vmx.c 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include "trace.h"
  38. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  39. MODULE_AUTHOR("Qumranet");
  40. MODULE_LICENSE("GPL");
  41. static int __read_mostly bypass_guest_pf = 1;
  42. module_param(bypass_guest_pf, bool, S_IRUGO);
  43. static int __read_mostly enable_vpid = 1;
  44. module_param_named(vpid, enable_vpid, bool, 0444);
  45. static int __read_mostly flexpriority_enabled = 1;
  46. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  47. static int __read_mostly enable_ept = 1;
  48. module_param_named(ept, enable_ept, bool, S_IRUGO);
  49. static int __read_mostly enable_unrestricted_guest = 1;
  50. module_param_named(unrestricted_guest,
  51. enable_unrestricted_guest, bool, S_IRUGO);
  52. static int __read_mostly emulate_invalid_guest_state = 0;
  53. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  54. static int __read_mostly vmm_exclusive = 1;
  55. module_param(vmm_exclusive, bool, S_IRUGO);
  56. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  57. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  58. #define KVM_GUEST_CR0_MASK \
  59. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  60. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  61. (X86_CR0_WP | X86_CR0_NE)
  62. #define KVM_VM_CR0_ALWAYS_ON \
  63. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  64. #define KVM_CR4_GUEST_OWNED_BITS \
  65. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXMMEXCPT)
  67. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  68. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  69. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  70. /*
  71. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  72. * ple_gap: upper bound on the amount of time between two successive
  73. * executions of PAUSE in a loop. Also indicate if ple enabled.
  74. * According to test, this time is usually small than 41 cycles.
  75. * ple_window: upper bound on the amount of time a guest is allowed to execute
  76. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  77. * less than 2^12 cycles
  78. * Time is measured based on a counter that runs at the same rate as the TSC,
  79. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  80. */
  81. #define KVM_VMX_DEFAULT_PLE_GAP 41
  82. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  83. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  84. module_param(ple_gap, int, S_IRUGO);
  85. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  86. module_param(ple_window, int, S_IRUGO);
  87. #define NR_AUTOLOAD_MSRS 1
  88. struct vmcs {
  89. u32 revision_id;
  90. u32 abort;
  91. char data[0];
  92. };
  93. struct shared_msr_entry {
  94. unsigned index;
  95. u64 data;
  96. u64 mask;
  97. };
  98. struct vcpu_vmx {
  99. struct kvm_vcpu vcpu;
  100. struct list_head local_vcpus_link;
  101. unsigned long host_rsp;
  102. int launched;
  103. u8 fail;
  104. u32 idt_vectoring_info;
  105. struct shared_msr_entry *guest_msrs;
  106. int nmsrs;
  107. int save_nmsrs;
  108. #ifdef CONFIG_X86_64
  109. u64 msr_host_kernel_gs_base;
  110. u64 msr_guest_kernel_gs_base;
  111. #endif
  112. struct vmcs *vmcs;
  113. struct msr_autoload {
  114. unsigned nr;
  115. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  116. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  117. } msr_autoload;
  118. struct {
  119. int loaded;
  120. u16 fs_sel, gs_sel, ldt_sel;
  121. int gs_ldt_reload_needed;
  122. int fs_reload_needed;
  123. } host_state;
  124. struct {
  125. int vm86_active;
  126. ulong save_rflags;
  127. struct kvm_save_segment {
  128. u16 selector;
  129. unsigned long base;
  130. u32 limit;
  131. u32 ar;
  132. } tr, es, ds, fs, gs;
  133. struct {
  134. bool pending;
  135. u8 vector;
  136. unsigned rip;
  137. } irq;
  138. } rmode;
  139. int vpid;
  140. bool emulation_required;
  141. /* Support for vnmi-less CPUs */
  142. int soft_vnmi_blocked;
  143. ktime_t entry_time;
  144. s64 vnmi_blocked_time;
  145. u32 exit_reason;
  146. bool rdtscp_enabled;
  147. };
  148. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  149. {
  150. return container_of(vcpu, struct vcpu_vmx, vcpu);
  151. }
  152. static int init_rmode(struct kvm *kvm);
  153. static u64 construct_eptp(unsigned long root_hpa);
  154. static void kvm_cpu_vmxon(u64 addr);
  155. static void kvm_cpu_vmxoff(void);
  156. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  157. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  158. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  159. static unsigned long *vmx_io_bitmap_a;
  160. static unsigned long *vmx_io_bitmap_b;
  161. static unsigned long *vmx_msr_bitmap_legacy;
  162. static unsigned long *vmx_msr_bitmap_longmode;
  163. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  164. static DEFINE_SPINLOCK(vmx_vpid_lock);
  165. static struct vmcs_config {
  166. int size;
  167. int order;
  168. u32 revision_id;
  169. u32 pin_based_exec_ctrl;
  170. u32 cpu_based_exec_ctrl;
  171. u32 cpu_based_2nd_exec_ctrl;
  172. u32 vmexit_ctrl;
  173. u32 vmentry_ctrl;
  174. } vmcs_config;
  175. static struct vmx_capability {
  176. u32 ept;
  177. u32 vpid;
  178. } vmx_capability;
  179. #define VMX_SEGMENT_FIELD(seg) \
  180. [VCPU_SREG_##seg] = { \
  181. .selector = GUEST_##seg##_SELECTOR, \
  182. .base = GUEST_##seg##_BASE, \
  183. .limit = GUEST_##seg##_LIMIT, \
  184. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  185. }
  186. static struct kvm_vmx_segment_field {
  187. unsigned selector;
  188. unsigned base;
  189. unsigned limit;
  190. unsigned ar_bytes;
  191. } kvm_vmx_segment_fields[] = {
  192. VMX_SEGMENT_FIELD(CS),
  193. VMX_SEGMENT_FIELD(DS),
  194. VMX_SEGMENT_FIELD(ES),
  195. VMX_SEGMENT_FIELD(FS),
  196. VMX_SEGMENT_FIELD(GS),
  197. VMX_SEGMENT_FIELD(SS),
  198. VMX_SEGMENT_FIELD(TR),
  199. VMX_SEGMENT_FIELD(LDTR),
  200. };
  201. static u64 host_efer;
  202. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  203. /*
  204. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  205. * away by decrementing the array size.
  206. */
  207. static const u32 vmx_msr_index[] = {
  208. #ifdef CONFIG_X86_64
  209. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  210. #endif
  211. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  212. };
  213. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  214. static inline bool is_page_fault(u32 intr_info)
  215. {
  216. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  217. INTR_INFO_VALID_MASK)) ==
  218. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  219. }
  220. static inline bool is_no_device(u32 intr_info)
  221. {
  222. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  223. INTR_INFO_VALID_MASK)) ==
  224. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  225. }
  226. static inline bool is_invalid_opcode(u32 intr_info)
  227. {
  228. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  229. INTR_INFO_VALID_MASK)) ==
  230. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  231. }
  232. static inline bool is_external_interrupt(u32 intr_info)
  233. {
  234. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  235. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  236. }
  237. static inline bool is_machine_check(u32 intr_info)
  238. {
  239. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  240. INTR_INFO_VALID_MASK)) ==
  241. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  242. }
  243. static inline bool cpu_has_vmx_msr_bitmap(void)
  244. {
  245. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  246. }
  247. static inline bool cpu_has_vmx_tpr_shadow(void)
  248. {
  249. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  250. }
  251. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  252. {
  253. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  254. }
  255. static inline bool cpu_has_secondary_exec_ctrls(void)
  256. {
  257. return vmcs_config.cpu_based_exec_ctrl &
  258. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  259. }
  260. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  261. {
  262. return vmcs_config.cpu_based_2nd_exec_ctrl &
  263. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  264. }
  265. static inline bool cpu_has_vmx_flexpriority(void)
  266. {
  267. return cpu_has_vmx_tpr_shadow() &&
  268. cpu_has_vmx_virtualize_apic_accesses();
  269. }
  270. static inline bool cpu_has_vmx_ept_execute_only(void)
  271. {
  272. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  273. }
  274. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  275. {
  276. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  277. }
  278. static inline bool cpu_has_vmx_eptp_writeback(void)
  279. {
  280. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  281. }
  282. static inline bool cpu_has_vmx_ept_2m_page(void)
  283. {
  284. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  285. }
  286. static inline bool cpu_has_vmx_ept_1g_page(void)
  287. {
  288. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  289. }
  290. static inline bool cpu_has_vmx_ept_4levels(void)
  291. {
  292. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  293. }
  294. static inline bool cpu_has_vmx_invept_individual_addr(void)
  295. {
  296. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  297. }
  298. static inline bool cpu_has_vmx_invept_context(void)
  299. {
  300. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  301. }
  302. static inline bool cpu_has_vmx_invept_global(void)
  303. {
  304. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  305. }
  306. static inline bool cpu_has_vmx_invvpid_single(void)
  307. {
  308. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  309. }
  310. static inline bool cpu_has_vmx_invvpid_global(void)
  311. {
  312. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  313. }
  314. static inline bool cpu_has_vmx_ept(void)
  315. {
  316. return vmcs_config.cpu_based_2nd_exec_ctrl &
  317. SECONDARY_EXEC_ENABLE_EPT;
  318. }
  319. static inline bool cpu_has_vmx_unrestricted_guest(void)
  320. {
  321. return vmcs_config.cpu_based_2nd_exec_ctrl &
  322. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  323. }
  324. static inline bool cpu_has_vmx_ple(void)
  325. {
  326. return vmcs_config.cpu_based_2nd_exec_ctrl &
  327. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  328. }
  329. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  330. {
  331. return flexpriority_enabled && irqchip_in_kernel(kvm);
  332. }
  333. static inline bool cpu_has_vmx_vpid(void)
  334. {
  335. return vmcs_config.cpu_based_2nd_exec_ctrl &
  336. SECONDARY_EXEC_ENABLE_VPID;
  337. }
  338. static inline bool cpu_has_vmx_rdtscp(void)
  339. {
  340. return vmcs_config.cpu_based_2nd_exec_ctrl &
  341. SECONDARY_EXEC_RDTSCP;
  342. }
  343. static inline bool cpu_has_virtual_nmis(void)
  344. {
  345. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  346. }
  347. static inline bool report_flexpriority(void)
  348. {
  349. return flexpriority_enabled;
  350. }
  351. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  352. {
  353. int i;
  354. for (i = 0; i < vmx->nmsrs; ++i)
  355. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  356. return i;
  357. return -1;
  358. }
  359. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  360. {
  361. struct {
  362. u64 vpid : 16;
  363. u64 rsvd : 48;
  364. u64 gva;
  365. } operand = { vpid, 0, gva };
  366. asm volatile (__ex(ASM_VMX_INVVPID)
  367. /* CF==1 or ZF==1 --> rc = -1 */
  368. "; ja 1f ; ud2 ; 1:"
  369. : : "a"(&operand), "c"(ext) : "cc", "memory");
  370. }
  371. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  372. {
  373. struct {
  374. u64 eptp, gpa;
  375. } operand = {eptp, gpa};
  376. asm volatile (__ex(ASM_VMX_INVEPT)
  377. /* CF==1 or ZF==1 --> rc = -1 */
  378. "; ja 1f ; ud2 ; 1:\n"
  379. : : "a" (&operand), "c" (ext) : "cc", "memory");
  380. }
  381. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  382. {
  383. int i;
  384. i = __find_msr_index(vmx, msr);
  385. if (i >= 0)
  386. return &vmx->guest_msrs[i];
  387. return NULL;
  388. }
  389. static void vmcs_clear(struct vmcs *vmcs)
  390. {
  391. u64 phys_addr = __pa(vmcs);
  392. u8 error;
  393. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  394. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  395. : "cc", "memory");
  396. if (error)
  397. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  398. vmcs, phys_addr);
  399. }
  400. static void vmcs_load(struct vmcs *vmcs)
  401. {
  402. u64 phys_addr = __pa(vmcs);
  403. u8 error;
  404. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  405. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  406. : "cc", "memory");
  407. if (error)
  408. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  409. vmcs, phys_addr);
  410. }
  411. static void __vcpu_clear(void *arg)
  412. {
  413. struct vcpu_vmx *vmx = arg;
  414. int cpu = raw_smp_processor_id();
  415. if (vmx->vcpu.cpu == cpu)
  416. vmcs_clear(vmx->vmcs);
  417. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  418. per_cpu(current_vmcs, cpu) = NULL;
  419. rdtscll(vmx->vcpu.arch.host_tsc);
  420. list_del(&vmx->local_vcpus_link);
  421. vmx->vcpu.cpu = -1;
  422. vmx->launched = 0;
  423. }
  424. static void vcpu_clear(struct vcpu_vmx *vmx)
  425. {
  426. if (vmx->vcpu.cpu == -1)
  427. return;
  428. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  429. }
  430. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  431. {
  432. if (vmx->vpid == 0)
  433. return;
  434. if (cpu_has_vmx_invvpid_single())
  435. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  436. }
  437. static inline void vpid_sync_vcpu_global(void)
  438. {
  439. if (cpu_has_vmx_invvpid_global())
  440. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  441. }
  442. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  443. {
  444. if (cpu_has_vmx_invvpid_single())
  445. vpid_sync_vcpu_single(vmx);
  446. else
  447. vpid_sync_vcpu_global();
  448. }
  449. static inline void ept_sync_global(void)
  450. {
  451. if (cpu_has_vmx_invept_global())
  452. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  453. }
  454. static inline void ept_sync_context(u64 eptp)
  455. {
  456. if (enable_ept) {
  457. if (cpu_has_vmx_invept_context())
  458. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  459. else
  460. ept_sync_global();
  461. }
  462. }
  463. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  464. {
  465. if (enable_ept) {
  466. if (cpu_has_vmx_invept_individual_addr())
  467. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  468. eptp, gpa);
  469. else
  470. ept_sync_context(eptp);
  471. }
  472. }
  473. static unsigned long vmcs_readl(unsigned long field)
  474. {
  475. unsigned long value;
  476. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  477. : "=a"(value) : "d"(field) : "cc");
  478. return value;
  479. }
  480. static u16 vmcs_read16(unsigned long field)
  481. {
  482. return vmcs_readl(field);
  483. }
  484. static u32 vmcs_read32(unsigned long field)
  485. {
  486. return vmcs_readl(field);
  487. }
  488. static u64 vmcs_read64(unsigned long field)
  489. {
  490. #ifdef CONFIG_X86_64
  491. return vmcs_readl(field);
  492. #else
  493. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  494. #endif
  495. }
  496. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  497. {
  498. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  499. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  500. dump_stack();
  501. }
  502. static void vmcs_writel(unsigned long field, unsigned long value)
  503. {
  504. u8 error;
  505. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  506. : "=q"(error) : "a"(value), "d"(field) : "cc");
  507. if (unlikely(error))
  508. vmwrite_error(field, value);
  509. }
  510. static void vmcs_write16(unsigned long field, u16 value)
  511. {
  512. vmcs_writel(field, value);
  513. }
  514. static void vmcs_write32(unsigned long field, u32 value)
  515. {
  516. vmcs_writel(field, value);
  517. }
  518. static void vmcs_write64(unsigned long field, u64 value)
  519. {
  520. vmcs_writel(field, value);
  521. #ifndef CONFIG_X86_64
  522. asm volatile ("");
  523. vmcs_writel(field+1, value >> 32);
  524. #endif
  525. }
  526. static void vmcs_clear_bits(unsigned long field, u32 mask)
  527. {
  528. vmcs_writel(field, vmcs_readl(field) & ~mask);
  529. }
  530. static void vmcs_set_bits(unsigned long field, u32 mask)
  531. {
  532. vmcs_writel(field, vmcs_readl(field) | mask);
  533. }
  534. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  535. {
  536. u32 eb;
  537. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  538. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  539. if ((vcpu->guest_debug &
  540. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  541. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  542. eb |= 1u << BP_VECTOR;
  543. if (to_vmx(vcpu)->rmode.vm86_active)
  544. eb = ~0;
  545. if (enable_ept)
  546. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  547. if (vcpu->fpu_active)
  548. eb &= ~(1u << NM_VECTOR);
  549. vmcs_write32(EXCEPTION_BITMAP, eb);
  550. }
  551. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  552. {
  553. unsigned i;
  554. struct msr_autoload *m = &vmx->msr_autoload;
  555. for (i = 0; i < m->nr; ++i)
  556. if (m->guest[i].index == msr)
  557. break;
  558. if (i == m->nr)
  559. return;
  560. --m->nr;
  561. m->guest[i] = m->guest[m->nr];
  562. m->host[i] = m->host[m->nr];
  563. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  564. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  565. }
  566. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  567. u64 guest_val, u64 host_val)
  568. {
  569. unsigned i;
  570. struct msr_autoload *m = &vmx->msr_autoload;
  571. for (i = 0; i < m->nr; ++i)
  572. if (m->guest[i].index == msr)
  573. break;
  574. if (i == m->nr) {
  575. ++m->nr;
  576. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  577. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  578. }
  579. m->guest[i].index = msr;
  580. m->guest[i].value = guest_val;
  581. m->host[i].index = msr;
  582. m->host[i].value = host_val;
  583. }
  584. static void reload_tss(void)
  585. {
  586. /*
  587. * VT restores TR but not its size. Useless.
