builtin-sched.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. #include "builtin.h"
  2. #include "util/util.h"
  3. #include "util/cache.h"
  4. #include "util/symbol.h"
  5. #include "util/thread.h"
  6. #include "util/header.h"
  7. #include "util/parse-options.h"
  8. #include "perf.h"
  9. #include "util/debug.h"
  10. #include "util/trace-event.h"
  11. #include <sys/types.h>
  12. #define MAX_CPUS 4096
  13. static char const *input_name = "perf.data";
  14. static int input;
  15. static unsigned long page_size;
  16. static unsigned long mmap_window = 32;
  17. static unsigned long total_comm = 0;
  18. static struct rb_root threads;
  19. static struct thread *last_match;
  20. static struct perf_header *header;
  21. static u64 sample_type;
  22. static int replay_mode;
  23. static int lat_mode;
  24. /*
  25. * Scheduler benchmarks
  26. */
  27. #include <sys/resource.h>
  28. #include <sys/types.h>
  29. #include <sys/stat.h>
  30. #include <sys/time.h>
  31. #include <sys/prctl.h>
  32. #include <linux/unistd.h>
  33. #include <semaphore.h>
  34. #include <pthread.h>
  35. #include <signal.h>
  36. #include <values.h>
  37. #include <string.h>
  38. #include <unistd.h>
  39. #include <stdlib.h>
  40. #include <assert.h>
  41. #include <fcntl.h>
  42. #include <time.h>
  43. #include <math.h>
  44. #include <stdio.h>
  45. #define PR_SET_NAME 15 /* Set process name */
  46. #define BUG_ON(x) assert(!(x))
  47. #define DEBUG 0
  48. typedef unsigned long long nsec_t;
  49. static nsec_t run_measurement_overhead;
  50. static nsec_t sleep_measurement_overhead;
  51. static nsec_t get_nsecs(void)
  52. {
  53. struct timespec ts;
  54. clock_gettime(CLOCK_MONOTONIC, &ts);
  55. return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
  56. }
  57. static void burn_nsecs(nsec_t nsecs)
  58. {
  59. nsec_t T0 = get_nsecs(), T1;
  60. do {
  61. T1 = get_nsecs();
  62. } while (T1 + run_measurement_overhead < T0 + nsecs);
  63. }
  64. static void sleep_nsecs(nsec_t nsecs)
  65. {
  66. struct timespec ts;
  67. ts.tv_nsec = nsecs % 999999999;
  68. ts.tv_sec = nsecs / 999999999;
  69. nanosleep(&ts, NULL);
  70. }
  71. static void calibrate_run_measurement_overhead(void)
  72. {
  73. nsec_t T0, T1, delta, min_delta = 1000000000ULL;
  74. int i;
  75. for (i = 0; i < 10; i++) {
  76. T0 = get_nsecs();
  77. burn_nsecs(0);
  78. T1 = get_nsecs();
  79. delta = T1-T0;
  80. min_delta = min(min_delta, delta);
  81. }
  82. run_measurement_overhead = min_delta;
  83. printf("run measurement overhead: %Ld nsecs\n", min_delta);
  84. }
  85. static void calibrate_sleep_measurement_overhead(void)
  86. {
  87. nsec_t T0, T1, delta, min_delta = 1000000000ULL;
  88. int i;
  89. for (i = 0; i < 10; i++) {
  90. T0 = get_nsecs();
  91. sleep_nsecs(10000);
  92. T1 = get_nsecs();
  93. delta = T1-T0;
  94. min_delta = min(min_delta, delta);
  95. }
  96. min_delta -= 10000;
  97. sleep_measurement_overhead = min_delta;
  98. printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
  99. }
  100. #define COMM_LEN 20
  101. #define SYM_LEN 129
  102. #define MAX_PID 65536
  103. static unsigned long nr_tasks;
  104. struct sched_event;
  105. struct task_desc {
  106. unsigned long nr;
  107. unsigned long pid;
  108. char comm[COMM_LEN];
  109. unsigned long nr_events;
  110. unsigned long curr_event;
  111. struct sched_event **events;
  112. pthread_t thread;
  113. sem_t sleep_sem;
  114. sem_t ready_for_work;
  115. sem_t work_done_sem;
  116. nsec_t cpu_usage;
  117. };
  118. enum sched_event_type {
  119. SCHED_EVENT_RUN,
  120. SCHED_EVENT_SLEEP,
  121. SCHED_EVENT_WAKEUP,
  122. };
  123. struct sched_event {
  124. enum sched_event_type type;
  125. nsec_t timestamp;
  126. nsec_t duration;
  127. unsigned long nr;
  128. int specific_wait;
  129. sem_t *wait_sem;
  130. struct task_desc *wakee;
  131. };
  132. static struct task_desc *pid_to_task[MAX_PID];
  133. static struct task_desc **tasks;
  134. static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
  135. static nsec_t start_time;
  136. static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
  137. static unsigned long nr_run_events;
  138. static unsigned long nr_sleep_events;
  139. static unsigned long nr_wakeup_events;
  140. static unsigned long nr_sleep_corrections;
  141. static unsigned long nr_run_events_optimized;
  142. static struct sched_event *
  143. get_new_event(struct task_desc *task, nsec_t timestamp)
  144. {
  145. struct sched_event *event = calloc(1, sizeof(*event));
  146. unsigned long idx = task->nr_events;
  147. size_t size;
  148. event->timestamp = timestamp;
  149. event->nr = idx;
  150. task->nr_events++;
  151. size = sizeof(struct sched_event *) * task->nr_events;
  152. task->events = realloc(task->events, size);
  153. BUG_ON(!task->events);
  154. task->events[idx] = event;
  155. return event;
