_free_list;
  656. if (skreq == NULL) {
  657. pr_debug("%s:%s:%d Out of req=%p\n",
  658. skdev->name, __func__, __LINE__, q);
  659. break;
  660. }
  661. SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
  662. SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
  663. /* Now we check to see if we can get a fit msg */
  664. if (skmsg == NULL) {
  665. if (skdev->skmsg_free_list == NULL) {
  666. pr_debug("%s:%s:%d Out of msg\n",
  667. skdev->name, __func__, __LINE__);
  668. break;
  669. }
  670. }
  671. skreq->flush_cmd = 0;
  672. skreq->n_sg = 0;
  673. skreq->sg_byte_count = 0;
  674. skreq->discard_page = 0;
  675. /*
  676. * OK to now dequeue request from either bio or q.
  677. *
  678. * At this point we are comitted to either start or reject
  679. * the native request. Note that skd_request_context is
  680. * available but is still at the head of the free list.
  681. */
  682. if (!skd_bio) {
  683. blk_start_request(req);
  684. skreq->req = req;
  685. skreq->fitmsg_id = 0;
  686. } else {
  687. if (unlikely(flush == SKD_FLUSH_DATA_SECOND)) {
  688. skreq->bio = bio;
  689. } else {
  690. skreq->bio = bio_list_pop(&skdev->bio_queue);
  691. SKD_ASSERT(skreq->bio == bio);
  692. skreq->start_time = jiffies;
  693. part_inc_in_flight(&skdev->disk->part0,
  694. bio_data_dir(bio));
  695. }
  696. skreq->fitmsg_id = 0;
  697. }
  698. /* Either a FIT msg is in progress or we have to start one. */
  699. if (skmsg == NULL) {
  700. /* Are there any FIT msg buffers available? */
  701. skmsg = skdev->skmsg_free_list;
  702. if (skmsg == NULL) {
  703. pr_debug("%s:%s:%d Out of msg skdev=%p\n",
  704. skdev->name, __func__, __LINE__,
  705. skdev);
  706. break;
  707. }
  708. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
  709. SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
  710. skdev->skmsg_free_list = skmsg->next;
  711. skmsg->state = SKD_MSG_STATE_BUSY;
  712. skmsg->id += SKD_ID_INCR;
  713. /* Initialize the FIT msg header */
  714. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  715. memset(fmh, 0, sizeof(*fmh));
  716. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  717. skmsg->length = sizeof(*fmh);
  718. }
  719. skreq->fitmsg_id = skmsg->id;
  720. /*
  721. * Note that a FIT msg may have just been started
  722. * but contains no SoFIT requests yet.
  723. */
  724. /*
  725. * Transcode the request, checking as we go. The outcome of
  726. * the transcoding is represented by the error variable.
  727. */
  728. cmd_ptr = &skmsg->msg_buf[skmsg->length];
  729. memset(cmd_ptr, 0, 32);
  730. be_lba = cpu_to_be32(lba);
  731. be_count = cpu_to_be32(count);
  732. be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
  733. cmdctxt = skreq->id + SKD_ID_INCR;
  734. scsi_req = cmd_ptr;
  735. scsi_req->hdr.tag = cmdctxt;
  736. scsi_req->hdr.sg_list_dma_address = be_dmaa;
  737. if (data_dir == READ)
  738. skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
  739. else
  740. skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
  741. if (io_flags & REQ_DISCARD) {
  742. page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
  743. if (!page) {
  744. pr_err("request_fn:Page allocation failed.\n");
  745. skd_end_request(skdev, skreq, -ENOMEM);
  746. break;
  747. }
  748. skreq->discard_page = 1;
  749. skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
  750. } else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
  751. skd_prep_zerosize_flush_cdb(scsi_req, skreq);
  752. SKD_ASSERT(skreq->flush_cmd == 1);
  753. } else {
  754. skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
  755. }
  756. if (fua)
  757. scsi_req->cdb[1] |= SKD_FUA_NV;
  758. if ((!skd_bio && !req->bio) ||
  759. (skd_bio && flush == SKD_FLUSH_ZERO_SIZE_FIRST))
  760. goto skip_sg;
  761. error = skd_preop_sg_list(skdev, skreq);
  762. if (error != 0) {
  763. /*
  764. * Complete the native request with error.
  765. * Note that the request context is still at the
  766. * head of the free list, and that the SoFIT request
  767. * was encoded into the FIT msg buffer but the FIT
  768. * msg length has not been updated. In short, the
  769. * only resource that has been allocated but might
  770. * not be used is that the FIT msg could be empty.
  771. */
  772. pr_debug("%s:%s:%d error Out\n",
  773. skdev->name, __func__, __LINE__);
  774. skd_end_request(skdev, skreq, error);
  775. continue;
  776. }
  777. skip_sg:
  778. scsi_req->hdr.sg_list_len_bytes =
  779. cpu_to_be32(skreq->sg_byte_count);
  780. /* Complete resource allocations. */
  781. skdev->skreq_free_list = skreq->next;
  782. skreq->state = SKD_REQ_STATE_BUSY;
  783. skreq->id += SKD_ID_INCR;
  784. skmsg->length += sizeof(struct skd_scsi_request);
  785. fmh->num_protocol_cmds_coalesced++;
  786. /*
  787. * Update the active request counts.
  788. * Capture the timeout timestamp.
  789. */
  790. skreq->timeout_stamp = skdev->timeout_stamp;
  791. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  792. skdev->timeout_slot[timo_slot]++;
  793. skdev->in_flight++;
  794. pr_debug("%s:%s:%d req=0x%x busy=%d\n",
  795. skdev->name, __func__, __LINE__,
  796. skreq->id, skdev->in_flight);
  797. /*
  798. * If the FIT msg buffer is full send it.
  799. */
  800. if (skmsg->length >= SKD_N_FITMSG_BYTES ||
  801. fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
  802. skd_send_fitmsg(skdev, skmsg);
  803. skmsg = NULL;
  804. fmh = NULL;
  805. }
  806. }
  807. /*
  808. * Is a FIT msg in progress? If it is empty put the buffer back
  809. * on the free list. If it is non-empty send what we got.
  810. * This minimizes latency when there are fewer requests than
  811. * what fits in a FIT msg.
  812. */
  813. if (skmsg != NULL) {
  814. /* Bigger than just a FIT msg header? */
  815. if (skmsg->length > sizeof(struct fit_msg_hdr)) {
  816. pr_debug("%s:%s:%d sending msg=%p, len %d\n",
  817. skdev->name, __func__, __LINE__,
  818. skmsg, skmsg->length);
  819. skd_send_fitmsg(skdev, skmsg);
  820. } else {
  821. /*
  822. * The FIT msg is empty. It means we got started
  823. * on the msg, but the requests were rejected.
  824. */
  825. skmsg->state = SKD_MSG_STATE_IDLE;
  826. skmsg->id += SKD_ID_INCR;
  827. skmsg->next = skdev->skmsg_free_list;
  828. skdev->skmsg_free_list = skmsg;
  829. }
  830. skmsg = NULL;
  831. fmh = NULL;
  832. }
  833. /*
  834. * If req is non-NULL it means there is something to do but
  835. * we are out of a resource.
  836. */
  837. if (((!skd_bio) && req) ||
  838. ((skd_bio) && bio_list_peek(&skdev->bio_queue)))
  839. skd_stop_queue(skdev);
  840. }
  841. static void skd_end_request_blk(struct skd_device *skdev,
  842. struct skd_request_context *skreq, int error)
  843. {
  844. struct request *req = skreq->req;
  845. unsigned int io_flags = req->cmd_flags;
  846. if ((io_flags & REQ_DISCARD) &&
  847. (skreq->discard_page == 1)) {
  848. pr_debug("%s:%s:%d skd_end_request_blk, free the page!",
  849. skdev->name, __func__, __LINE__);
  850. free_page((unsigned long)req->buffer);
  851. req->buffer = NULL;
  852. }
  853. if (unlikely(error)) {
  854. struct request *req = skreq->req;
  855. char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
  856. u32 lba = (u32)blk_rq_pos(req);
  857. u32 count = blk_rq_sectors(req);
  858. pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
  859. skd_name(skdev), cmd, lba, count, skreq->id);
  860. } else
  861. pr_debug("%s:%s:%d id=0x%x error=%d\n",
  862. skdev->name, __func__, __LINE__, skreq->id, error);
  863. __blk_end_request_all(skreq->req, error);
  864. }
  865. static int skd_preop_sg_list_blk(struct skd_device *skdev,
  866. struct skd_request_context *skreq)
  867. {
  868. struct request *req = skreq->req;
  869. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  870. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  871. struct scatterlist *sg = &skreq->sg[0];
  872. int n_sg;
  873. int i;
  874. skreq->sg_byte_count = 0;
  875. /* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
  876. skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
  877. n_sg = blk_rq_map_sg(skdev->queue, req, sg);
  878. if (n_sg <= 0)
  879. return -EINVAL;
  880. /*
  881. * Map scatterlist to PCI bus addresses.
  882. * Note PCI might change the number of entries.
  883. */
  884. n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
  885. if (n_sg <= 0)
  886. return -EINVAL;
  887. SKD_ASSERT(n_sg <= skdev->sgs_per_request);
  888. skreq->n_sg = n_sg;
  889. for (i = 0; i < n_sg; i++) {
  890. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  891. u32 cnt = sg_dma_len(&sg[i]);
  892. uint64_t dma_addr = sg_dma_address(&sg[i]);
  893. sgd->control = FIT_SGD_CONTROL_NOT_LAST;
  894. sgd->byte_count = cnt;
  895. skreq->sg_byte_count += cnt;
  896. sgd->host_side_addr = dma_addr;
  897. sgd->dev_side_addr = 0;
  898. }
  899. skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
  900. skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
  901. if (unlikely(skdev->dbg_level > 1)) {
  902. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  903. skdev->name, __func__, __LINE__,
  904. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  905. for (i = 0; i < n_sg; i++) {
  906. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  907. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  908. "addr=0x%llx next=0x%llx\n",
  909. skdev->name, __func__, __LINE__,
  910. i, sgd->byte_count, sgd->control,
  911. sgd->host_side_addr, sgd->next_desc_ptr);
  912. }
  913. }
  914. return 0;
  915. }
  916. static void skd_postop_sg_list_blk(struct skd_device *skdev,
  917. struct skd_request_context *skreq)
  918. {
  919. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  920. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  921. /*
  922. * restore the next ptr for next IO request so we
  923. * don't have to set it every time.
  924. */
  925. skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
  926. skreq->sksg_dma_address +
  927. ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
  928. pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
  929. }
  930. static void skd_end_request_bio(struct skd_device *skdev,
  931. struct skd_request_context *skreq, int error)
  932. {
  933. struct bio *bio = skreq->bio;
  934. int rw = bio_data_dir(bio);
  935. unsigned long io_flags = bio->bi_rw;
  936. if ((io_flags & REQ_DISCARD) &&
  937. (skreq->discard_page == 1)) {
  938. pr_debug("%s:%s:%d biomode: skd_end_request: freeing DISCARD page.\n",
  939. skdev->name, __func__, __LINE__);
  940. free_page((unsigned long)page_address(bio->bi_io_vec->bv_page));
  941. }
  942. if (unlikely(error)) {
  943. u32 lba = (u32)skreq->bio->bi_sector;
  944. u32 count = bio_sectors(skreq->bio);
  945. char *cmd = (rw == WRITE) ? "write" : "read";
  946. pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
  947. skd_name(skdev), cmd, lba, count, skreq->id);
  948. }
  949. {
  950. int cpu = part_stat_lock();
  951. if (likely(!error)) {
  952. part_stat_inc(cpu, &skdev->disk->part0, ios[rw]);
  953. part_stat_add(cpu, &skdev->disk->part0, sectors[rw],
  954. bio_sectors(bio));
  955. }
  956. part_stat_add(cpu, &skdev->disk->part0, ticks[rw],
  957. jiffies - skreq->start_time);
  958. part_dec_in_flight(&skdev->disk->part0, rw);
  959. part_stat_unlock();
  960. }
  961. pr_debug("%s:%s:%d id=0x%x error=%d\n",
  962. skdev->name, __func__, __LINE__, skreq->id, error);
  963. bio_endio(skreq->bio, error);
  964. }
  965. static int skd_preop_sg_list_bio(struct skd_device *skdev,
  966. struct skd_request_context *skreq)
  967. {
  968. struct bio *bio = skreq->bio;
  969. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  970. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  971. int n_sg;
  972. int i;
  973. struct bio_vec *vec;
  974. struct fit_sg_descriptor *sgd;
  975. u64 dma_addr;
  976. u32 count;
  977. int errs = 0;
  978. unsigned int io_flags = 0;
  979. io_flags |= bio->bi_rw;
  980. skreq->sg_byte_count = 0;
  981. n_sg = skreq->n_sg = skreq->bio->bi_vcnt;
  982. if (n_sg <= 0)
  983. return -EINVAL;
  984. if (n_sg > skdev->sgs_per_request) {
  985. pr_err("(%s): sg overflow n=%d\n",
  986. skd_name(skdev), n_sg);
  987. skreq->n_sg = 0;
  988. return -EIO;
  989. }
  990. for (i = 0; i < skreq->n_sg; i++) {
  991. vec = bio_iovec_idx(bio, i);
  992. dma_addr = pci_map_page(skdev->pdev,
  993. vec->bv_page,
  994. vec->bv_offset, vec->bv_len, pci_dir);
  995. count = vec->bv_len;
  996. if (count == 0 || count > 64u * 1024u || (count & 3) != 0
  997. || (dma_addr & 3) != 0) {
  998. pr_err(
  999. "(%s): Bad sg ix=%d count=%d addr=0x%llx\n",
  1000. skd_name(skdev), i, count, dma_addr);
  1001. errs++;
  1002. }
  1003. sgd = &skreq->sksg_list[i];
  1004. sgd->control = FIT_SGD_CONTROL_NOT_LAST;
  1005. sgd->byte_count = vec->bv_len;
  1006. skreq->sg_byte_count += vec->bv_len;
  1007. sgd->host_side_addr = dma_addr;
  1008. sgd->dev_side_addr = 0; /* not used */
  1009. }
  1010. skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
  1011. skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
  1012. if (!(io_flags & REQ_DISCARD)) {
  1013. count = bio_sectors(bio) << 9u;
  1014. if (count != skreq->sg_byte_count) {
  1015. pr_err("(%s): mismatch count sg=%d req=%d\n",
  1016. skd_name(skdev), skreq->sg_byte_count, count);
  1017. errs++;
  1018. }
  1019. }
  1020. if (unlikely(skdev->dbg_level > 1)) {
  1021. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  1022. skdev->name, __func__, __LINE__,
  1023. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  1024. for (i = 0; i < n_sg; i++) {
  1025. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  1026. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1027. "addr=0x%llx next=0x%llx\n",
  1028. skdev->name, __func__, __LINE__,
  1029. i, sgd->byte_count, sgd->control,
  1030. sgd->host_side_addr, sgd->next_desc_ptr);
  1031. }
  1032. }
  1033. if (errs != 0) {
  1034. skd_postop_sg_list(skdev, skreq);
  1035. skreq->n_sg = 0;
  1036. return -EIO;
  1037. }
  1038. return 0;
  1039. }
  1040. static int skd_preop_sg_list(struct skd_device *skdev,
  1041. struct skd_request_context *skreq)
  1042. {
  1043. if (!skd_bio)
  1044. return skd_preop_sg_list_blk(skdev, skreq);
  1045. else
  1046. return skd_preop_sg_list_bio(skdev, skreq);
  1047. }
  1048. static void skd_postop_sg_list_bio(struct skd_device *skdev,
  1049. struct skd_request_context *skreq)
  1050. {
  1051. int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
  1052. int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
  1053. int i;
  1054. struct fit_sg_descriptor *sgd;
  1055. /*
  1056. * restore the next ptr for next IO request so we
  1057. * don't have to set it every time.
  1058. */
  1059. skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
  1060. skreq->sksg_dma_address +
  1061. ((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
  1062. for (i = 0; i < skreq->n_sg; i++) {
  1063. sgd = &skreq->sksg_list[i];
  1064. pci_unmap_page(skdev->pdev, sgd->host_side_addr,
  1065. sgd->byte_count, pci_dir);
  1066. }
  1067. }
  1068. static void skd_postop_sg_list(struct skd_device *skdev,
  1069. struct skd_request_context *skreq)
  1070. {
  1071. if (!skd_bio)
  1072. skd_postop_sg_list_blk(skdev, skreq);
  1073. else
  1074. skd_postop_sg_list_bio(skdev, skreq);
  1075. }
  1076. static void skd_end_request(struct skd_device *skdev,
  1077. struct skd_request_context *skreq, int error)
  1078. {
  1079. if (likely(!skd_bio))
  1080. skd_end_request_blk(skdev, skreq, error);
  1081. else
  1082. skd_end_request_bio(skdev, skreq, error);
  1083. }
  1084. static void skd_request_fn_not_online(struct request_queue *q)
  1085. {
  1086. struct skd_device *skdev = q->queuedata;
  1087. int error;
  1088. SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
  1089. skd_log_skdev(skdev, "req_not_online");
  1090. switch (skdev->state) {
  1091. case SKD_DRVR_STATE_PAUSING:
  1092. case SKD_DRVR_STATE_PAUSED:
  1093. case SKD_DRVR_STATE_STARTING:
  1094. case SKD_DRVR_STATE_RESTARTING:
  1095. case SKD_DRVR_STATE_WAIT_BOOT:
  1096. /* In case of starting, we haven't started the queue,
  1097. * so we can't get here... but requests are
  1098. * possibly hanging out waiting for us because we
  1099. * reported the dev/skd0 already. They'll wait
  1100. * forever if connect doesn't complete.
  1101. * What to do??? delay dev/skd0 ??
  1102. */
  1103. case SKD_DRVR_STATE_BUSY:
  1104. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1105. case SKD_DRVR_STATE_BUSY_ERASE:
  1106. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  1107. return;
  1108. case SKD_DRVR_STATE_BUSY_SANITIZE:
  1109. case SKD_DRVR_STATE_STOPPING:
  1110. case SKD_DRVR_STATE_SYNCING:
  1111. case SKD_DRVR_STATE_FAULT:
  1112. case SKD_DRVR_STATE_DISAPPEARED:
  1113. default:
  1114. error = -EIO;
  1115. break;
  1116. }
  1117. /* If we get here, terminate all pending block requeusts
  1118. * with EIO and any scsi pass thru with appropriate sense
  1119. */
  1120. skd_fail_all_pending(skdev);
  1121. }
  1122. /*
  1123. *****************************************************************************
  1124. * TIMER
  1125. *****************************************************************************
  1126. */
  1127. static void skd_timer_tick_not_online(struct skd_device *skdev);
  1128. static void skd_timer_tick(ulong arg)
  1129. {
  1130. struct skd_device *skdev = (struct skd_device *)arg;
  1131. u32 timo_slot;
  1132. u32 overdue_timestamp;
  1133. unsigned long reqflags;
  1134. u32 state;
  1135. if (skdev->state == SKD_DRVR_STATE_FAULT)
  1136. /* The driver has declared fault, and we want it to
  1137. * stay that way until driver is reloaded.
  1138. */
  1139. return;
  1140. spin_lock_irqsave(&skdev->lock, reqflags);
  1141. state = SKD_READL(skdev, FIT_STATUS);
  1142. state &= FIT_SR_DRIVE_STATE_MASK;
  1143. if (state != skdev->drive_state)
  1144. skd_isr_fwstate(skdev);
  1145. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  1146. skd_timer_tick_not_online(skdev);
  1147. goto timer_func_out;
  1148. }
  1149. skdev->timeout_stamp++;
  1150. timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  1151. /*
  1152. * All requests that happened during the previous use of
  1153. * this slot should be done by now. The previous use was
  1154. * over 7 seconds ago.