  588. */
  589. struct desc_ptr gdt;
  590. struct desc_struct *descs;
  591. native_store_gdt(&gdt);
  592. descs = (void *)gdt.address;
  593. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  594. load_TR_desc();
  595. }
  596. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  597. {
  598. u64 guest_efer;
  599. u64 ignore_bits;
  600. guest_efer = vmx->vcpu.arch.efer;
  601. /*
  602. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  603. * outside long mode
  604. */
  605. ignore_bits = EFER_NX | EFER_SCE;
  606. #ifdef CONFIG_X86_64
  607. ignore_bits |= EFER_LMA | EFER_LME;
  608. /* SCE is meaningful only in long mode on Intel */
  609. if (guest_efer & EFER_LMA)
  610. ignore_bits &= ~(u64)EFER_SCE;
  611. #endif
  612. guest_efer &= ~ignore_bits;
  613. guest_efer |= host_efer & ignore_bits;
  614. vmx->guest_msrs[efer_offset].data = guest_efer;
  615. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  616. clear_atomic_switch_msr(vmx, MSR_EFER);
  617. /* On ept, can't emulate nx, and must switch nx atomically */
  618. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  619. guest_efer = vmx->vcpu.arch.efer;
  620. if (!(guest_efer & EFER_LMA))
  621. guest_efer &= ~EFER_LME;
  622. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  623. return false;
  624. }
  625. return true;
  626. }
  627. static unsigned long segment_base(u16 selector)
  628. {
  629. struct desc_ptr gdt;
  630. struct desc_struct *d;
  631. unsigned long table_base;
  632. unsigned long v;
  633. if (!(selector & ~3))
  634. return 0;
  635. native_store_gdt(&gdt);
  636. table_base = gdt.address;
  637. if (selector & 4) { /* from ldt */
  638. u16 ldt_selector = kvm_read_ldt();
  639. if (!(ldt_selector & ~3))
  640. return 0;
  641. table_base = segment_base(ldt_selector);
  642. }
  643. d = (struct desc_struct *)(table_base + (selector & ~7));
  644. v = get_desc_base(d);
  645. #ifdef CONFIG_X86_64
  646. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  647. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  648. #endif
  649. return v;
  650. }
  651. static inline unsigned long kvm_read_tr_base(void)
  652. {
  653. u16 tr;
  654. asm("str %0" : "=g"(tr));
  655. return segment_base(tr);
  656. }
  657. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  658. {
  659. struct vcpu_vmx *vmx = to_vmx(vcpu);
  660. int i;
  661. if (vmx->host_state.loaded)
  662. return;
  663. vmx->host_state.loaded = 1;
  664. /*
  665. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  666. * allow segment selectors with cpl > 0 or ti == 1.
  667. */
  668. vmx->host_state.ldt_sel = kvm_read_ldt();
  669. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  670. vmx->host_state.fs_sel = kvm_read_fs();
  671. if (!(vmx->host_state.fs_sel & 7)) {
  672. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  673. vmx->host_state.fs_reload_needed = 0;
  674. } else {
  675. vmcs_write16(HOST_FS_SELECTOR, 0);
  676. vmx->host_state.fs_reload_needed = 1;
  677. }
  678. vmx->host_state.gs_sel = kvm_read_gs();
  679. if (!(vmx->host_state.gs_sel & 7))
  680. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  681. else {
  682. vmcs_write16(HOST_GS_SELECTOR, 0);
  683. vmx->host_state.gs_ldt_reload_needed = 1;
  684. }
  685. #ifdef CONFIG_X86_64
  686. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  687. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  688. #else
  689. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  690. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  691. #endif
  692. #ifdef CONFIG_X86_64
  693. if (is_long_mode(&vmx->vcpu)) {
  694. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  695. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  696. }
  697. #endif
  698. for (i = 0; i < vmx->save_nmsrs; ++i)
  699. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  700. vmx->guest_msrs[i].data,
  701. vmx->guest_msrs[i].mask);
  702. }
  703. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  704. {
  705. unsigned long flags;
  706. if (!vmx->host_state.loaded)
  707. return;
  708. ++vmx->vcpu.stat.host_state_reload;
  709. vmx->host_state.loaded = 0;
  710. if (vmx->host_state.fs_reload_needed)
  711. kvm_load_fs(vmx->host_state.fs_sel);
  712. if (vmx->host_state.gs_ldt_reload_needed) {
  713. kvm_load_ldt(vmx->host_state.ldt_sel);
  714. /*
  715. * If we have to reload gs, we must take care to
  716. * preserve our gs base.
  717. */
  718. local_irq_save(flags);
  719. kvm_load_gs(vmx->host_state.gs_sel);
  720. #ifdef CONFIG_X86_64
  721. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  722. #endif
  723. local_irq_restore(flags);
  724. }
  725. reload_tss();
  726. #ifdef CONFIG_X86_64
  727. if (is_long_mode(&vmx->vcpu)) {
  728. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  729. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  730. }
  731. #endif
  732. if (current_thread_info()->status & TS_USEDFPU)
  733. clts();
  734. }
  735. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  736. {
  737. preempt_disable();
  738. __vmx_load_host_state(vmx);
  739. preempt_enable();
  740. }
  741. /*
  742. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  743. * vcpu mutex is already taken.
  744. */
  745. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  746. {
  747. struct vcpu_vmx *vmx = to_vmx(vcpu);
  748. u64 tsc_this, delta, new_offset;
  749. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  750. if (!vmm_exclusive)
  751. kvm_cpu_vmxon(phys_addr);
  752. else if (vcpu->cpu != cpu)
  753. vcpu_clear(vmx);
  754. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  755. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  756. vmcs_load(vmx->vmcs);
  757. }
  758. if (vcpu->cpu != cpu) {
  759. struct desc_ptr dt;
  760. unsigned long sysenter_esp;
  761. kvm_migrate_timers(vcpu);
  762. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  763. local_irq_disable();
  764. list_add(&vmx->local_vcpus_link,
  765. &per_cpu(vcpus_on_cpu, cpu));
  766. local_irq_enable();
  767. vcpu->cpu = cpu;
  768. /*
  769. * Linux uses per-cpu TSS and GDT, so set these when switching
  770. * processors.
  771. */
  772. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  773. native_store_gdt(&dt);
  774. vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
  775. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  776. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  777. /*
  778. * Make sure the time stamp counter is monotonous.
  779. */
  780. rdtscll(tsc_this);
  781. if (tsc_this < vcpu->arch.host_tsc) {
  782. delta = vcpu->arch.host_tsc - tsc_this;
  783. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  784. vmcs_write64(TSC_OFFSET, new_offset);
  785. }
  786. }
  787. }
  788. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  789. {
  790. __vmx_load_host_state(to_vmx(vcpu));
  791. if (!vmm_exclusive) {
  792. __vcpu_clear(to_vmx(vcpu));
  793. kvm_cpu_vmxoff();
  794. }
  795. }
  796. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  797. {
  798. ulong cr0;
  799. if (vcpu->fpu_active)
  800. return;
  801. vcpu->fpu_active = 1;
  802. cr0 = vmcs_readl(GUEST_CR0);
  803. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  804. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  805. vmcs_writel(GUEST_CR0, cr0);
  806. update_exception_bitmap(vcpu);
  807. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  808. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  809. }
  810. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  811. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  812. {
  813. vmx_decache_cr0_guest_bits(vcpu);
  814. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  815. update_exception_bitmap(vcpu);
  816. vcpu->arch.cr0_guest_owned_bits = 0;
  817. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  818. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  819. }
  820. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  821. {
  822. unsigned long rflags, save_rflags;
  823. rflags = vmcs_readl(GUEST_RFLAGS);
  824. if (to_vmx(vcpu)->rmode.vm86_active) {
  825. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  826. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  827. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  828. }
  829. return rflags;
  830. }
  831. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  832. {
  833. if (to_vmx(vcpu)->rmode.vm86_active) {
  834. to_vmx(vcpu)->rmode.save_rflags = rflags;
  835. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  836. }
  837. vmcs_writel(GUEST_RFLAGS, rflags);
  838. }
  839. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  840. {
  841. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  842. int ret = 0;
  843. if (interruptibility & GUEST_INTR_STATE_STI)
  844. ret |= KVM_X86_SHADOW_INT_STI;
  845. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  846. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  847. return ret & mask;
  848. }
  849. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  850. {
  851. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  852. u32 interruptibility = interruptibility_old;
  853. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  854. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  855. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  856. else if (mask & KVM_X86_SHADOW_INT_STI)
  857. interruptibility |= GUEST_INTR_STATE_STI;
  858. if ((interruptibility != interruptibility_old))
  859. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  860. }
  861. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  862. {
  863. unsigned long rip;
  864. rip = kvm_rip_read(vcpu);
  865. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  866. kvm_rip_write(vcpu, rip);
  867. /* skipping an emulated instruction also counts */
  868. vmx_set_interrupt_shadow(vcpu, 0);
  869. }
  870. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  871. bool has_error_code, u32 error_code,
  872. bool reinject)
  873. {
  874. struct vcpu_vmx *vmx = to_vmx(vcpu);
  875. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  876. if (has_error_code) {
  877. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  878. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  879. }
  880. if (vmx->rmode.vm86_active) {
  881. vmx->rmode.irq.pending = true;
  882. vmx->rmode.irq.vector = nr;
  883. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  884. if (kvm_exception_is_soft(nr))
  885. vmx->rmode.irq.rip +=
  886. vmx->vcpu.arch.event_exit_inst_len;
  887. intr_info |= INTR_TYPE_SOFT_INTR;
  888. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  889. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  890. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  891. return;
  892. }
  893. if (kvm_exception_is_soft(nr)) {
  894. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  895. vmx->vcpu.arch.event_exit_inst_len);
  896. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  897. } else
  898. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  899. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  900. }
  901. static bool vmx_rdtscp_supported(void)
  902. {
  903. return cpu_has_vmx_rdtscp();
  904. }
  905. /*
  906. * Swap MSR entry in host/guest MSR entry array.
  907. */
  908. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  909. {
  910. struct shared_msr_entry tmp;
  911. tmp = vmx->guest_msrs[to];
  912. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  913. vmx->guest_msrs[from] = tmp;
  914. }
  915. /*
  916. * Set up the vmcs to automatically save and restore system
  917. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  918. * mode, as fiddling with msrs is very expensive.
  919. */
  920. static void setup_msrs(struct vcpu_vmx *vmx)
  921. {
  922. int save_nmsrs, index;
  923. unsigned long *msr_bitmap;
  924. vmx_load_host_state(vmx);
  925. save_nmsrs = 0;
  926. #ifdef CONFIG_X86_64
  927. if (is_long_mode(&vmx->vcpu)) {
  928. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  929. if (index >= 0)
  930. move_msr_up(vmx, index, save_nmsrs++);
  931. index = __find_msr_index(vmx, MSR_LSTAR);
  932. if (index >= 0)
  933. move_msr_up(vmx, index, save_nmsrs++);
  934. index = __find_msr_index(vmx, MSR_CSTAR);
  935. if (index >= 0)
  936. move_msr_up(vmx, index, save_nmsrs++);
  937. index = __find_msr_index(vmx, MSR_TSC_AUX);
  938. if (index >= 0 && vmx->rdtscp_enabled)
  939. move_msr_up(vmx, index, save_nmsrs++);
  940. /*
  941. * MSR_K6_STAR is only needed on long mode guests, and only
  942. * if efer.sce is enabled.
  943. */
  944. index = __find_msr_index(vmx, MSR_K6_STAR);
  945. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  946. move_msr_up(vmx, index, save_nmsrs++);
  947. }
  948. #endif
  949. index = __find_msr_index(vmx, MSR_EFER);
  950. if (index >= 0 && update_transition_efer(vmx, index))
  951. move_msr_up(vmx, index, save_nmsrs++);
  952. vmx->save_nmsrs = save_nmsrs;
  953. if (cpu_has_vmx_msr_bitmap()) {
  954. if (is_long_mode(&vmx->vcpu))
  955. msr_bitmap = vmx_msr_bitmap_longmode;
  956. else
  957. msr_bitmap = vmx_msr_bitmap_legacy;
  958. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  959. }
  960. }
  961. /*
  962. * reads and returns guest's timestamp counter "register"
  963. * guest_tsc = host_tsc + tsc_offset -- 21.3
  964. */
  965. static u64 guest_read_tsc(void)
  966. {
  967. u64 host_tsc, tsc_offset;
  968. rdtscll(host_tsc);
  969. tsc_offset = vmcs_read64(TSC_OFFSET);
  970. return host_tsc + tsc_offset;
  971. }
  972. /*
  973. * writes 'guest_tsc' into guest's timestamp counter "register"
  974. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  975. */
  976. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  977. {
  978. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  979. }
  980. /*
  981. * Reads an msr value (of 'msr_index') into 'pdata'.