  156. }
  157. static struct sched_event *last_event(struct task_desc *task)
  158. {
  159. if (!task->nr_events)
  160. return NULL;
  161. return task->events[task->nr_events - 1];
  162. }
  163. static void
  164. add_sched_event_run(struct task_desc *task, nsec_t timestamp, u64 duration)
  165. {
  166. struct sched_event *event, *curr_event = last_event(task);
  167. /*
  168. * optimize an existing RUN event by merging this one
  169. * to it:
  170. */
  171. if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
  172. nr_run_events_optimized++;
  173. curr_event->duration += duration;
  174. return;
  175. }
  176. event = get_new_event(task, timestamp);
  177. event->type = SCHED_EVENT_RUN;
  178. event->duration = duration;
  179. nr_run_events++;
  180. }
  181. static unsigned long targetless_wakeups;
  182. static unsigned long multitarget_wakeups;
  183. static void
  184. add_sched_event_wakeup(struct task_desc *task, nsec_t timestamp,
  185. struct task_desc *wakee)
  186. {
  187. struct sched_event *event, *wakee_event;
  188. event = get_new_event(task, timestamp);
  189. event->type = SCHED_EVENT_WAKEUP;
  190. event->wakee = wakee;
  191. wakee_event = last_event(wakee);
  192. if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
  193. targetless_wakeups++;
  194. return;
  195. }
  196. if (wakee_event->wait_sem) {
  197. multitarget_wakeups++;
  198. return;
  199. }
  200. wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
  201. sem_init(wakee_event->wait_sem, 0, 0);
  202. wakee_event->specific_wait = 1;
  203. event->wait_sem = wakee_event->wait_sem;
  204. nr_wakeup_events++;
  205. }
  206. static void
  207. add_sched_event_sleep(struct task_desc *task, nsec_t timestamp,
  208. u64 task_state __used)
  209. {
  210. struct sched_event *event = get_new_event(task, timestamp);
  211. event->type = SCHED_EVENT_SLEEP;
  212. nr_sleep_events++;
  213. }
  214. static struct task_desc *register_pid(unsigned long pid, const char *comm)
  215. {
  216. struct task_desc *task;
  217. BUG_ON(pid >= MAX_PID);
  218. task = pid_to_task[pid];
  219. if (task)
  220. return task;
  221. task = calloc(1, sizeof(*task));
  222. task->pid = pid;
  223. task->nr = nr_tasks;
  224. strcpy(task->comm, comm);
  225. /*
  226. * every task starts in sleeping state - this gets ignored
  227. * if there's no wakeup pointing to this sleep state:
  228. */
  229. add_sched_event_sleep(task, 0, 0);
  230. pid_to_task[pid] = task;
  231. nr_tasks++;
  232. tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
  233. BUG_ON(!tasks);
  234. tasks[task->nr] = task;
  235. if (verbose)
  236. printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
  237. return task;
  238. }
  239. static void print_task_traces(void)
  240. {
  241. struct task_desc *task;
  242. unsigned long i;
  243. for (i = 0; i < nr_tasks; i++) {
  244. task = tasks[i];
  245. printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
  246. task->nr, task->comm, task->pid, task->nr_events);
  247. }
  248. }
  249. static void add_cross_task_wakeups(void)
  250. {
  251. struct task_desc *task1, *task2;
  252. unsigned long i, j;
  253. for (i = 0; i < nr_tasks; i++) {
  254. task1 = tasks[i];
  255. j = i + 1;
  256. if (j == nr_tasks)
  257. j = 0;
  258. task2 = tasks[j];
  259. add_sched_event_wakeup(task1, 0, task2);
  260. }
  261. }
  262. static void
  263. process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
  264. {
  265. int ret = 0;
  266. nsec_t now;
  267. long long delta;
  268. now = get_nsecs();
  269. delta = start_time + event->timestamp - now;
  270. switch (event->type) {
  271. case SCHED_EVENT_RUN:
  272. burn_nsecs(event->duration);
  273. break;
  274. case SCHED_EVENT_SLEEP:
  275. if (event->wait_sem)
  276. ret = sem_wait(event->wait_sem);
  277. BUG_ON(ret);
  278. break;
  279. case SCHED_EVENT_WAKEUP:
  280. if (event->wait_sem)
  281. ret = sem_post(event->wait_sem);
  282. BUG_ON(ret);
  283. break;
  284. default:
  285. BUG_ON(1);
  286. }
  287. }
  288. static nsec_t get_cpu_usage_nsec_parent(void)
  289. {
  290. struct rusage ru;
  291. nsec_t sum;
  292. int err;
  293. err = getrusage(RUSAGE_SELF, &ru);
  294. BUG_ON(err);
  295. sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
  296. sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
  297. return sum;
  298. }
  299. static nsec_t get_cpu_usage_nsec_self(void)
  300. {
  301. char filename [] = "/proc/1234567890/sched";
  302. unsigned long msecs, nsecs;
  303. char *line = NULL;
  304. nsec_t total = 0;
  305. size_t len = 0;
  306. ssize_t chars;
  307. FILE *file;
  308. int ret;
  309. sprintf(filename, "/proc/%d/sched", getpid());
  310. file = fopen(filename, "r");
  311. BUG_ON(!file);
  312. while ((chars = getline(&line, &len, file)) != -1) {
  313. ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