  1155. */
  1156. if (skdev->timeout_slot[timo_slot] == 0)
  1157. goto timer_func_out;
  1158. /* Something is overdue */
  1159. overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
  1160. pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
  1161. skdev->name, __func__, __LINE__,
  1162. skdev->timeout_slot[timo_slot], skdev->in_flight);
  1163. pr_err("(%s): Overdue IOs (%d), busy %d\n",
  1164. skd_name(skdev), skdev->timeout_slot[timo_slot],
  1165. skdev->in_flight);
  1166. skdev->timer_countdown = SKD_DRAINING_TIMO;
  1167. skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
  1168. skdev->timo_slot = timo_slot;
  1169. skd_stop_queue(skdev);
  1170. timer_func_out:
  1171. mod_timer(&skdev->timer, (jiffies + HZ));
  1172. spin_unlock_irqrestore(&skdev->lock, reqflags);
  1173. }
  1174. static void skd_timer_tick_not_online(struct skd_device *skdev)
  1175. {
  1176. switch (skdev->state) {
  1177. case SKD_DRVR_STATE_IDLE:
  1178. case SKD_DRVR_STATE_LOAD:
  1179. break;
  1180. case SKD_DRVR_STATE_BUSY_SANITIZE:
  1181. pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
  1182. skdev->name, __func__, __LINE__,
  1183. skdev->drive_state, skdev->state);
  1184. /* If we've been in sanitize for 3 seconds, we figure we're not
  1185. * going to get anymore completions, so recover requests now
  1186. */
  1187. if (skdev->timer_countdown > 0) {
  1188. skdev->timer_countdown--;
  1189. return;
  1190. }
  1191. skd_recover_requests(skdev, 0);
  1192. break;
  1193. case SKD_DRVR_STATE_BUSY:
  1194. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1195. case SKD_DRVR_STATE_BUSY_ERASE:
  1196. pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
  1197. skdev->name, __func__, __LINE__,
  1198. skdev->state, skdev->timer_countdown);
  1199. if (skdev->timer_countdown > 0) {
  1200. skdev->timer_countdown--;
  1201. return;
  1202. }
  1203. pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
  1204. skdev->name, __func__, __LINE__,
  1205. skdev->state, skdev->timer_countdown);
  1206. skd_restart_device(skdev);
  1207. break;
  1208. case SKD_DRVR_STATE_WAIT_BOOT:
  1209. case SKD_DRVR_STATE_STARTING:
  1210. if (skdev->timer_countdown > 0) {
  1211. skdev->timer_countdown--;
  1212. return;
  1213. }
  1214. /* For now, we fault the drive. Could attempt resets to
  1215. * revcover at some point. */
  1216. skdev->state = SKD_DRVR_STATE_FAULT;
  1217. pr_err("(%s): DriveFault Connect Timeout (%x)\n",
  1218. skd_name(skdev), skdev->drive_state);
  1219. /*start the queue so we can respond with error to requests */
  1220. /* wakeup anyone waiting for startup complete */
  1221. skd_start_queue(skdev);
  1222. skdev->gendisk_on = -1;
  1223. wake_up_interruptible(&skdev->waitq);
  1224. break;
  1225. case SKD_DRVR_STATE_ONLINE:
  1226. /* shouldn't get here. */
  1227. break;
  1228. case SKD_DRVR_STATE_PAUSING:
  1229. case SKD_DRVR_STATE_PAUSED:
  1230. break;
  1231. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  1232. pr_debug("%s:%s:%d "
  1233. "draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
  1234. skdev->name, __func__, __LINE__,
  1235. skdev->timo_slot,
  1236. skdev->timer_countdown,
  1237. skdev->in_flight,
  1238. skdev->timeout_slot[skdev->timo_slot]);
  1239. /* if the slot has cleared we can let the I/O continue */
  1240. if (skdev->timeout_slot[skdev->timo_slot] == 0) {
  1241. pr_debug("%s:%s:%d Slot drained, starting queue.\n",
  1242. skdev->name, __func__, __LINE__);
  1243. skdev->state = SKD_DRVR_STATE_ONLINE;
  1244. skd_start_queue(skdev);
  1245. return;
  1246. }
  1247. if (skdev->timer_countdown > 0) {
  1248. skdev->timer_countdown--;
  1249. return;
  1250. }
  1251. skd_restart_device(skdev);
  1252. break;
  1253. case SKD_DRVR_STATE_RESTARTING:
  1254. if (skdev->timer_countdown > 0) {
  1255. skdev->timer_countdown--;
  1256. return;
  1257. }
  1258. /* For now, we fault the drive. Could attempt resets to
  1259. * revcover at some point. */
  1260. skdev->state = SKD_DRVR_STATE_FAULT;
  1261. pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
  1262. skd_name(skdev), skdev->drive_state);
  1263. /*
  1264. * Recovering does two things:
  1265. * 1. completes IO with error
  1266. * 2. reclaims dma resources
  1267. * When is it safe to recover requests?
  1268. * - if the drive state is faulted
  1269. * - if the state is still soft reset after out timeout
  1270. * - if the drive registers are dead (state = FF)
  1271. * If it is "unsafe", we still need to recover, so we will
  1272. * disable pci bus mastering and disable our interrupts.
  1273. */
  1274. if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
  1275. (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
  1276. (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
  1277. /* It never came out of soft reset. Try to
  1278. * recover the requests and then let them
  1279. * fail. This is to mitigate hung processes. */
  1280. skd_recover_requests(skdev, 0);
  1281. else {
  1282. pr_err("(%s): Disable BusMaster (%x)\n",
  1283. skd_name(skdev), skdev->drive_state);
  1284. pci_disable_device(skdev->pdev);
  1285. skd_disable_interrupts(skdev);
  1286. skd_recover_requests(skdev, 0);
  1287. }
  1288. /*start the queue so we can respond with error to requests */
  1289. /* wakeup anyone waiting for startup complete */
  1290. skd_start_queue(skdev);
  1291. skdev->gendisk_on = -1;
  1292. wake_up_interruptible(&skdev->waitq);
  1293. break;
  1294. case SKD_DRVR_STATE_RESUMING:
  1295. case SKD_DRVR_STATE_STOPPING:
  1296. case SKD_DRVR_STATE_SYNCING:
  1297. case SKD_DRVR_STATE_FAULT:
  1298. case SKD_DRVR_STATE_DISAPPEARED:
  1299. default:
  1300. break;
  1301. }
  1302. }
  1303. static int skd_start_timer(struct skd_device *skdev)
  1304. {
  1305. int rc;
  1306. init_timer(&skdev->timer);
  1307. setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
  1308. rc = mod_timer(&skdev->timer, (jiffies + HZ));
  1309. if (rc)
  1310. pr_err("%s: failed to start timer %d\n",
  1311. __func__, rc);
  1312. return rc;
  1313. }
  1314. static void skd_kill_timer(struct skd_device *skdev)
  1315. {
  1316. del_timer_sync(&skdev->timer);
  1317. }
  1318. /*
  1319. *****************************************************************************
  1320. * IOCTL
  1321. *****************************************************************************
  1322. */
  1323. static int skd_ioctl_sg_io(struct skd_device *skdev,
  1324. fmode_t mode, void __user *argp);
  1325. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1326. struct skd_sg_io *sksgio);
  1327. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1328. struct skd_sg_io *sksgio);
  1329. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1330. struct skd_sg_io *sksgio);
  1331. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1332. struct skd_sg_io *sksgio, int dxfer_dir);
  1333. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1334. struct skd_sg_io *sksgio);
  1335. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
  1336. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1337. struct skd_sg_io *sksgio);
  1338. static int skd_sg_io_put_status(struct skd_device *skdev,
  1339. struct skd_sg_io *sksgio);
  1340. static void skd_complete_special(struct skd_device *skdev,
  1341. volatile struct fit_completion_entry_v1
  1342. *skcomp,
  1343. volatile struct fit_comp_error_info *skerr,
  1344. struct skd_special_context *skspcl);
  1345. static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
  1346. uint cmd_in, ulong arg)
  1347. {
  1348. int rc = 0;
  1349. struct gendisk *disk = bdev->bd_disk;
  1350. struct skd_device *skdev = disk->private_data;
  1351. void __user *p = (void *)arg;
  1352. pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
  1353. skdev->name, __func__, __LINE__,
  1354. disk->disk_name, current->comm, mode, cmd_in, arg);
  1355. if (!capable(CAP_SYS_ADMIN))
  1356. return -EPERM;
  1357. switch (cmd_in) {
  1358. case SG_SET_TIMEOUT:
  1359. case SG_GET_TIMEOUT:
  1360. case SG_GET_VERSION_NUM:
  1361. rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
  1362. break;
  1363. case SG_IO:
  1364. rc = skd_ioctl_sg_io(skdev, mode, p);
  1365. break;
  1366. default:
  1367. rc = -ENOTTY;
  1368. break;
  1369. }
  1370. pr_debug("%s:%s:%d %s: completion rc %d\n",
  1371. skdev->name, __func__, __LINE__, disk->disk_name, rc);
  1372. return rc;
  1373. }
  1374. static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
  1375. void __user *argp)
  1376. {
  1377. int rc;
  1378. struct skd_sg_io sksgio;
  1379. memset(&sksgio, 0, sizeof(sksgio));
  1380. sksgio.mode = mode;
  1381. sksgio.argp = argp;
  1382. sksgio.iov = &sksgio.no_iov_iov;
  1383. switch (skdev->state) {
  1384. case SKD_DRVR_STATE_ONLINE:
  1385. case SKD_DRVR_STATE_BUSY_IMMINENT:
  1386. break;
  1387. default:
  1388. pr_debug("%s:%s:%d drive not online\n",
  1389. skdev->name, __func__, __LINE__);
  1390. rc = -ENXIO;
  1391. goto out;
  1392. }
  1393. rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
  1394. if (rc)
  1395. goto out;
  1396. rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
  1397. if (rc)
  1398. goto out;
  1399. rc = skd_sg_io_prep_buffering(skdev, &sksgio);
  1400. if (rc)
  1401. goto out;
  1402. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
  1403. if (rc)
  1404. goto out;
  1405. rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
  1406. if (rc)
  1407. goto out;
  1408. rc = skd_sg_io_await(skdev, &sksgio);
  1409. if (rc)
  1410. goto out;
  1411. rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
  1412. if (rc)
  1413. goto out;
  1414. rc = skd_sg_io_put_status(skdev, &sksgio);
  1415. if (rc)
  1416. goto out;
  1417. rc = 0;
  1418. out:
  1419. skd_sg_io_release_skspcl(skdev, &sksgio);
  1420. if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
  1421. kfree(sksgio.iov);
  1422. return rc;
  1423. }
  1424. static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
  1425. struct skd_sg_io *sksgio)
  1426. {
  1427. struct sg_io_hdr *sgp = &sksgio->sg;
  1428. int i, acc;
  1429. if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1430. pr_debug("%s:%s:%d access sg failed %p\n",
  1431. skdev->name, __func__, __LINE__, sksgio->argp);
  1432. return -EFAULT;
  1433. }
  1434. if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
  1435. pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
  1436. skdev->name, __func__, __LINE__, sksgio->argp);
  1437. return -EFAULT;
  1438. }
  1439. if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
  1440. pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
  1441. skdev->name, __func__, __LINE__, sgp->interface_id);
  1442. return -EINVAL;
  1443. }
  1444. if (sgp->cmd_len > sizeof(sksgio->cdb)) {
  1445. pr_debug("%s:%s:%d cmd_len invalid %d\n",
  1446. skdev->name, __func__, __LINE__, sgp->cmd_len);
  1447. return -EINVAL;
  1448. }
  1449. if (sgp->iovec_count > 256) {
  1450. pr_debug("%s:%s:%d iovec_count invalid %d\n",
  1451. skdev->name, __func__, __LINE__, sgp->iovec_count);
  1452. return -EINVAL;
  1453. }
  1454. if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
  1455. pr_debug("%s:%s:%d dxfer_len invalid %d\n",
  1456. skdev->name, __func__, __LINE__, sgp->dxfer_len);
  1457. return -EINVAL;
  1458. }
  1459. switch (sgp->dxfer_direction) {
  1460. case SG_DXFER_NONE:
  1461. acc = -1;
  1462. break;
  1463. case SG_DXFER_TO_DEV:
  1464. acc = VERIFY_READ;
  1465. break;
  1466. case SG_DXFER_FROM_DEV:
  1467. case SG_DXFER_TO_FROM_DEV:
  1468. acc = VERIFY_WRITE;
  1469. break;
  1470. default:
  1471. pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
  1472. skdev->name, __func__, __LINE__, sgp->dxfer_direction);
  1473. return -EINVAL;
  1474. }
  1475. if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
  1476. pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
  1477. skdev->name, __func__, __LINE__, sgp->cmdp);
  1478. return -EFAULT;
  1479. }
  1480. if (sgp->mx_sb_len != 0) {
  1481. if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
  1482. pr_debug("%s:%s:%d access sbp failed %p\n",
  1483. skdev->name, __func__, __LINE__, sgp->sbp);
  1484. return -EFAULT;
  1485. }
  1486. }
  1487. if (sgp->iovec_count == 0) {
  1488. sksgio->iov[0].iov_base = sgp->dxferp;
  1489. sksgio->iov[0].iov_len = sgp->dxfer_len;
  1490. sksgio->iovcnt = 1;
  1491. sksgio->dxfer_len = sgp->dxfer_len;
  1492. } else {
  1493. struct sg_iovec *iov;
  1494. uint nbytes = sizeof(*iov) * sgp->iovec_count;
  1495. size_t iov_data_len;
  1496. iov = kmalloc(nbytes, GFP_KERNEL);
  1497. if (iov == NULL) {
  1498. pr_debug("%s:%s:%d alloc iovec failed %d\n",
  1499. skdev->name, __func__, __LINE__,
  1500. sgp->iovec_count);
  1501. return -ENOMEM;
  1502. }
  1503. sksgio->iov = iov;
  1504. sksgio->iovcnt = sgp->iovec_count;
  1505. if (copy_from_user(iov, sgp->dxferp, nbytes)) {
  1506. pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
  1507. skdev->name, __func__, __LINE__, sgp->dxferp);
  1508. return -EFAULT;
  1509. }
  1510. /*
  1511. * Sum up the vecs, making sure they don't overflow
  1512. */
  1513. iov_data_len = 0;
  1514. for (i = 0; i < sgp->iovec_count; i++) {
  1515. if (iov_data_len + iov[i].iov_len < iov_data_len)
  1516. return -EINVAL;
  1517. iov_data_len += iov[i].iov_len;
  1518. }
  1519. /* SG_IO howto says that the shorter of the two wins */
  1520. if (sgp->dxfer_len < iov_data_len) {
  1521. sksgio->iovcnt = iov_shorten((struct iovec *)iov,
  1522. sgp->iovec_count,
  1523. sgp->dxfer_len);
  1524. sksgio->dxfer_len = sgp->dxfer_len;
  1525. } else
  1526. sksgio->dxfer_len = iov_data_len;
  1527. }
  1528. if (sgp->dxfer_direction != SG_DXFER_NONE) {
  1529. struct sg_iovec *iov = sksgio->iov;
  1530. for (i = 0; i < sksgio->iovcnt; i++, iov++) {
  1531. if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
  1532. pr_debug("%s:%s:%d access data failed %p/%d\n",
  1533. skdev->name, __func__, __LINE__,
  1534. iov->iov_base, (int)iov->iov_len);
  1535. return -EFAULT;
  1536. }
  1537. }
  1538. }
  1539. return 0;
  1540. }
  1541. static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
  1542. struct skd_sg_io *sksgio)
  1543. {
  1544. struct skd_special_context *skspcl = NULL;
  1545. int rc;
  1546. for (;; ) {
  1547. ulong flags;
  1548. spin_lock_irqsave(&skdev->lock, flags);
  1549. skspcl = skdev->skspcl_free_list;
  1550. if (skspcl != NULL) {
  1551. skdev->skspcl_free_list =
  1552. (struct skd_special_context *)skspcl->req.next;
  1553. skspcl->req.id += SKD_ID_INCR;
  1554. skspcl->req.state = SKD_REQ_STATE_SETUP;
  1555. skspcl->orphaned = 0;
  1556. skspcl->req.n_sg = 0;
  1557. }
  1558. spin_unlock_irqrestore(&skdev->lock, flags);
  1559. if (skspcl != NULL) {
  1560. rc = 0;
  1561. break;
  1562. }
  1563. pr_debug("%s:%s:%d blocking\n",
  1564. skdev->name, __func__, __LINE__);
  1565. rc = wait_event_interruptible_timeout(
  1566. skdev->waitq,
  1567. (skdev->skspcl_free_list != NULL),
  1568. msecs_to_jiffies(sksgio->sg.timeout));
  1569. pr_debug("%s:%s:%d unblocking, rc=%d\n",
  1570. skdev->name, __func__, __LINE__, rc);
  1571. if (rc <= 0) {
  1572. if (rc == 0)
  1573. rc = -ETIMEDOUT;
  1574. else
  1575. rc = -EINTR;
  1576. break;
  1577. }
  1578. /*
  1579. * If we get here rc > 0 meaning the timeout to
  1580. * wait_event_interruptible_timeout() had time left, hence the
  1581. * sought event -- non-empty free list -- happened.
  1582. * Retry the allocation.
  1583. */
  1584. }
  1585. sksgio->skspcl = skspcl;
  1586. return rc;
  1587. }
  1588. static int skd_skreq_prep_buffering(struct skd_device *skdev,
  1589. struct skd_request_context *skreq,
  1590. u32 dxfer_len)
  1591. {
  1592. u32 resid = dxfer_len;
  1593. /*
  1594. * The DMA engine must have aligned addresses and byte counts.
  1595. */
  1596. resid += (-resid) & 3;
  1597. skreq->sg_byte_count = resid;
  1598. skreq->n_sg = 0;
  1599. while (resid > 0) {
  1600. u32 nbytes = PAGE_SIZE;
  1601. u32 ix = skreq->n_sg;
  1602. struct scatterlist *sg = &skreq->sg[ix];
  1603. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1604. struct page *page;
  1605. if (nbytes > resid)
  1606. nbytes = resid;
  1607. page = alloc_page(GFP_KERNEL);
  1608. if (page == NULL)
  1609. return -ENOMEM;
  1610. sg_set_page(sg, page, nbytes, 0);
  1611. /* TODO: This should be going through a pci_???()
  1612. * routine to do proper mapping. */
  1613. sksg->control = FIT_SGD_CONTROL_NOT_LAST;
  1614. sksg->byte_count = nbytes;
  1615. sksg->host_side_addr = sg_phys(sg);
  1616. sksg->dev_side_addr = 0;
  1617. sksg->next_desc_ptr = skreq->sksg_dma_address +
  1618. (ix + 1) * sizeof(*sksg);
  1619. skreq->n_sg++;
  1620. resid -= nbytes;
  1621. }
  1622. if (skreq->n_sg > 0) {
  1623. u32 ix = skreq->n_sg - 1;
  1624. struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
  1625. sksg->control = FIT_SGD_CONTROL_LAST;
  1626. sksg->next_desc_ptr = 0;
  1627. }
  1628. if (unlikely(skdev->dbg_level > 1)) {
  1629. u32 i;
  1630. pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
  1631. skdev->name, __func__, __LINE__,
  1632. skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
  1633. for (i = 0; i < skreq->n_sg; i++) {
  1634. struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
  1635. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  1636. "addr=0x%llx next=0x%llx\n",
  1637. skdev->name, __func__, __LINE__,
  1638. i, sgd->byte_count, sgd->control,
  1639. sgd->host_side_addr, sgd->next_desc_ptr);
  1640. }
  1641. }
  1642. return 0;
  1643. }
  1644. static int skd_sg_io_prep_buffering(struct skd_device *skdev,
  1645. struct skd_sg_io *sksgio)
  1646. {
  1647. struct skd_special_context *skspcl = sksgio->skspcl;
  1648. struct skd_request_context *skreq = &skspcl->req;
  1649. u32 dxfer_len = sksgio->dxfer_len;
  1650. int rc;
  1651. rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
  1652. /*
  1653. * Eventually, errors or not, skd_release_special() is called
  1654. * to recover allocations including partial allocations.
  1655. */
  1656. return rc;
  1657. }
  1658. static int skd_sg_io_copy_buffer(struct skd_device *skdev,
  1659. struct skd_sg_io *sksgio, int dxfer_dir)
  1660. {
  1661. struct skd_special_context *skspcl = sksgio->skspcl;
  1662. u32 iov_ix = 0;
  1663. struct sg_iovec curiov;
  1664. u32 sksg_ix = 0;
  1665. u8 *bufp = NULL;
  1666. u32 buf_len = 0;
  1667. u32 resid = sksgio->dxfer_len;
  1668. int rc;
  1669. curiov.iov_len = 0;
  1670. curiov.iov_base = NULL;
  1671. if (dxfer_dir != sksgio->sg.dxfer_direction) {
  1672. if (dxfer_dir != SG_DXFER_TO_DEV ||
  1673. sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
  1674. return 0;
  1675. }
  1676. while (resid > 0) {
  1677. u32 nbytes = PAGE_SIZE;
  1678. if (curiov.iov_len == 0) {
  1679. curiov = sksgio->iov[iov_ix++];
  1680. continue;
  1681. }
  1682. if (buf_len == 0) {
  1683. struct page *page;
  1684. page = sg_page(&skspcl->req.sg[sksg_ix++]);
  1685. bufp = page_address(page);
  1686. buf_len = PAGE_SIZE;
  1687. }
  1688. nbytes = min_t(u32, nbytes, resid);
  1689. nbytes = min_t(u32, nbytes, curiov.iov_len);
  1690. nbytes = min_t(u32, nbytes, buf_len);
  1691. if (dxfer_dir == SG_DXFER_TO_DEV)
  1692. rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
  1693. else
  1694. rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
  1695. if (rc)
  1696. return -EFAULT;
  1697. resid -= nbytes;
  1698. curiov.iov_len -= nbytes;
  1699. curiov.iov_base += nbytes;
  1700. buf_len -= nbytes;
  1701. }
  1702. return 0;
  1703. }
  1704. static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
  1705. struct skd_sg_io *sksgio)
  1706. {
  1707. struct skd_special_context *skspcl = sksgio->skspcl;
  1708. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  1709. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  1710. memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
  1711. /* Initialize the FIT msg header */
  1712. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1713. fmh->num_protocol_cmds_coalesced = 1;
  1714. /* Initialize the SCSI request */
  1715. if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
  1716. scsi_req->hdr.sg_list_dma_address =
  1717. cpu_to_be64(skspcl->req.sksg_dma_address);
  1718. scsi_req->hdr.tag = skspcl->req.id;
  1719. scsi_req->hdr.sg_list_len_bytes =
  1720. cpu_to_be32(skspcl->req.sg_byte_count);
  1721. memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
  1722. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1723. skd_send_special_fitmsg(skdev, skspcl);
  1724. return 0;
  1725. }
  1726. static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
  1727. {
  1728. unsigned long flags;
  1729. int rc;
  1730. rc = wait_event_interruptible_timeout(skdev->waitq,
  1731. (sksgio->skspcl->req.state !=
  1732. SKD_REQ_STATE_BUSY),
  1733. msecs_to_jiffies(sksgio->sg.