  982. * Returns 0 on success, non-0 otherwise.
  983. * Assumes vcpu_load() was already called.
  984. */
  985. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  986. {
  987. u64 data;
  988. struct shared_msr_entry *msr;
  989. if (!pdata) {
  990. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  991. return -EINVAL;
  992. }
  993. switch (msr_index) {
  994. #ifdef CONFIG_X86_64
  995. case MSR_FS_BASE:
  996. data = vmcs_readl(GUEST_FS_BASE);
  997. break;
  998. case MSR_GS_BASE:
  999. data = vmcs_readl(GUEST_GS_BASE);
  1000. break;
  1001. case MSR_KERNEL_GS_BASE:
  1002. vmx_load_host_state(to_vmx(vcpu));
  1003. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1004. break;
  1005. #endif
  1006. case MSR_EFER:
  1007. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1008. case MSR_IA32_TSC:
  1009. data = guest_read_tsc();
  1010. break;
  1011. case MSR_IA32_SYSENTER_CS:
  1012. data = vmcs_read32(GUEST_SYSENTER_CS);
  1013. break;
  1014. case MSR_IA32_SYSENTER_EIP:
  1015. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1016. break;
  1017. case MSR_IA32_SYSENTER_ESP:
  1018. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1019. break;
  1020. case MSR_TSC_AUX:
  1021. if (!to_vmx(vcpu)->rdtscp_enabled)
  1022. return 1;
  1023. /* Otherwise falls through */
  1024. default:
  1025. vmx_load_host_state(to_vmx(vcpu));
  1026. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1027. if (msr) {
  1028. vmx_load_host_state(to_vmx(vcpu));
  1029. data = msr->data;
  1030. break;
  1031. }
  1032. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1033. }
  1034. *pdata = data;
  1035. return 0;
  1036. }
  1037. /*
  1038. * Writes msr value into into the appropriate "register".
  1039. * Returns 0 on success, non-0 otherwise.
  1040. * Assumes vcpu_load() was already called.
  1041. */
  1042. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1043. {
  1044. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1045. struct shared_msr_entry *msr;
  1046. u64 host_tsc;
  1047. int ret = 0;
  1048. switch (msr_index) {
  1049. case MSR_EFER:
  1050. vmx_load_host_state(vmx);
  1051. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1052. break;
  1053. #ifdef CONFIG_X86_64
  1054. case MSR_FS_BASE:
  1055. vmcs_writel(GUEST_FS_BASE, data);
  1056. break;
  1057. case MSR_GS_BASE:
  1058. vmcs_writel(GUEST_GS_BASE, data);
  1059. break;
  1060. case MSR_KERNEL_GS_BASE:
  1061. vmx_load_host_state(vmx);
  1062. vmx->msr_guest_kernel_gs_base = data;
  1063. break;
  1064. #endif
  1065. case MSR_IA32_SYSENTER_CS:
  1066. vmcs_write32(GUEST_SYSENTER_CS, data);
  1067. break;
  1068. case MSR_IA32_SYSENTER_EIP:
  1069. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1070. break;
  1071. case MSR_IA32_SYSENTER_ESP:
  1072. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1073. break;
  1074. case MSR_IA32_TSC:
  1075. rdtscll(host_tsc);
  1076. guest_write_tsc(data, host_tsc);
  1077. break;
  1078. case MSR_IA32_CR_PAT:
  1079. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1080. vmcs_write64(GUEST_IA32_PAT, data);
  1081. vcpu->arch.pat = data;
  1082. break;
  1083. }
  1084. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1085. break;
  1086. case MSR_TSC_AUX:
  1087. if (!vmx->rdtscp_enabled)
  1088. return 1;
  1089. /* Check reserved bit, higher 32 bits should be zero */
  1090. if ((data >> 32) != 0)
  1091. return 1;
  1092. /* Otherwise falls through */
  1093. default:
  1094. msr = find_msr_entry(vmx, msr_index);
  1095. if (msr) {
  1096. vmx_load_host_state(vmx);
  1097. msr->data = data;
  1098. break;
  1099. }
  1100. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1101. }
  1102. return ret;
  1103. }
  1104. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1105. {
  1106. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1107. switch (reg) {
  1108. case VCPU_REGS_RSP:
  1109. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1110. break;
  1111. case VCPU_REGS_RIP:
  1112. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1113. break;
  1114. case VCPU_EXREG_PDPTR:
  1115. if (enable_ept)
  1116. ept_save_pdptrs(vcpu);
  1117. break;
  1118. default:
  1119. break;
  1120. }
  1121. }
  1122. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1123. {
  1124. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1125. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1126. else
  1127. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1128. update_exception_bitmap(vcpu);
  1129. }
  1130. static __init int cpu_has_kvm_support(void)
  1131. {
  1132. return cpu_has_vmx();
  1133. }
  1134. static __init int vmx_disabled_by_bios(void)
  1135. {
  1136. u64 msr;
  1137. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1138. if (msr & FEATURE_CONTROL_LOCKED) {
  1139. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1140. && tboot_enabled())
  1141. return 1;
  1142. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1143. && !tboot_enabled())
  1144. return 1;
  1145. }
  1146. return 0;
  1147. /* locked but not enabled */
  1148. }
  1149. static void kvm_cpu_vmxon(u64 addr)
  1150. {
  1151. asm volatile (ASM_VMX_VMXON_RAX
  1152. : : "a"(&addr), "m"(addr)
  1153. : "memory", "cc");
  1154. }
  1155. static int hardware_enable(void *garbage)
  1156. {
  1157. int cpu = raw_smp_processor_id();
  1158. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1159. u64 old, test_bits;
  1160. if (read_cr4() & X86_CR4_VMXE)
  1161. return -EBUSY;
  1162. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1163. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1164. test_bits = FEATURE_CONTROL_LOCKED;
  1165. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1166. if (tboot_enabled())
  1167. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1168. if ((old & test_bits) != test_bits) {
  1169. /* enable and lock */
  1170. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1171. }
  1172. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1173. if (vmm_exclusive) {
  1174. kvm_cpu_vmxon(phys_addr);
  1175. ept_sync_global();
  1176. }
  1177. return 0;
  1178. }
  1179. static void vmclear_local_vcpus(void)
  1180. {
  1181. int cpu = raw_smp_processor_id();
  1182. struct vcpu_vmx *vmx, *n;
  1183. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1184. local_vcpus_link)
  1185. __vcpu_clear(vmx);
  1186. }
  1187. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1188. * tricks.
  1189. */
  1190. static void kvm_cpu_vmxoff(void)
  1191. {
  1192. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1193. }
  1194. static void hardware_disable(void *garbage)
  1195. {
  1196. if (vmm_exclusive) {
  1197. vmclear_local_vcpus();
  1198. kvm_cpu_vmxoff();
  1199. }
  1200. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1201. }
  1202. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1203. u32 msr, u32 *result)
  1204. {
  1205. u32 vmx_msr_low, vmx_msr_high;
  1206. u32 ctl = ctl_min | ctl_opt;
  1207. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1208. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1209. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1210. /* Ensure minimum (required) set of control bits are supported. */
  1211. if (ctl_min & ~ctl)
  1212. return -EIO;
  1213. *result = ctl;
  1214. return 0;
  1215. }
  1216. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1217. {
  1218. u32 vmx_msr_low, vmx_msr_high;
  1219. u32 min, opt, min2, opt2;
  1220. u32 _pin_based_exec_control = 0;
  1221. u32 _cpu_based_exec_control = 0;
  1222. u32 _cpu_based_2nd_exec_control = 0;
  1223. u32 _vmexit_control = 0;
  1224. u32 _vmentry_control = 0;
  1225. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1226. opt = PIN_BASED_VIRTUAL_NMIS;
  1227. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1228. &_pin_based_exec_control) < 0)
  1229. return -EIO;
  1230. min = CPU_BASED_HLT_EXITING |
  1231. #ifdef CONFIG_X86_64
  1232. CPU_BASED_CR8_LOAD_EXITING |
  1233. CPU_BASED_CR8_STORE_EXITING |
  1234. #endif
  1235. CPU_BASED_CR3_LOAD_EXITING |
  1236. CPU_BASED_CR3_STORE_EXITING |
  1237. CPU_BASED_USE_IO_BITMAPS |
  1238. CPU_BASED_MOV_DR_EXITING |
  1239. CPU_BASED_USE_TSC_OFFSETING |
  1240. CPU_BASED_MWAIT_EXITING |
  1241. CPU_BASED_MONITOR_EXITING |
  1242. CPU_BASED_INVLPG_EXITING;
  1243. opt = CPU_BASED_TPR_SHADOW |
  1244. CPU_BASED_USE_MSR_BITMAPS |
  1245. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1246. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1247. &_cpu_based_exec_control) < 0)
  1248. return -EIO;
  1249. #ifdef CONFIG_X86_64
  1250. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1251. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1252. ~CPU_BASED_CR8_STORE_EXITING;
  1253. #endif
  1254. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1255. min2 = 0;
  1256. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1257. SECONDARY_EXEC_WBINVD_EXITING |
  1258. SECONDARY_EXEC_ENABLE_VPID |
  1259. SECONDARY_EXEC_ENABLE_EPT |
  1260. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1261. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1262. SECONDARY_EXEC_RDTSCP;
  1263. if (adjust_vmx_controls(min2, opt2,
  1264. MSR_IA32_VMX_PROCBASED_CTLS2,
  1265. &_cpu_based_2nd_exec_control) < 0)
  1266. return -EIO;
  1267. }
  1268. #ifndef CONFIG_X86_64
  1269. if (!(_cpu_based_2nd_exec_control &
  1270. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1271. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1272. #endif
  1273. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1274. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1275. enabled */
  1276. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1277. CPU_BASED_CR3_STORE_EXITING |
  1278. CPU_BASED_INVLPG_EXITING);
  1279. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1280. vmx_capability.ept, vmx_capability.vpid);
  1281. }
  1282. min = 0;
  1283. #ifdef CONFIG_X86_64
  1284. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1285. #endif
  1286. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1287. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1288. &_vmexit_control) < 0)
  1289. return -EIO;
  1290. min = 0;
  1291. opt = VM_ENTRY_LOAD_IA32_PAT;
  1292. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1293. &_vmentry_control) < 0)
  1294. return -EIO;
  1295. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1296. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1297. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1298. return -EIO;
  1299. #ifdef CONFIG_X86_64
  1300. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1301. if (vmx_msr_high & (1u<<16))
  1302. return -EIO;
  1303. #endif
  1304. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1305. if (((vmx_msr_high >> 18) & 15) != 6)
  1306. return -EIO;
  1307. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1308. vmcs_conf->order = get_order(vmcs_config.size);
  1309. vmcs_conf->revision_id = vmx_msr_low;
  1310. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1311. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1312. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1313. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1314. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1315. return 0;
  1316. }
  1317. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1318. {
  1319. int node = cpu_to_node(cpu);
  1320. struct page *pages;
  1321. struct vmcs *vmcs;
  1322. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1323. if (!pages)
  1324. return NULL;
  1325. vmcs = page_address(pages);
  1326. memset(vmcs, 0, vmcs_config.size);
  1327. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1328. return vmcs;
  1329. }
  1330. static struct vmcs *alloc_vmcs(void)
  1331. {
  1332. return alloc_vmcs_cpu(raw_smp_processor_id());
  1333. }
  1334. static void free_vmcs(struct vmcs *vmcs)
  1335. {
  1336. free_pages((unsigned long)vmcs, vmcs_config.order);
  1337. }
  1338. static void free_kvm_area(void)
  1339. {
  1340. int cpu;
  1341. for_each_possible_cpu(cpu) {
  1342. free_vmcs(per_cpu(vmxarea, cpu));
  1343. per_cpu(vmxarea, cpu) = NULL;
  1344. }
  1345. }
  1346. static __init int alloc_kvm_area(void)
  1347. {
  1348. int cpu;
  1349. for_each_possible_cpu(cpu) {
  1350. struct vmcs *vmcs;
  1351. vmcs = alloc_vmcs_cpu(cpu);
  1352. if (!vmcs) {
  1353. free_kvm_area();
  1354. return -ENOMEM;
  1355. }
  1356. per_cpu(vmxarea, cpu) = vmcs;
  1357. }
  1358. return 0;
  1359. }
  1360. static __init int hardware_setup(void)
  1361. {
  1362. if (setup_vmcs_config(&vmcs_config) < 0)
  1363. return -EIO;
  1364. if (boot_cpu_has(X86_FEATURE_NX))
  1365. kvm_enable_efer_bits(EFER_NX);
  1366. if (!cpu_has_vmx_vpid())
  1367. enable_vpid = 0;
  1368. if (!cpu_has_vmx_ept() ||
  1369. !cpu_has_vmx_ept_4levels()) {
  1370. enable_ept = 0;
  1371. enable_unrestricted_guest = 0;
  1372. }
  1373. if (!cpu_has_vmx_unrestricted_guest())
  1374. enable_unrestricted_guest = 0;
  1375. if (!cpu_has_vmx_flexpriority())
  1376. flexpriority_enabled = 0;
  1377. if (!cpu_has_vmx_tpr_shadow())
  1378. kvm_x86_ops->update_cr8_intercept = NULL;
  1379. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1380. kvm_disable_largepages();
  1381. if (!cpu_has_vmx_ple())
  1382. ple_gap = 0;
  1383. return alloc_kvm_area();
  1384. }
  1385. static __exit void hardware_unsetup(void)
  1386. {
  1387. free_kvm_area();
  1388. }
  1389. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1390. {
  1391. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1392. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1393. vmcs_write16(sf->selector, save->selector);
  1394. vmcs_writel(sf->base, save->base);
  1395. vmcs_write32(sf->limit, save->limit);
  1396. vmcs_write32(sf->ar_bytes, save->ar);
  1397. } else {
  1398. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1399. << AR_DPL_SHIFT;
  1400. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1401. }
  1402. }
  1403. static void enter_pmode(struct kvm_vcpu *vcpu)
  1404. {
  1405. unsigned long flags;
  1406. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1407. vmx->emulation_required = 1;
  1408. vmx->rmode.vm86_active = 0;
  1409. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1410. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1411. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1412. flags = vmcs_readl(GUEST_RFLAGS);
  1413. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1414. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1415. vmcs_writel(GUEST_RFLAGS, flags);
  1416. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1417. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1418. update_exception_bitmap(vcpu);
  1419. if (emulate_invalid_guest_state)
  1420. return;
  1421. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1422. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1423. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1424. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1425. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1426. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1427. vmcs_write16(GUEST_CS_SELECTOR,
  1428. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1429. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1430. }
  1431. static gva_t rmode_tss_base(struct kvm *kvm)
  1432. {
  1433. if (!kvm->arch.tss_addr) {
  1434. struct kvm_memslots *slots;
  1435. gfn_t base_gfn;
  1436. slots = kvm_memslots(kvm);
  1437. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1438. kvm->memslots->memslots[0].npages - 3;
  1439. return base_gfn << PAGE_SHIFT;
  1440. }
  1441. return kvm->arch.tss_addr;
  1442. }
  1443. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1444. {
  1445. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1446. save->selector = vmcs_read16(sf->selector);
  1447. save->base = vmcs_readl(sf->base);
  1448. save->limit = vmcs_read32(sf->limit);
  1449. save->ar = vmcs_read32(sf->ar_bytes);
  1450. vmcs_write16(sf->selector, save->base >> 4);
  1451. vmcs_write32(sf->base, save->base & 0xfffff);
  1452. vmcs_write32(sf->limit, 0xffff);
  1453. vmcs_write32(sf->ar_bytes, 0xf3);
  1454. }
  1455. static void enter_rmode(struct kvm_vcpu *vcpu)
  1456. {
  1457. unsigned long flags;
  1458. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1459. if (enable_unrestricted_guest)
  1460. return;
  1461. vmx->emulation_required = 1;
  1462. vmx->rmode.vm86_active = 1;
  1463. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1464. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1465. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1466. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1467. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1468. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1469. flags = vmcs_readl(GUEST_RFLAGS);
  1470. vmx->rmode.save_rflags = flags;
  1471. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1472. vmcs_writel(GUEST_RFLAGS, flags);
  1473. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1474. update_exception_bitmap(vcpu);
  1475. if (emulate_invalid_guest_state)
  1476. goto continue_rmode;
  1477. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1478. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1479. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1480. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1481. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1482. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1483. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1484. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1485. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1486. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1487. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1488. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1489. continue_rmode:
  1490. kvm_mmu_reset_context(vcpu);
  1491. init_rmode(vcpu->kvm);
  1492. }
  1493. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1494. {
  1495. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1496. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1497. if (!msr)
  1498. return;
  1499. /*
  1500. * Force kernel_gs_base reloading before EFER changes, as control
  1501. * of this msr depends on is_long_mode().