  314. &msecs, &nsecs);
  315. if (ret == 2) {
  316. total = msecs*1e6 + nsecs;
  317. break;
  318. }
  319. }
  320. if (line)
  321. free(line);
  322. fclose(file);
  323. return total;
  324. }
  325. static void *thread_func(void *ctx)
  326. {
  327. struct task_desc *this_task = ctx;
  328. nsec_t cpu_usage_0, cpu_usage_1;
  329. unsigned long i, ret;
  330. char comm2[22];
  331. sprintf(comm2, ":%s", this_task->comm);
  332. prctl(PR_SET_NAME, comm2);
  333. again:
  334. ret = sem_post(&this_task->ready_for_work);
  335. BUG_ON(ret);
  336. ret = pthread_mutex_lock(&start_work_mutex);
  337. BUG_ON(ret);
  338. ret = pthread_mutex_unlock(&start_work_mutex);
  339. BUG_ON(ret);
  340. cpu_usage_0 = get_cpu_usage_nsec_self();
  341. for (i = 0; i < this_task->nr_events; i++) {
  342. this_task->curr_event = i;
  343. process_sched_event(this_task, this_task->events[i]);
  344. }
  345. cpu_usage_1 = get_cpu_usage_nsec_self();
  346. this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
  347. ret = sem_post(&this_task->work_done_sem);
  348. BUG_ON(ret);
  349. ret = pthread_mutex_lock(&work_done_wait_mutex);
  350. BUG_ON(ret);
  351. ret = pthread_mutex_unlock(&work_done_wait_mutex);
  352. BUG_ON(ret);
  353. goto again;
  354. }
  355. static void create_tasks(void)
  356. {
  357. struct task_desc *task;
  358. pthread_attr_t attr;
  359. unsigned long i;
  360. int err;
  361. err = pthread_attr_init(&attr);
  362. BUG_ON(err);
  363. err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
  364. BUG_ON(err);
  365. err = pthread_mutex_lock(&start_work_mutex);
  366. BUG_ON(err);
  367. err = pthread_mutex_lock(&work_done_wait_mutex);
  368. BUG_ON(err);
  369. for (i = 0; i < nr_tasks; i++) {
  370. task = tasks[i];
  371. sem_init(&task->sleep_sem, 0, 0);
  372. sem_init(&task->ready_for_work, 0, 0);
  373. sem_init(&task->work_done_sem, 0, 0);
  374. task->curr_event = 0;
  375. err = pthread_create(&task->thread, &attr, thread_func, task);
  376. BUG_ON(err);
  377. }
  378. }
  379. static nsec_t cpu_usage;
  380. static nsec_t runavg_cpu_usage;
  381. static nsec_t parent_cpu_usage;
  382. static nsec_t runavg_parent_cpu_usage;
  383. static void wait_for_tasks(void)
  384. {
  385. nsec_t cpu_usage_0, cpu_usage_1;
  386. struct task_desc *task;
  387. unsigned long i, ret;
  388. start_time = get_nsecs();
  389. cpu_usage = 0;
  390. pthread_mutex_unlock(&work_done_wait_mutex);
  391. for (i = 0; i < nr_tasks; i++) {
  392. task = tasks[i];
  393. ret = sem_wait(&task->ready_for_work);
  394. BUG_ON(ret);
  395. sem_init(&task->ready_for_work, 0, 0);
  396. }
  397. ret = pthread_mutex_lock(&work_done_wait_mutex);
  398. BUG_ON(ret);
  399. cpu_usage_0 = get_cpu_usage_nsec_parent();
  400. pthread_mutex_unlock(&start_work_mutex);
  401. for (i = 0; i < nr_tasks; i++) {
  402. task = tasks[i];
  403. ret = sem_wait(&task->work_done_sem);
  404. BUG_ON(ret);
  405. sem_init(&task->work_done_sem, 0, 0);
  406. cpu_usage += task->cpu_usage;
  407. task->cpu_usage = 0;
  408. }
  409. cpu_usage_1 = get_cpu_usage_nsec_parent();
  410. if (!runavg_cpu_usage)
  411. runavg_cpu_usage = cpu_usage;
  412. runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
  413. parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
  414. if (!runavg_parent_cpu_usage)
  415. runavg_parent_cpu_usage = parent_cpu_usage;
  416. runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
  417. parent_cpu_usage)/10;
  418. ret = pthread_mutex_lock(&start_work_mutex);
  419. BUG_ON(ret);
  420. for (i = 0; i < nr_tasks; i++) {
  421. task = tasks[i];
  422. sem_init(&task->sleep_sem, 0, 0);
  423. task->curr_event = 0;
  424. }
  425. }
  426. static int read_events(void);
  427. static unsigned long nr_runs;
  428. static nsec_t sum_runtime;
  429. static nsec_t sum_fluct;
  430. static nsec_t run_avg;
  431. static void run_one_test(void)
  432. {
  433. nsec_t T0, T1, delta, avg_delta, fluct, std_dev;
  434. T0 = get_nsecs();
  435. wait_for_tasks();
  436. T1 = get_nsecs();
  437. delta = T1 - T0;
  438. sum_runtime += delta;
  439. nr_runs++;
  440. avg_delta = sum_runtime / nr_runs;
  441. if (delta < avg_delta)
  442. fluct = avg_delta - delta;
  443. else
  444. fluct = delta - avg_delta;
  445. sum_fluct += fluct;
  446. std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
  447. if (!run_avg)
  448. run_avg = delta;
  449. run_avg = (run_avg*9 + delta)/10;
  450. printf("#%-3ld: %0.3f, ",
  451. nr_runs, (double)delta/1000000.0);
  452. #if 0
  453. printf("%0.2f +- %0.2f, ",
  454. (double)avg_delta/1e6, (double)std_dev/1e6);
  455. #endif
  456. printf("ravg: %0.2f, ",
  457. (double)run_avg/1e6);
  458. printf("cpu: %0.2f / %0.2f",
  459. (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
  460. #if 0
  461. /*
  462. * rusage statistics done by the parent, these are less