  1734. timeout));
  1735. spin_lock_irqsave(&skdev->lock, flags);
  1736. if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
  1737. pr_debug("%s:%s:%d skspcl %p aborted\n",
  1738. skdev->name, __func__, __LINE__, sksgio->skspcl);
  1739. /* Build check cond, sense and let command finish. */
  1740. /* For a timeout, we must fabricate completion and sense
  1741. * data to complete the command */
  1742. sksgio->skspcl->req.completion.status =
  1743. SAM_STAT_CHECK_CONDITION;
  1744. memset(&sksgio->skspcl->req.err_info, 0,
  1745. sizeof(sksgio->skspcl->req.err_info));
  1746. sksgio->skspcl->req.err_info.type = 0x70;
  1747. sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
  1748. sksgio->skspcl->req.err_info.code = 0x44;
  1749. sksgio->skspcl->req.err_info.qual = 0;
  1750. rc = 0;
  1751. } else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
  1752. /* No longer on the adapter. We finish. */
  1753. rc = 0;
  1754. else {
  1755. /* Something's gone wrong. Still busy. Timeout or
  1756. * user interrupted (control-C). Mark as an orphan
  1757. * so it will be disposed when completed. */
  1758. sksgio->skspcl->orphaned = 1;
  1759. sksgio->skspcl = NULL;
  1760. if (rc == 0) {
  1761. pr_debug("%s:%s:%d timed out %p (%u ms)\n",
  1762. skdev->name, __func__, __LINE__,
  1763. sksgio, sksgio->sg.timeout);
  1764. rc = -ETIMEDOUT;
  1765. } else {
  1766. pr_debug("%s:%s:%d cntlc %p\n",
  1767. skdev->name, __func__, __LINE__, sksgio);
  1768. rc = -EINTR;
  1769. }
  1770. }
  1771. spin_unlock_irqrestore(&skdev->lock, flags);
  1772. return rc;
  1773. }
  1774. static int skd_sg_io_put_status(struct skd_device *skdev,
  1775. struct skd_sg_io *sksgio)
  1776. {
  1777. struct sg_io_hdr *sgp = &sksgio->sg;
  1778. struct skd_special_context *skspcl = sksgio->skspcl;
  1779. int resid = 0;
  1780. u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
  1781. sgp->status = skspcl->req.completion.status;
  1782. resid = sksgio->dxfer_len - nb;
  1783. sgp->masked_status = sgp->status & STATUS_MASK;
  1784. sgp->msg_status = 0;
  1785. sgp->host_status = 0;
  1786. sgp->driver_status = 0;
  1787. sgp->resid = resid;
  1788. if (sgp->masked_status || sgp->host_status || sgp->driver_status)
  1789. sgp->info |= SG_INFO_CHECK;
  1790. pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
  1791. skdev->name, __func__, __LINE__,
  1792. sgp->status, sgp->masked_status, sgp->resid);
  1793. if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
  1794. if (sgp->mx_sb_len > 0) {
  1795. struct fit_comp_error_info *ei = &skspcl->req.err_info;
  1796. u32 nbytes = sizeof(*ei);
  1797. nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
  1798. sgp->sb_len_wr = nbytes;
  1799. if (__copy_to_user(sgp->sbp, ei, nbytes)) {
  1800. pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
  1801. skdev->name, __func__, __LINE__,
  1802. sgp->sbp);
  1803. return -EFAULT;
  1804. }
  1805. }
  1806. }
  1807. if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
  1808. pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
  1809. skdev->name, __func__, __LINE__, sksgio->argp);
  1810. return -EFAULT;
  1811. }
  1812. return 0;
  1813. }
  1814. static int skd_sg_io_release_skspcl(struct skd_device *skdev,
  1815. struct skd_sg_io *sksgio)
  1816. {
  1817. struct skd_special_context *skspcl = sksgio->skspcl;
  1818. if (skspcl != NULL) {
  1819. ulong flags;
  1820. sksgio->skspcl = NULL;
  1821. spin_lock_irqsave(&skdev->lock, flags);
  1822. skd_release_special(skdev, skspcl);
  1823. spin_unlock_irqrestore(&skdev->lock, flags);
  1824. }
  1825. return 0;
  1826. }
  1827. /*
  1828. *****************************************************************************
  1829. * INTERNAL REQUESTS -- generated by driver itself
  1830. *****************************************************************************
  1831. */
  1832. static int skd_format_internal_skspcl(struct skd_device *skdev)
  1833. {
  1834. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1835. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1836. struct fit_msg_hdr *fmh;
  1837. uint64_t dma_address;
  1838. struct skd_scsi_request *scsi;
  1839. fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
  1840. fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
  1841. fmh->num_protocol_cmds_coalesced = 1;
  1842. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1843. memset(scsi, 0, sizeof(*scsi));
  1844. dma_address = skspcl->req.sksg_dma_address;
  1845. scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
  1846. sgd->control = FIT_SGD_CONTROL_LAST;
  1847. sgd->byte_count = 0;
  1848. sgd->host_side_addr = skspcl->db_dma_address;
  1849. sgd->dev_side_addr = 0;
  1850. sgd->next_desc_ptr = 0LL;
  1851. return 1;
  1852. }
  1853. #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
  1854. static void skd_send_internal_skspcl(struct skd_device *skdev,
  1855. struct skd_special_context *skspcl,
  1856. u8 opcode)
  1857. {
  1858. struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
  1859. struct skd_scsi_request *scsi;
  1860. unsigned char *buf = skspcl->data_buf;
  1861. int i;
  1862. if (skspcl->req.state != SKD_REQ_STATE_IDLE)
  1863. /*
  1864. * A refresh is already in progress.
  1865. * Just wait for it to finish.
  1866. */
  1867. return;
  1868. SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
  1869. skspcl->req.state = SKD_REQ_STATE_BUSY;
  1870. skspcl->req.id += SKD_ID_INCR;
  1871. scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1872. scsi->hdr.tag = skspcl->req.id;
  1873. memset(scsi->cdb, 0, sizeof(scsi->cdb));
  1874. switch (opcode) {
  1875. case TEST_UNIT_READY:
  1876. scsi->cdb[0] = TEST_UNIT_READY;
  1877. sgd->byte_count = 0;
  1878. scsi->hdr.sg_list_len_bytes = 0;
  1879. break;
  1880. case READ_CAPACITY:
  1881. scsi->cdb[0] = READ_CAPACITY;
  1882. sgd->byte_count = SKD_N_READ_CAP_BYTES;
  1883. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1884. break;
  1885. case INQUIRY:
  1886. scsi->cdb[0] = INQUIRY;
  1887. scsi->cdb[1] = 0x01; /* evpd */
  1888. scsi->cdb[2] = 0x80; /* serial number page */
  1889. scsi->cdb[4] = 0x10;
  1890. sgd->byte_count = 16;
  1891. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1892. break;
  1893. case SYNCHRONIZE_CACHE:
  1894. scsi->cdb[0] = SYNCHRONIZE_CACHE;
  1895. sgd->byte_count = 0;
  1896. scsi->hdr.sg_list_len_bytes = 0;
  1897. break;
  1898. case WRITE_BUFFER:
  1899. scsi->cdb[0] = WRITE_BUFFER;
  1900. scsi->cdb[1] = 0x02;
  1901. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1902. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1903. sgd->byte_count = WR_BUF_SIZE;
  1904. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1905. /* fill incrementing byte pattern */
  1906. for (i = 0; i < sgd->byte_count; i++)
  1907. buf[i] = i & 0xFF;
  1908. break;
  1909. case READ_BUFFER:
  1910. scsi->cdb[0] = READ_BUFFER;
  1911. scsi->cdb[1] = 0x02;
  1912. scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
  1913. scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
  1914. sgd->byte_count = WR_BUF_SIZE;
  1915. scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
  1916. memset(skspcl->data_buf, 0, sgd->byte_count);
  1917. break;
  1918. default:
  1919. SKD_ASSERT("Don't know what to send");
  1920. return;
  1921. }
  1922. skd_send_special_fitmsg(skdev, skspcl);
  1923. }
  1924. static void skd_refresh_device_data(struct skd_device *skdev)
  1925. {
  1926. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  1927. skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
  1928. }
  1929. static int skd_chk_read_buf(struct skd_device *skdev,
  1930. struct skd_special_context *skspcl)
  1931. {
  1932. unsigned char *buf = skspcl->data_buf;
  1933. int i;
  1934. /* check for incrementing byte pattern */
  1935. for (i = 0; i < WR_BUF_SIZE; i++)
  1936. if (buf[i] != (i & 0xFF))
  1937. return 1;
  1938. return 0;
  1939. }
  1940. static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
  1941. u8 code, u8 qual, u8 fruc)
  1942. {
  1943. /* If the check condition is of special interest, log a message */
  1944. if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
  1945. && (code == 0x04) && (qual == 0x06)) {
  1946. pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
  1947. "ascq/fruc %02x/%02x/%02x/%02x\n",
  1948. skd_name(skdev), key, code, qual, fruc);
  1949. }
  1950. }
  1951. static void skd_complete_internal(struct skd_device *skdev,
  1952. volatile struct fit_completion_entry_v1
  1953. *skcomp,
  1954. volatile struct fit_comp_error_info *skerr,
  1955. struct skd_special_context *skspcl)
  1956. {
  1957. u8 *buf = skspcl->data_buf;
  1958. u8 status;
  1959. int i;
  1960. struct skd_scsi_request *scsi =
  1961. (struct skd_scsi_request *)&skspcl->msg_buf[64];
  1962. SKD_ASSERT(skspcl == &skdev->internal_skspcl);
  1963. pr_debug("%s:%s:%d complete internal %x\n",
  1964. skdev->name, __func__, __LINE__, scsi->cdb[0]);
  1965. skspcl->req.completion = *skcomp;
  1966. skspcl->req.state = SKD_REQ_STATE_IDLE;
  1967. skspcl->req.id += SKD_ID_INCR;
  1968. status = skspcl->req.completion.status;
  1969. skd_log_check_status(skdev, status, skerr->key, skerr->code,
  1970. skerr->qual, skerr->fruc);
  1971. switch (scsi->cdb[0]) {
  1972. case TEST_UNIT_READY:
  1973. if (status == SAM_STAT_GOOD)
  1974. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1975. else if ((status == SAM_STAT_CHECK_CONDITION) &&
  1976. (skerr->key == MEDIUM_ERROR))
  1977. skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
  1978. else {
  1979. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1980. pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
  1981. skdev->name, __func__, __LINE__,
  1982. skdev->state);
  1983. return;
  1984. }
  1985. pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
  1986. skdev->name, __func__, __LINE__);
  1987. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  1988. }
  1989. break;
  1990. case WRITE_BUFFER:
  1991. if (status == SAM_STAT_GOOD)
  1992. skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
  1993. else {
  1994. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  1995. pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
  1996. skdev->name, __func__, __LINE__,
  1997. skdev->state);
  1998. return;
  1999. }
  2000. pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
  2001. skdev->name, __func__, __LINE__);
  2002. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  2003. }
  2004. break;
  2005. case READ_BUFFER:
  2006. if (status == SAM_STAT_GOOD) {
  2007. if (skd_chk_read_buf(skdev, skspcl) == 0)
  2008. skd_send_internal_skspcl(skdev, skspcl,
  2009. READ_CAPACITY);
  2010. else {
  2011. pr_err(
  2012. "(%s):*** W/R Buffer mismatch %d ***\n",
  2013. skd_name(skdev), skdev->connect_retries);
  2014. if (skdev->connect_retries <
  2015. SKD_MAX_CONNECT_RETRIES) {
  2016. skdev->connect_retries++;
  2017. skd_soft_reset(skdev);
  2018. } else {
  2019. pr_err(
  2020. "(%s): W/R Buffer Connect Error\n",
  2021. skd_name(skdev));
  2022. return;
  2023. }
  2024. }
  2025. } else {
  2026. if (skdev->state == SKD_DRVR_STATE_STOPPING) {
  2027. pr_debug("%s:%s:%d "
  2028. "read buffer failed, don't send anymore state 0x%x\n",
  2029. skdev->name, __func__, __LINE__,
  2030. skdev->state);
  2031. return;
  2032. }
  2033. pr_debug("%s:%s:%d "
  2034. "**** read buffer failed, retry skerr\n",
  2035. skdev->name, __func__, __LINE__);
  2036. skd_send_internal_skspcl(skdev, skspcl, 0x00);
  2037. }
  2038. break;
  2039. case READ_CAPACITY:
  2040. skdev->read_cap_is_valid = 0;
  2041. if (status == SAM_STAT_GOOD) {
  2042. skdev->read_cap_last_lba =
  2043. (buf[0] << 24) | (buf[1] << 16) |
  2044. (buf[2] << 8) | buf[3];
  2045. skdev->read_cap_blocksize =
  2046. (buf[4] << 24) | (buf[5] << 16) |
  2047. (buf[6] << 8) | buf[7];
  2048. pr_debug("%s:%s:%d last lba %d, bs %d\n",
  2049. skdev->name, __func__, __LINE__,
  2050. skdev->read_cap_last_lba,
  2051. skdev->read_cap_blocksize);
  2052. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  2053. skdev->read_cap_is_valid = 1;
  2054. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  2055. } else if ((status == SAM_STAT_CHECK_CONDITION) &&
  2056. (skerr->key == MEDIUM_ERROR)) {
  2057. skdev->read_cap_last_lba = ~0;
  2058. set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
  2059. pr_debug("%s:%s:%d "
  2060. "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
  2061. skdev->name, __func__, __LINE__);
  2062. skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
  2063. } else {
  2064. pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
  2065. skdev->name, __func__, __LINE__);
  2066. skd_send_internal_skspcl(skdev, skspcl,
  2067. TEST_UNIT_READY);
  2068. }
  2069. break;
  2070. case INQUIRY:
  2071. skdev->inquiry_is_valid = 0;
  2072. if (status == SAM_STAT_GOOD) {
  2073. skdev->inquiry_is_valid = 1;
  2074. for (i = 0; i < 12; i++)
  2075. skdev->inq_serial_num[i] = buf[i + 4];
  2076. skdev->inq_serial_num[12] = 0;
  2077. }
  2078. if (skd_unquiesce_dev(skdev) < 0)
  2079. pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
  2080. skdev->name, __func__, __LINE__);
  2081. /* connection is complete */
  2082. skdev->connect_retries = 0;
  2083. break;
  2084. case SYNCHRONIZE_CACHE:
  2085. if (status == SAM_STAT_GOOD)
  2086. skdev->sync_done = 1;
  2087. else
  2088. skdev->sync_done = -1;
  2089. wake_up_interruptible(&skdev->waitq);
  2090. break;
  2091. default:
  2092. SKD_ASSERT("we didn't send this");
  2093. }
  2094. }
  2095. /*
  2096. *****************************************************************************
  2097. * FIT MESSAGES
  2098. *****************************************************************************
  2099. */
  2100. static void skd_send_fitmsg(struct skd_device *skdev,
  2101. struct skd_fitmsg_context *skmsg)
  2102. {
  2103. u64 qcmd;
  2104. struct fit_msg_hdr *fmh;
  2105. pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
  2106. skdev->name, __func__, __LINE__,
  2107. skmsg->mb_dma_address, skdev->in_flight);
  2108. pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
  2109. skdev->name, __func__, __LINE__,
  2110. skmsg->msg_buf, skmsg->offset);
  2111. qcmd = skmsg->mb_dma_address;
  2112. qcmd |= FIT_QCMD_QID_NORMAL;
  2113. fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
  2114. skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
  2115. if (unlikely(skdev->dbg_level > 1)) {
  2116. u8 *bp = (u8 *)skmsg->msg_buf;
  2117. int i;
  2118. for (i = 0; i < skmsg->length; i += 8) {
  2119. pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x "
  2120. "%02x %02x %02x %02x\n",
  2121. skdev->name, __func__, __LINE__,
  2122. i, bp[i + 0], bp[i + 1], bp[i + 2],
  2123. bp[i + 3], bp[i + 4], bp[i + 5],
  2124. bp[i + 6], bp[i + 7]);
  2125. if (i == 0)
  2126. i = 64 - 8;
  2127. }
  2128. }
  2129. if (skmsg->length > 256)
  2130. qcmd |= FIT_QCMD_MSGSIZE_512;
  2131. else if (skmsg->length > 128)
  2132. qcmd |= FIT_QCMD_MSGSIZE_256;
  2133. else if (skmsg->length > 64)
  2134. qcmd |= FIT_QCMD_MSGSIZE_128;
  2135. else
  2136. /*
  2137. * This makes no sense because the FIT msg header is
  2138. * 64 bytes. If the msg is only 64 bytes long it has
  2139. * no payload.
  2140. */
  2141. qcmd |= FIT_QCMD_MSGSIZE_64;
  2142. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  2143. }
  2144. static void skd_send_special_fitmsg(struct skd_device *skdev,
  2145. struct skd_special_context *skspcl)
  2146. {
  2147. u64 qcmd;
  2148. if (unlikely(skdev->dbg_level > 1)) {
  2149. u8 *bp = (u8 *)skspcl->msg_buf;
  2150. int i;
  2151. for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
  2152. pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x "
  2153. "%02x %02x %02x %02x\n",
  2154. skdev->name, __func__, __LINE__, i,
  2155. bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
  2156. bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
  2157. if (i == 0)
  2158. i = 64 - 8;
  2159. }
  2160. pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
  2161. skdev->name, __func__, __LINE__,
  2162. skspcl, skspcl->req.id, skspcl->req.sksg_list,
  2163. skspcl->req.sksg_dma_address);
  2164. for (i = 0; i < skspcl->req.n_sg; i++) {
  2165. struct fit_sg_descriptor *sgd =
  2166. &skspcl->req.sksg_list[i];
  2167. pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
  2168. "addr=0x%llx next=0x%llx\n",
  2169. skdev->name, __func__, __LINE__,
  2170. i, sgd->byte_count, sgd->control,
  2171. sgd->host_side_addr, sgd->next_desc_ptr);
  2172. }
  2173. }
  2174. /*
  2175. * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
  2176. * and one 64-byte SSDI command.
  2177. */
  2178. qcmd = skspcl->mb_dma_address;
  2179. qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
  2180. SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
  2181. }
  2182. /*
  2183. *****************************************************************************
  2184. * COMPLETION QUEUE
  2185. *****************************************************************************
  2186. */
  2187. static void skd_complete_other(struct skd_device *skdev,
  2188. volatile struct fit_completion_entry_v1 *skcomp,
  2189. volatile struct fit_comp_error_info *skerr);
  2190. static void skd_requeue_request(struct skd_device *skdev,
  2191. struct skd_request_context *skreq);
  2192. struct sns_info {
  2193. u8 type;
  2194. u8 stat;
  2195. u8 key;
  2196. u8 asc;
  2197. u8 ascq;
  2198. u8 mask;
  2199. enum skd_check_status_action action;
  2200. };
  2201. static struct sns_info skd_chkstat_table[] = {
  2202. /* Good */
  2203. { 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
  2204. SKD_CHECK_STATUS_REPORT_GOOD },
  2205. /* Smart alerts */
  2206. { 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
  2207. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  2208. { 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
  2209. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  2210. { 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
  2211. SKD_CHECK_STATUS_REPORT_SMART_ALERT },
  2212. /* Retry (with limits) */
  2213. { 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
  2214. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  2215. { 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
  2216. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  2217. { 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
  2218. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  2219. { 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
  2220. SKD_CHECK_STATUS_REQUEUE_REQUEST },
  2221. /* Busy (or about to be) */
  2222. { 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
  2223. SKD_CHECK_STATUS_BUSY_IMMINENT },
  2224. };
  2225. /*
  2226. * Look up status and sense data to decide how to handle the error
  2227. * from the device.
  2228. * mask says which fields must match e.g., mask=0x18 means check
  2229. * type and stat, ignore key, asc, ascq.