  1502. */
  1503. vmx_load_host_state(to_vmx(vcpu));
  1504. vcpu->arch.efer = efer;
  1505. if (efer & EFER_LMA) {
  1506. vmcs_write32(VM_ENTRY_CONTROLS,
  1507. vmcs_read32(VM_ENTRY_CONTROLS) |
  1508. VM_ENTRY_IA32E_MODE);
  1509. msr->data = efer;
  1510. } else {
  1511. vmcs_write32(VM_ENTRY_CONTROLS,
  1512. vmcs_read32(VM_ENTRY_CONTROLS) &
  1513. ~VM_ENTRY_IA32E_MODE);
  1514. msr->data = efer & ~EFER_LME;
  1515. }
  1516. setup_msrs(vmx);
  1517. }
  1518. #ifdef CONFIG_X86_64
  1519. static void enter_lmode(struct kvm_vcpu *vcpu)
  1520. {
  1521. u32 guest_tr_ar;
  1522. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1523. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1524. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1525. __func__);
  1526. vmcs_write32(GUEST_TR_AR_BYTES,
  1527. (guest_tr_ar & ~AR_TYPE_MASK)
  1528. | AR_TYPE_BUSY_64_TSS);
  1529. }
  1530. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  1531. }
  1532. static void exit_lmode(struct kvm_vcpu *vcpu)
  1533. {
  1534. vmcs_write32(VM_ENTRY_CONTROLS,
  1535. vmcs_read32(VM_ENTRY_CONTROLS)
  1536. & ~VM_ENTRY_IA32E_MODE);
  1537. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  1538. }
  1539. #endif
  1540. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1541. {
  1542. vpid_sync_context(to_vmx(vcpu));
  1543. if (enable_ept)
  1544. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1545. }
  1546. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1547. {
  1548. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1549. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1550. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1551. }
  1552. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1553. {
  1554. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1555. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1556. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1557. }
  1558. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1559. {
  1560. if (!test_bit(VCPU_EXREG_PDPTR,
  1561. (unsigned long *)&vcpu->arch.regs_dirty))
  1562. return;
  1563. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1564. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1565. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1566. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1567. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1568. }
  1569. }
  1570. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1571. {
  1572. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1573. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1574. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1575. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1576. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1577. }
  1578. __set_bit(VCPU_EXREG_PDPTR,
  1579. (unsigned long *)&vcpu->arch.regs_avail);
  1580. __set_bit(VCPU_EXREG_PDPTR,
  1581. (unsigned long *)&vcpu->arch.regs_dirty);
  1582. }
  1583. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1584. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1585. unsigned long cr0,
  1586. struct kvm_vcpu *vcpu)
  1587. {
  1588. if (!(cr0 & X86_CR0_PG)) {
  1589. /* From paging/starting to nonpaging */
  1590. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1591. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1592. (CPU_BASED_CR3_LOAD_EXITING |
  1593. CPU_BASED_CR3_STORE_EXITING));
  1594. vcpu->arch.cr0 = cr0;
  1595. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1596. } else if (!is_paging(vcpu)) {
  1597. /* From nonpaging to paging */
  1598. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1599. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1600. ~(CPU_BASED_CR3_LOAD_EXITING |
  1601. CPU_BASED_CR3_STORE_EXITING));
  1602. vcpu->arch.cr0 = cr0;
  1603. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1604. }
  1605. if (!(cr0 & X86_CR0_WP))
  1606. *hw_cr0 &= ~X86_CR0_WP;
  1607. }
  1608. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1609. {
  1610. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1611. unsigned long hw_cr0;
  1612. if (enable_unrestricted_guest)
  1613. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1614. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1615. else
  1616. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1617. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1618. enter_pmode(vcpu);
  1619. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1620. enter_rmode(vcpu);
  1621. #ifdef CONFIG_X86_64
  1622. if (vcpu->arch.efer & EFER_LME) {
  1623. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1624. enter_lmode(vcpu);
  1625. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1626. exit_lmode(vcpu);
  1627. }
  1628. #endif
  1629. if (enable_ept)
  1630. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1631. if (!vcpu->fpu_active)
  1632. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  1633. vmcs_writel(CR0_READ_SHADOW, cr0);
  1634. vmcs_writel(GUEST_CR0, hw_cr0);
  1635. vcpu->arch.cr0 = cr0;
  1636. }
  1637. static u64 construct_eptp(unsigned long root_hpa)
  1638. {
  1639. u64 eptp;
  1640. /* TODO write the value reading from MSR */
  1641. eptp = VMX_EPT_DEFAULT_MT |
  1642. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1643. eptp |= (root_hpa & PAGE_MASK);
  1644. return eptp;
  1645. }
  1646. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1647. {
  1648. unsigned long guest_cr3;
  1649. u64 eptp;
  1650. guest_cr3 = cr3;
  1651. if (enable_ept) {
  1652. eptp = construct_eptp(cr3);
  1653. vmcs_write64(EPT_POINTER, eptp);
  1654. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1655. vcpu->kvm->arch.ept_identity_map_addr;
  1656. ept_load_pdptrs(vcpu);
  1657. }
  1658. vmx_flush_tlb(vcpu);
  1659. vmcs_writel(GUEST_CR3, guest_cr3);
  1660. }
  1661. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1662. {
  1663. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1664. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1665. vcpu->arch.cr4 = cr4;
  1666. if (enable_ept) {
  1667. if (!is_paging(vcpu)) {
  1668. hw_cr4 &= ~X86_CR4_PAE;
  1669. hw_cr4 |= X86_CR4_PSE;
  1670. } else if (!(cr4 & X86_CR4_PAE)) {
  1671. hw_cr4 &= ~X86_CR4_PAE;
  1672. }
  1673. }
  1674. vmcs_writel(CR4_READ_SHADOW, cr4);
  1675. vmcs_writel(GUEST_CR4, hw_cr4);
  1676. }
  1677. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1678. {
  1679. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1680. return vmcs_readl(sf->base);
  1681. }
  1682. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1683. struct kvm_segment *var, int seg)
  1684. {
  1685. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1686. u32 ar;
  1687. var->base = vmcs_readl(sf->base);
  1688. var->limit = vmcs_read32(sf->limit);
  1689. var->selector = vmcs_read16(sf->selector);
  1690. ar = vmcs_read32(sf->ar_bytes);
  1691. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1692. ar = 0;
  1693. var->type = ar & 15;
  1694. var->s = (ar >> 4) & 1;
  1695. var->dpl = (ar >> 5) & 3;
  1696. var->present = (ar >> 7) & 1;
  1697. var->avl = (ar >> 12) & 1;
  1698. var->l = (ar >> 13) & 1;
  1699. var->db = (ar >> 14) & 1;
  1700. var->g = (ar >> 15) & 1;
  1701. var->unusable = (ar >> 16) & 1;
  1702. }
  1703. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1704. {
  1705. if (!is_protmode(vcpu))
  1706. return 0;
  1707. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1708. return 3;
  1709. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1710. }
  1711. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1712. {
  1713. u32 ar;
  1714. if (var->unusable)
  1715. ar = 1 << 16;
  1716. else {
  1717. ar = var->type & 15;
  1718. ar |= (var->s & 1) << 4;
  1719. ar |= (var->dpl & 3) << 5;
  1720. ar |= (var->present & 1) << 7;
  1721. ar |= (var->avl & 1) << 12;
  1722. ar |= (var->l & 1) << 13;
  1723. ar |= (var->db & 1) << 14;
  1724. ar |= (var->g & 1) << 15;
  1725. }
  1726. if (ar == 0) /* a 0 value means unusable */
  1727. ar = AR_UNUSABLE_MASK;
  1728. return ar;
  1729. }
  1730. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1731. struct kvm_segment *var, int seg)
  1732. {
  1733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1734. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1735. u32 ar;
  1736. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1737. vmx->rmode.tr.selector = var->selector;
  1738. vmx->rmode.tr.base = var->base;
  1739. vmx->rmode.tr.limit = var->limit;
  1740. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1741. return;
  1742. }
  1743. vmcs_writel(sf->base, var->base);
  1744. vmcs_write32(sf->limit, var->limit);
  1745. vmcs_write16(sf->selector, var->selector);
  1746. if (vmx->rmode.vm86_active && var->s) {
  1747. /*
  1748. * Hack real-mode segments into vm86 compatibility.
  1749. */
  1750. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1751. vmcs_writel(sf->base, 0xf0000);
  1752. ar = 0xf3;
  1753. } else
  1754. ar = vmx_segment_access_rights(var);
  1755. /*
  1756. * Fix the "Accessed" bit in AR field of segment registers for older
  1757. * qemu binaries.
  1758. * IA32 arch specifies that at the time of processor reset the
  1759. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1760. * is setting it to 0 in the usedland code. This causes invalid guest
  1761. * state vmexit when "unrestricted guest" mode is turned on.
  1762. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1763. * tree. Newer qemu binaries with that qemu fix would not need this
  1764. * kvm hack.
  1765. */
  1766. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1767. ar |= 0x1; /* Accessed */
  1768. vmcs_write32(sf->ar_bytes, ar);
  1769. }
  1770. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1771. {
  1772. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1773. *db = (ar >> 14) & 1;
  1774. *l = (ar >> 13) & 1;
  1775. }
  1776. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1777. {
  1778. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  1779. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  1780. }
  1781. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1782. {
  1783. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  1784. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  1785. }
  1786. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1787. {
  1788. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  1789. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  1790. }
  1791. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  1792. {
  1793. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  1794. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  1795. }
  1796. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1797. {
  1798. struct kvm_segment var;
  1799. u32 ar;
  1800. vmx_get_segment(vcpu, &var, seg);
  1801. ar = vmx_segment_access_rights(&var);
  1802. if (var.base != (var.selector << 4))
  1803. return false;
  1804. if (var.limit != 0xffff)
  1805. return false;
  1806. if (ar != 0xf3)
  1807. return false;
  1808. return true;
  1809. }
  1810. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1811. {
  1812. struct kvm_segment cs;
  1813. unsigned int cs_rpl;
  1814. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1815. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1816. if (cs.unusable)
  1817. return false;
  1818. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1819. return false;
  1820. if (!cs.s)
  1821. return false;
  1822. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1823. if (cs.dpl > cs_rpl)
  1824. return false;
  1825. } else {
  1826. if (cs.dpl != cs_rpl)
  1827. return false;
  1828. }
  1829. if (!cs.present)
  1830. return false;
  1831. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1832. return true;
  1833. }
  1834. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1835. {
  1836. struct kvm_segment ss;
  1837. unsigned int ss_rpl;
  1838. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1839. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1840. if (ss.unusable)
  1841. return true;
  1842. if (ss.type != 3 && ss.type != 7)
  1843. return false;
  1844. if (!ss.s)
  1845. return false;
  1846. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1847. return false;
  1848. if (!ss.present)
  1849. return false;
  1850. return true;
  1851. }
  1852. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1853. {
  1854. struct kvm_segment var;
  1855. unsigned int rpl;
  1856. vmx_get_segment(vcpu, &var, seg);
  1857. rpl = var.selector & SELECTOR_RPL_MASK;
  1858. if (var.unusable)
  1859. return true;
  1860. if (!var.s)
  1861. return false;
  1862. if (!var.present)
  1863. return false;
  1864. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1865. if (var.dpl < rpl) /* DPL < RPL */
  1866. return false;
  1867. }
  1868. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1869. * rights flags
  1870. */
  1871. return true;
  1872. }
  1873. static bool tr_valid(struct kvm_vcpu *vcpu)
  1874. {
  1875. struct kvm_segment tr;
  1876. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1877. if (tr.unusable)
  1878. return false;
  1879. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1880. return false;
  1881. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1882. return false;
  1883. if (!tr.present)
  1884. return false;
  1885. return true;
  1886. }
  1887. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1888. {
  1889. struct kvm_segment ldtr;
  1890. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1891. if (ldtr.unusable)
  1892. return true;
  1893. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1894. return false;
  1895. if (ldtr.type != 2)
  1896. return false;
  1897. if (!ldtr.present)
  1898. return false;
  1899. return true;
  1900. }
  1901. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1902. {
  1903. struct kvm_segment cs, ss;
  1904. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1905. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1906. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1907. (ss.selector & SELECTOR_RPL_MASK));
  1908. }
  1909. /*
  1910. * Check if guest state is valid. Returns true if valid, false if
  1911. * not.