  463. * accurate than the sum_exec_runtime based statistics:
  464. */
  465. printf(" [%0.2f / %0.2f]",
  466. (double)parent_cpu_usage/1e6,
  467. (double)runavg_parent_cpu_usage/1e6);
  468. #endif
  469. printf("\n");
  470. if (nr_sleep_corrections)
  471. printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
  472. nr_sleep_corrections = 0;
  473. }
  474. static void test_calibrations(void)
  475. {
  476. nsec_t T0, T1;
  477. T0 = get_nsecs();
  478. burn_nsecs(1e6);
  479. T1 = get_nsecs();
  480. printf("the run test took %Ld nsecs\n", T1-T0);
  481. T0 = get_nsecs();
  482. sleep_nsecs(1e6);
  483. T1 = get_nsecs();
  484. printf("the sleep test took %Ld nsecs\n", T1-T0);
  485. }
  486. static void __cmd_replay(void)
  487. {
  488. long nr_iterations = 10, i;
  489. calibrate_run_measurement_overhead();
  490. calibrate_sleep_measurement_overhead();
  491. test_calibrations();
  492. read_events();
  493. printf("nr_run_events: %ld\n", nr_run_events);
  494. printf("nr_sleep_events: %ld\n", nr_sleep_events);
  495. printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
  496. if (targetless_wakeups)
  497. printf("target-less wakeups: %ld\n", targetless_wakeups);
  498. if (multitarget_wakeups)
  499. printf("multi-target wakeups: %ld\n", multitarget_wakeups);
  500. if (nr_run_events_optimized)
  501. printf("run events optimized: %ld\n",
  502. nr_run_events_optimized);
  503. print_task_traces();
  504. add_cross_task_wakeups();
  505. create_tasks();
  506. printf("------------------------------------------------------------\n");
  507. for (i = 0; i < nr_iterations; i++)
  508. run_one_test();
  509. }
  510. static int
  511. process_comm_event(event_t *event, unsigned long offset, unsigned long head)
  512. {
  513. struct thread *thread;
  514. thread = threads__findnew(event->comm.pid, &threads, &last_match);
  515. dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
  516. (void *)(offset + head),
  517. (void *)(long)(event->header.size),
  518. event->comm.comm, event->comm.pid);
  519. if (thread == NULL ||
  520. thread__set_comm(thread, event->comm.comm)) {
  521. dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
  522. return -1;
  523. }
  524. total_comm++;
  525. return 0;
  526. }
  527. struct raw_event_sample {
  528. u32 size;
  529. char data[0];
  530. };
  531. #define FILL_FIELD(ptr, field, event, data) \
  532. ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
  533. #define FILL_ARRAY(ptr, array, event, data) \
  534. do { \
  535. void *__array = raw_field_ptr(event, #array, data); \
  536. memcpy(ptr.array, __array, sizeof(ptr.array)); \
  537. } while(0)
  538. #define FILL_COMMON_FIELDS(ptr, event, data) \
  539. do { \
  540. FILL_FIELD(ptr, common_type, event, data); \
  541. FILL_FIELD(ptr, common_flags, event, data); \
  542. FILL_FIELD(ptr, common_preempt_count, event, data); \
  543. FILL_FIELD(ptr, common_pid, event, data); \
  544. FILL_FIELD(ptr, common_tgid, event, data); \
  545. } while (0)
  546. struct trace_switch_event {
  547. u32 size;
  548. u16 common_type;
  549. u8 common_flags;
  550. u8 common_preempt_count;
  551. u32 common_pid;
  552. u32 common_tgid;
  553. char prev_comm[16];
  554. u32 prev_pid;
  555. u32 prev_prio;
  556. u64 prev_state;
  557. char next_comm[16];
  558. u32 next_pid;
  559. u32 next_prio;
  560. };
  561. struct trace_wakeup_event {
  562. u32 size;
  563. u16 common_type;
  564. u8 common_flags;
  565. u8 common_preempt_count;
  566. u32 common_pid;
  567. u32 common_tgid;
  568. char comm[16];
  569. u32 pid;
  570. u32 prio;
  571. u32 success;
  572. u32 cpu;
  573. };
  574. struct trace_fork_event {
  575. u32 size;
  576. u16 common_type;
  577. u8 common_flags;
  578. u8 common_preempt_count;
  579. u32 common_pid;
  580. u32 common_tgid;
  581. char parent_comm[16];
  582. u32 parent_pid;
  583. char child_comm[16];
  584. u32 child_pid;
  585. };
  586. struct trace_sched_handler {
  587. void (*switch_event)(struct trace_switch_event *,
  588. struct event *,
  589. int cpu,
  590. u64 timestamp,
  591. struct thread *thread);
  592. void (*wakeup_event)(struct trace_wakeup_event *,
  593. struct event *,
  594. int cpu,
  595. u64 timestamp,
  596. struct thread *thread);
  597. void (*fork_event)(struct trace_fork_event *,
  598. struct event *,
  599. int cpu,
  600. u64 timestamp,
  601. struct thread *thread);
  602. };
  603. static void
  604. replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
  605. struct event *event,
  606. int cpu __used,
  607. u64 timestamp __used,
  608. struct thread *thread __used)
  609. {
  610. struct task_desc *waker, *wakee;
  611. if (verbose) {
  612. printf("sched_wakeup event %p\n", event);
  613. printf(" ... pid %d woke up %s/%d\n",
  614. wakeup_event->common_pid,
  615. wakeup_event->comm,
  616. wakeup_event->pid);
  617. }