  2230. */
  2231. static enum skd_check_status_action skd_check_status(struct skd_device *skdev,
  2232. u8 cmp_status,
  2233. volatile struct fit_comp_error_info *skerr)
  2234. {
  2235. int i, n;
  2236. pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
  2237. skd_name(skdev), skerr->key, skerr->code, skerr->qual,
  2238. skerr->fruc);
  2239. pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
  2240. skdev->name, __func__, __LINE__, skerr->type, cmp_status,
  2241. skerr->key, skerr->code, skerr->qual, skerr->fruc);
  2242. /* Does the info match an entry in the good category? */
  2243. n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
  2244. for (i = 0; i < n; i++) {
  2245. struct sns_info *sns = &skd_chkstat_table[i];
  2246. if (sns->mask & 0x10)
  2247. if (skerr->type != sns->type)
  2248. continue;
  2249. if (sns->mask & 0x08)
  2250. if (cmp_status != sns->stat)
  2251. continue;
  2252. if (sns->mask & 0x04)
  2253. if (skerr->key != sns->key)
  2254. continue;
  2255. if (sns->mask & 0x02)
  2256. if (skerr->code != sns->asc)
  2257. continue;
  2258. if (sns->mask & 0x01)
  2259. if (skerr->qual != sns->ascq)
  2260. continue;
  2261. if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
  2262. pr_err("(%s): SMART Alert: sense key/asc/ascq "
  2263. "%02x/%02x/%02x\n",
  2264. skd_name(skdev), skerr->key,
  2265. skerr->code, skerr->qual);
  2266. }
  2267. return sns->action;
  2268. }
  2269. /* No other match, so nonzero status means error,
  2270. * zero status means good
  2271. */
  2272. if (cmp_status) {
  2273. pr_debug("%s:%s:%d status check: error\n",
  2274. skdev->name, __func__, __LINE__);
  2275. return SKD_CHECK_STATUS_REPORT_ERROR;
  2276. }
  2277. pr_debug("%s:%s:%d status check good default\n",
  2278. skdev->name, __func__, __LINE__);
  2279. return SKD_CHECK_STATUS_REPORT_GOOD;
  2280. }
  2281. static void skd_resolve_req_exception(struct skd_device *skdev,
  2282. struct skd_request_context *skreq)
  2283. {
  2284. u8 cmp_status = skreq->completion.status;
  2285. switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
  2286. case SKD_CHECK_STATUS_REPORT_GOOD:
  2287. case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
  2288. skd_end_request(skdev, skreq, 0);
  2289. break;
  2290. case SKD_CHECK_STATUS_BUSY_IMMINENT:
  2291. skd_log_skreq(skdev, skreq, "retry(busy)");
  2292. skd_requeue_request(skdev, skreq);
  2293. pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
  2294. skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
  2295. skdev->timer_countdown = SKD_TIMER_MINUTES(20);
  2296. skd_quiesce_dev(skdev);
  2297. break;
  2298. case SKD_CHECK_STATUS_REQUEUE_REQUEST:
  2299. if (!skd_bio) {
  2300. if ((unsigned long) ++skreq->req->special <
  2301. SKD_MAX_RETRIES) {
  2302. skd_log_skreq(skdev, skreq, "retry");
  2303. skd_requeue_request(skdev, skreq);
  2304. break;
  2305. }
  2306. }
  2307. /* fall through to report error */
  2308. case SKD_CHECK_STATUS_REPORT_ERROR:
  2309. default:
  2310. skd_end_request(skdev, skreq, -EIO);
  2311. break;
  2312. }
  2313. }
  2314. static void skd_requeue_request(struct skd_device *skdev,
  2315. struct skd_request_context *skreq)
  2316. {
  2317. if (!skd_bio) {
  2318. blk_requeue_request(skdev->queue, skreq->req);
  2319. } else {
  2320. bio_list_add_head(&skdev->bio_queue, skreq->bio);
  2321. skreq->bio = NULL;
  2322. }
  2323. }
  2324. /* assume spinlock is already held */
  2325. static void skd_release_skreq(struct skd_device *skdev,
  2326. struct skd_request_context *skreq)
  2327. {
  2328. u32 msg_slot;
  2329. struct skd_fitmsg_context *skmsg;
  2330. u32 timo_slot;
  2331. /*
  2332. * Reclaim the FIT msg buffer if this is
  2333. * the first of the requests it carried to
  2334. * be completed. The FIT msg buffer used to
  2335. * send this request cannot be reused until
  2336. * we are sure the s1120 card has copied
  2337. * it to its memory. The FIT msg might have
  2338. * contained several requests. As soon as
  2339. * any of them are completed we know that
  2340. * the entire FIT msg was transferred.
  2341. * Only the first completed request will
  2342. * match the FIT msg buffer id. The FIT
  2343. * msg buffer id is immediately updated.
  2344. * When subsequent requests complete the FIT
  2345. * msg buffer id won't match, so we know
  2346. * quite cheaply that it is already done.
  2347. */
  2348. msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
  2349. SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
  2350. skmsg = &skdev->skmsg_table[msg_slot];
  2351. if (skmsg->id == skreq->fitmsg_id) {
  2352. SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
  2353. SKD_ASSERT(skmsg->outstanding > 0);
  2354. skmsg->outstanding--;
  2355. if (skmsg->outstanding == 0) {
  2356. skmsg->state = SKD_MSG_STATE_IDLE;
  2357. skmsg->id += SKD_ID_INCR;
  2358. skmsg->next = skdev->skmsg_free_list;
  2359. skdev->skmsg_free_list = skmsg;
  2360. }
  2361. }
  2362. /*
  2363. * Decrease the number of active requests.
  2364. * Also decrements the count in the timeout slot.
  2365. */
  2366. SKD_ASSERT(skdev->in_flight > 0);
  2367. skdev->in_flight -= 1;
  2368. timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
  2369. SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
  2370. skdev->timeout_slot[timo_slot] -= 1;
  2371. /*
  2372. * Reset backpointer
  2373. */
  2374. if (likely(!skd_bio))
  2375. skreq->req = NULL;
  2376. else
  2377. skreq->bio = NULL;
  2378. /*
  2379. * Reclaim the skd_request_context
  2380. */
  2381. skreq->state = SKD_REQ_STATE_IDLE;
  2382. skreq->id += SKD_ID_INCR;
  2383. skreq->next = skdev->skreq_free_list;
  2384. skdev->skreq_free_list = skreq;
  2385. }
  2386. #define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
  2387. static void skd_do_inq_page_00(struct skd_device *skdev,
  2388. volatile struct fit_completion_entry_v1 *skcomp,
  2389. volatile struct fit_comp_error_info *skerr,
  2390. uint8_t *cdb, uint8_t *buf)
  2391. {
  2392. uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
  2393. /* Caller requested "supported pages". The driver needs to insert
  2394. * its page.
  2395. */
  2396. pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
  2397. skdev->name, __func__, __LINE__);
  2398. /* If the device rejected the request because the CDB was
  2399. * improperly formed, then just leave.
  2400. */
  2401. if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
  2402. skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
  2403. return;
  2404. /* Get the amount of space the caller allocated */
  2405. max_bytes = (cdb[3] << 8) | cdb[4];
  2406. /* Get the number of pages actually returned by the device */
  2407. drive_pages = (buf[2] << 8) | buf[3];
  2408. drive_bytes = drive_pages + 4;
  2409. new_size = drive_pages + 1;
  2410. /* Supported pages must be in numerical order, so find where
  2411. * the driver page needs to be inserted into the list of
  2412. * pages returned by the device.
  2413. */
  2414. for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
  2415. if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
  2416. return; /* Device using this page code. abort */
  2417. else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
  2418. break;
  2419. }
  2420. if (insert_pt < max_bytes) {
  2421. uint16_t u;
  2422. /* Shift everything up one byte to make room. */
  2423. for (u = new_size + 3; u > insert_pt; u--)
  2424. buf[u] = buf[u - 1];
  2425. buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
  2426. /* SCSI byte order increment of num_returned_bytes by 1 */
  2427. skcomp->num_returned_bytes =
  2428. be32_to_cpu(skcomp->num_returned_bytes) + 1;
  2429. skcomp->num_returned_bytes =
  2430. be32_to_cpu(skcomp->num_returned_bytes);
  2431. }
  2432. /* update page length field to reflect the driver's page too */
  2433. buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
  2434. buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
  2435. }
  2436. static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
  2437. {
  2438. int pcie_reg;
  2439. u16 pci_bus_speed;
  2440. u8 pci_lanes;
  2441. pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  2442. if (pcie_reg) {
  2443. u16 linksta;
  2444. pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
  2445. pci_bus_speed = linksta & 0xF;
  2446. pci_lanes = (linksta & 0x3F0) >> 4;
  2447. } else {
  2448. *speed = STEC_LINK_UNKNOWN;
  2449. *width = 0xFF;
  2450. return;
  2451. }
  2452. switch (pci_bus_speed) {
  2453. case 1:
  2454. *speed = STEC_LINK_2_5GTS;
  2455. break;
  2456. case 2:
  2457. *speed = STEC_LINK_5GTS;
  2458. break;
  2459. case 3:
  2460. *speed = STEC_LINK_8GTS;
  2461. break;
  2462. default:
  2463. *speed = STEC_LINK_UNKNOWN;
  2464. break;
  2465. }
  2466. if (pci_lanes <= 0x20)
  2467. *width = pci_lanes;
  2468. else
  2469. *width = 0xFF;
  2470. }
  2471. static void skd_do_inq_page_da(struct skd_device *skdev,
  2472. volatile struct fit_completion_entry_v1 *skcomp,
  2473. volatile struct fit_comp_error_info *skerr,
  2474. uint8_t *cdb, uint8_t *buf)
  2475. {
  2476. unsigned max_bytes;
  2477. struct driver_inquiry_data inq;
  2478. u16 val;
  2479. pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
  2480. skdev->name, __func__, __LINE__);
  2481. memset(&inq, 0, sizeof(inq));
  2482. inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
  2483. if (skdev->pdev && skdev->pdev->bus) {
  2484. skd_get_link_info(skdev->pdev,
  2485. &inq.pcie_link_speed, &inq.pcie_link_lanes);
  2486. inq.pcie_bus_number = cpu_to_be16(skdev->pdev->bus->number);
  2487. inq.pcie_device_number = PCI_SLOT(skdev->pdev->devfn);
  2488. inq.pcie_function_number = PCI_FUNC(skdev->pdev->devfn);
  2489. pci_read_config_word(skdev->pdev, PCI_VENDOR_ID, &val);
  2490. inq.pcie_vendor_id = cpu_to_be16(val);
  2491. pci_read_config_word(skdev->pdev, PCI_DEVICE_ID, &val);
  2492. inq.pcie_device_id = cpu_to_be16(val);
  2493. pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_VENDOR_ID,
  2494. &val);
  2495. inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
  2496. pci_read_config_word(skdev->pdev, PCI_SUBSYSTEM_ID, &val);
  2497. inq.pcie_subsystem_device_id = cpu_to_be16(val);
  2498. } else {
  2499. inq.pcie_bus_number = 0xFFFF;
  2500. inq.pcie_device_number = 0xFF;
  2501. inq.pcie_function_number = 0xFF;
  2502. inq.pcie_link_speed = 0xFF;
  2503. inq.pcie_link_lanes = 0xFF;
  2504. inq.pcie_vendor_id = 0xFFFF;
  2505. inq.pcie_device_id = 0xFFFF;
  2506. inq.pcie_subsystem_vendor_id = 0xFFFF;
  2507. inq.pcie_subsystem_device_id = 0xFFFF;
  2508. }
  2509. /* Driver version, fixed lenth, padded with spaces on the right */
  2510. inq.driver_version_length = sizeof(inq.driver_version);
  2511. memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
  2512. memcpy(inq.driver_version, DRV_VER_COMPL,
  2513. min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
  2514. inq.page_length = cpu_to_be16((sizeof(inq) - 4));
  2515. /* Clear the error set by the device */
  2516. skcomp->status = SAM_STAT_GOOD;
  2517. memset((void *)skerr, 0, sizeof(*skerr));
  2518. /* copy response into output buffer */
  2519. max_bytes = (cdb[3] << 8) | cdb[4];
  2520. memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
  2521. skcomp->num_returned_bytes =
  2522. be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
  2523. }
  2524. static void skd_do_driver_inq(struct skd_device *skdev,
  2525. volatile struct fit_completion_entry_v1 *skcomp,
  2526. volatile struct fit_comp_error_info *skerr,
  2527. uint8_t *cdb, uint8_t *buf)
  2528. {
  2529. if (!buf)
  2530. return;
  2531. else if (cdb[0] != INQUIRY)
  2532. return; /* Not an INQUIRY */
  2533. else if ((cdb[1] & 1) == 0)
  2534. return; /* EVPD not set */
  2535. else if (cdb[2] == 0)
  2536. /* Need to add driver's page to supported pages list */
  2537. skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
  2538. else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
  2539. /* Caller requested driver's page */
  2540. skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
  2541. }
  2542. static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
  2543. {
  2544. if (!sg)
  2545. return NULL;
  2546. if (!sg_page(sg))
  2547. return NULL;
  2548. return sg_virt(sg);
  2549. }
  2550. static void skd_process_scsi_inq(struct skd_device *skdev,
  2551. volatile struct fit_completion_entry_v1
  2552. *skcomp,
  2553. volatile struct fit_comp_error_info *skerr,
  2554. struct skd_special_context *skspcl)
  2555. {
  2556. uint8_t *buf;
  2557. struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
  2558. struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
  2559. dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
  2560. skspcl->req.sg_data_dir);
  2561. buf = skd_sg_1st_page_ptr(skspcl->req.sg);
  2562. if (buf)
  2563. skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
  2564. }
  2565. static int skd_isr_completion_posted(struct skd_device *skdev,
  2566. int limit, int *enqueued)
  2567. {
  2568. volatile struct fit_completion_entry_v1 *skcmp = NULL;
  2569. volatile struct fit_comp_error_info *skerr;
  2570. u16 req_id;
  2571. u32 req_slot;
  2572. struct skd_request_context *skreq;
  2573. u16 cmp_cntxt = 0;
  2574. u8 cmp_status = 0;
  2575. u8 cmp_cycle = 0;
  2576. u32 cmp_bytes = 0;
  2577. int rc = 0;
  2578. int processed = 0;
  2579. int ret;
  2580. for (;; ) {
  2581. SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
  2582. skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
  2583. cmp_cycle = skcmp->cycle;
  2584. cmp_cntxt = skcmp->tag;
  2585. cmp_status = skcmp->status;
  2586. cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
  2587. skerr = &skdev->skerr_table[skdev->skcomp_ix];
  2588. pr_debug("%s:%s:%d "
  2589. "cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
  2590. "busy=%d rbytes=0x%x proto=%d\n",
  2591. skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
  2592. skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
  2593. skdev->in_flight, cmp_bytes, skdev->proto_ver);
  2594. if (cmp_cycle != skdev->skcomp_cycle) {
  2595. pr_debug("%s:%s:%d end of completions\n",
  2596. skdev->name, __func__, __LINE__);
  2597. break;
  2598. }
  2599. /*
  2600. * Update the completion queue head index and possibly
  2601. * the completion cycle count. 8-bit wrap-around.
  2602. */
  2603. skdev->skcomp_ix++;
  2604. if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
  2605. skdev->skcomp_ix = 0;
  2606. skdev->skcomp_cycle++;
  2607. }
  2608. /*
  2609. * The command context is a unique 32-bit ID. The low order
  2610. * bits help locate the request. The request is usually a
  2611. * r/w request (see skd_start() above) or a special request.
  2612. */
  2613. req_id = cmp_cntxt;
  2614. req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
  2615. /* Is this other than a r/w request? */
  2616. if (req_slot >= skdev->num_req_context) {
  2617. /*
  2618. * This is not a completion for a r/w request.
  2619. */
  2620. skd_complete_other(skdev, skcmp, skerr);
  2621. continue;
  2622. }
  2623. skreq = &skdev->skreq_table[req_slot];
  2624. /*
  2625. * Make sure the request ID for the slot matches.
  2626. */
  2627. if (skreq->id != req_id) {
  2628. pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
  2629. skdev->name, __func__, __LINE__,
  2630. req_id, skreq->id);
  2631. {
  2632. u16 new_id = cmp_cntxt;
  2633. pr_err("(%s): Completion mismatch "
  2634. "comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
  2635. skd_name(skdev), req_id,
  2636. skreq->id, new_id);
  2637. continue;
  2638. }
  2639. }
  2640. SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
  2641. if (skreq->state == SKD_REQ_STATE_ABORTED) {
  2642. pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
  2643. skdev->name, __func__, __LINE__,
  2644. skreq, skreq->id);
  2645. /* a previously timed out command can
  2646. * now be cleaned up */
  2647. skd_release_skreq(skdev, skreq);
  2648. continue;
  2649. }
  2650. skreq->completion = *skcmp;
  2651. if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
  2652. skreq->err_info = *skerr;
  2653. skd_log_check_status(skdev, cmp_status, skerr->key,
  2654. skerr->code, skerr->qual,
  2655. skerr->fruc);
  2656. }
  2657. /* Release DMA resources for the request. */
  2658. if (skreq->n_sg > 0)
  2659. skd_postop_sg_list(skdev, skreq);
  2660. if (((!skd_bio) && !skreq->req) ||
  2661. ((skd_bio) && !skreq->bio)) {
  2662. pr_debug("%s:%s:%d NULL backptr skdreq %p, "
  2663. "req=0x%x req_id=0x%x\n",
  2664. skdev->name, __func__, __LINE__,
  2665. skreq, skreq->id, req_id);
  2666. } else {
  2667. /*
  2668. * Capture the outcome and post it back to the
  2669. * native request.
  2670. */
  2671. if (likely(cmp_status == SAM_STAT_GOOD)) {
  2672. if (unlikely(skreq->flush_cmd)) {
  2673. if (skd_bio) {
  2674. /* if empty size bio, we are all done */
  2675. if (bio_sectors(skreq->bio) == 0) {
  2676. skd_end_request(skdev, skreq, 0);
  2677. } else {
  2678. ret = skd_flush_cmd_enqueue(skdev, (void *)skreq->bio);
  2679. if (ret != 0) {
  2680. pr_err("Failed to enqueue flush bio with Data. Err=%d.\n", ret);
  2681. skd_end_request(skdev, skreq, ret);
  2682. } else {
  2683. ((*enqueued)++);
  2684. }
  2685. }
  2686. } else {
  2687. skd_end_request(skdev, skreq, 0);
  2688. }
  2689. } else {
  2690. skd_end_request(skdev, skreq, 0);
  2691. }
  2692. } else {
  2693. skd_resolve_req_exception(skdev, skreq);
  2694. }
  2695. }
  2696. /*
  2697. * Release the skreq, its FIT msg (if one), timeout slot,
  2698. * and queue depth.
  2699. */
  2700. skd_release_skreq(skdev, skreq);
  2701. /* skd_isr_comp_limit equal zero means no limit */
  2702. if (limit) {
  2703. if (++processed >= limit) {
  2704. rc = 1;
  2705. break;
  2706. }
  2707. }
  2708. }
  2709. if ((skdev->state == SKD_DRVR_STATE_PAUSING)
  2710. && (skdev->in_flight) == 0) {
  2711. skdev->state = SKD_DRVR_STATE_PAUSED;
  2712. wake_up_interruptible(&skdev->waitq);
  2713. }
  2714. return rc;
  2715. }
  2716. static void skd_complete_other(struct skd_device *skdev,
  2717. volatile struct fit_completion_entry_v1 *skcomp,
  2718. volatile struct fit_comp_error_info *skerr)
  2719. {
  2720. u32 req_id = 0;
  2721. u32 req_table;
  2722. u32 req_slot;
  2723. struct skd_special_context *skspcl;
  2724. req_id = skcomp->tag;
  2725. req_table = req_id & SKD_ID_TABLE_MASK;
  2726. req_slot = req_id & SKD_ID_SLOT_MASK;
  2727. pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
  2728. skdev->name, __func__, __LINE__,
  2729. req_table, req_id, req_slot);
  2730. /*
  2731. * Based on the request id, determine how to dispatch this completion.
  2732. * This swich/case is finding the good cases and forwarding the
  2733. * completion entry. Errors are reported below the switch.
  2734. */
  2735. switch (req_table) {
  2736. case SKD_ID_RW_REQUEST:
  2737. /*
  2738. * The caller, skd_completion_posted_isr() above,
  2739. * handles r/w requests. The only way we get here
  2740. * is if the req_slot is out of bounds.
  2741. */
  2742. break;
  2743. case SKD_ID_SPECIAL_REQUEST:
  2744. /*
  2745. * Make sure the req_slot is in bounds and that the id
  2746. * matches.
  2747. */
  2748. if (req_slot < skdev->n_special) {
  2749. skspcl = &skdev->skspcl_table[req_slot];
  2750. if (skspcl->req.id == req_id &&
  2751. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2752. skd_complete_special(skdev,
  2753. skcomp, skerr, skspcl);
  2754. return;
  2755. }
  2756. }
  2757. break;
  2758. case SKD_ID_INTERNAL:
  2759. if (req_slot == 0) {
  2760. skspcl = &skdev->internal_skspcl;
  2761. if (skspcl->req.id == req_id &&
  2762. skspcl->req.state == SKD_REQ_STATE_BUSY) {
  2763. skd_complete_internal(skdev,
  2764. skcomp, skerr, skspcl);
  2765. return;
  2766. }
  2767. }
  2768. break;
  2769. case SKD_ID_FIT_MSG:
  2770. /*
  2771. * These id's should never appear in a completion record.
  2772. */
  2773. break;
  2774. default:
  2775. /*
  2776. * These id's should never appear anywhere;
  2777. */
  2778. break;
  2779. }
  2780. /*
  2781. * If we get here it is a bad or stale id.