  1912. * We assume that registers are always usable
  1913. */
  1914. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1915. {
  1916. /* real mode guest state checks */
  1917. if (!is_protmode(vcpu)) {
  1918. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1919. return false;
  1920. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1921. return false;
  1922. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1923. return false;
  1924. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1925. return false;
  1926. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1927. return false;
  1928. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1929. return false;
  1930. } else {
  1931. /* protected mode guest state checks */
  1932. if (!cs_ss_rpl_check(vcpu))
  1933. return false;
  1934. if (!code_segment_valid(vcpu))
  1935. return false;
  1936. if (!stack_segment_valid(vcpu))
  1937. return false;
  1938. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1939. return false;
  1940. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1941. return false;
  1942. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1943. return false;
  1944. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1945. return false;
  1946. if (!tr_valid(vcpu))
  1947. return false;
  1948. if (!ldtr_valid(vcpu))
  1949. return false;
  1950. }
  1951. /* TODO:
  1952. * - Add checks on RIP
  1953. * - Add checks on RFLAGS
  1954. */
  1955. return true;
  1956. }
  1957. static int init_rmode_tss(struct kvm *kvm)
  1958. {
  1959. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1960. u16 data = 0;
  1961. int ret = 0;
  1962. int r;
  1963. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1964. if (r < 0)
  1965. goto out;
  1966. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1967. r = kvm_write_guest_page(kvm, fn++, &data,
  1968. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1969. if (r < 0)
  1970. goto out;
  1971. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1972. if (r < 0)
  1973. goto out;
  1974. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1975. if (r < 0)
  1976. goto out;
  1977. data = ~0;
  1978. r = kvm_write_guest_page(kvm, fn, &data,
  1979. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1980. sizeof(u8));
  1981. if (r < 0)
  1982. goto out;
  1983. ret = 1;
  1984. out:
  1985. return ret;
  1986. }
  1987. static int init_rmode_identity_map(struct kvm *kvm)
  1988. {
  1989. int i, r, ret;
  1990. pfn_t identity_map_pfn;
  1991. u32 tmp;
  1992. if (!enable_ept)
  1993. return 1;
  1994. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1995. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1996. "haven't been allocated!\n");
  1997. return 0;
  1998. }
  1999. if (likely(kvm->arch.ept_identity_pagetable_done))
  2000. return 1;
  2001. ret = 0;
  2002. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2003. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2004. if (r < 0)
  2005. goto out;
  2006. /* Set up identity-mapping pagetable for EPT in real mode */
  2007. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2008. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2009. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2010. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2011. &tmp, i * sizeof(tmp), sizeof(tmp));
  2012. if (r < 0)
  2013. goto out;
  2014. }
  2015. kvm->arch.ept_identity_pagetable_done = true;
  2016. ret = 1;
  2017. out:
  2018. return ret;
  2019. }
  2020. static void seg_setup(int seg)
  2021. {
  2022. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2023. unsigned int ar;
  2024. vmcs_write16(sf->selector, 0);
  2025. vmcs_writel(sf->base, 0);
  2026. vmcs_write32(sf->limit, 0xffff);
  2027. if (enable_unrestricted_guest) {
  2028. ar = 0x93;
  2029. if (seg == VCPU_SREG_CS)
  2030. ar |= 0x08; /* code segment */
  2031. } else
  2032. ar = 0xf3;
  2033. vmcs_write32(sf->ar_bytes, ar);
  2034. }
  2035. static int alloc_apic_access_page(struct kvm *kvm)
  2036. {
  2037. struct kvm_userspace_memory_region kvm_userspace_mem;
  2038. int r = 0;
  2039. mutex_lock(&kvm->slots_lock);
  2040. if (kvm->arch.apic_access_page)
  2041. goto out;
  2042. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2043. kvm_userspace_mem.flags = 0;
  2044. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2045. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2046. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2047. if (r)
  2048. goto out;
  2049. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2050. out:
  2051. mutex_unlock(&kvm->slots_lock);
  2052. return r;
  2053. }
  2054. static int alloc_identity_pagetable(struct kvm *kvm)
  2055. {
  2056. struct kvm_userspace_memory_region kvm_userspace_mem;
  2057. int r = 0;
  2058. mutex_lock(&kvm->slots_lock);
  2059. if (kvm->arch.ept_identity_pagetable)
  2060. goto out;
  2061. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2062. kvm_userspace_mem.flags = 0;
  2063. kvm_userspace_mem.guest_phys_addr =
  2064. kvm->arch.ept_identity_map_addr;
  2065. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2066. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2067. if (r)
  2068. goto out;
  2069. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2070. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2071. out:
  2072. mutex_unlock(&kvm->slots_lock);
  2073. return r;
  2074. }
  2075. static void allocate_vpid(struct vcpu_vmx *vmx)
  2076. {
  2077. int vpid;
  2078. vmx->vpid = 0;
  2079. if (!enable_vpid)
  2080. return;
  2081. spin_lock(&vmx_vpid_lock);
  2082. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2083. if (vpid < VMX_NR_VPIDS) {
  2084. vmx->vpid = vpid;
  2085. __set_bit(vpid, vmx_vpid_bitmap);
  2086. }
  2087. spin_unlock(&vmx_vpid_lock);
  2088. }
  2089. static void free_vpid(struct vcpu_vmx *vmx)
  2090. {
  2091. if (!enable_vpid)
  2092. return;
  2093. spin_lock(&vmx_vpid_lock);
  2094. if (vmx->vpid != 0)
  2095. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2096. spin_unlock(&vmx_vpid_lock);
  2097. }
  2098. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2099. {
  2100. int f = sizeof(unsigned long);
  2101. if (!cpu_has_vmx_msr_bitmap())
  2102. return;
  2103. /*
  2104. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2105. * have the write-low and read-high bitmap offsets the wrong way round.
  2106. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2107. */
  2108. if (msr <= 0x1fff) {
  2109. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2110. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2111. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2112. msr &= 0x1fff;
  2113. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2114. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2115. }
  2116. }
  2117. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2118. {
  2119. if (!longmode_only)
  2120. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2121. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2122. }
  2123. /*
  2124. * Sets up the vmcs for emulated real mode.
  2125. */
  2126. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  2127. {
  2128. u32 host_sysenter_cs, msr_low, msr_high;
  2129. u32 junk;
  2130. u64 host_pat, tsc_this, tsc_base;
  2131. unsigned long a;
  2132. struct desc_ptr dt;
  2133. int i;
  2134. unsigned long kvm_vmx_return;
  2135. u32 exec_control;
  2136. /* I/O */
  2137. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  2138. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  2139. if (cpu_has_vmx_msr_bitmap())
  2140. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  2141. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  2142. /* Control */
  2143. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2144. vmcs_config.pin_based_exec_ctrl);
  2145. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2146. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2147. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2148. #ifdef CONFIG_X86_64
  2149. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2150. CPU_BASED_CR8_LOAD_EXITING;
  2151. #endif
  2152. }
  2153. if (!enable_ept)
  2154. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2155. CPU_BASED_CR3_LOAD_EXITING |
  2156. CPU_BASED_INVLPG_EXITING;
  2157. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2158. if (cpu_has_secondary_exec_ctrls()) {
  2159. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2160. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2161. exec_control &=
  2162. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2163. if (vmx->vpid == 0)
  2164. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2165. if (!enable_ept) {
  2166. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2167. enable_unrestricted_guest = 0;
  2168. }
  2169. if (!enable_unrestricted_guest)
  2170. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2171. if (!ple_gap)
  2172. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2173. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2174. }
  2175. if (ple_gap) {
  2176. vmcs_write32(PLE_GAP, ple_gap);
  2177. vmcs_write32(PLE_WINDOW, ple_window);
  2178. }
  2179. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2180. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2181. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2182. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2183. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2184. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2185. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2186. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2187. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2188. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2189. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2190. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2191. #ifdef CONFIG_X86_64
  2192. rdmsrl(MSR_FS_BASE, a);
  2193. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2194. rdmsrl(MSR_GS_BASE, a);
  2195. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2196. #else
  2197. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2198. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2199. #endif
  2200. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2201. native_store_idt(&dt);
  2202. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  2203. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2204. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2205. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2206. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2207. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  2208. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2209. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  2210. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2211. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2212. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2213. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2214. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2215. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2216. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2217. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2218. host_pat = msr_low | ((u64) msr_high << 32);
  2219. vmcs_write64(HOST_IA32_PAT, host_pat);
  2220. }
  2221. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2222. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2223. host_pat = msr_low | ((u64) msr_high << 32);
  2224. /* Write the default value follow host pat */
  2225. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2226. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2227. vmx->vcpu.arch.pat = host_pat;
  2228. }
  2229. for (i = 0; i < NR_VMX_MSR; ++i) {
  2230. u32 index = vmx_msr_index[i];
  2231. u32 data_low, data_high;
  2232. int j = vmx->nmsrs;
  2233. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2234. continue;
  2235. if (wrmsr_safe(index, data_low, data_high) < 0)
  2236. continue;
  2237. vmx->guest_msrs[j].index = i;
  2238. vmx->guest_msrs[j].data = 0;
  2239. vmx->guest_msrs[j].mask = -1ull;
  2240. ++vmx->nmsrs;
  2241. }
  2242. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2243. /* 22.2.1, 20.8.1 */
  2244. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2245. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2246. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2247. if (enable_ept)
  2248. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2249. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2250. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2251. rdtscll(tsc_this);
  2252. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2253. tsc_base = tsc_this;
  2254. guest_write_tsc(0, tsc_base);
  2255. return 0;
  2256. }
  2257. static int init_rmode(struct kvm *kvm)
  2258. {
  2259. if (!init_rmode_tss(kvm))
  2260. return 0;
  2261. if (!init_rmode_identity_map(kvm))
  2262. return 0;
  2263. return 1;
  2264. }
  2265. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2266. {
  2267. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2268. u64 msr;
  2269. int ret, idx;
  2270. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2271. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2272. if (!init_rmode(vmx->vcpu.kvm)) {
  2273. ret = -ENOMEM;
  2274. goto out;
  2275. }
  2276. vmx->rmode.vm86_active = 0;
  2277. vmx->soft_vnmi_blocked = 0;
  2278. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2279. kvm_set_cr8(&vmx->vcpu, 0);
  2280. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2281. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2282. msr |= MSR_IA32_APICBASE_BSP;
  2283. kvm_set_apic_base(&vmx->vcpu, msr);
  2284. ret = fx_init(&vmx->vcpu);
  2285. if (ret != 0)
  2286. goto out;
  2287. seg_setup(VCPU_SREG_CS);
  2288. /*
  2289. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2290. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2291. */
  2292. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2293. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2294. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2295. } else {
  2296. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2297. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2298. }
  2299. seg_setup(VCPU_SREG_DS);
  2300. seg_setup(VCPU_SREG_ES);
  2301. seg_setup(VCPU_SREG_FS);
  2302. seg_setup(VCPU_SREG_GS);
  2303. seg_setup(VCPU_SREG_SS);
  2304. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2305. vmcs_writel(GUEST_TR_BASE, 0);
  2306. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2307. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2308. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2309. vmcs_writel(GUEST_LDTR_BASE, 0);
  2310. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2311. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2312. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2313. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2314. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2315. vmcs_writel(GUEST_RFLAGS, 0x02);
  2316. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2317. kvm_rip_write(vcpu, 0xfff0);
  2318. else
  2319. kvm_rip_write(vcpu, 0);
  2320. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2321. vmcs_writel(GUEST_DR7, 0x400);
  2322. vmcs_writel(GUEST_GDTR_BASE, 0);
  2323. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2324. vmcs_writel(GUEST_IDTR_BASE, 0);
  2325. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2326. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2327. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2328. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2329. /* Special registers */
  2330. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2331. setup_msrs(vmx);
  2332. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2333. if (cpu_has_vmx_tpr_shadow()) {
  2334. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2335. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2336. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2337. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2338. vmcs_write32(TPR_THRESHOLD, 0);
  2339. }
  2340. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2341. vmcs_write64(APIC_ACCESS_ADDR,
  2342. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2343. if (vmx->vpid != 0)
  2344. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2345. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2346. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2347. vmx_set_cr4(&vmx->vcpu, 0);
  2348. vmx_set_efer(&vmx->vcpu, 0);
  2349. vmx_fpu_activate(&vmx->vcpu);
  2350. update_exception_bitmap(&vmx->vcpu);
  2351. vpid_sync_context(vmx);
  2352. ret = 0;
  2353. /* HACK: Don't enable emulation on guest boot/reset */
  2354. vmx->emulation_required = 0;
  2355. out:
  2356. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2357. return ret;
  2358. }
  2359. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2360. {
  2361. u32 cpu_based_vm_exec_control;
  2362. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2363. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2364. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2365. }
  2366. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2367. {
  2368. u32 cpu_based_vm_exec_control;
  2369. if (!cpu_has_virtual_nmis()) {
  2370. enable_irq_window(vcpu);
  2371. return;
  2372. }
  2373. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2374. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2375. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2376. }
  2377. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2378. {
  2379. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2380. uint32_t intr;
  2381. int irq = vcpu->arch.interrupt.nr;
  2382. trace_kvm_inj_virq(irq);
  2383. ++vcpu->stat.irq_injections;
  2384. if (vmx->rmode.vm86_active) {
  2385. vmx->rmode.irq.pending = true;
  2386. vmx->rmode.irq.vector = irq;
  2387. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2388. if (vcpu->arch.interrupt.soft)
  2389. vmx->rmode.irq.rip +=
  2390. vmx->vcpu.arch.event_exit_inst_len;
  2391. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2392. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2393. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2394. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2395. return;
  2396. }
  2397. intr = irq | INTR_INFO_VALID_MASK;
  2398. if (vcpu->arch.interrupt.soft) {
  2399. intr |= INTR_TYPE_SOFT_INTR;
  2400. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2401. vmx->vcpu.arch.event_exit_inst_len);
  2402. } else
  2403. intr |= INTR_TYPE_EXT_INTR;
  2404. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2405. }
  2406. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2407. {
  2408. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2409. if (!cpu_has_virtual_nmis()) {
  2410. /*
  2411. * Tracking the NMI-blocked state in software is built upon
  2412. * finding the next open IRQ window. This, in turn, depends on
  2413. * well-behaving guests: They have to keep IRQs disabled at
  2414. * least as long as the NMI handler runs. Otherwise we may
  2415. * cause NMI nesting, maybe breaking the guest. But as this is
  2416. * highly unlikely, we can live with the residual risk.