  618. waker = register_pid(wakeup_event->common_pid, "<unknown>");
  619. wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
  620. add_sched_event_wakeup(waker, timestamp, wakee);
  621. }
  622. static unsigned long cpu_last_switched[MAX_CPUS];
  623. static void
  624. replay_switch_event(struct trace_switch_event *switch_event,
  625. struct event *event,
  626. int cpu,
  627. u64 timestamp,
  628. struct thread *thread __used)
  629. {
  630. struct task_desc *prev, *next;
  631. u64 timestamp0;
  632. s64 delta;
  633. if (verbose)
  634. printf("sched_switch event %p\n", event);
  635. if (cpu >= MAX_CPUS || cpu < 0)
  636. return;
  637. timestamp0 = cpu_last_switched[cpu];
  638. if (timestamp0)
  639. delta = timestamp - timestamp0;
  640. else
  641. delta = 0;
  642. if (delta < 0)
  643. die("hm, delta: %Ld < 0 ?\n", delta);
  644. if (verbose) {
  645. printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
  646. switch_event->prev_comm, switch_event->prev_pid,
  647. switch_event->next_comm, switch_event->next_pid,
  648. delta);
  649. }
  650. prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
  651. next = register_pid(switch_event->next_pid, switch_event->next_comm);
  652. cpu_last_switched[cpu] = timestamp;
  653. add_sched_event_run(prev, timestamp, delta);
  654. add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
  655. }
  656. static void
  657. replay_fork_event(struct trace_fork_event *fork_event,
  658. struct event *event,
  659. int cpu __used,
  660. u64 timestamp __used,
  661. struct thread *thread __used)
  662. {
  663. if (verbose) {
  664. printf("sched_fork event %p\n", event);
  665. printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
  666. printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
  667. }
  668. register_pid(fork_event->parent_pid, fork_event->parent_comm);
  669. register_pid(fork_event->child_pid, fork_event->child_comm);
  670. }
  671. static struct trace_sched_handler replay_ops = {
  672. .wakeup_event = replay_wakeup_event,
  673. .switch_event = replay_switch_event,
  674. .fork_event = replay_fork_event,
  675. };
  676. #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
  677. enum thread_state {
  678. THREAD_SLEEPING,
  679. THREAD_WAKED_UP,
  680. THREAD_SCHED_IN,
  681. THREAD_IGNORE
  682. };
  683. struct work_atom {
  684. struct list_head list;
  685. enum thread_state state;
  686. u64 wake_up_time;
  687. u64 sched_in_time;
  688. u64 runtime;
  689. };
  690. struct task_atoms {
  691. struct list_head snapshot_list;
  692. struct thread *thread;
  693. struct rb_node node;
  694. };
  695. static struct rb_root lat_snapshot_root;
  696. static struct task_atoms *
  697. thread_atom_list_search(struct rb_root *root, struct thread *thread)
  698. {
  699. struct rb_node *node = root->rb_node;
  700. while (node) {
  701. struct task_atoms *atoms;
  702. atoms = container_of(node, struct task_atoms, node);
  703. if (thread->pid < atoms->thread->pid)
  704. node = node->rb_left;
  705. else if (thread->pid > atoms->thread->pid)
  706. node = node->rb_right;
  707. else {
  708. return atoms;
  709. }
  710. }
  711. return NULL;
  712. }
  713. static void
  714. __thread_latency_insert(struct rb_root *root, struct task_atoms *data)
  715. {
  716. struct rb_node **new = &(root->rb_node), *parent = NULL;
  717. while (*new) {
  718. struct task_atoms *this;
  719. this = container_of(*new, struct task_atoms, node);
  720. parent = *new;
  721. if (data->thread->pid < this->thread->pid)
  722. new = &((*new)->rb_left);
  723. else if (data->thread->pid > this->thread->pid)
  724. new = &((*new)->rb_right);
  725. else
  726. die("Double thread insertion\n");
  727. }
  728. rb_link_node(&data->node, parent, new);
  729. rb_insert_color(&data->node, root);
  730. }
  731. static void thread_atom_list_insert(struct thread *thread)
  732. {
  733. struct task_atoms *atoms;
  734. atoms = calloc(sizeof(*atoms), 1);
  735. if (!atoms)
  736. die("No memory");
  737. atoms->thread = thread;
  738. INIT_LIST_HEAD(&atoms->snapshot_list);
  739. __thread_latency_insert(&lat_snapshot_root, atoms);
  740. }
  741. static void
  742. latency_fork_event(struct trace_fork_event *fork_event __used,
  743. struct event *event __used,
  744. int cpu __used,
  745. u64 timestamp __used,
  746. struct thread *thread __used)
  747. {
  748. /* should insert the newcomer */
  749. }
  750. __used
  751. static char sched_out_state(struct trace_switch_event *switch_event)
  752. {
  753. const char *str = TASK_STATE_TO_CHAR_STR;
  754. return str[switch_event->prev_state];
  755. }
  756. static void
  757. lat_sched_out(struct task_atoms *atoms,
  758. struct trace_switch_event *switch_event __used, u64 delta)
  759. {
  760. struct work_atom *snapshot;
  761. snapshot = calloc(sizeof(*snapshot), 1);
  762. if (!snapshot)
  763. die("Non memory");