  2782. */
  2783. }
  2784. static void skd_complete_special(struct skd_device *skdev,
  2785. volatile struct fit_completion_entry_v1
  2786. *skcomp,
  2787. volatile struct fit_comp_error_info *skerr,
  2788. struct skd_special_context *skspcl)
  2789. {
  2790. pr_debug("%s:%s:%d completing special request %p\n",
  2791. skdev->name, __func__, __LINE__, skspcl);
  2792. if (skspcl->orphaned) {
  2793. /* Discard orphaned request */
  2794. /* ?: Can this release directly or does it need
  2795. * to use a worker? */
  2796. pr_debug("%s:%s:%d release orphaned %p\n",
  2797. skdev->name, __func__, __LINE__, skspcl);
  2798. skd_release_special(skdev, skspcl);
  2799. return;
  2800. }
  2801. skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
  2802. skspcl->req.state = SKD_REQ_STATE_COMPLETED;
  2803. skspcl->req.completion = *skcomp;
  2804. skspcl->req.err_info = *skerr;
  2805. skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
  2806. skerr->code, skerr->qual, skerr->fruc);
  2807. wake_up_interruptible(&skdev->waitq);
  2808. }
  2809. /* assume spinlock is already held */
  2810. static void skd_release_special(struct skd_device *skdev,
  2811. struct skd_special_context *skspcl)
  2812. {
  2813. int i, was_depleted;
  2814. for (i = 0; i < skspcl->req.n_sg; i++) {
  2815. struct page *page = sg_page(&skspcl->req.sg[i]);
  2816. __free_page(page);
  2817. }
  2818. was_depleted = (skdev->skspcl_free_list == NULL);
  2819. skspcl->req.state = SKD_REQ_STATE_IDLE;
  2820. skspcl->req.id += SKD_ID_INCR;
  2821. skspcl->req.next =
  2822. (struct skd_request_context *)skdev->skspcl_free_list;
  2823. skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
  2824. if (was_depleted) {
  2825. pr_debug("%s:%s:%d skspcl was depleted\n",
  2826. skdev->name, __func__, __LINE__);
  2827. /* Free list was depleted. Their might be waiters. */
  2828. wake_up_interruptible(&skdev->waitq);
  2829. }
  2830. }
  2831. static void skd_reset_skcomp(struct skd_device *skdev)
  2832. {
  2833. u32 nbytes;
  2834. struct fit_completion_entry_v1 *skcomp;
  2835. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  2836. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  2837. memset(skdev->skcomp_table, 0, nbytes);
  2838. skdev->skcomp_ix = 0;
  2839. skdev->skcomp_cycle = 1;
  2840. }
  2841. /*
  2842. *****************************************************************************
  2843. * INTERRUPTS
  2844. *****************************************************************************
  2845. */
  2846. static void skd_completion_worker(struct work_struct *work)
  2847. {
  2848. struct skd_device *skdev =
  2849. container_of(work, struct skd_device, completion_worker);
  2850. unsigned long flags;
  2851. int flush_enqueued = 0;
  2852. spin_lock_irqsave(&skdev->lock, flags);
  2853. /*
  2854. * pass in limit=0, which means no limit..
  2855. * process everything in compq
  2856. */
  2857. skd_isr_completion_posted(skdev, 0, &flush_enqueued);
  2858. skd_request_fn(skdev->queue);
  2859. spin_unlock_irqrestore(&skdev->lock, flags);
  2860. }
  2861. static void skd_isr_msg_from_dev(struct skd_device *skdev);
  2862. irqreturn_t
  2863. static skd_isr(int irq, void *ptr)
  2864. {
  2865. struct skd_device *skdev;
  2866. u32 intstat;
  2867. u32 ack;
  2868. int rc = 0;
  2869. int deferred = 0;
  2870. int flush_enqueued = 0;
  2871. skdev = (struct skd_device *)ptr;
  2872. spin_lock(&skdev->lock);
  2873. for (;; ) {
  2874. intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  2875. ack = FIT_INT_DEF_MASK;
  2876. ack &= intstat;
  2877. pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
  2878. skdev->name, __func__, __LINE__, intstat, ack);
  2879. /* As long as there is an int pending on device, keep
  2880. * running loop. When none, get out, but if we've never
  2881. * done any processing, call completion handler?
  2882. */
  2883. if (ack == 0) {
  2884. /* No interrupts on device, but run the completion
  2885. * processor anyway?
  2886. */
  2887. if (rc == 0)
  2888. if (likely (skdev->state
  2889. == SKD_DRVR_STATE_ONLINE))
  2890. deferred = 1;
  2891. break;
  2892. }
  2893. rc = IRQ_HANDLED;
  2894. SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
  2895. if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
  2896. (skdev->state != SKD_DRVR_STATE_STOPPING))) {
  2897. if (intstat & FIT_ISH_COMPLETION_POSTED) {
  2898. /*
  2899. * If we have already deferred completion
  2900. * processing, don't bother running it again
  2901. */
  2902. if (deferred == 0)
  2903. deferred =
  2904. skd_isr_completion_posted(skdev,
  2905. skd_isr_comp_limit, &flush_enqueued);
  2906. }
  2907. if (intstat & FIT_ISH_FW_STATE_CHANGE) {
  2908. skd_isr_fwstate(skdev);
  2909. if (skdev->state == SKD_DRVR_STATE_FAULT ||
  2910. skdev->state ==
  2911. SKD_DRVR_STATE_DISAPPEARED) {
  2912. spin_unlock(&skdev->lock);
  2913. return rc;
  2914. }
  2915. }
  2916. if (intstat & FIT_ISH_MSG_FROM_DEV)
  2917. skd_isr_msg_from_dev(skdev);
  2918. }
  2919. }
  2920. if (unlikely(flush_enqueued))
  2921. skd_request_fn(skdev->queue);
  2922. if (deferred)
  2923. schedule_work(&skdev->completion_worker);
  2924. else if (!flush_enqueued)
  2925. skd_request_fn(skdev->queue);
  2926. spin_unlock(&skdev->lock);
  2927. return rc;
  2928. }
  2929. static void skd_drive_fault(struct skd_device *skdev)
  2930. {
  2931. skdev->state = SKD_DRVR_STATE_FAULT;
  2932. pr_err("(%s): Drive FAULT\n", skd_name(skdev));
  2933. }
  2934. static void skd_drive_disappeared(struct skd_device *skdev)
  2935. {
  2936. skdev->state = SKD_DRVR_STATE_DISAPPEARED;
  2937. pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
  2938. }
  2939. static void skd_isr_fwstate(struct skd_device *skdev)
  2940. {
  2941. u32 sense;
  2942. u32 state;
  2943. u32 mtd;
  2944. int prev_driver_state = skdev->state;
  2945. sense = SKD_READL(skdev, FIT_STATUS);
  2946. state = sense & FIT_SR_DRIVE_STATE_MASK;
  2947. pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
  2948. skd_name(skdev),
  2949. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  2950. skd_drive_state_to_str(state), state);
  2951. skdev->drive_state = state;
  2952. switch (skdev->drive_state) {
  2953. case FIT_SR_DRIVE_INIT:
  2954. if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
  2955. skd_disable_interrupts(skdev);
  2956. break;
  2957. }
  2958. if (skdev->state == SKD_DRVR_STATE_RESTARTING)
  2959. skd_recover_requests(skdev, 0);
  2960. if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
  2961. skdev->timer_countdown = SKD_STARTING_TIMO;
  2962. skdev->state = SKD_DRVR_STATE_STARTING;
  2963. skd_soft_reset(skdev);
  2964. break;
  2965. }
  2966. mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
  2967. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  2968. skdev->last_mtd = mtd;
  2969. break;
  2970. case FIT_SR_DRIVE_ONLINE:
  2971. skdev->cur_max_queue_depth = skd_max_queue_depth;
  2972. if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
  2973. skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
  2974. skdev->queue_low_water_mark =
  2975. skdev->cur_max_queue_depth * 2 / 3 + 1;
  2976. if (skdev->queue_low_water_mark < 1)
  2977. skdev->queue_low_water_mark = 1;
  2978. pr_info(
  2979. "(%s): Queue depth limit=%d dev=%d lowat=%d\n",
  2980. skd_name(skdev),
  2981. skdev->cur_max_queue_depth,
  2982. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  2983. skd_refresh_device_data(skdev);
  2984. break;
  2985. case FIT_SR_DRIVE_BUSY:
  2986. skdev->state = SKD_DRVR_STATE_BUSY;
  2987. skdev->timer_countdown = SKD_BUSY_TIMO;
  2988. skd_quiesce_dev(skdev);
  2989. break;
  2990. case FIT_SR_DRIVE_BUSY_SANITIZE:
  2991. /* set timer for 3 seconds, we'll abort any unfinished
  2992. * commands after that expires
  2993. */
  2994. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  2995. skdev->timer_countdown = SKD_TIMER_SECONDS(3);
  2996. skd_start_queue(skdev);
  2997. break;
  2998. case FIT_SR_DRIVE_BUSY_ERASE:
  2999. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  3000. skdev->timer_countdown = SKD_BUSY_TIMO;
  3001. break;
  3002. case FIT_SR_DRIVE_OFFLINE:
  3003. skdev->state = SKD_DRVR_STATE_IDLE;
  3004. break;
  3005. case FIT_SR_DRIVE_SOFT_RESET:
  3006. switch (skdev->state) {
  3007. case SKD_DRVR_STATE_STARTING:
  3008. case SKD_DRVR_STATE_RESTARTING:
  3009. /* Expected by a caller of skd_soft_reset() */
  3010. break;
  3011. default:
  3012. skdev->state = SKD_DRVR_STATE_RESTARTING;
  3013. break;
  3014. }
  3015. break;
  3016. case FIT_SR_DRIVE_FW_BOOTING:
  3017. pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
  3018. skdev->name, __func__, __LINE__, skdev->name);
  3019. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  3020. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  3021. break;
  3022. case FIT_SR_DRIVE_DEGRADED:
  3023. case FIT_SR_PCIE_LINK_DOWN:
  3024. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  3025. break;
  3026. case FIT_SR_DRIVE_FAULT:
  3027. skd_drive_fault(skdev);
  3028. skd_recover_requests(skdev, 0);
  3029. skd_start_queue(skdev);
  3030. break;
  3031. /* PCIe bus returned all Fs? */
  3032. case 0xFF:
  3033. pr_info("(%s): state=0x%x sense=0x%x\n",
  3034. skd_name(skdev), state, sense);
  3035. skd_drive_disappeared(skdev);
  3036. skd_recover_requests(skdev, 0);
  3037. skd_start_queue(skdev);
  3038. break;
  3039. default:
  3040. /*
  3041. * Uknown FW State. Wait for a state we recognize.
  3042. */
  3043. break;
  3044. }
  3045. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  3046. skd_name(skdev),
  3047. skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
  3048. skd_skdev_state_to_str(skdev->state), skdev->state);
  3049. }
  3050. static void skd_recover_requests(struct skd_device *skdev, int requeue)
  3051. {
  3052. int i;
  3053. for (i = 0; i < skdev->num_req_context; i++) {
  3054. struct skd_request_context *skreq = &skdev->skreq_table[i];
  3055. if (skreq->state == SKD_REQ_STATE_BUSY) {
  3056. skd_log_skreq(skdev, skreq, "recover");
  3057. SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
  3058. if (!skd_bio)
  3059. SKD_ASSERT(skreq->req != NULL);
  3060. else
  3061. SKD_ASSERT(skreq->bio != NULL);
  3062. /* Release DMA resources for the request. */
  3063. if (skreq->n_sg > 0)
  3064. skd_postop_sg_list(skdev, skreq);
  3065. if (!skd_bio) {
  3066. if (requeue &&
  3067. (unsigned long) ++skreq->req->special <
  3068. SKD_MAX_RETRIES)
  3069. skd_requeue_request(skdev, skreq);
  3070. else
  3071. skd_end_request(skdev, skreq, -EIO);
  3072. } else
  3073. skd_end_request(skdev, skreq, -EIO);
  3074. if (!skd_bio)
  3075. skreq->req = NULL;
  3076. else
  3077. skreq->bio = NULL;
  3078. skreq->state = SKD_REQ_STATE_IDLE;
  3079. skreq->id += SKD_ID_INCR;
  3080. }
  3081. if (i > 0)
  3082. skreq[-1].next = skreq;
  3083. skreq->next = NULL;
  3084. }
  3085. skdev->skreq_free_list = skdev->skreq_table;
  3086. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3087. struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
  3088. if (skmsg->state == SKD_MSG_STATE_BUSY) {
  3089. skd_log_skmsg(skdev, skmsg, "salvaged");
  3090. SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
  3091. skmsg->state = SKD_MSG_STATE_IDLE;
  3092. skmsg->id += SKD_ID_INCR;
  3093. }
  3094. if (i > 0)
  3095. skmsg[-1].next = skmsg;
  3096. skmsg->next = NULL;
  3097. }
  3098. skdev->skmsg_free_list = skdev->skmsg_table;
  3099. for (i = 0; i < skdev->n_special; i++) {
  3100. struct skd_special_context *skspcl = &skdev->skspcl_table[i];
  3101. /* If orphaned, reclaim it because it has already been reported
  3102. * to the process as an error (it was just waiting for
  3103. * a completion that didn't come, and now it will never come)
  3104. * If busy, change to a state that will cause it to error
  3105. * out in the wait routine and let it do the normal
  3106. * reporting and reclaiming
  3107. */
  3108. if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
  3109. if (skspcl->orphaned) {
  3110. pr_debug("%s:%s:%d orphaned %p\n",
  3111. skdev->name, __func__, __LINE__,
  3112. skspcl);
  3113. skd_release_special(skdev, skspcl);
  3114. } else {
  3115. pr_debug("%s:%s:%d not orphaned %p\n",
  3116. skdev->name, __func__, __LINE__,
  3117. skspcl);
  3118. skspcl->req.state = SKD_REQ_STATE_ABORTED;
  3119. }
  3120. }
  3121. }
  3122. skdev->skspcl_free_list = skdev->skspcl_table;
  3123. for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
  3124. skdev->timeout_slot[i] = 0;
  3125. skdev->in_flight = 0;
  3126. }
  3127. static void skd_isr_msg_from_dev(struct skd_device *skdev)
  3128. {
  3129. u32 mfd;
  3130. u32 mtd;
  3131. u32 data;
  3132. mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  3133. pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
  3134. skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
  3135. /* ignore any mtd that is an ack for something we didn't send */
  3136. if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
  3137. return;
  3138. switch (FIT_MXD_TYPE(mfd)) {
  3139. case FIT_MTD_FITFW_INIT:
  3140. skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
  3141. if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
  3142. pr_err("(%s): protocol mismatch\n",
  3143. skdev->name);
  3144. pr_err("(%s): got=%d support=%d\n",
  3145. skdev->name, skdev->proto_ver,
  3146. FIT_PROTOCOL_VERSION_1);
  3147. pr_err("(%s): please upgrade driver\n",
  3148. skdev->name);
  3149. skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
  3150. skd_soft_reset(skdev);
  3151. break;
  3152. }
  3153. mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
  3154. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3155. skdev->last_mtd = mtd;
  3156. break;
  3157. case FIT_MTD_GET_CMDQ_DEPTH:
  3158. skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
  3159. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
  3160. SKD_N_COMPLETION_ENTRY);
  3161. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3162. skdev->last_mtd = mtd;
  3163. break;
  3164. case FIT_MTD_SET_COMPQ_DEPTH:
  3165. SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
  3166. mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
  3167. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3168. skdev->last_mtd = mtd;
  3169. break;
  3170. case FIT_MTD_SET_COMPQ_ADDR:
  3171. skd_reset_skcomp(skdev);
  3172. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
  3173. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3174. skdev->last_mtd = mtd;
  3175. break;
  3176. case FIT_MTD_CMD_LOG_HOST_ID:
  3177. skdev->connect_time_stamp = get_seconds();
  3178. data = skdev->connect_time_stamp & 0xFFFF;
  3179. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
  3180. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3181. skdev->last_mtd = mtd;
  3182. break;
  3183. case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
  3184. skdev->drive_jiffies = FIT_MXD_DATA(mfd);
  3185. data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
  3186. mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
  3187. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3188. skdev->last_mtd = mtd;
  3189. break;
  3190. case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
  3191. skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
  3192. mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
  3193. SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
  3194. skdev->last_mtd = mtd;
  3195. pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
  3196. skd_name(skdev),
  3197. skdev->connect_time_stamp, skdev->drive_jiffies);
  3198. break;
  3199. case FIT_MTD_ARM_QUEUE:
  3200. skdev->last_mtd = 0;
  3201. /*
  3202. * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
  3203. */
  3204. break;
  3205. default:
  3206. break;
  3207. }
  3208. }
  3209. static void skd_disable_interrupts(struct skd_device *skdev)
  3210. {
  3211. u32 sense;
  3212. sense = SKD_READL(skdev, FIT_CONTROL);
  3213. sense &= ~FIT_CR_ENABLE_INTERRUPTS;
  3214. SKD_WRITEL(skdev, sense, FIT_CONTROL);
  3215. pr_debug("%s:%s:%d sense 0x%x\n",
  3216. skdev->name, __func__, __LINE__, sense);
  3217. /* Note that the 1s is written. A 1-bit means
  3218. * disable, a 0 means enable.
  3219. */
  3220. SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
  3221. }
  3222. static void skd_enable_interrupts(struct skd_device *skdev)
  3223. {
  3224. u32 val;
  3225. /* unmask interrupts first */
  3226. val = FIT_ISH_FW_STATE_CHANGE +
  3227. FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
  3228. /* Note that the compliment of mask is written. A 1-bit means
  3229. * disable, a 0 means enable. */
  3230. SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
  3231. pr_debug("%s:%s:%d interrupt mask=0x%x\n",
  3232. skdev->name, __func__, __LINE__, ~val);
  3233. val = SKD_READL(skdev, FIT_CONTROL);
  3234. val |= FIT_CR_ENABLE_INTERRUPTS;
  3235. pr_debug("%s:%s:%d control=0x%x\n",
  3236. skdev->name, __func__, __LINE__, val);
  3237. SKD_WRITEL(skdev, val, FIT_CONTROL);
  3238. }
  3239. /*
  3240. *****************************************************************************
  3241. * START, STOP, RESTART, QUIESCE, UNQUIESCE
  3242. *****************************************************************************
  3243. */
  3244. static void skd_soft_reset(struct skd_device *skdev)
  3245. {
  3246. u32 val;
  3247. val = SKD_READL(skdev, FIT_CONTROL);
  3248. val |= (FIT_CR_SOFT_RESET);
  3249. pr_debug("%s:%s:%d control=0x%x\n",
  3250. skdev->name, __func__, __LINE__, val);
  3251. SKD_WRITEL(skdev, val, FIT_CONTROL);
  3252. }
  3253. static void skd_start_device(struct skd_device *skdev)
  3254. {
  3255. unsigned long flags;
  3256. u32 sense;
  3257. u32 state;
  3258. spin_lock_irqsave(&skdev->lock, flags);
  3259. /* ack all ghost interrupts */
  3260. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3261. sense = SKD_READL(skdev, FIT_STATUS);
  3262. pr_debug("%s:%s:%d initial status=0x%x\n",
  3263. skdev->name, __func__, __LINE__, sense);
  3264. state = sense & FIT_SR_DRIVE_STATE_MASK;
  3265. skdev->drive_state = state;
  3266. skdev->last_mtd = 0;
  3267. skdev->state = SKD_DRVR_STATE_STARTING;
  3268. skdev->timer_countdown = SKD_STARTING_TIMO;
  3269. skd_enable_interrupts(skdev);
  3270. switch (skdev->drive_state) {
  3271. case FIT_SR_DRIVE_OFFLINE:
  3272. pr_err("(%s): Drive offline...\n", skd_name(skdev));
  3273. break;
  3274. case FIT_SR_DRIVE_FW_BOOTING:
  3275. pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
  3276. skdev->name, __func__, __LINE__, skdev->name);
  3277. skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
  3278. skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
  3279. break;
  3280. case FIT_SR_DRIVE_BUSY_SANITIZE:
  3281. pr_info("(%s): Start: BUSY_SANITIZE\n",
  3282. skd_name(skdev));
  3283. skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
  3284. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  3285. break;
  3286. case FIT_SR_DRIVE_BUSY_ERASE:
  3287. pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
  3288. skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
  3289. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  3290. break;
  3291. case FIT_SR_DRIVE_INIT:
  3292. case FIT_SR_DRIVE_ONLINE:
  3293. skd_soft_reset(skdev);
  3294. break;
  3295. case FIT_SR_DRIVE_BUSY:
  3296. pr_err("(%s): Drive Busy...\n", skd_name(skdev));
  3297. skdev->state = SKD_DRVR_STATE_BUSY;
  3298. skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
  3299. break;
  3300. case FIT_SR_DRIVE_SOFT_RESET:
  3301. pr_err("(%s) drive soft reset in prog\n",
  3302. skd_name(skdev));
  3303. break;
  3304. case FIT_SR_DRIVE_FAULT:
  3305. /* Fault state is bad...soft reset won't do it...
  3306. * Hard reset, maybe, but does it work on device?
  3307. * For now, just fault so the system doesn't hang.