  2417. */
  2418. vmx->soft_vnmi_blocked = 1;
  2419. vmx->vnmi_blocked_time = 0;
  2420. }
  2421. ++vcpu->stat.nmi_injections;
  2422. if (vmx->rmode.vm86_active) {
  2423. vmx->rmode.irq.pending = true;
  2424. vmx->rmode.irq.vector = NMI_VECTOR;
  2425. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2426. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2427. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2428. INTR_INFO_VALID_MASK);
  2429. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2430. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2431. return;
  2432. }
  2433. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2434. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2435. }
  2436. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2437. {
  2438. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2439. return 0;
  2440. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2441. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_NMI));
  2442. }
  2443. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2444. {
  2445. if (!cpu_has_virtual_nmis())
  2446. return to_vmx(vcpu)->soft_vnmi_blocked;
  2447. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  2448. }
  2449. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2450. {
  2451. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2452. if (!cpu_has_virtual_nmis()) {
  2453. if (vmx->soft_vnmi_blocked != masked) {
  2454. vmx->soft_vnmi_blocked = masked;
  2455. vmx->vnmi_blocked_time = 0;
  2456. }
  2457. } else {
  2458. if (masked)
  2459. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2460. GUEST_INTR_STATE_NMI);
  2461. else
  2462. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2463. GUEST_INTR_STATE_NMI);
  2464. }
  2465. }
  2466. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2467. {
  2468. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2469. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2470. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2471. }
  2472. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2473. {
  2474. int ret;
  2475. struct kvm_userspace_memory_region tss_mem = {
  2476. .slot = TSS_PRIVATE_MEMSLOT,
  2477. .guest_phys_addr = addr,
  2478. .memory_size = PAGE_SIZE * 3,
  2479. .flags = 0,
  2480. };
  2481. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2482. if (ret)
  2483. return ret;
  2484. kvm->arch.tss_addr = addr;
  2485. return 0;
  2486. }
  2487. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2488. int vec, u32 err_code)
  2489. {
  2490. /*
  2491. * Instruction with address size override prefix opcode 0x67
  2492. * Cause the #SS fault with 0 error code in VM86 mode.
  2493. */
  2494. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2495. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2496. return 1;
  2497. /*
  2498. * Forward all other exceptions that are valid in real mode.
  2499. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2500. * the required debugging infrastructure rework.
  2501. */
  2502. switch (vec) {
  2503. case DB_VECTOR:
  2504. if (vcpu->guest_debug &
  2505. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2506. return 0;
  2507. kvm_queue_exception(vcpu, vec);
  2508. return 1;
  2509. case BP_VECTOR:
  2510. /*
  2511. * Update instruction length as we may reinject the exception
  2512. * from user space while in guest debugging mode.
  2513. */
  2514. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  2515. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2516. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2517. return 0;
  2518. /* fall through */
  2519. case DE_VECTOR:
  2520. case OF_VECTOR:
  2521. case BR_VECTOR:
  2522. case UD_VECTOR:
  2523. case DF_VECTOR:
  2524. case SS_VECTOR:
  2525. case GP_VECTOR:
  2526. case MF_VECTOR:
  2527. kvm_queue_exception(vcpu, vec);
  2528. return 1;
  2529. }
  2530. return 0;
  2531. }
  2532. /*
  2533. * Trigger machine check on the host. We assume all the MSRs are already set up
  2534. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2535. * We pass a fake environment to the machine check handler because we want
  2536. * the guest to be always treated like user space, no matter what context
  2537. * it used internally.
  2538. */
  2539. static void kvm_machine_check(void)
  2540. {
  2541. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2542. struct pt_regs regs = {
  2543. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2544. .flags = X86_EFLAGS_IF,
  2545. };
  2546. do_machine_check(&regs, 0);
  2547. #endif
  2548. }
  2549. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2550. {
  2551. /* already handled by vcpu_run */
  2552. return 1;
  2553. }
  2554. static int handle_exception(struct kvm_vcpu *vcpu)
  2555. {
  2556. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2557. struct kvm_run *kvm_run = vcpu->run;
  2558. u32 intr_info, ex_no, error_code;
  2559. unsigned long cr2, rip, dr6;
  2560. u32 vect_info;
  2561. enum emulation_result er;
  2562. vect_info = vmx->idt_vectoring_info;
  2563. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2564. if (is_machine_check(intr_info))
  2565. return handle_machine_check(vcpu);
  2566. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2567. !is_page_fault(intr_info)) {
  2568. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2569. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2570. vcpu->run->internal.ndata = 2;
  2571. vcpu->run->internal.data[0] = vect_info;
  2572. vcpu->run->internal.data[1] = intr_info;
  2573. return 0;
  2574. }
  2575. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2576. return 1; /* already handled by vmx_vcpu_run() */
  2577. if (is_no_device(intr_info)) {
  2578. vmx_fpu_activate(vcpu);
  2579. return 1;
  2580. }
  2581. if (is_invalid_opcode(intr_info)) {
  2582. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2583. if (er != EMULATE_DONE)
  2584. kvm_queue_exception(vcpu, UD_VECTOR);
  2585. return 1;
  2586. }
  2587. error_code = 0;
  2588. rip = kvm_rip_read(vcpu);
  2589. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2590. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2591. if (is_page_fault(intr_info)) {
  2592. /* EPT won't cause page fault directly */
  2593. if (enable_ept)
  2594. BUG();
  2595. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2596. trace_kvm_page_fault(cr2, error_code);
  2597. if (kvm_event_needs_reinjection(vcpu))
  2598. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2599. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2600. }
  2601. if (vmx->rmode.vm86_active &&
  2602. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2603. error_code)) {
  2604. if (vcpu->arch.halt_request) {
  2605. vcpu->arch.halt_request = 0;
  2606. return kvm_emulate_halt(vcpu);
  2607. }
  2608. return 1;
  2609. }
  2610. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2611. switch (ex_no) {
  2612. case DB_VECTOR:
  2613. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2614. if (!(vcpu->guest_debug &
  2615. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2616. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2617. kvm_queue_exception(vcpu, DB_VECTOR);
  2618. return 1;
  2619. }
  2620. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2621. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2622. /* fall through */
  2623. case BP_VECTOR:
  2624. /*
  2625. * Update instruction length as we may reinject #BP from
  2626. * user space while in guest debugging mode. Reading it for
  2627. * #DB as well causes no harm, it is not used in that case.
  2628. */
  2629. vmx->vcpu.arch.event_exit_inst_len =
  2630. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  2631. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2632. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2633. kvm_run->debug.arch.exception = ex_no;
  2634. break;
  2635. default:
  2636. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2637. kvm_run->ex.exception = ex_no;
  2638. kvm_run->ex.error_code = error_code;
  2639. break;
  2640. }
  2641. return 0;
  2642. }
  2643. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2644. {
  2645. ++vcpu->stat.irq_exits;
  2646. return 1;
  2647. }
  2648. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2649. {
  2650. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2651. return 0;
  2652. }
  2653. static int handle_io(struct kvm_vcpu *vcpu)
  2654. {
  2655. unsigned long exit_qualification;
  2656. int size, in, string;
  2657. unsigned port;
  2658. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2659. string = (exit_qualification & 16) != 0;
  2660. in = (exit_qualification & 8) != 0;
  2661. ++vcpu->stat.io_exits;
  2662. if (string || in)
  2663. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2664. port = exit_qualification >> 16;
  2665. size = (exit_qualification & 7) + 1;
  2666. skip_emulated_instruction(vcpu);
  2667. return kvm_fast_pio_out(vcpu, size, port);
  2668. }
  2669. static void
  2670. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2671. {
  2672. /*
  2673. * Patch in the VMCALL instruction:
  2674. */
  2675. hypercall[0] = 0x0f;
  2676. hypercall[1] = 0x01;
  2677. hypercall[2] = 0xc1;
  2678. }
  2679. static int handle_cr(struct kvm_vcpu *vcpu)
  2680. {
  2681. unsigned long exit_qualification, val;
  2682. int cr;
  2683. int reg;
  2684. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2685. cr = exit_qualification & 15;
  2686. reg = (exit_qualification >> 8) & 15;
  2687. switch ((exit_qualification >> 4) & 3) {
  2688. case 0: /* mov to cr */
  2689. val = kvm_register_read(vcpu, reg);
  2690. trace_kvm_cr_write(cr, val);
  2691. switch (cr) {
  2692. case 0:
  2693. kvm_set_cr0(vcpu, val);
  2694. skip_emulated_instruction(vcpu);
  2695. return 1;
  2696. case 3:
  2697. kvm_set_cr3(vcpu, val);
  2698. skip_emulated_instruction(vcpu);
  2699. return 1;
  2700. case 4:
  2701. kvm_set_cr4(vcpu, val);
  2702. skip_emulated_instruction(vcpu);
  2703. return 1;
  2704. case 8: {
  2705. u8 cr8_prev = kvm_get_cr8(vcpu);
  2706. u8 cr8 = kvm_register_read(vcpu, reg);
  2707. kvm_set_cr8(vcpu, cr8);
  2708. skip_emulated_instruction(vcpu);
  2709. if (irqchip_in_kernel(vcpu->kvm))
  2710. return 1;
  2711. if (cr8_prev <= cr8)
  2712. return 1;
  2713. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2714. return 0;
  2715. }
  2716. };
  2717. break;
  2718. case 2: /* clts */
  2719. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2720. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2721. skip_emulated_instruction(vcpu);
  2722. vmx_fpu_activate(vcpu);
  2723. return 1;
  2724. case 1: /*mov from cr*/
  2725. switch (cr) {
  2726. case 3:
  2727. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2728. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2729. skip_emulated_instruction(vcpu);
  2730. return 1;
  2731. case 8:
  2732. val = kvm_get_cr8(vcpu);
  2733. kvm_register_write(vcpu, reg, val);
  2734. trace_kvm_cr_read(cr, val);
  2735. skip_emulated_instruction(vcpu);
  2736. return 1;
  2737. }
  2738. break;
  2739. case 3: /* lmsw */
  2740. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2741. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2742. kvm_lmsw(vcpu, val);
  2743. skip_emulated_instruction(vcpu);
  2744. return 1;
  2745. default:
  2746. break;
  2747. }
  2748. vcpu->run->exit_reason = 0;
  2749. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2750. (int)(exit_qualification >> 4) & 3, cr);
  2751. return 0;
  2752. }
  2753. static int handle_dr(struct kvm_vcpu *vcpu)
  2754. {
  2755. unsigned long exit_qualification;
  2756. int dr, reg;
  2757. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2758. if (!kvm_require_cpl(vcpu, 0))
  2759. return 1;
  2760. dr = vmcs_readl(GUEST_DR7);
  2761. if (dr & DR7_GD) {
  2762. /*
  2763. * As the vm-exit takes precedence over the debug trap, we
  2764. * need to emulate the latter, either for the host or the
  2765. * guest debugging itself.
  2766. */
  2767. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2768. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2769. vcpu->run->debug.arch.dr7 = dr;
  2770. vcpu->run->debug.arch.pc =
  2771. vmcs_readl(GUEST_CS_BASE) +
  2772. vmcs_readl(GUEST_RIP);
  2773. vcpu->run->debug.arch.exception = DB_VECTOR;
  2774. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2775. return 0;
  2776. } else {
  2777. vcpu->arch.dr7 &= ~DR7_GD;
  2778. vcpu->arch.dr6 |= DR6_BD;
  2779. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2780. kvm_queue_exception(vcpu, DB_VECTOR);
  2781. return 1;
  2782. }
  2783. }
  2784. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2785. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2786. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2787. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2788. unsigned long val;
  2789. if (!kvm_get_dr(vcpu, dr, &val))
  2790. kvm_register_write(vcpu, reg, val);
  2791. } else
  2792. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  2793. skip_emulated_instruction(vcpu);
  2794. return 1;
  2795. }
  2796. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  2797. {
  2798. vmcs_writel(GUEST_DR7, val);
  2799. }
  2800. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2801. {
  2802. kvm_emulate_cpuid(vcpu);
  2803. return 1;
  2804. }
  2805. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2806. {
  2807. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2808. u64 data;
  2809. if (vmx_get_msr(vcpu, ecx, &data)) {
  2810. trace_kvm_msr_read_ex(ecx);
  2811. kvm_inject_gp(vcpu, 0);
  2812. return 1;
  2813. }
  2814. trace_kvm_msr_read(ecx, data);
  2815. /* FIXME: handling of bits 32:63 of rax, rdx */
  2816. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2817. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2818. skip_emulated_instruction(vcpu);
  2819. return 1;
  2820. }
  2821. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2822. {
  2823. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2824. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2825. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2826. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2827. trace_kvm_msr_write_ex(ecx, data);
  2828. kvm_inject_gp(vcpu, 0);
  2829. return 1;
  2830. }
  2831. trace_kvm_msr_write(ecx, data);
  2832. skip_emulated_instruction(vcpu);
  2833. return 1;
  2834. }
  2835. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2836. {
  2837. return 1;
  2838. }
  2839. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2840. {
  2841. u32 cpu_based_vm_exec_control;
  2842. /* clear pending irq */
  2843. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2844. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2845. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2846. ++vcpu->stat.irq_window_exits;
  2847. /*
  2848. * If the user space waits to inject interrupts, exit as soon as
  2849. * possible
  2850. */
  2851. if (!irqchip_in_kernel(vcpu->kvm) &&
  2852. vcpu->run->request_interrupt_window &&
  2853. !kvm_cpu_has_interrupt(vcpu)) {
  2854. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2855. return 0;
  2856. }
  2857. return 1;
  2858. }
  2859. static int handle_halt(struct kvm_vcpu *vcpu)
  2860. {
  2861. skip_emulated_instruction(vcpu);
  2862. return kvm_emulate_halt(vcpu);
  2863. }
  2864. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2865. {
  2866. skip_emulated_instruction(vcpu);
  2867. kvm_emulate_hypercall(vcpu);
  2868. return 1;
  2869. }
  2870. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2871. {
  2872. kvm_queue_exception(vcpu, UD_VECTOR);
  2873. return 1;
  2874. }
  2875. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2876. {
  2877. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2878. kvm_mmu_invlpg(vcpu, exit_qualification);
  2879. skip_emulated_instruction(vcpu);
  2880. return 1;
  2881. }
  2882. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2883. {
  2884. skip_emulated_instruction(vcpu);
  2885. /* TODO: Add support for VT-d/pass-through device */
  2886. return 1;
  2887. }
  2888. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2889. {
  2890. return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
  2891. }
  2892. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2893. {
  2894. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2895. unsigned long exit_qualification;
  2896. bool has_error_code = false;
  2897. u32 error_code = 0;
  2898. u16 tss_selector;
  2899. int reason, type, idt_v;
  2900. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2901. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2902. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2903. reason = (u32)exit_qualification >> 30;
  2904. if (reason == TASK_SWITCH_GATE && idt_v) {
  2905. switch (type) {
  2906. case INTR_TYPE_NMI_INTR:
  2907. vcpu->arch.nmi_injected = false;
  2908. if (cpu_has_virtual_nmis())
  2909. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2910. GUEST_INTR_STATE_NMI);
  2911. break;
  2912. case INTR_TYPE_EXT_INTR:
  2913. case INTR_TYPE_SOFT_INTR:
  2914. kvm_clear_interrupt_queue(vcpu);
  2915. break;
  2916. case INTR_TYPE_HARD_EXCEPTION:
  2917. if (vmx->idt_vectoring_info &
  2918. VECTORING_INFO_DELIVER_CODE_MASK) {
  2919. has_error_code = true;
  2920. error_code =
  2921. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2922. }
  2923. /* fall through */
  2924. case INTR_TYPE_SOFT_EXCEPTION:
  2925. kvm_clear_exception_queue(vcpu);
  2926. break;
  2927. default:
  2928. break;
  2929. }
  2930. }
  2931. tss_selector = exit_qualification;
  2932. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2933. type != INTR_TYPE_EXT_INTR &&
  2934. type != INTR_TYPE_NMI_INTR))
  2935. skip_emulated_instruction(vcpu);
  2936. if (kvm_task_switch(vcpu, tss_selector, reason,
  2937. has_error_code, error_code) == EMULATE_FAIL) {
  2938. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2939. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2940. vcpu->run->internal.ndata = 0;
  2941. return 0;
  2942. }
  2943. /* clear all local breakpoint enable flags */
  2944. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2945. /*
  2946. * TODO: What about debug traps on tss switch?