  764. snapshot->runtime = delta;
  765. list_add_tail(&snapshot->list, &atoms->snapshot_list);
  766. }
  767. static void
  768. lat_sched_in(struct task_atoms *atoms, u64 timestamp)
  769. {
  770. struct work_atom *snapshot;
  771. if (list_empty(&atoms->snapshot_list))
  772. return;
  773. snapshot = list_entry(atoms->snapshot_list.prev, struct work_atom,
  774. list);
  775. if (snapshot->state != THREAD_WAKED_UP)
  776. return;
  777. if (timestamp < snapshot->wake_up_time) {
  778. snapshot->state = THREAD_IGNORE;
  779. return;
  780. }
  781. snapshot->state = THREAD_SCHED_IN;
  782. snapshot->sched_in_time = timestamp;
  783. }
  784. static void
  785. latency_switch_event(struct trace_switch_event *switch_event,
  786. struct event *event __used,
  787. int cpu,
  788. u64 timestamp,
  789. struct thread *thread __used)
  790. {
  791. struct task_atoms *out_atoms, *in_atoms;
  792. struct thread *sched_out, *sched_in;
  793. u64 timestamp0;
  794. s64 delta;
  795. if (cpu >= MAX_CPUS || cpu < 0)
  796. return;
  797. timestamp0 = cpu_last_switched[cpu];
  798. cpu_last_switched[cpu] = timestamp;
  799. if (timestamp0)
  800. delta = timestamp - timestamp0;
  801. else
  802. delta = 0;
  803. if (delta < 0)
  804. die("hm, delta: %Ld < 0 ?\n", delta);
  805. sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
  806. sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
  807. in_atoms = thread_atom_list_search(&lat_snapshot_root, sched_in);
  808. if (!in_atoms) {
  809. thread_atom_list_insert(sched_in);
  810. in_atoms = thread_atom_list_search(&lat_snapshot_root, sched_in);
  811. if (!in_atoms)
  812. die("Internal latency tree error");
  813. }
  814. out_atoms = thread_atom_list_search(&lat_snapshot_root, sched_out);
  815. if (!out_atoms) {
  816. thread_atom_list_insert(sched_out);
  817. out_atoms = thread_atom_list_search(&lat_snapshot_root, sched_out);
  818. if (!out_atoms)
  819. die("Internal latency tree error");
  820. }
  821. lat_sched_in(in_atoms, timestamp);
  822. lat_sched_out(out_atoms, switch_event, delta);
  823. }
  824. static void
  825. latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
  826. struct event *event __used,
  827. int cpu __used,
  828. u64 timestamp,
  829. struct thread *thread __used)
  830. {
  831. struct task_atoms *atoms;
  832. struct work_atom *snapshot;
  833. struct thread *wakee;
  834. /* Note for later, it may be interesting to observe the failing cases */
  835. if (!wakeup_event->success)
  836. return;
  837. wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
  838. atoms = thread_atom_list_search(&lat_snapshot_root, wakee);
  839. if (!atoms) {
  840. thread_atom_list_insert(wakee);
  841. return;
  842. }
  843. if (list_empty(&atoms->snapshot_list))
  844. return;
  845. snapshot = list_entry(atoms->snapshot_list.prev, struct work_atom,
  846. list);
  847. if (snapshot->state != THREAD_SLEEPING)
  848. return;
  849. snapshot->state = THREAD_WAKED_UP;
  850. snapshot->wake_up_time = timestamp;
  851. }
  852. static struct trace_sched_handler lat_ops = {
  853. .wakeup_event = latency_wakeup_event,
  854. .switch_event = latency_switch_event,
  855. .fork_event = latency_fork_event,
  856. };
  857. static u64 all_runtime;
  858. static u64 all_count;
  859. static void output_lat_thread(struct task_atoms *atom_list)
  860. {
  861. struct work_atom *atom;
  862. int count = 0;
  863. int i;
  864. int ret;
  865. u64 max = 0, avg;
  866. u64 total = 0, delta;
  867. u64 total_runtime = 0;
  868. list_for_each_entry(atom, &atom_list->snapshot_list, list) {
  869. total_runtime += atom->runtime;
  870. if (atom->state != THREAD_SCHED_IN)
  871. continue;
  872. count++;
  873. delta = atom->sched_in_time - atom->wake_up_time;
  874. if (delta > max)
  875. max = delta;
  876. total += delta;
  877. }
  878. all_runtime += total_runtime;
  879. all_count += count;
  880. if (!count)
  881. return;
  882. ret = printf(" %s ", atom_list->thread->comm);
  883. for (i = 0; i < 19 - ret; i++)
  884. printf(" ");
  885. avg = total / count;
  886. printf("|%9.3f ms |%9d | avg:%9.3f ms | max:%9.3f ms |\n",
  887. (double)total_runtime/1e9, count, (double)avg/1e9, (double)max/1e9);
  888. }
  889. static void __cmd_lat(void)
  890. {
  891. struct rb_node *next;
  892. setup_pager();
  893. read_events();
  894. printf("-----------------------------------------------------------------------------------\n");
  895. printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
  896. printf("-----------------------------------------------------------------------------------\n");
  897. next = rb_first(&lat_snapshot_root);
  898. while (next) {
  899. struct task_atoms *atom_list;
  900. atom_list = rb_entry(next, struct task_atoms, node);
  901. output_lat_thread(atom_list);
  902. next = rb_next(next);
  903. }