  3308. */
  3309. skd_drive_fault(skdev);
  3310. /*start the queue so we can respond with error to requests */
  3311. pr_debug("%s:%s:%d starting %s queue\n",
  3312. skdev->name, __func__, __LINE__, skdev->name);
  3313. skd_start_queue(skdev);
  3314. skdev->gendisk_on = -1;
  3315. wake_up_interruptible(&skdev->waitq);
  3316. break;
  3317. case 0xFF:
  3318. /* Most likely the device isn't there or isn't responding
  3319. * to the BAR1 addresses. */
  3320. skd_drive_disappeared(skdev);
  3321. /*start the queue so we can respond with error to requests */
  3322. pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
  3323. skdev->name, __func__, __LINE__, skdev->name);
  3324. skd_start_queue(skdev);
  3325. skdev->gendisk_on = -1;
  3326. wake_up_interruptible(&skdev->waitq);
  3327. break;
  3328. default:
  3329. pr_err("(%s) Start: unknown state %x\n",
  3330. skd_name(skdev), skdev->drive_state);
  3331. break;
  3332. }
  3333. state = SKD_READL(skdev, FIT_CONTROL);
  3334. pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
  3335. skdev->name, __func__, __LINE__, state);
  3336. state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
  3337. pr_debug("%s:%s:%d Intr Status=0x%x\n",
  3338. skdev->name, __func__, __LINE__, state);
  3339. state = SKD_READL(skdev, FIT_INT_MASK_HOST);
  3340. pr_debug("%s:%s:%d Intr Mask=0x%x\n",
  3341. skdev->name, __func__, __LINE__, state);
  3342. state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
  3343. pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
  3344. skdev->name, __func__, __LINE__, state);
  3345. state = SKD_READL(skdev, FIT_HW_VERSION);
  3346. pr_debug("%s:%s:%d HW version=0x%x\n",
  3347. skdev->name, __func__, __LINE__, state);
  3348. spin_unlock_irqrestore(&skdev->lock, flags);
  3349. }
  3350. static void skd_stop_device(struct skd_device *skdev)
  3351. {
  3352. unsigned long flags;
  3353. struct skd_special_context *skspcl = &skdev->internal_skspcl;
  3354. u32 dev_state;
  3355. int i;
  3356. spin_lock_irqsave(&skdev->lock, flags);
  3357. if (skdev->state != SKD_DRVR_STATE_ONLINE) {
  3358. pr_err("(%s): skd_stop_device not online no sync\n",
  3359. skd_name(skdev));
  3360. goto stop_out;
  3361. }
  3362. if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
  3363. pr_err("(%s): skd_stop_device no special\n",
  3364. skd_name(skdev));
  3365. goto stop_out;
  3366. }
  3367. skdev->state = SKD_DRVR_STATE_SYNCING;
  3368. skdev->sync_done = 0;
  3369. skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
  3370. spin_unlock_irqrestore(&skdev->lock, flags);
  3371. wait_event_interruptible_timeout(skdev->waitq,
  3372. (skdev->sync_done), (10 * HZ));
  3373. spin_lock_irqsave(&skdev->lock, flags);
  3374. switch (skdev->sync_done) {
  3375. case 0:
  3376. pr_err("(%s): skd_stop_device no sync\n",
  3377. skd_name(skdev));
  3378. break;
  3379. case 1:
  3380. pr_err("(%s): skd_stop_device sync done\n",
  3381. skd_name(skdev));
  3382. break;
  3383. default:
  3384. pr_err("(%s): skd_stop_device sync error\n",
  3385. skd_name(skdev));
  3386. }
  3387. stop_out:
  3388. skdev->state = SKD_DRVR_STATE_STOPPING;
  3389. spin_unlock_irqrestore(&skdev->lock, flags);
  3390. skd_kill_timer(skdev);
  3391. spin_lock_irqsave(&skdev->lock, flags);
  3392. skd_disable_interrupts(skdev);
  3393. /* ensure all ints on device are cleared */
  3394. /* soft reset the device to unload with a clean slate */
  3395. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3396. SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
  3397. spin_unlock_irqrestore(&skdev->lock, flags);
  3398. /* poll every 100ms, 1 second timeout */
  3399. for (i = 0; i < 10; i++) {
  3400. dev_state =
  3401. SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
  3402. if (dev_state == FIT_SR_DRIVE_INIT)
  3403. break;
  3404. set_current_state(TASK_INTERRUPTIBLE);
  3405. schedule_timeout(msecs_to_jiffies(100));
  3406. }
  3407. if (dev_state != FIT_SR_DRIVE_INIT)
  3408. pr_err("(%s): skd_stop_device state error 0x%02x\n",
  3409. skd_name(skdev), dev_state);
  3410. }
  3411. /* assume spinlock is held */
  3412. static void skd_restart_device(struct skd_device *skdev)
  3413. {
  3414. u32 state;
  3415. /* ack all ghost interrupts */
  3416. SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
  3417. state = SKD_READL(skdev, FIT_STATUS);
  3418. pr_debug("%s:%s:%d drive status=0x%x\n",
  3419. skdev->name, __func__, __LINE__, state);
  3420. state &= FIT_SR_DRIVE_STATE_MASK;
  3421. skdev->drive_state = state;
  3422. skdev->last_mtd = 0;
  3423. skdev->state = SKD_DRVR_STATE_RESTARTING;
  3424. skdev->timer_countdown = SKD_RESTARTING_TIMO;
  3425. skd_soft_reset(skdev);
  3426. }
  3427. /* assume spinlock is held */
  3428. static int skd_quiesce_dev(struct skd_device *skdev)
  3429. {
  3430. int rc = 0;
  3431. switch (skdev->state) {
  3432. case SKD_DRVR_STATE_BUSY:
  3433. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3434. pr_debug("%s:%s:%d stopping %s queue\n",
  3435. skdev->name, __func__, __LINE__, skdev->name);
  3436. skd_stop_queue(skdev);
  3437. break;
  3438. case SKD_DRVR_STATE_ONLINE:
  3439. case SKD_DRVR_STATE_STOPPING:
  3440. case SKD_DRVR_STATE_SYNCING:
  3441. case SKD_DRVR_STATE_PAUSING:
  3442. case SKD_DRVR_STATE_PAUSED:
  3443. case SKD_DRVR_STATE_STARTING:
  3444. case SKD_DRVR_STATE_RESTARTING:
  3445. case SKD_DRVR_STATE_RESUMING:
  3446. default:
  3447. rc = -EINVAL;
  3448. pr_debug("%s:%s:%d state [%d] not implemented\n",
  3449. skdev->name, __func__, __LINE__, skdev->state);
  3450. }
  3451. return rc;
  3452. }
  3453. /* assume spinlock is held */
  3454. static int skd_unquiesce_dev(struct skd_device *skdev)
  3455. {
  3456. int prev_driver_state = skdev->state;
  3457. skd_log_skdev(skdev, "unquiesce");
  3458. if (skdev->state == SKD_DRVR_STATE_ONLINE) {
  3459. pr_debug("%s:%s:%d **** device already ONLINE\n",
  3460. skdev->name, __func__, __LINE__);
  3461. return 0;
  3462. }
  3463. if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
  3464. /*
  3465. * If there has been an state change to other than
  3466. * ONLINE, we will rely on controller state change
  3467. * to come back online and restart the queue.
  3468. * The BUSY state means that driver is ready to
  3469. * continue normal processing but waiting for controller
  3470. * to become available.
  3471. */
  3472. skdev->state = SKD_DRVR_STATE_BUSY;
  3473. pr_debug("%s:%s:%d drive BUSY state\n",
  3474. skdev->name, __func__, __LINE__);
  3475. return 0;
  3476. }
  3477. /*
  3478. * Drive has just come online, driver is either in startup,
  3479. * paused performing a task, or bust waiting for hardware.
  3480. */
  3481. switch (skdev->state) {
  3482. case SKD_DRVR_STATE_PAUSED:
  3483. case SKD_DRVR_STATE_BUSY:
  3484. case SKD_DRVR_STATE_BUSY_IMMINENT:
  3485. case SKD_DRVR_STATE_BUSY_ERASE:
  3486. case SKD_DRVR_STATE_STARTING:
  3487. case SKD_DRVR_STATE_RESTARTING:
  3488. case SKD_DRVR_STATE_FAULT:
  3489. case SKD_DRVR_STATE_IDLE:
  3490. case SKD_DRVR_STATE_LOAD:
  3491. skdev->state = SKD_DRVR_STATE_ONLINE;
  3492. pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
  3493. skd_name(skdev),
  3494. skd_skdev_state_to_str(prev_driver_state),
  3495. prev_driver_state, skd_skdev_state_to_str(skdev->state),
  3496. skdev->state);
  3497. pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
  3498. skdev->name, __func__, __LINE__);
  3499. pr_debug("%s:%s:%d starting %s queue\n",
  3500. skdev->name, __func__, __LINE__, skdev->name);
  3501. pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
  3502. skd_start_queue(skdev);
  3503. skdev->gendisk_on = 1;
  3504. wake_up_interruptible(&skdev->waitq);
  3505. break;
  3506. case SKD_DRVR_STATE_DISAPPEARED:
  3507. default:
  3508. pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
  3509. skdev->name, __func__, __LINE__,
  3510. skdev->state);
  3511. return -EBUSY;
  3512. }
  3513. return 0;
  3514. }
  3515. /*
  3516. *****************************************************************************
  3517. * PCIe MSI/MSI-X INTERRUPT HANDLERS
  3518. *****************************************************************************
  3519. */
  3520. static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
  3521. {
  3522. struct skd_device *skdev = skd_host_data;
  3523. unsigned long flags;
  3524. spin_lock_irqsave(&skdev->lock, flags);
  3525. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3526. skdev->name, __func__, __LINE__,
  3527. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3528. pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
  3529. irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3530. SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
  3531. spin_unlock_irqrestore(&skdev->lock, flags);
  3532. return IRQ_HANDLED;
  3533. }
  3534. static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
  3535. {
  3536. struct skd_device *skdev = skd_host_data;
  3537. unsigned long flags;
  3538. spin_lock_irqsave(&skdev->lock, flags);
  3539. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3540. skdev->name, __func__, __LINE__,
  3541. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3542. SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
  3543. skd_isr_fwstate(skdev);
  3544. spin_unlock_irqrestore(&skdev->lock, flags);
  3545. return IRQ_HANDLED;
  3546. }
  3547. static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
  3548. {
  3549. struct skd_device *skdev = skd_host_data;
  3550. unsigned long flags;
  3551. int flush_enqueued = 0;
  3552. int deferred;
  3553. spin_lock_irqsave(&skdev->lock, flags);
  3554. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3555. skdev->name, __func__, __LINE__,
  3556. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3557. SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
  3558. deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
  3559. &flush_enqueued);
  3560. if (flush_enqueued)
  3561. skd_request_fn(skdev->queue);
  3562. if (deferred)
  3563. schedule_work(&skdev->completion_worker);
  3564. else if (!flush_enqueued)
  3565. skd_request_fn(skdev->queue);
  3566. spin_unlock_irqrestore(&skdev->lock, flags);
  3567. return IRQ_HANDLED;
  3568. }
  3569. static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
  3570. {
  3571. struct skd_device *skdev = skd_host_data;
  3572. unsigned long flags;
  3573. spin_lock_irqsave(&skdev->lock, flags);
  3574. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3575. skdev->name, __func__, __LINE__,
  3576. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3577. SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
  3578. skd_isr_msg_from_dev(skdev);
  3579. spin_unlock_irqrestore(&skdev->lock, flags);
  3580. return IRQ_HANDLED;
  3581. }
  3582. static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
  3583. {
  3584. struct skd_device *skdev = skd_host_data;
  3585. unsigned long flags;
  3586. spin_lock_irqsave(&skdev->lock, flags);
  3587. pr_debug("%s:%s:%d MSIX = 0x%x\n",
  3588. skdev->name, __func__, __LINE__,
  3589. SKD_READL(skdev, FIT_INT_STATUS_HOST));
  3590. SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
  3591. spin_unlock_irqrestore(&skdev->lock, flags);
  3592. return IRQ_HANDLED;
  3593. }
  3594. /*
  3595. *****************************************************************************
  3596. * PCIe MSI/MSI-X SETUP
  3597. *****************************************************************************
  3598. */
  3599. struct skd_msix_entry {
  3600. int have_irq;
  3601. u32 vector;
  3602. u32 entry;
  3603. struct skd_device *rsp;
  3604. char isr_name[30];
  3605. };
  3606. struct skd_init_msix_entry {
  3607. const char *name;
  3608. irq_handler_t handler;
  3609. };
  3610. #define SKD_MAX_MSIX_COUNT 13
  3611. #define SKD_MIN_MSIX_COUNT 7
  3612. #define SKD_BASE_MSIX_IRQ 4
  3613. static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
  3614. { "(DMA 0)", skd_reserved_isr },
  3615. { "(DMA 1)", skd_reserved_isr },
  3616. { "(DMA 2)", skd_reserved_isr },
  3617. { "(DMA 3)", skd_reserved_isr },
  3618. { "(State Change)", skd_statec_isr },
  3619. { "(COMPL_Q)", skd_comp_q },
  3620. { "(MSG)", skd_msg_isr },
  3621. { "(Reserved)", skd_reserved_isr },
  3622. { "(Reserved)", skd_reserved_isr },
  3623. { "(Queue Full 0)", skd_qfull_isr },
  3624. { "(Queue Full 1)", skd_qfull_isr },
  3625. { "(Queue Full 2)", skd_qfull_isr },
  3626. { "(Queue Full 3)", skd_qfull_isr },
  3627. };
  3628. static void skd_release_msix(struct skd_device *skdev)
  3629. {
  3630. struct skd_msix_entry *qentry;
  3631. int i;
  3632. if (skdev->msix_entries == NULL)
  3633. return;
  3634. for (i = 0; i < skdev->msix_count; i++) {
  3635. qentry = &skdev->msix_entries[i];
  3636. skdev = qentry->rsp;
  3637. if (qentry->have_irq)
  3638. devm_free_irq(&skdev->pdev->dev,
  3639. qentry->vector, qentry->rsp);
  3640. }
  3641. pci_disable_msix(skdev->pdev);
  3642. kfree(skdev->msix_entries);
  3643. skdev->msix_count = 0;
  3644. skdev->msix_entries = NULL;
  3645. }
  3646. static int skd_acquire_msix(struct skd_device *skdev)
  3647. {
  3648. int i, rc;
  3649. struct pci_dev *pdev;
  3650. struct msix_entry *entries = NULL;
  3651. struct skd_msix_entry *qentry;
  3652. pdev = skdev->pdev;
  3653. skdev->msix_count = SKD_MAX_MSIX_COUNT;
  3654. entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
  3655. GFP_KERNEL);
  3656. if (!entries)
  3657. return -ENOMEM;
  3658. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
  3659. entries[i].entry = i;
  3660. rc = pci_enable_msix(pdev, entries, SKD_MAX_MSIX_COUNT);
  3661. if (rc < 0)
  3662. goto msix_out;
  3663. if (rc) {
  3664. if (rc < SKD_MIN_MSIX_COUNT) {
  3665. pr_err("(%s): failed to enable MSI-X %d\n",
  3666. skd_name(skdev), rc);
  3667. goto msix_out;
  3668. }
  3669. pr_debug("%s:%s:%d %s: <%s> allocated %d MSI-X vectors\n",
  3670. skdev->name, __func__, __LINE__,
  3671. pci_name(pdev), skdev->name, rc);
  3672. skdev->msix_count = rc;
  3673. rc = pci_enable_msix(pdev, entries, skdev->msix_count);
  3674. if (rc) {
  3675. pr_err("(%s): failed to enable MSI-X "
  3676. "support (%d) %d\n",
  3677. skd_name(skdev), skdev->msix_count, rc);
  3678. goto msix_out;
  3679. }
  3680. }
  3681. skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
  3682. skdev->msix_count, GFP_KERNEL);
  3683. if (!skdev->msix_entries) {
  3684. rc = -ENOMEM;
  3685. skdev->msix_count = 0;
  3686. pr_err("(%s): msix table allocation error\n",
  3687. skd_name(skdev));
  3688. goto msix_out;
  3689. }
  3690. qentry = skdev->msix_entries;
  3691. for (i = 0; i < skdev->msix_count; i++) {
  3692. qentry->vector = entries[i].vector;
  3693. qentry->entry = entries[i].entry;
  3694. qentry->rsp = NULL;
  3695. qentry->have_irq = 0;
  3696. pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n",
  3697. skdev->name, __func__, __LINE__,
  3698. pci_name(pdev), skdev->name,
  3699. i, qentry->vector, qentry->entry);
  3700. qentry++;
  3701. }
  3702. /* Enable MSI-X vectors for the base queue */
  3703. for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
  3704. qentry = &skdev->msix_entries[i];
  3705. snprintf(qentry->isr_name, sizeof(qentry->isr_name),
  3706. "%s%d-msix %s", DRV_NAME, skdev->devno,
  3707. msix_entries[i].name);
  3708. rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
  3709. msix_entries[i].handler, 0,
  3710. qentry->isr_name, skdev);
  3711. if (rc) {
  3712. pr_err("(%s): Unable to register(%d) MSI-X "
  3713. "handler %d: %s\n",
  3714. skd_name(skdev), rc, i, qentry->isr_name);
  3715. goto msix_out;
  3716. } else {
  3717. qentry->have_irq = 1;
  3718. qentry->rsp = skdev;
  3719. }
  3720. }
  3721. pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
  3722. skdev->name, __func__, __LINE__,
  3723. pci_name(pdev), skdev->name, skdev->msix_count);
  3724. return 0;
  3725. msix_out:
  3726. if (entries)
  3727. kfree(entries);
  3728. skd_release_msix(skdev);
  3729. return rc;
  3730. }
  3731. static int skd_acquire_irq(struct skd_device *skdev)
  3732. {
  3733. int rc;
  3734. struct pci_dev *pdev;
  3735. pdev = skdev->pdev;
  3736. skdev->msix_count = 0;
  3737. RETRY_IRQ_TYPE:
  3738. switch (skdev->irq_type) {
  3739. case SKD_IRQ_MSIX:
  3740. rc = skd_acquire_msix(skdev);
  3741. if (!rc)
  3742. pr_info("(%s): MSI-X %d irqs enabled\n",
  3743. skd_name(skdev), skdev->msix_count);
  3744. else {
  3745. pr_err(
  3746. "(%s): failed to enable MSI-X, re-trying with MSI %d\n",
  3747. skd_name(skdev), rc);
  3748. skdev->irq_type = SKD_IRQ_MSI;
  3749. goto RETRY_IRQ_TYPE;
  3750. }
  3751. break;
  3752. case SKD_IRQ_MSI:
  3753. snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
  3754. DRV_NAME, skdev->devno);
  3755. rc = pci_enable_msi(pdev);
  3756. if (!rc) {
  3757. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
  3758. skdev->isr_name, skdev);
  3759. if (rc) {
  3760. pci_disable_msi(pdev);
  3761. pr_err(
  3762. "(%s): failed to allocate the MSI interrupt %d\n",
  3763. skd_name(skdev), rc);
  3764. goto RETRY_IRQ_LEGACY;
  3765. }
  3766. pr_info("(%s): MSI irq %d enabled\n",
  3767. skd_name(skdev), pdev->irq);
  3768. } else {
  3769. RETRY_IRQ_LEGACY:
  3770. pr_err(
  3771. "(%s): failed to enable MSI, re-trying with LEGACY %d\n",
  3772. skd_name(skdev), rc);
  3773. skdev->irq_type = SKD_IRQ_LEGACY;
  3774. goto RETRY_IRQ_TYPE;
  3775. }
  3776. break;
  3777. case SKD_IRQ_LEGACY:
  3778. snprintf(skdev->isr_name, sizeof(skdev->isr_name),
  3779. "%s%d-legacy", DRV_NAME, skdev->devno);
  3780. rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
  3781. IRQF_SHARED, skdev->isr_name, skdev);
  3782. if (!rc)
  3783. pr_info("(%s): LEGACY irq %d enabled\n",
  3784. skd_name(skdev), pdev->irq);
  3785. else
  3786. pr_err("(%s): request LEGACY irq error %d\n",
  3787. skd_name(skdev), rc);
  3788. break;
  3789. default:
  3790. pr_info("(%s): irq_type %d invalid, re-set to %d\n",
  3791. skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
  3792. skdev->irq_type = SKD_IRQ_LEGACY;
  3793. goto RETRY_IRQ_TYPE;
  3794. }
  3795. return rc;
  3796. }
  3797. static void skd_release_irq(struct skd_device *skdev)
  3798. {
  3799. switch (skdev->irq_type) {
  3800. case SKD_IRQ_MSIX:
  3801. skd_release_msix(skdev);
  3802. break;
  3803. case SKD_IRQ_MSI:
  3804. devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
  3805. pci_disable_msi(skdev->pdev);
  3806. break;
  3807. case SKD_IRQ_LEGACY:
  3808. devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
  3809. break;
  3810. default:
  3811. pr_err("(%s): wrong irq type %d!",
  3812. skd_name(skdev), skdev->irq_type);
  3813. break;
  3814. }
  3815. }
  3816. /*
  3817. *****************************************************************************
  3818. * CONSTRUCT
  3819. *****************************************************************************
  3820. */
  3821. static int skd_cons_skcomp(struct skd_device *skdev);
  3822. static int skd_cons_skmsg(struct skd_device *skdev);
  3823. static int skd_cons_skreq(struct skd_device *skdev);
  3824. static int skd_cons_skspcl(struct skd_device *skdev);
  3825. static int skd_cons_sksb(struct skd_device *skdev);
  3826. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  3827. u32 n_sg,
  3828. dma_addr_t *ret_dma_addr);
  3829. static int skd_cons_disk(struct skd_device *skdev);
  3830. #define SKD_N_DEV_TABLE 16u
  3831. static u32 skd_next_devno;
  3832. static struct skd_device *skd_construct(struct pci_dev *pdev)
  3833. {
  3834. struct skd_device *skdev;
  3835. int blk_major = skd_major;
  3836. int rc;
  3837. skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
  3838. if (!skdev) {
  3839. pr_err(PFX "(%s): memory alloc failure\n",