  2947. * Are we supposed to inject them and update dr6?
  2948. */
  2949. return 1;
  2950. }
  2951. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2952. {
  2953. unsigned long exit_qualification;
  2954. gpa_t gpa;
  2955. int gla_validity;
  2956. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2957. if (exit_qualification & (1 << 6)) {
  2958. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2959. return -EINVAL;
  2960. }
  2961. gla_validity = (exit_qualification >> 7) & 0x3;
  2962. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2963. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2964. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2965. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2966. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2967. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2968. (long unsigned int)exit_qualification);
  2969. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2970. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2971. return 0;
  2972. }
  2973. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2974. trace_kvm_page_fault(gpa, exit_qualification);
  2975. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2976. }
  2977. static u64 ept_rsvd_mask(u64 spte, int level)
  2978. {
  2979. int i;
  2980. u64 mask = 0;
  2981. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2982. mask |= (1ULL << i);
  2983. if (level > 2)
  2984. /* bits 7:3 reserved */
  2985. mask |= 0xf8;
  2986. else if (level == 2) {
  2987. if (spte & (1ULL << 7))
  2988. /* 2MB ref, bits 20:12 reserved */
  2989. mask |= 0x1ff000;
  2990. else
  2991. /* bits 6:3 reserved */
  2992. mask |= 0x78;
  2993. }
  2994. return mask;
  2995. }
  2996. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2997. int level)
  2998. {
  2999. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3000. /* 010b (write-only) */
  3001. WARN_ON((spte & 0x7) == 0x2);
  3002. /* 110b (write/execute) */
  3003. WARN_ON((spte & 0x7) == 0x6);
  3004. /* 100b (execute-only) and value not supported by logical processor */
  3005. if (!cpu_has_vmx_ept_execute_only())
  3006. WARN_ON((spte & 0x7) == 0x4);
  3007. /* not 000b */
  3008. if ((spte & 0x7)) {
  3009. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3010. if (rsvd_bits != 0) {
  3011. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3012. __func__, rsvd_bits);
  3013. WARN_ON(1);
  3014. }
  3015. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3016. u64 ept_mem_type = (spte & 0x38) >> 3;
  3017. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3018. ept_mem_type == 7) {
  3019. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3020. __func__, ept_mem_type);
  3021. WARN_ON(1);
  3022. }
  3023. }
  3024. }
  3025. }
  3026. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3027. {
  3028. u64 sptes[4];
  3029. int nr_sptes, i;
  3030. gpa_t gpa;
  3031. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3032. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3033. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3034. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3035. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3036. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3037. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3038. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3039. return 0;
  3040. }
  3041. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3042. {
  3043. u32 cpu_based_vm_exec_control;
  3044. /* clear pending NMI */
  3045. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3046. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3047. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3048. ++vcpu->stat.nmi_window_exits;
  3049. return 1;
  3050. }
  3051. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3052. {
  3053. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3054. enum emulation_result err = EMULATE_DONE;
  3055. int ret = 1;
  3056. while (!guest_state_valid(vcpu)) {
  3057. err = emulate_instruction(vcpu, 0, 0, 0);
  3058. if (err == EMULATE_DO_MMIO) {
  3059. ret = 0;
  3060. goto out;
  3061. }
  3062. if (err != EMULATE_DONE)
  3063. return 0;
  3064. if (signal_pending(current))
  3065. goto out;
  3066. if (need_resched())
  3067. schedule();
  3068. }
  3069. vmx->emulation_required = 0;
  3070. out:
  3071. return ret;
  3072. }
  3073. /*
  3074. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3075. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3076. */
  3077. static int handle_pause(struct kvm_vcpu *vcpu)
  3078. {
  3079. skip_emulated_instruction(vcpu);
  3080. kvm_vcpu_on_spin(vcpu);
  3081. return 1;
  3082. }
  3083. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3084. {
  3085. kvm_queue_exception(vcpu, UD_VECTOR);
  3086. return 1;
  3087. }
  3088. /*
  3089. * The exit handlers return 1 if the exit was handled fully and guest execution
  3090. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  3091. * to be done to userspace and return 0.
  3092. */
  3093. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  3094. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  3095. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  3096. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  3097. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  3098. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  3099. [EXIT_REASON_CR_ACCESS] = handle_cr,
  3100. [EXIT_REASON_DR_ACCESS] = handle_dr,
  3101. [EXIT_REASON_CPUID] = handle_cpuid,
  3102. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  3103. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  3104. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  3105. [EXIT_REASON_HLT] = handle_halt,
  3106. [EXIT_REASON_INVLPG] = handle_invlpg,
  3107. [EXIT_REASON_VMCALL] = handle_vmcall,
  3108. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  3109. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  3110. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  3111. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  3112. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  3113. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3114. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3115. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3116. [EXIT_REASON_VMON] = handle_vmx_insn,
  3117. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3118. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3119. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3120. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3121. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3122. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3123. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3124. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3125. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3126. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3127. };
  3128. static const int kvm_vmx_max_exit_handlers =
  3129. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3130. /*
  3131. * The guest has exited. See if we can fix it or if we need userspace
  3132. * assistance.
  3133. */
  3134. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3135. {
  3136. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3137. u32 exit_reason = vmx->exit_reason;
  3138. u32 vectoring_info = vmx->idt_vectoring_info;
  3139. trace_kvm_exit(exit_reason, vcpu);
  3140. /* If guest state is invalid, start emulating */
  3141. if (vmx->emulation_required && emulate_invalid_guest_state)
  3142. return handle_invalid_guest_state(vcpu);
  3143. /* Access CR3 don't cause VMExit in paging mode, so we need
  3144. * to sync with guest real CR3. */
  3145. if (enable_ept && is_paging(vcpu))
  3146. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3147. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  3148. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3149. vcpu->run->fail_entry.hardware_entry_failure_reason
  3150. = exit_reason;
  3151. return 0;
  3152. }
  3153. if (unlikely(vmx->fail)) {
  3154. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3155. vcpu->run->fail_entry.hardware_entry_failure_reason
  3156. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3157. return 0;
  3158. }
  3159. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3160. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3161. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3162. exit_reason != EXIT_REASON_TASK_SWITCH))
  3163. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3164. "(0x%x) and exit reason is 0x%x\n",
  3165. __func__, vectoring_info, exit_reason);
  3166. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3167. if (vmx_interrupt_allowed(vcpu)) {
  3168. vmx->soft_vnmi_blocked = 0;
  3169. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3170. vcpu->arch.nmi_pending) {
  3171. /*
  3172. * This CPU don't support us in finding the end of an
  3173. * NMI-blocked window if the guest runs with IRQs
  3174. * disabled. So we pull the trigger after 1 s of
  3175. * futile waiting, but inform the user about this.
  3176. */
  3177. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3178. "state on VCPU %d after 1 s timeout\n",
  3179. __func__, vcpu->vcpu_id);
  3180. vmx->soft_vnmi_blocked = 0;
  3181. }
  3182. }
  3183. if (exit_reason < kvm_vmx_max_exit_handlers
  3184. && kvm_vmx_exit_handlers[exit_reason])
  3185. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3186. else {
  3187. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3188. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3189. }
  3190. return 0;
  3191. }
  3192. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3193. {
  3194. if (irr == -1 || tpr < irr) {
  3195. vmcs_write32(TPR_THRESHOLD, 0);
  3196. return;
  3197. }
  3198. vmcs_write32(TPR_THRESHOLD, irr);
  3199. }
  3200. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3201. {
  3202. u32 exit_intr_info;
  3203. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3204. bool unblock_nmi;
  3205. u8 vector;
  3206. int type;
  3207. bool idtv_info_valid;
  3208. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3209. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3210. /* Handle machine checks before interrupts are enabled */
  3211. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3212. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3213. && is_machine_check(exit_intr_info)))
  3214. kvm_machine_check();
  3215. /* We need to handle NMIs before interrupts are enabled */
  3216. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3217. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  3218. kvm_before_handle_nmi(&vmx->vcpu);
  3219. asm("int $2");
  3220. kvm_after_handle_nmi(&vmx->vcpu);
  3221. }
  3222. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3223. if (cpu_has_virtual_nmis()) {
  3224. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3225. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3226. /*
  3227. * SDM 3: 27.7.1.2 (September 2008)
  3228. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3229. * a guest IRET fault.
  3230. * SDM 3: 23.2.2 (September 2008)
  3231. * Bit 12 is undefined in any of the following cases:
  3232. * If the VM exit sets the valid bit in the IDT-vectoring
  3233. * information field.
  3234. * If the VM exit is due to a double fault.
  3235. */
  3236. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3237. vector != DF_VECTOR && !idtv_info_valid)
  3238. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3239. GUEST_INTR_STATE_NMI);
  3240. } else if (unlikely(vmx->soft_vnmi_blocked))
  3241. vmx->vnmi_blocked_time +=
  3242. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3243. vmx->vcpu.arch.nmi_injected = false;
  3244. kvm_clear_exception_queue(&vmx->vcpu);
  3245. kvm_clear_interrupt_queue(&vmx->vcpu);
  3246. if (!idtv_info_valid)
  3247. return;
  3248. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3249. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3250. switch (type) {
  3251. case INTR_TYPE_NMI_INTR:
  3252. vmx->vcpu.arch.nmi_injected = true;
  3253. /*
  3254. * SDM 3: 27.7.1.2 (September 2008)
  3255. * Clear bit "block by NMI" before VM entry if a NMI
  3256. * delivery faulted.
  3257. */
  3258. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3259. GUEST_INTR_STATE_NMI);
  3260. break;
  3261. case INTR_TYPE_SOFT_EXCEPTION:
  3262. vmx->vcpu.arch.event_exit_inst_len =
  3263. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3264. /* fall through */
  3265. case INTR_TYPE_HARD_EXCEPTION:
  3266. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3267. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3268. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3269. } else
  3270. kvm_queue_exception(&vmx->vcpu, vector);
  3271. break;
  3272. case INTR_TYPE_SOFT_INTR:
  3273. vmx->vcpu.arch.event_exit_inst_len =
  3274. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3275. /* fall through */
  3276. case INTR_TYPE_EXT_INTR:
  3277. kvm_queue_interrupt(&vmx->vcpu, vector,
  3278. type == INTR_TYPE_SOFT_INTR);
  3279. break;
  3280. default:
  3281. break;
  3282. }
  3283. }
  3284. /*
  3285. * Failure to inject an interrupt should give us the information
  3286. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3287. * when fetching the interrupt redirection bitmap in the real-mode
  3288. * tss, this doesn't happen. So we do it ourselves.