  904. printf("-----------------------------------------------------------------------------------\n");
  905. printf(" TOTAL: |%9.3f ms |%9Ld |\n",
  906. (double)all_runtime/1e9, all_count);
  907. printf("---------------------------------------------\n");
  908. }
  909. static struct trace_sched_handler *trace_handler;
  910. static void
  911. process_sched_wakeup_event(struct raw_event_sample *raw,
  912. struct event *event,
  913. int cpu __used,
  914. u64 timestamp __used,
  915. struct thread *thread __used)
  916. {
  917. struct trace_wakeup_event wakeup_event;
  918. FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
  919. FILL_ARRAY(wakeup_event, comm, event, raw->data);
  920. FILL_FIELD(wakeup_event, pid, event, raw->data);
  921. FILL_FIELD(wakeup_event, prio, event, raw->data);
  922. FILL_FIELD(wakeup_event, success, event, raw->data);
  923. FILL_FIELD(wakeup_event, cpu, event, raw->data);
  924. trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
  925. }
  926. static void
  927. process_sched_switch_event(struct raw_event_sample *raw,
  928. struct event *event,
  929. int cpu __used,
  930. u64 timestamp __used,
  931. struct thread *thread __used)
  932. {
  933. struct trace_switch_event switch_event;
  934. FILL_COMMON_FIELDS(switch_event, event, raw->data);
  935. FILL_ARRAY(switch_event, prev_comm, event, raw->data);
  936. FILL_FIELD(switch_event, prev_pid, event, raw->data);
  937. FILL_FIELD(switch_event, prev_prio, event, raw->data);
  938. FILL_FIELD(switch_event, prev_state, event, raw->data);
  939. FILL_ARRAY(switch_event, next_comm, event, raw->data);
  940. FILL_FIELD(switch_event, next_pid, event, raw->data);
  941. FILL_FIELD(switch_event, next_prio, event, raw->data);
  942. trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
  943. }
  944. static void
  945. process_sched_fork_event(struct raw_event_sample *raw,
  946. struct event *event,
  947. int cpu __used,
  948. u64 timestamp __used,
  949. struct thread *thread __used)
  950. {
  951. struct trace_fork_event fork_event;
  952. FILL_COMMON_FIELDS(fork_event, event, raw->data);
  953. FILL_ARRAY(fork_event, parent_comm, event, raw->data);
  954. FILL_FIELD(fork_event, parent_pid, event, raw->data);
  955. FILL_ARRAY(fork_event, child_comm, event, raw->data);
  956. FILL_FIELD(fork_event, child_pid, event, raw->data);
  957. trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
  958. }
  959. static void
  960. process_sched_exit_event(struct event *event,
  961. int cpu __used,
  962. u64 timestamp __used,
  963. struct thread *thread __used)
  964. {
  965. if (verbose)
  966. printf("sched_exit event %p\n", event);
  967. }
  968. static void
  969. process_raw_event(event_t *raw_event __used, void *more_data,
  970. int cpu, u64 timestamp, struct thread *thread)
  971. {
  972. struct raw_event_sample *raw = more_data;
  973. struct event *event;
  974. int type;
  975. type = trace_parse_common_type(raw->data);
  976. event = trace_find_event(type);
  977. if (!strcmp(event->name, "sched_switch"))
  978. process_sched_switch_event(raw, event, cpu, timestamp, thread);
  979. if (!strcmp(event->name, "sched_wakeup"))
  980. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  981. if (!strcmp(event->name, "sched_wakeup_new"))
  982. process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
  983. if (!strcmp(event->name, "sched_process_fork"))
  984. process_sched_fork_event(raw, event, cpu, timestamp, thread);
  985. if (!strcmp(event->name, "sched_process_exit"))
  986. process_sched_exit_event(event, cpu, timestamp, thread);
  987. }
  988. static int
  989. process_sample_event(event_t *event, unsigned long offset, unsigned long head)
  990. {
  991. char level;
  992. int show = 0;
  993. struct dso *dso = NULL;
  994. struct thread *thread;
  995. u64 ip = event->ip.ip;
  996. u64 timestamp = -1;
  997. u32 cpu = -1;
  998. u64 period = 1;
  999. void *more_data = event->ip.__more_data;
  1000. int cpumode;
  1001. thread = threads__findnew(event->ip.pid, &threads, &last_match);
  1002. if (sample_type & PERF_SAMPLE_TIME) {
  1003. timestamp = *(u64 *)more_data;
  1004. more_data += sizeof(u64);
  1005. }
  1006. if (sample_type & PERF_SAMPLE_CPU) {
  1007. cpu = *(u32 *)more_data;
  1008. more_data += sizeof(u32);
  1009. more_data += sizeof(u32); /* reserved */
  1010. }
  1011. if (sample_type & PERF_SAMPLE_PERIOD) {
  1012. period = *(u64 *)more_data;
  1013. more_data += sizeof(u64);
  1014. }
  1015. dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
  1016. (void *)(offset + head),
  1017. (void *)(long)(event->header.size),
  1018. event->header.misc,
  1019. event->ip.pid, event->ip.tid,
  1020. (void *)(long)ip,
  1021. (long long)period);
  1022. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  1023. if (thread == NULL) {
  1024. eprintf("problem processing %d event, skipping it.\n",