  3840. pci_name(pdev));
  3841. return NULL;
  3842. }
  3843. skdev->state = SKD_DRVR_STATE_LOAD;
  3844. skdev->pdev = pdev;
  3845. skdev->devno = skd_next_devno++;
  3846. skdev->major = blk_major;
  3847. skdev->irq_type = skd_isr_type;
  3848. sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
  3849. skdev->dev_max_queue_depth = 0;
  3850. skdev->num_req_context = skd_max_queue_depth;
  3851. skdev->num_fitmsg_context = skd_max_queue_depth;
  3852. skdev->n_special = skd_max_pass_thru;
  3853. skdev->cur_max_queue_depth = 1;
  3854. skdev->queue_low_water_mark = 1;
  3855. skdev->proto_ver = 99;
  3856. skdev->sgs_per_request = skd_sgs_per_request;
  3857. skdev->dbg_level = skd_dbg_level;
  3858. if (skd_bio)
  3859. bio_list_init(&skdev->bio_queue);
  3860. atomic_set(&skdev->device_count, 0);
  3861. spin_lock_init(&skdev->lock);
  3862. INIT_WORK(&skdev->completion_worker, skd_completion_worker);
  3863. INIT_LIST_HEAD(&skdev->flush_list);
  3864. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  3865. rc = skd_cons_skcomp(skdev);
  3866. if (rc < 0)
  3867. goto err_out;
  3868. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  3869. rc = skd_cons_skmsg(skdev);
  3870. if (rc < 0)
  3871. goto err_out;
  3872. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  3873. rc = skd_cons_skreq(skdev);
  3874. if (rc < 0)
  3875. goto err_out;
  3876. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  3877. rc = skd_cons_skspcl(skdev);
  3878. if (rc < 0)
  3879. goto err_out;
  3880. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  3881. rc = skd_cons_sksb(skdev);
  3882. if (rc < 0)
  3883. goto err_out;
  3884. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  3885. rc = skd_cons_disk(skdev);
  3886. if (rc < 0)
  3887. goto err_out;
  3888. pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
  3889. return skdev;
  3890. err_out:
  3891. pr_debug("%s:%s:%d construct failed\n",
  3892. skdev->name, __func__, __LINE__);
  3893. skd_destruct(skdev);
  3894. return NULL;
  3895. }
  3896. static int skd_cons_skcomp(struct skd_device *skdev)
  3897. {
  3898. int rc = 0;
  3899. struct fit_completion_entry_v1 *skcomp;
  3900. u32 nbytes;
  3901. nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
  3902. nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
  3903. pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
  3904. skdev->name, __func__, __LINE__,
  3905. nbytes, SKD_N_COMPLETION_ENTRY);
  3906. skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
  3907. &skdev->cq_dma_address);
  3908. if (skcomp == NULL) {
  3909. rc = -ENOMEM;
  3910. goto err_out;
  3911. }
  3912. memset(skcomp, 0, nbytes);
  3913. skdev->skcomp_table = skcomp;
  3914. skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
  3915. sizeof(*skcomp) *
  3916. SKD_N_COMPLETION_ENTRY);
  3917. err_out:
  3918. return rc;
  3919. }
  3920. static int skd_cons_skmsg(struct skd_device *skdev)
  3921. {
  3922. int rc = 0;
  3923. u32 i;
  3924. pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
  3925. skdev->name, __func__, __LINE__,
  3926. sizeof(struct skd_fitmsg_context),
  3927. skdev->num_fitmsg_context,
  3928. sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
  3929. skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
  3930. *skdev->num_fitmsg_context, GFP_KERNEL);
  3931. if (skdev->skmsg_table == NULL) {
  3932. rc = -ENOMEM;
  3933. goto err_out;
  3934. }
  3935. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  3936. struct skd_fitmsg_context *skmsg;
  3937. skmsg = &skdev->skmsg_table[i];
  3938. skmsg->id = i + SKD_ID_FIT_MSG;
  3939. skmsg->state = SKD_MSG_STATE_IDLE;
  3940. skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
  3941. SKD_N_FITMSG_BYTES + 64,
  3942. &skmsg->mb_dma_address);
  3943. if (skmsg->msg_buf == NULL) {
  3944. rc = -ENOMEM;
  3945. goto err_out;
  3946. }
  3947. skmsg->offset = (u32)((u64)skmsg->msg_buf &
  3948. (~FIT_QCMD_BASE_ADDRESS_MASK));
  3949. skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3950. skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
  3951. FIT_QCMD_BASE_ADDRESS_MASK);
  3952. skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
  3953. skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
  3954. memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
  3955. skmsg->next = &skmsg[1];
  3956. }
  3957. /* Free list is in order starting with the 0th entry. */
  3958. skdev->skmsg_table[i - 1].next = NULL;
  3959. skdev->skmsg_free_list = skdev->skmsg_table;
  3960. err_out:
  3961. return rc;
  3962. }
  3963. static int skd_cons_skreq(struct skd_device *skdev)
  3964. {
  3965. int rc = 0;
  3966. u32 i;
  3967. pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
  3968. skdev->name, __func__, __LINE__,
  3969. sizeof(struct skd_request_context),
  3970. skdev->num_req_context,
  3971. sizeof(struct skd_request_context) * skdev->num_req_context);
  3972. skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
  3973. * skdev->num_req_context, GFP_KERNEL);
  3974. if (skdev->skreq_table == NULL) {
  3975. rc = -ENOMEM;
  3976. goto err_out;
  3977. }
  3978. pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
  3979. skdev->name, __func__, __LINE__,
  3980. skdev->sgs_per_request, sizeof(struct scatterlist),
  3981. skdev->sgs_per_request * sizeof(struct scatterlist));
  3982. for (i = 0; i < skdev->num_req_context; i++) {
  3983. struct skd_request_context *skreq;
  3984. skreq = &skdev->skreq_table[i];
  3985. skreq->id = i + SKD_ID_RW_REQUEST;
  3986. skreq->state = SKD_REQ_STATE_IDLE;
  3987. skreq->sg = kzalloc(sizeof(struct scatterlist) *
  3988. skdev->sgs_per_request, GFP_KERNEL);
  3989. if (skreq->sg == NULL) {
  3990. rc = -ENOMEM;
  3991. goto err_out;
  3992. }
  3993. sg_init_table(skreq->sg, skdev->sgs_per_request);
  3994. skreq->sksg_list = skd_cons_sg_list(skdev,
  3995. skdev->sgs_per_request,
  3996. &skreq->sksg_dma_address);
  3997. if (skreq->sksg_list == NULL) {
  3998. rc = -ENOMEM;
  3999. goto err_out;
  4000. }
  4001. skreq->next = &skreq[1];
  4002. }
  4003. /* Free list is in order starting with the 0th entry. */
  4004. skdev->skreq_table[i - 1].next = NULL;
  4005. skdev->skreq_free_list = skdev->skreq_table;
  4006. err_out:
  4007. return rc;
  4008. }
  4009. static int skd_cons_skspcl(struct skd_device *skdev)
  4010. {
  4011. int rc = 0;
  4012. u32 i, nbytes;
  4013. pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
  4014. skdev->name, __func__, __LINE__,
  4015. sizeof(struct skd_special_context),
  4016. skdev->n_special,
  4017. sizeof(struct skd_special_context) * skdev->n_special);
  4018. skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
  4019. * skdev->n_special, GFP_KERNEL);
  4020. if (skdev->skspcl_table == NULL) {
  4021. rc = -ENOMEM;
  4022. goto err_out;
  4023. }
  4024. for (i = 0; i < skdev->n_special; i++) {
  4025. struct skd_special_context *skspcl;
  4026. skspcl = &skdev->skspcl_table[i];
  4027. skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
  4028. skspcl->req.state = SKD_REQ_STATE_IDLE;
  4029. skspcl->req.next = &skspcl[1].req;
  4030. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  4031. skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  4032. &skspcl->mb_dma_address);
  4033. if (skspcl->msg_buf == NULL) {
  4034. rc = -ENOMEM;
  4035. goto err_out;
  4036. }
  4037. memset(skspcl->msg_buf, 0, nbytes);
  4038. skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
  4039. SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
  4040. if (skspcl->req.sg == NULL) {
  4041. rc = -ENOMEM;
  4042. goto err_out;
  4043. }
  4044. skspcl->req.sksg_list = skd_cons_sg_list(skdev,
  4045. SKD_N_SG_PER_SPECIAL,
  4046. &skspcl->req.
  4047. sksg_dma_address);
  4048. if (skspcl->req.sksg_list == NULL) {
  4049. rc = -ENOMEM;
  4050. goto err_out;
  4051. }
  4052. }
  4053. /* Free list is in order starting with the 0th entry. */
  4054. skdev->skspcl_table[i - 1].req.next = NULL;
  4055. skdev->skspcl_free_list = skdev->skspcl_table;
  4056. return rc;
  4057. err_out:
  4058. return rc;
  4059. }
  4060. static int skd_cons_sksb(struct skd_device *skdev)
  4061. {
  4062. int rc = 0;
  4063. struct skd_special_context *skspcl;
  4064. u32 nbytes;
  4065. skspcl = &skdev->internal_skspcl;
  4066. skspcl->req.id = 0 + SKD_ID_INTERNAL;
  4067. skspcl->req.state = SKD_REQ_STATE_IDLE;
  4068. nbytes = SKD_N_INTERNAL_BYTES;
  4069. skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  4070. &skspcl->db_dma_address);
  4071. if (skspcl->data_buf == NULL) {
  4072. rc = -ENOMEM;
  4073. goto err_out;
  4074. }
  4075. memset(skspcl->data_buf, 0, nbytes);
  4076. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  4077. skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
  4078. &skspcl->mb_dma_address);
  4079. if (skspcl->msg_buf == NULL) {
  4080. rc = -ENOMEM;
  4081. goto err_out;
  4082. }
  4083. memset(skspcl->msg_buf, 0, nbytes);
  4084. skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
  4085. &skspcl->req.sksg_dma_address);
  4086. if (skspcl->req.sksg_list == NULL) {
  4087. rc = -ENOMEM;
  4088. goto err_out;
  4089. }
  4090. if (!skd_format_internal_skspcl(skdev)) {
  4091. rc = -EINVAL;
  4092. goto err_out;
  4093. }
  4094. err_out:
  4095. return rc;
  4096. }
  4097. static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
  4098. u32 n_sg,
  4099. dma_addr_t *ret_dma_addr)
  4100. {
  4101. struct fit_sg_descriptor *sg_list;
  4102. u32 nbytes;
  4103. nbytes = sizeof(*sg_list) * n_sg;
  4104. sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
  4105. if (sg_list != NULL) {
  4106. uint64_t dma_address = *ret_dma_addr;
  4107. u32 i;
  4108. memset(sg_list, 0, nbytes);
  4109. for (i = 0; i < n_sg - 1; i++) {
  4110. uint64_t ndp_off;
  4111. ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
  4112. sg_list[i].next_desc_ptr = dma_address + ndp_off;
  4113. }
  4114. sg_list[i].next_desc_ptr = 0LL;
  4115. }
  4116. return sg_list;
  4117. }
  4118. static int skd_cons_disk(struct skd_device *skdev)
  4119. {
  4120. int rc = 0;
  4121. struct gendisk *disk;
  4122. struct request_queue *q;
  4123. unsigned long flags;
  4124. disk = alloc_disk(SKD_MINORS_PER_DEVICE);
  4125. if (!disk) {
  4126. rc = -ENOMEM;
  4127. goto err_out;
  4128. }
  4129. skdev->disk = disk;
  4130. sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
  4131. disk->major = skdev->major;
  4132. disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
  4133. disk->fops = &skd_blockdev_ops;
  4134. disk->private_data = skdev;
  4135. if (!skd_bio) {
  4136. q = blk_init_queue(skd_request_fn, &skdev->lock);
  4137. } else {
  4138. q = blk_alloc_queue(GFP_KERNEL);
  4139. q->queue_flags = QUEUE_FLAG_IO_STAT | QUEUE_FLAG_STACKABLE;
  4140. }
  4141. if (!q) {
  4142. rc = -ENOMEM;
  4143. goto err_out;
  4144. }
  4145. skdev->queue = q;
  4146. disk->queue = q;
  4147. q->queuedata = skdev;
  4148. if (skd_bio) {
  4149. q->queue_lock = &skdev->lock;
  4150. blk_queue_make_request(q, skd_make_request);
  4151. }
  4152. blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
  4153. blk_queue_max_segments(q, skdev->sgs_per_request);
  4154. blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
  4155. /* set sysfs ptimal_io_size to 8K */
  4156. blk_queue_io_opt(q, 8192);
  4157. /* DISCARD Flag initialization. */
  4158. q->limits.discard_granularity = 8192;
  4159. q->limits.discard_alignment = 0;
  4160. q->limits.max_discard_sectors = UINT_MAX >> 9;
  4161. q->limits.discard_zeroes_data = 1;
  4162. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  4163. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  4164. spin_lock_irqsave(&skdev->lock, flags);
  4165. pr_debug("%s:%s:%d stopping %s queue\n",
  4166. skdev->name, __func__, __LINE__, skdev->name);
  4167. skd_stop_queue(skdev);
  4168. spin_unlock_irqrestore(&skdev->lock, flags);
  4169. err_out:
  4170. return rc;
  4171. }
  4172. /*
  4173. *****************************************************************************
  4174. * DESTRUCT (FREE)
  4175. *****************************************************************************
  4176. */
  4177. static void skd_free_skcomp(struct skd_device *skdev);
  4178. static void skd_free_skmsg(struct skd_device *skdev);
  4179. static void skd_free_skreq(struct skd_device *skdev);
  4180. static void skd_free_skspcl(struct skd_device *skdev);
  4181. static void skd_free_sksb(struct skd_device *skdev);
  4182. static void skd_free_sg_list(struct skd_device *skdev,
  4183. struct fit_sg_descriptor *sg_list,
  4184. u32 n_sg, dma_addr_t dma_addr);
  4185. static void skd_free_disk(struct skd_device *skdev);
  4186. static void skd_destruct(struct skd_device *skdev)
  4187. {
  4188. if (skdev == NULL)
  4189. return;
  4190. pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
  4191. skd_free_disk(skdev);
  4192. pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
  4193. skd_free_sksb(skdev);
  4194. pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
  4195. skd_free_skspcl(skdev);
  4196. pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
  4197. skd_free_skreq(skdev);
  4198. pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
  4199. skd_free_skmsg(skdev);
  4200. pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
  4201. skd_free_skcomp(skdev);
  4202. pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
  4203. kfree(skdev);
  4204. }
  4205. static void skd_free_skcomp(struct skd_device *skdev)
  4206. {
  4207. if (skdev->skcomp_table != NULL) {
  4208. u32 nbytes;
  4209. nbytes = sizeof(skdev->skcomp_table[0]) *
  4210. SKD_N_COMPLETION_ENTRY;
  4211. pci_free_consistent(skdev->pdev, nbytes,
  4212. skdev->skcomp_table, skdev->cq_dma_address);
  4213. }
  4214. skdev->skcomp_table = NULL;
  4215. skdev->cq_dma_address = 0;
  4216. }
  4217. static void skd_free_skmsg(struct skd_device *skdev)
  4218. {
  4219. u32 i;
  4220. if (skdev->skmsg_table == NULL)
  4221. return;
  4222. for (i = 0; i < skdev->num_fitmsg_context; i++) {
  4223. struct skd_fitmsg_context *skmsg;
  4224. skmsg = &skdev->skmsg_table[i];
  4225. if (skmsg->msg_buf != NULL) {
  4226. skmsg->msg_buf += skmsg->offset;
  4227. skmsg->mb_dma_address += skmsg->offset;
  4228. pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
  4229. skmsg->msg_buf,
  4230. skmsg->mb_dma_address);
  4231. }
  4232. skmsg->msg_buf = NULL;
  4233. skmsg->mb_dma_address = 0;
  4234. }
  4235. kfree(skdev->skmsg_table);
  4236. skdev->skmsg_table = NULL;
  4237. }
  4238. static void skd_free_skreq(struct skd_device *skdev)
  4239. {
  4240. u32 i;
  4241. if (skdev->skreq_table == NULL)
  4242. return;
  4243. for (i = 0; i < skdev->num_req_context; i++) {
  4244. struct skd_request_context *skreq;
  4245. skreq = &skdev->skreq_table[i];
  4246. skd_free_sg_list(skdev, skreq->sksg_list,
  4247. skdev->sgs_per_request,
  4248. skreq->sksg_dma_address);
  4249. skreq->sksg_list = NULL;
  4250. skreq->sksg_dma_address = 0;
  4251. kfree(skreq->sg);
  4252. }
  4253. kfree(skdev->skreq_table);
  4254. skdev->skreq_table = NULL;
  4255. }
  4256. static void skd_free_skspcl(struct skd_device *skdev)
  4257. {
  4258. u32 i;
  4259. u32 nbytes;
  4260. if (skdev->skspcl_table == NULL)
  4261. return;
  4262. for (i = 0; i < skdev->n_special; i++) {
  4263. struct skd_special_context *skspcl;
  4264. skspcl = &skdev->skspcl_table[i];
  4265. if (skspcl->msg_buf != NULL) {
  4266. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  4267. pci_free_consistent(skdev->pdev, nbytes,
  4268. skspcl->msg_buf,
  4269. skspcl->mb_dma_address);
  4270. }
  4271. skspcl->msg_buf = NULL;
  4272. skspcl->mb_dma_address = 0;
  4273. skd_free_sg_list(skdev, skspcl->req.sksg_list,
  4274. SKD_N_SG_PER_SPECIAL,
  4275. skspcl->req.sksg_dma_address);
  4276. skspcl->req.sksg_list = NULL;
  4277. skspcl->req.sksg_dma_address = 0;
  4278. kfree(skspcl->req.sg);
  4279. }
  4280. kfree(skdev->skspcl_table);
  4281. skdev->skspcl_table = NULL;
  4282. }
  4283. static void skd_free_sksb(struct skd_device *skdev)
  4284. {
  4285. struct skd_special_context *skspcl;
  4286. u32 nbytes;
  4287. skspcl = &skdev->internal_skspcl;
  4288. if (skspcl->data_buf != NULL) {
  4289. nbytes = SKD_N_INTERNAL_BYTES;
  4290. pci_free_consistent(skdev->pdev, nbytes,
  4291. skspcl->data_buf, skspcl->db_dma_address);
  4292. }
  4293. skspcl->data_buf = NULL;
  4294. skspcl->db_dma_address = 0;
  4295. if (skspcl->msg_buf != NULL) {
  4296. nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
  4297. pci_free_consistent(skdev->pdev, nbytes,
  4298. skspcl->msg_buf, skspcl->mb_dma_address);
  4299. }
  4300. skspcl->msg_buf = NULL;
  4301. skspcl->mb_dma_address = 0;
  4302. skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
  4303. skspcl->req.sksg_dma_address);
  4304. skspcl->req.sksg_list = NULL;
  4305. skspcl->req.sksg_dma_address = 0;
  4306. }
  4307. static void skd_free_sg_list(struct skd_device *skdev,
  4308. struct fit_sg_descriptor *sg_list,
  4309. u32 n_sg, dma_addr_t dma_addr)
  4310. {
  4311. if (sg_list != NULL) {
  4312. u32 nbytes;
  4313. nbytes = sizeof(*sg_list) * n_sg;
  4314. pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
  4315. }
  4316. }
  4317. static void skd_free_disk(struct skd_device *skdev)
  4318. {
  4319. struct gendisk *disk = skdev->disk;
  4320. if (disk != NULL) {
  4321. struct request_queue *q = disk->queue;
  4322. if (disk->flags & GENHD_FL_UP)
  4323. del_gendisk(disk);
  4324. if (q)
  4325. blk_cleanup_queue(q);
  4326. put_disk(disk);
  4327. }
  4328. skdev->disk = NULL;
  4329. }
  4330. /*
  4331. *****************************************************************************
  4332. * BLOCK DEVICE (BDEV) GLUE
  4333. *****************************************************************************
  4334. */
  4335. static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4336. {
  4337. struct skd_device *skdev;
  4338. u64 capacity;
  4339. skdev = bdev->bd_disk->private_data;
  4340. pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
  4341. skdev->name, __func__, __LINE__,
  4342. bdev->bd_disk->disk_name, current->comm);
  4343. if (skdev->read_cap_is_valid) {
  4344. capacity = get_capacity(skdev->disk);
  4345. geo->heads = 64;
  4346. geo->sectors = 255;
  4347. geo->cylinders = (capacity) / (255 * 64);
  4348. return 0;
  4349. }
  4350. return -EIO;
  4351. }
  4352. static int skd_bdev_attach(struct skd_device *skdev)
  4353. {
  4354. pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
  4355. add_disk(skdev->disk);
  4356. return 0;
  4357. }
  4358. static const struct block_device_operations skd_blockdev_ops = {
  4359. .owner = THIS_MODULE,
  4360. .ioctl = skd_bdev_ioctl,
  4361. .getgeo = skd_bdev_getgeo,
  4362. };
  4363. /*
  4364. *****************************************************************************
  4365. * PCIe DRIVER GLUE
  4366. *****************************************************************************
  4367. */
  4368. static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
  4369. { PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
  4370. PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
  4371. { 0 } /* terminate list */
  4372. };
  4373. MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
  4374. static char *skd_pci_info(struct skd_device *skdev, char *str)
  4375. {
  4376. int pcie_reg;
  4377. strcpy(str, "PCIe (");
  4378. pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
  4379. if (pcie_reg) {
  4380. char lwstr[6];
  4381. uint16_t pcie_lstat, lspeed, lwidth;
  4382. pcie_reg += 0x12;
  4383. pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
  4384. lspeed = pcie_lstat & (0xF);
  4385. lwidth = (pcie_lstat & 0x3F0) >> 4;