  3289. */
  3290. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3291. {
  3292. vmx->rmode.irq.pending = 0;
  3293. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3294. return;
  3295. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3296. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3297. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3298. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3299. return;
  3300. }
  3301. vmx->idt_vectoring_info =
  3302. VECTORING_INFO_VALID_MASK
  3303. | INTR_TYPE_EXT_INTR
  3304. | vmx->rmode.irq.vector;
  3305. }
  3306. #ifdef CONFIG_X86_64
  3307. #define R "r"
  3308. #define Q "q"
  3309. #else
  3310. #define R "e"
  3311. #define Q "l"
  3312. #endif
  3313. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3314. {
  3315. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3316. /* Record the guest's net vcpu time for enforced NMI injections. */
  3317. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3318. vmx->entry_time = ktime_get();
  3319. /* Don't enter VMX if guest state is invalid, let the exit handler
  3320. start emulation until we arrive back to a valid state */
  3321. if (vmx->emulation_required && emulate_invalid_guest_state)
  3322. return;
  3323. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3324. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3325. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3326. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3327. /* When single-stepping over STI and MOV SS, we must clear the
  3328. * corresponding interruptibility bits in the guest state. Otherwise
  3329. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3330. * exceptions being set, but that's not correct for the guest debugging
  3331. * case. */
  3332. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3333. vmx_set_interrupt_shadow(vcpu, 0);
  3334. asm(
  3335. /* Store host registers */
  3336. "push %%"R"dx; push %%"R"bp;"
  3337. "push %%"R"cx \n\t"
  3338. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3339. "je 1f \n\t"
  3340. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3341. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3342. "1: \n\t"
  3343. /* Reload cr2 if changed */
  3344. "mov %c[cr2](%0), %%"R"ax \n\t"
  3345. "mov %%cr2, %%"R"dx \n\t"
  3346. "cmp %%"R"ax, %%"R"dx \n\t"
  3347. "je 2f \n\t"
  3348. "mov %%"R"ax, %%cr2 \n\t"
  3349. "2: \n\t"
  3350. /* Check if vmlaunch of vmresume is needed */
  3351. "cmpl $0, %c[launched](%0) \n\t"
  3352. /* Load guest registers. Don't clobber flags. */
  3353. "mov %c[rax](%0), %%"R"ax \n\t"
  3354. "mov %c[rbx](%0), %%"R"bx \n\t"
  3355. "mov %c[rdx](%0), %%"R"dx \n\t"
  3356. "mov %c[rsi](%0), %%"R"si \n\t"
  3357. "mov %c[rdi](%0), %%"R"di \n\t"
  3358. "mov %c[rbp](%0), %%"R"bp \n\t"
  3359. #ifdef CONFIG_X86_64
  3360. "mov %c[r8](%0), %%r8 \n\t"
  3361. "mov %c[r9](%0), %%r9 \n\t"
  3362. "mov %c[r10](%0), %%r10 \n\t"
  3363. "mov %c[r11](%0), %%r11 \n\t"
  3364. "mov %c[r12](%0), %%r12 \n\t"
  3365. "mov %c[r13](%0), %%r13 \n\t"
  3366. "mov %c[r14](%0), %%r14 \n\t"
  3367. "mov %c[r15](%0), %%r15 \n\t"
  3368. #endif
  3369. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3370. /* Enter guest mode */
  3371. "jne .Llaunched \n\t"
  3372. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3373. "jmp .Lkvm_vmx_return \n\t"
  3374. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3375. ".Lkvm_vmx_return: "
  3376. /* Save guest registers, load host registers, keep flags */
  3377. "xchg %0, (%%"R"sp) \n\t"
  3378. "mov %%"R"ax, %c[rax](%0) \n\t"
  3379. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3380. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3381. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3382. "mov %%"R"si, %c[rsi](%0) \n\t"
  3383. "mov %%"R"di, %c[rdi](%0) \n\t"
  3384. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3385. #ifdef CONFIG_X86_64
  3386. "mov %%r8, %c[r8](%0) \n\t"
  3387. "mov %%r9, %c[r9](%0) \n\t"
  3388. "mov %%r10, %c[r10](%0) \n\t"
  3389. "mov %%r11, %c[r11](%0) \n\t"
  3390. "mov %%r12, %c[r12](%0) \n\t"
  3391. "mov %%r13, %c[r13](%0) \n\t"
  3392. "mov %%r14, %c[r14](%0) \n\t"
  3393. "mov %%r15, %c[r15](%0) \n\t"
  3394. #endif
  3395. "mov %%cr2, %%"R"ax \n\t"
  3396. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3397. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3398. "setbe %c[fail](%0) \n\t"
  3399. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3400. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3401. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3402. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3403. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3404. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3405. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3406. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3407. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3408. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3409. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3410. #ifdef CONFIG_X86_64
  3411. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3412. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3413. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3414. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3415. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3416. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3417. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3418. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3419. #endif
  3420. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3421. : "cc", "memory"
  3422. , R"bx", R"di", R"si"
  3423. #ifdef CONFIG_X86_64
  3424. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3425. #endif
  3426. );
  3427. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3428. | (1 << VCPU_EXREG_PDPTR));
  3429. vcpu->arch.regs_dirty = 0;
  3430. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3431. if (vmx->rmode.irq.pending)
  3432. fixup_rmode_irq(vmx);
  3433. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3434. vmx->launched = 1;
  3435. vmx_complete_interrupts(vmx);
  3436. }
  3437. #undef R
  3438. #undef Q
  3439. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3440. {
  3441. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3442. if (vmx->vmcs) {
  3443. vcpu_clear(vmx);
  3444. free_vmcs(vmx->vmcs);
  3445. vmx->vmcs = NULL;
  3446. }
  3447. }
  3448. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3449. {
  3450. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3451. free_vpid(vmx);
  3452. vmx_free_vmcs(vcpu);
  3453. kfree(vmx->guest_msrs);
  3454. kvm_vcpu_uninit(vcpu);
  3455. kmem_cache_free(kvm_vcpu_cache, vmx);
  3456. }
  3457. static inline void vmcs_init(struct vmcs *vmcs)
  3458. {
  3459. u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
  3460. if (!vmm_exclusive)
  3461. kvm_cpu_vmxon(phys_addr);
  3462. vmcs_clear(vmcs);
  3463. if (!vmm_exclusive)
  3464. kvm_cpu_vmxoff();
  3465. }
  3466. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3467. {
  3468. int err;
  3469. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3470. int cpu;
  3471. if (!vmx)
  3472. return ERR_PTR(-ENOMEM);
  3473. allocate_vpid(vmx);
  3474. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3475. if (err)
  3476. goto free_vcpu;
  3477. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3478. if (!vmx->guest_msrs) {
  3479. err = -ENOMEM;
  3480. goto uninit_vcpu;
  3481. }
  3482. vmx->vmcs = alloc_vmcs();
  3483. if (!vmx->vmcs)
  3484. goto free_msrs;
  3485. vmcs_init(vmx->vmcs);
  3486. cpu = get_cpu();
  3487. vmx_vcpu_load(&vmx->vcpu, cpu);
  3488. err = vmx_vcpu_setup(vmx);
  3489. vmx_vcpu_put(&vmx->vcpu);
  3490. put_cpu();
  3491. if (err)
  3492. goto free_vmcs;
  3493. if (vm_need_virtualize_apic_accesses(kvm))
  3494. if (alloc_apic_access_page(kvm) != 0)
  3495. goto free_vmcs;
  3496. if (enable_ept) {
  3497. if (!kvm->arch.ept_identity_map_addr)
  3498. kvm->arch.ept_identity_map_addr =
  3499. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3500. if (alloc_identity_pagetable(kvm) != 0)
  3501. goto free_vmcs;
  3502. }
  3503. return &vmx->vcpu;
  3504. free_vmcs:
  3505. free_vmcs(vmx->vmcs);
  3506. free_msrs:
  3507. kfree(vmx->guest_msrs);
  3508. uninit_vcpu:
  3509. kvm_vcpu_uninit(&vmx->vcpu);
  3510. free_vcpu:
  3511. free_vpid(vmx);
  3512. kmem_cache_free(kvm_vcpu_cache, vmx);
  3513. return ERR_PTR(err);
  3514. }
  3515. static void __init vmx_check_processor_compat(void *rtn)
  3516. {
  3517. struct vmcs_config vmcs_conf;
  3518. *(int *)rtn = 0;
  3519. if (setup_vmcs_config(&vmcs_conf) < 0)
  3520. *(int *)rtn = -EIO;
  3521. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3522. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3523. smp_processor_id());
  3524. *(int *)rtn = -EIO;
  3525. }
  3526. }
  3527. static int get_ept_level(void)
  3528. {
  3529. return VMX_EPT_DEFAULT_GAW + 1;
  3530. }
  3531. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3532. {
  3533. u64 ret;
  3534. /* For VT-d and EPT combination
  3535. * 1. MMIO: always map as UC
  3536. * 2. EPT with VT-d:
  3537. * a. VT-d without snooping control feature: can't guarantee the
  3538. * result, try to trust guest.
  3539. * b. VT-d with snooping control feature: snooping control feature of
  3540. * VT-d engine can guarantee the cache correctness. Just set it
  3541. * to WB to keep consistent with host. So the same as item 3.
  3542. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  3543. * consistent with host MTRR
  3544. */
  3545. if (is_mmio)
  3546. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3547. else if (vcpu->kvm->arch.iommu_domain &&
  3548. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3549. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3550. VMX_EPT_MT_EPTE_SHIFT;
  3551. else
  3552. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3553. | VMX_EPT_IPAT_BIT;
  3554. return ret;
  3555. }
  3556. #define _ER(x) { EXIT_REASON_##x, #x }
  3557. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3558. _ER(EXCEPTION_NMI),
  3559. _ER(EXTERNAL_INTERRUPT),
  3560. _ER(TRIPLE_FAULT),
  3561. _ER(PENDING_INTERRUPT),
  3562. _ER(NMI_WINDOW),
  3563. _ER(TASK_SWITCH),
  3564. _ER(CPUID),
  3565. _ER(HLT),
  3566. _ER(INVLPG),
  3567. _ER(RDPMC),
  3568. _ER(RDTSC),
  3569. _ER(VMCALL),
  3570. _ER(VMCLEAR),
  3571. _ER(VMLAUNCH),
  3572. _ER(VMPTRLD),
  3573. _ER(VMPTRST),
  3574. _ER(VMREAD),
  3575. _ER(VMRESUME),
  3576. _ER(VMWRITE),
  3577. _ER(VMOFF),
  3578. _ER(VMON),
  3579. _ER(CR_ACCESS),
  3580. _ER(DR_ACCESS),
  3581. _ER(IO_INSTRUCTION),
  3582. _ER(MSR_READ),
  3583. _ER(MSR_WRITE),
  3584. _ER(MWAIT_INSTRUCTION),
  3585. _ER(MONITOR_INSTRUCTION),
  3586. _ER(PAUSE_INSTRUCTION),
  3587. _ER(MCE_DURING_VMENTRY),
  3588. _ER(TPR_BELOW_THRESHOLD),
  3589. _ER(APIC_ACCESS),
  3590. _ER(EPT_VIOLATION),
  3591. _ER(EPT_MISCONFIG),
  3592. _ER(WBINVD),
  3593. { -1, NULL }
  3594. };
  3595. #undef _ER
  3596. static int vmx_get_lpage_level(void)
  3597. {
  3598. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3599. return PT_DIRECTORY_LEVEL;
  3600. else
  3601. /* For shadow and EPT supported 1GB page */
  3602. return PT_PDPE_LEVEL;
  3603. }
  3604. static inline u32 bit(int bitno)
  3605. {
  3606. return 1 << (bitno & 31);
  3607. }
  3608. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3609. {
  3610. struct kvm_cpuid_entry2 *best;
  3611. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3612. u32 exec_control;
  3613. vmx->rdtscp_enabled = false;
  3614. if (vmx_rdtscp_supported()) {
  3615. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3616. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3617. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3618. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3619. vmx->rdtscp_enabled = true;
  3620. else {
  3621. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3622. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3623. exec_control);
  3624. }
  3625. }
  3626. }
  3627. }
  3628. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  3629. {
  3630. }
  3631. static struct kvm_x86_ops vmx_x86_ops = {
  3632. .cpu_has_kvm_support = cpu_has_kvm_support,
  3633. .disabled_by_bios = vmx_disabled_by_bios,
  3634. .hardware_setup = hardware_setup,
  3635. .hardware_unsetup = hardware_unsetup,
  3636. .check_processor_compatibility = vmx_check_processor_compat,
  3637. .hardware_enable = hardware_enable,
  3638. .hardware_disable = hardware_disable,
  3639. .cpu_has_accelerated_tpr = report_flexpriority,
  3640. .vcpu_create = vmx_create_vcpu,
  3641. .vcpu_free = vmx_free_vcpu,
  3642. .vcpu_reset = vmx_vcpu_reset,
  3643. .prepare_guest_switch = vmx_save_host_state,
  3644. .vcpu_load = vmx_vcpu_load,
  3645. .vcpu_put = vmx_vcpu_put,
  3646. .set_guest_debug = set_guest_debug,
  3647. .get_msr = vmx_get_msr,
  3648. .set_msr = vmx_set_msr,
  3649. .get_segment_base = vmx_get_segment_base,
  3650. .get_segment = vmx_get_segment,
  3651. .set_segment = vmx_set_segment,
  3652. .get_cpl = vmx_get_cpl,
  3653. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3654. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3655. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3656. .set_cr0 = vmx_set_cr0,
  3657. .set_cr3 = vmx_set_cr3,
  3658. .set_cr4 = vmx_set_cr4,
  3659. .set_efer = vmx_set_efer,
  3660. .get_idt = vmx_get_idt,
  3661. .set_idt = vmx_set_idt,
  3662. .get_gdt = vmx_get_gdt,
  3663. .set_gdt = vmx_set_gdt,
  3664. .set_dr7 = vmx_set_dr7,
  3665. .cache_reg = vmx_cache_reg,
  3666. .get_rflags = vmx_get_rflags,
  3667. .set_rflags = vmx_set_rflags,
  3668. .fpu_activate = vmx_fpu_activate,
  3669. .fpu_deactivate = vmx_fpu_deactivate,
  3670. .tlb_flush = vmx_flush_tlb,
  3671. .run = vmx_vcpu_run,
  3672. .handle_exit = vmx_handle_exit,
  3673. .skip_emulated_instruction = skip_emulated_instruction,
  3674. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3675. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3676. .patch_hypercall = vmx_patch_hypercall,
  3677. .set_irq = vmx_inject_irq,
  3678. .set_nmi = vmx_inject_nmi,
  3679. .queue_exception = vmx_queue_exception,
  3680. .interrupt_allowed = vmx_interrupt_allowed,
  3681. .nmi_allowed = vmx_nmi_allowed,
  3682. .get_nmi_mask = vmx_get_nmi_mask,
  3683. .set_nmi_mask = vmx_set_nmi_mask,
  3684. .enable_nmi_window = enable_nmi_window,
  3685. .enable_irq_window = enable_irq_window,
  3686. .update_cr8_intercept = update_cr8_intercept,
  3687. .set_tss_addr = vmx_set_tss_addr,
  3688. .get_tdp_level = get_ept_level,
  3689. .get_mt_mask = vmx_get_mt_mask,
  3690. .exit_reasons_str = vmx_exit_reasons_str,
  3691. .get_lpage_level = vmx_get_lpage_level,
  3692. .cpuid_update = vmx_cpuid_update,
  3693. .rdtscp_supported = vmx_rdtscp_supported,
  3694. .set_supported_cpuid = vmx_set_supported_cpuid,
  3695. };
  3696. static int __init vmx_init(void)
  3697. {
  3698. int r, i;
  3699. rdmsrl_safe(MSR_EFER, &host_efer);
  3700. for (i = 0; i < NR_VMX_MSR; ++i)
  3701. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3702. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3703. if (!vmx_io_bitmap_a)
  3704. return -ENOMEM;
  3705. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3706. if (!vmx_io_bitmap_b) {
  3707. r = -ENOMEM;
  3708. goto out;
  3709. }
  3710. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3711. if (!vmx_msr_bitmap_legacy) {
  3712. r = -ENOMEM;
  3713. goto out1;
  3714. }
  3715. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3716. if (!vmx_msr_bitmap_longmode) {
  3717. r = -ENOMEM;
  3718. goto out2;
  3719. }
  3720. /*
  3721. * Allow direct access to the PC debug port (it is often used for I/O
  3722. * delays, but the vmexits simply slow things down).
  3723. */
  3724. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3725. clear_bit(0x80, vmx_io_bitmap_a);
  3726. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3727. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3728. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3729. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3730. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  3731. __alignof__(struct vcpu_vmx), THIS_MODULE);
  3732. if (r)
  3733. goto out3;
  3734. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3735. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3736. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3737. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3738. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3739. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3740. if (enable_ept) {
  3741. bypass_guest_pf = 0;
  3742. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3743. VMX_EPT_WRITABLE_MASK);
  3744. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3745. VMX_EPT_EXECUTABLE_MASK);
  3746. kvm_enable_tdp();
  3747. } else
  3748. kvm_disable_tdp();
  3749. if (bypass_guest_pf)
  3750. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3751. return 0;
  3752. out3:
  3753. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3754. out2:
  3755. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3756. out1:
  3757. free_page((unsigned long)vmx_io_bitmap_b);
  3758. out:
  3759. free_page((unsigned long)vmx_io_bitmap_a);
  3760. return r;
  3761. }
  3762. static void __exit vmx_exit(void)
  3763. {
  3764. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3765. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3766. free_page((unsigned long)vmx_io_bitmap_b);
  3767. free_page((unsigned long)vmx_io_bitmap_a);
  3768. kvm_exit();
  3769. }
  3770. module_init(vmx_init)
  3771. module_exit(vmx_exit)