  1025. event->header.type);
  1026. return -1;
  1027. }
  1028. cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
  1029. if (cpumode == PERF_EVENT_MISC_KERNEL) {
  1030. show = SHOW_KERNEL;
  1031. level = 'k';
  1032. dso = kernel_dso;
  1033. dump_printf(" ...... dso: %s\n", dso->name);
  1034. } else if (cpumode == PERF_EVENT_MISC_USER) {
  1035. show = SHOW_USER;
  1036. level = '.';
  1037. } else {
  1038. show = SHOW_HV;
  1039. level = 'H';
  1040. dso = hypervisor_dso;
  1041. dump_printf(" ...... dso: [hypervisor]\n");
  1042. }
  1043. if (sample_type & PERF_SAMPLE_RAW)
  1044. process_raw_event(event, more_data, cpu, timestamp, thread);
  1045. return 0;
  1046. }
  1047. static int
  1048. process_event(event_t *event, unsigned long offset, unsigned long head)
  1049. {
  1050. trace_event(event);
  1051. switch (event->header.type) {
  1052. case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
  1053. return 0;
  1054. case PERF_EVENT_COMM:
  1055. return process_comm_event(event, offset, head);
  1056. case PERF_EVENT_EXIT ... PERF_EVENT_READ:
  1057. return 0;
  1058. case PERF_EVENT_SAMPLE:
  1059. return process_sample_event(event, offset, head);
  1060. case PERF_EVENT_MAX:
  1061. default:
  1062. return -1;
  1063. }
  1064. return 0;
  1065. }
  1066. static int read_events(void)
  1067. {
  1068. int ret, rc = EXIT_FAILURE;
  1069. unsigned long offset = 0;
  1070. unsigned long head = 0;
  1071. struct stat perf_stat;
  1072. event_t *event;
  1073. uint32_t size;
  1074. char *buf;
  1075. trace_report();
  1076. register_idle_thread(&threads, &last_match);
  1077. input = open(input_name, O_RDONLY);
  1078. if (input < 0) {
  1079. perror("failed to open file");
  1080. exit(-1);
  1081. }
  1082. ret = fstat(input, &perf_stat);
  1083. if (ret < 0) {
  1084. perror("failed to stat file");
  1085. exit(-1);
  1086. }
  1087. if (!perf_stat.st_size) {
  1088. fprintf(stderr, "zero-sized file, nothing to do!\n");
  1089. exit(0);
  1090. }
  1091. header = perf_header__read(input);
  1092. head = header->data_offset;
  1093. sample_type = perf_header__sample_type(header);
  1094. if (!(sample_type & PERF_SAMPLE_RAW))
  1095. die("No trace sample to read. Did you call perf record "
  1096. "without -R?");
  1097. if (load_kernel() < 0) {
  1098. perror("failed to load kernel symbols");
  1099. return EXIT_FAILURE;
  1100. }
  1101. remap:
  1102. buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
  1103. MAP_SHARED, input, offset);
  1104. if (buf == MAP_FAILED) {
  1105. perror("failed to mmap file");
  1106. exit(-1);
  1107. }
  1108. more:
  1109. event = (event_t *)(buf + head);
  1110. size = event->header.size;
  1111. if (!size)
  1112. size = 8;
  1113. if (head + event->header.size >= page_size * mmap_window) {
  1114. unsigned long shift = page_size * (head / page_size);
  1115. int res;
  1116. res = munmap(buf, page_size * mmap_window);
  1117. assert(res == 0);
  1118. offset += shift;
  1119. head -= shift;
  1120. goto remap;
  1121. }
  1122. size = event->header.size;
  1123. if (!size || process_event(event, offset, head) < 0) {
  1124. /*
  1125. * assume we lost track of the stream, check alignment, and
  1126. * increment a single u64 in the hope to catch on again 'soon'.
  1127. */
  1128. if (unlikely(head & 7))
  1129. head &= ~7ULL;
  1130. size = 8;
  1131. }
  1132. head += size;
  1133. if (offset + head < (unsigned long)perf_stat.st_size)
  1134. goto more;
  1135. rc = EXIT_SUCCESS;
  1136. close(input);
  1137. return rc;
  1138. }
  1139. static const char * const sched_usage[] = {
  1140. "perf sched [<options>] <command>",
  1141. NULL
  1142. };
  1143. static const struct option options[] = {
  1144. OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
  1145. "dump raw trace in ASCII"),
  1146. OPT_BOOLEAN('r', "replay", &replay_mode,
  1147. "replay sched behaviour from traces"),
  1148. OPT_BOOLEAN('l', "latency", &lat_mode,
  1149. "measure various latencies"),
  1150. OPT_BOOLEAN('v', "verbose", &verbose,
  1151. "be more verbose (show symbol address, etc)"),
  1152. OPT_END()
  1153. };
  1154. int cmd_sched(int argc, const char **argv, const char *prefix __used)
  1155. {
  1156. symbol__init();
  1157. page_size = getpagesize();
  1158. argc = parse_options(argc, argv, options, sched_usage, 0);
  1159. if (argc) {
  1160. /*
  1161. * Special case: if there's an argument left then assume tha
  1162. * it's a symbol filter:
  1163. */
  1164. if (argc > 1)
  1165. usage_with_options(sched_usage, options);
  1166. }
  1167. if (replay_mode)
  1168. trace_handler = &replay_ops;
  1169. else if (lat_mode)
  1170. trace_handler = &lat_ops;
  1171. else
  1172. usage_with_options(sched_usage, options);
  1173. if (replay_mode)
  1174. __cmd_replay();
  1175. else if (lat_mode)
  1176. __cmd_lat();
  1177. return 0;
  1178. }