  4386. if (lspeed == 1)
  4387. strcat(str, "2.5GT/s ");
  4388. else if (lspeed == 2)
  4389. strcat(str, "5.0GT/s ");
  4390. else
  4391. strcat(str, "<unknown> ");
  4392. snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
  4393. strcat(str, lwstr);
  4394. }
  4395. return str;
  4396. }
  4397. static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  4398. {
  4399. int i;
  4400. int rc = 0;
  4401. char pci_str[32];
  4402. struct skd_device *skdev;
  4403. pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
  4404. DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
  4405. pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
  4406. pci_name(pdev), pdev->vendor, pdev->device);
  4407. rc = pci_enable_device(pdev);
  4408. if (rc)
  4409. return rc;
  4410. rc = pci_request_regions(pdev, DRV_NAME);
  4411. if (rc)
  4412. goto err_out;
  4413. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4414. if (!rc) {
  4415. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4416. pr_err("(%s): consistent DMA mask error %d\n",
  4417. pci_name(pdev), rc);
  4418. }
  4419. } else {
  4420. (rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
  4421. if (rc) {
  4422. pr_err("(%s): DMA mask error %d\n",
  4423. pci_name(pdev), rc);
  4424. goto err_out_regions;
  4425. }
  4426. }
  4427. skdev = skd_construct(pdev);
  4428. if (skdev == NULL) {
  4429. rc = -ENOMEM;
  4430. goto err_out_regions;
  4431. }
  4432. skd_pci_info(skdev, pci_str);
  4433. pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
  4434. pci_set_master(pdev);
  4435. rc = pci_enable_pcie_error_reporting(pdev);
  4436. if (rc) {
  4437. pr_err(
  4438. "(%s): bad enable of PCIe error reporting rc=%d\n",
  4439. skd_name(skdev), rc);
  4440. skdev->pcie_error_reporting_is_enabled = 0;
  4441. } else
  4442. skdev->pcie_error_reporting_is_enabled = 1;
  4443. pci_set_drvdata(pdev, skdev);
  4444. skdev->pdev = pdev;
  4445. skdev->disk->driverfs_dev = &pdev->dev;
  4446. for (i = 0; i < SKD_MAX_BARS; i++) {
  4447. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4448. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4449. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4450. skdev->mem_size[i]);
  4451. if (!skdev->mem_map[i]) {
  4452. pr_err("(%s): Unable to map adapter memory!\n",
  4453. skd_name(skdev));
  4454. rc = -ENODEV;
  4455. goto err_out_iounmap;
  4456. }
  4457. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4458. skdev->name, __func__, __LINE__,
  4459. skdev->mem_map[i],
  4460. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4461. }
  4462. rc = skd_acquire_irq(skdev);
  4463. if (rc) {
  4464. pr_err("(%s): interrupt resource error %d\n",
  4465. skd_name(skdev), rc);
  4466. goto err_out_iounmap;
  4467. }
  4468. rc = skd_start_timer(skdev);
  4469. if (rc)
  4470. goto err_out_timer;
  4471. init_waitqueue_head(&skdev->waitq);
  4472. skd_start_device(skdev);
  4473. rc = wait_event_interruptible_timeout(skdev->waitq,
  4474. (skdev->gendisk_on),
  4475. (SKD_START_WAIT_SECONDS * HZ));
  4476. if (skdev->gendisk_on > 0) {
  4477. /* device came on-line after reset */
  4478. skd_bdev_attach(skdev);
  4479. rc = 0;
  4480. } else {
  4481. /* we timed out, something is wrong with the device,
  4482. don't add the disk structure */
  4483. pr_err(
  4484. "(%s): error: waiting for s1120 timed out %d!\n",
  4485. skd_name(skdev), rc);
  4486. /* in case of no error; we timeout with ENXIO */
  4487. if (!rc)
  4488. rc = -ENXIO;
  4489. goto err_out_timer;
  4490. }
  4491. #ifdef SKD_VMK_POLL_HANDLER
  4492. if (skdev->irq_type == SKD_IRQ_MSIX) {
  4493. /* MSIX completion handler is being used for coredump */
  4494. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  4495. skdev->msix_entries[5].vector,
  4496. skd_comp_q, skdev);
  4497. } else {
  4498. vmklnx_scsi_register_poll_handler(skdev->scsi_host,
  4499. skdev->pdev->irq, skd_isr,
  4500. skdev);
  4501. }
  4502. #endif /* SKD_VMK_POLL_HANDLER */
  4503. return rc;
  4504. err_out_timer:
  4505. skd_stop_device(skdev);
  4506. skd_release_irq(skdev);
  4507. err_out_iounmap:
  4508. for (i = 0; i < SKD_MAX_BARS; i++)
  4509. if (skdev->mem_map[i])
  4510. iounmap(skdev->mem_map[i]);
  4511. if (skdev->pcie_error_reporting_is_enabled)
  4512. pci_disable_pcie_error_reporting(pdev);
  4513. skd_destruct(skdev);
  4514. err_out_regions:
  4515. pci_release_regions(pdev);
  4516. err_out:
  4517. pci_disable_device(pdev);
  4518. pci_set_drvdata(pdev, NULL);
  4519. return rc;
  4520. }
  4521. static void skd_pci_remove(struct pci_dev *pdev)
  4522. {
  4523. int i;
  4524. struct skd_device *skdev;
  4525. skdev = pci_get_drvdata(pdev);
  4526. if (!skdev) {
  4527. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4528. return;
  4529. }
  4530. skd_stop_device(skdev);
  4531. skd_release_irq(skdev);
  4532. for (i = 0; i < SKD_MAX_BARS; i++)
  4533. if (skdev->mem_map[i])
  4534. iounmap((u32 *)skdev->mem_map[i]);
  4535. if (skdev->pcie_error_reporting_is_enabled)
  4536. pci_disable_pcie_error_reporting(pdev);
  4537. skd_destruct(skdev);
  4538. pci_release_regions(pdev);
  4539. pci_disable_device(pdev);
  4540. pci_set_drvdata(pdev, NULL);
  4541. return;
  4542. }
  4543. static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  4544. {
  4545. int i;
  4546. struct skd_device *skdev;
  4547. skdev = pci_get_drvdata(pdev);
  4548. if (!skdev) {
  4549. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4550. return -EIO;
  4551. }
  4552. skd_stop_device(skdev);
  4553. skd_release_irq(skdev);
  4554. for (i = 0; i < SKD_MAX_BARS; i++)
  4555. if (skdev->mem_map[i])
  4556. iounmap((u32 *)skdev->mem_map[i]);
  4557. if (skdev->pcie_error_reporting_is_enabled)
  4558. pci_disable_pcie_error_reporting(pdev);
  4559. pci_release_regions(pdev);
  4560. pci_save_state(pdev);
  4561. pci_disable_device(pdev);
  4562. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4563. return 0;
  4564. }
  4565. static int skd_pci_resume(struct pci_dev *pdev)
  4566. {
  4567. int i;
  4568. int rc = 0;
  4569. struct skd_device *skdev;
  4570. skdev = pci_get_drvdata(pdev);
  4571. if (!skdev) {
  4572. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4573. return -1;
  4574. }
  4575. pci_set_power_state(pdev, PCI_D0);
  4576. pci_enable_wake(pdev, PCI_D0, 0);
  4577. pci_restore_state(pdev);
  4578. rc = pci_enable_device(pdev);
  4579. if (rc)
  4580. return rc;
  4581. rc = pci_request_regions(pdev, DRV_NAME);
  4582. if (rc)
  4583. goto err_out;
  4584. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4585. if (!rc) {
  4586. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4587. pr_err("(%s): consistent DMA mask error %d\n",
  4588. pci_name(pdev), rc);
  4589. }
  4590. } else {
  4591. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4592. if (rc) {
  4593. pr_err("(%s): DMA mask error %d\n",
  4594. pci_name(pdev), rc);
  4595. goto err_out_regions;
  4596. }
  4597. }
  4598. pci_set_master(pdev);
  4599. rc = pci_enable_pcie_error_reporting(pdev);
  4600. if (rc) {
  4601. pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
  4602. skdev->name, rc);
  4603. skdev->pcie_error_reporting_is_enabled = 0;
  4604. } else
  4605. skdev->pcie_error_reporting_is_enabled = 1;
  4606. for (i = 0; i < SKD_MAX_BARS; i++) {
  4607. skdev->mem_phys[i] = pci_resource_start(pdev, i);
  4608. skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
  4609. skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
  4610. skdev->mem_size[i]);
  4611. if (!skdev->mem_map[i]) {
  4612. pr_err("(%s): Unable to map adapter memory!\n",
  4613. skd_name(skdev));
  4614. rc = -ENODEV;
  4615. goto err_out_iounmap;
  4616. }
  4617. pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
  4618. skdev->name, __func__, __LINE__,
  4619. skdev->mem_map[i],
  4620. (uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
  4621. }
  4622. rc = skd_acquire_irq(skdev);
  4623. if (rc) {
  4624. pr_err("(%s): interrupt resource error %d\n",
  4625. pci_name(pdev), rc);
  4626. goto err_out_iounmap;
  4627. }
  4628. rc = skd_start_timer(skdev);
  4629. if (rc)
  4630. goto err_out_timer;
  4631. init_waitqueue_head(&skdev->waitq);
  4632. skd_start_device(skdev);
  4633. return rc;
  4634. err_out_timer:
  4635. skd_stop_device(skdev);
  4636. skd_release_irq(skdev);
  4637. err_out_iounmap:
  4638. for (i = 0; i < SKD_MAX_BARS; i++)
  4639. if (skdev->mem_map[i])
  4640. iounmap(skdev->mem_map[i]);
  4641. if (skdev->pcie_error_reporting_is_enabled)
  4642. pci_disable_pcie_error_reporting(pdev);
  4643. err_out_regions:
  4644. pci_release_regions(pdev);
  4645. err_out:
  4646. pci_disable_device(pdev);
  4647. return rc;
  4648. }
  4649. static void skd_pci_shutdown(struct pci_dev *pdev)
  4650. {
  4651. struct skd_device *skdev;
  4652. pr_err("skd_pci_shutdown called\n");
  4653. skdev = pci_get_drvdata(pdev);
  4654. if (!skdev) {
  4655. pr_err("%s: no device data for PCI\n", pci_name(pdev));
  4656. return;
  4657. }
  4658. pr_err("%s: calling stop\n", skd_name(skdev));
  4659. skd_stop_device(skdev);
  4660. }
  4661. static struct pci_driver skd_driver = {
  4662. .name = DRV_NAME,
  4663. .id_table = skd_pci_tbl,
  4664. .probe = skd_pci_probe,
  4665. .remove = skd_pci_remove,
  4666. .suspend = skd_pci_suspend,
  4667. .resume = skd_pci_resume,
  4668. .shutdown = skd_pci_shutdown,
  4669. };
  4670. /*
  4671. *****************************************************************************
  4672. * LOGGING SUPPORT
  4673. *****************************************************************************
  4674. */
  4675. static const char *skd_name(struct skd_device *skdev)
  4676. {
  4677. memset(skdev->id_str, 0, sizeof(skdev->id_str));
  4678. if (skdev->inquiry_is_valid)
  4679. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
  4680. skdev->name, skdev->inq_serial_num,
  4681. pci_name(skdev->pdev));
  4682. else
  4683. snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
  4684. skdev->name, pci_name(skdev->pdev));
  4685. return skdev->id_str;
  4686. }
  4687. const char *skd_drive_state_to_str(int state)
  4688. {
  4689. switch (state) {
  4690. case FIT_SR_DRIVE_OFFLINE:
  4691. return "OFFLINE";
  4692. case FIT_SR_DRIVE_INIT:
  4693. return "INIT";
  4694. case FIT_SR_DRIVE_ONLINE:
  4695. return "ONLINE";
  4696. case FIT_SR_DRIVE_BUSY:
  4697. return "BUSY";
  4698. case FIT_SR_DRIVE_FAULT:
  4699. return "FAULT";
  4700. case FIT_SR_DRIVE_DEGRADED:
  4701. return "DEGRADED";
  4702. case FIT_SR_PCIE_LINK_DOWN:
  4703. return "INK_DOWN";
  4704. case FIT_SR_DRIVE_SOFT_RESET:
  4705. return "SOFT_RESET";
  4706. case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
  4707. return "NEED_FW";
  4708. case FIT_SR_DRIVE_INIT_FAULT:
  4709. return "INIT_FAULT";
  4710. case FIT_SR_DRIVE_BUSY_SANITIZE:
  4711. return "BUSY_SANITIZE";
  4712. case FIT_SR_DRIVE_BUSY_ERASE:
  4713. return "BUSY_ERASE";
  4714. case FIT_SR_DRIVE_FW_BOOTING:
  4715. return "FW_BOOTING";
  4716. default:
  4717. return "???";
  4718. }
  4719. }
  4720. const char *skd_skdev_state_to_str(enum skd_drvr_state state)
  4721. {
  4722. switch (state) {
  4723. case SKD_DRVR_STATE_LOAD:
  4724. return "LOAD";
  4725. case SKD_DRVR_STATE_IDLE:
  4726. return "IDLE";
  4727. case SKD_DRVR_STATE_BUSY:
  4728. return "BUSY";
  4729. case SKD_DRVR_STATE_STARTING:
  4730. return "STARTING";
  4731. case SKD_DRVR_STATE_ONLINE:
  4732. return "ONLINE";
  4733. case SKD_DRVR_STATE_PAUSING:
  4734. return "PAUSING";
  4735. case SKD_DRVR_STATE_PAUSED:
  4736. return "PAUSED";
  4737. case SKD_DRVR_STATE_DRAINING_TIMEOUT:
  4738. return "DRAINING_TIMEOUT";
  4739. case SKD_DRVR_STATE_RESTARTING:
  4740. return "RESTARTING";
  4741. case SKD_DRVR_STATE_RESUMING:
  4742. return "RESUMING";
  4743. case SKD_DRVR_STATE_STOPPING:
  4744. return "STOPPING";
  4745. case SKD_DRVR_STATE_SYNCING:
  4746. return "SYNCING";
  4747. case SKD_DRVR_STATE_FAULT:
  4748. return "FAULT";
  4749. case SKD_DRVR_STATE_DISAPPEARED:
  4750. return "DISAPPEARED";
  4751. case SKD_DRVR_STATE_BUSY_ERASE:
  4752. return "BUSY_ERASE";
  4753. case SKD_DRVR_STATE_BUSY_SANITIZE:
  4754. return "BUSY_SANITIZE";
  4755. case SKD_DRVR_STATE_BUSY_IMMINENT:
  4756. return "BUSY_IMMINENT";
  4757. case SKD_DRVR_STATE_WAIT_BOOT:
  4758. return "WAIT_BOOT";
  4759. default:
  4760. return "???";
  4761. }
  4762. }
  4763. const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
  4764. {
  4765. switch (state) {
  4766. case SKD_MSG_STATE_IDLE:
  4767. return "IDLE";
  4768. case SKD_MSG_STATE_BUSY:
  4769. return "BUSY";
  4770. default:
  4771. return "???";
  4772. }
  4773. }
  4774. const char *skd_skreq_state_to_str(enum skd_req_state state)
  4775. {
  4776. switch (state) {
  4777. case SKD_REQ_STATE_IDLE:
  4778. return "IDLE";
  4779. case SKD_REQ_STATE_SETUP:
  4780. return "SETUP";
  4781. case SKD_REQ_STATE_BUSY:
  4782. return "BUSY";
  4783. case SKD_REQ_STATE_COMPLETED:
  4784. return "COMPLETED";
  4785. case SKD_REQ_STATE_TIMEOUT:
  4786. return "TIMEOUT";
  4787. case SKD_REQ_STATE_ABORTED:
  4788. return "ABORTED";
  4789. default:
  4790. return "???";
  4791. }
  4792. }
  4793. static void skd_log_skdev(struct skd_device *skdev, const char *event)
  4794. {
  4795. pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
  4796. skdev->name, __func__, __LINE__, skdev->name, skdev, event);
  4797. pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
  4798. skdev->name, __func__, __LINE__,
  4799. skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
  4800. skd_skdev_state_to_str(skdev->state), skdev->state);
  4801. pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
  4802. skdev->name, __func__, __LINE__,
  4803. skdev->in_flight, skdev->cur_max_queue_depth,
  4804. skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
  4805. pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
  4806. skdev->name, __func__, __LINE__,
  4807. skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
  4808. }
  4809. static void skd_log_skmsg(struct skd_device *skdev,
  4810. struct skd_fitmsg_context *skmsg, const char *event)
  4811. {
  4812. pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
  4813. skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
  4814. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
  4815. skdev->name, __func__, __LINE__,
  4816. skd_skmsg_state_to_str(skmsg->state), skmsg->state,
  4817. skmsg->id, skmsg->length);
  4818. }
  4819. static void skd_log_skreq(struct skd_device *skdev,
  4820. struct skd_request_context *skreq, const char *event)
  4821. {
  4822. pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
  4823. skdev->name, __func__, __LINE__, skdev->name, skreq, event);
  4824. pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
  4825. skdev->name, __func__, __LINE__,
  4826. skd_skreq_state_to_str(skreq->state), skreq->state,
  4827. skreq->id, skreq->fitmsg_id);
  4828. pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
  4829. skdev->name, __func__, __LINE__,
  4830. skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
  4831. if (!skd_bio) {
  4832. if (skreq->req != NULL) {
  4833. struct request *req = skreq->req;
  4834. u32 lba = (u32)blk_rq_pos(req);
  4835. u32 count = blk_rq_sectors(req);
  4836. pr_debug("%s:%s:%d "
  4837. "req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
  4838. skdev->name, __func__, __LINE__,
  4839. req, lba, lba, count, count,
  4840. (int)rq_data_dir(req));
  4841. } else
  4842. pr_debug("%s:%s:%d req=NULL\n",
  4843. skdev->name, __func__, __LINE__);
  4844. } else {
  4845. if (skreq->bio != NULL) {
  4846. struct bio *bio = skreq->bio;
  4847. u32 lba = (u32)bio->bi_sector;
  4848. u32 count = bio_sectors(bio);
  4849. pr_debug("%s:%s:%d "
  4850. "bio=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
  4851. skdev->name, __func__, __LINE__,
  4852. bio, lba, lba, count, count,
  4853. (int)bio_data_dir(bio));
  4854. } else
  4855. pr_debug("%s:%s:%d req=NULL\n",
  4856. skdev->name, __func__, __LINE__);
  4857. }
  4858. }
  4859. /*
  4860. *****************************************************************************
  4861. * MODULE GLUE
  4862. *****************************************************************************
  4863. */
  4864. static int __init skd_init(void)
  4865. {
  4866. int rc = 0;
  4867. pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
  4868. switch (skd_isr_type) {
  4869. case SKD_IRQ_LEGACY:
  4870. case SKD_IRQ_MSI:
  4871. case SKD_IRQ_MSIX:
  4872. break;
  4873. default:
  4874. pr_info("skd_isr_type %d invalid, re-set to %d\n",
  4875. skd_isr_type, SKD_IRQ_DEFAULT);
  4876. skd_isr_type = SKD_IRQ_DEFAULT;
  4877. }
  4878. skd_flush_slab = kmem_cache_create(SKD_FLUSH_JOB,
  4879. sizeof(struct skd_flush_cmd),
  4880. 0, 0, NULL);
  4881. if (!skd_flush_slab) {
  4882. pr_err("failed to allocated flush slab.\n");
  4883. return -ENOMEM;
  4884. }
  4885. if (skd_max_queue_depth < 1
  4886. || skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
  4887. pr_info(
  4888. "skd_max_queue_depth %d invalid, re-set to %d\n",
  4889. skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
  4890. skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
  4891. }
  4892. if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
  4893. pr_info(
  4894. "skd_max_req_per_msg %d invalid, re-set to %d\n",
  4895. skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
  4896. skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
  4897. }
  4898. if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
  4899. pr_info(
  4900. "skd_sg_per_request %d invalid, re-set to %d\n",
  4901. skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
  4902. skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
  4903. }
  4904. if (skd_dbg_level < 0 || skd_dbg_level > 2) {
  4905. pr_info("skd_dbg_level %d invalid, re-set to %d\n",
  4906. skd_dbg_level, 0);
  4907. skd_dbg_level = 0;
  4908. }
  4909. if (skd_isr_comp_limit < 0) {
  4910. pr_info("skd_isr_comp_limit %d invalid, set to %d\n",
  4911. skd_isr_comp_limit, 0);
  4912. skd_isr_comp_limit = 0;
  4913. }
  4914. if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
  4915. pr_info("skd_max_pass_thru %d invalid, re-set to %d\n",
  4916. skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
  4917. skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
  4918. }
  4919. /* Obtain major device number. */
  4920. rc = register_blkdev(0, DRV_NAME);
  4921. if (rc < 0)
  4922. return rc;
  4923. skd_major = rc;
  4924. return pci_register_driver(&skd_driver);
  4925. }
  4926. static void __exit skd_exit(void)
  4927. {
  4928. pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
  4929. unregister_blkdev(skd_major, DRV_NAME);
  4930. pci_unregister_driver(&skd_driver);
  4931. kmem_cache_destroy(skd_flush_slab);
  4932. }
  4933. static int
  4934. skd_flush_cmd_enqueue(struct skd_device *skdev, void *cmd)
  4935. {
  4936. struct skd_flush_cmd *item;
  4937. item = kmem_cache_zalloc(skd_flush_slab, GFP_ATOMIC);
  4938. if (!item) {
  4939. pr_err("skd_flush_cmd_enqueue: Failed to allocated item.\n");
  4940. return -ENOMEM;
  4941. }
  4942. item->cmd = cmd;
  4943. list_add_tail(&item->flist, &skdev->flush_list);
  4944. return 0;
  4945. }
  4946. static void *
  4947. skd_flush_cmd_dequeue(struct skd_device *skdev)
  4948. {
  4949. void *cmd;
  4950. struct skd_flush_cmd *item;
  4951. item = list_entry(skdev->flush_list.next, struct skd_flush_cmd, flist);
  4952. list_del_init(&item->flist);
  4953. cmd = item->cmd;
  4954. kmem_cache_free(skd_flush_slab, item);
  4955. return cmd;
  4956. }
  4957. module_init(skd_init);
  4958. module_exit(skd_exit);