paging_tmpl.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. #define gpte_to_gfn FNAME(gpte_to_gfn)
  53. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  54. /*
  55. * The guest_walker structure emulates the behavior of the hardware page
  56. * table walker.
  57. */
  58. struct guest_walker {
  59. int level;
  60. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  61. pt_element_t pte;
  62. pt_element_t inherited_ar;
  63. gfn_t gfn;
  64. u32 error_code;
  65. };
  66. static gfn_t gpte_to_gfn(pt_element_t gpte)
  67. {
  68. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  69. }
  70. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  71. {
  72. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  73. }
  74. /*
  75. * Fetch a guest pte for a guest virtual address
  76. */
  77. static int FNAME(walk_addr)(struct guest_walker *walker,
  78. struct kvm_vcpu *vcpu, gva_t addr,
  79. int write_fault, int user_fault, int fetch_fault)
  80. {
  81. pt_element_t pte;
  82. gfn_t table_gfn;
  83. unsigned index;
  84. gpa_t pte_gpa;
  85. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  86. walker->level = vcpu->mmu.root_level;
  87. pte = vcpu->cr3;
  88. #if PTTYPE == 64
  89. if (!is_long_mode(vcpu)) {
  90. pte = vcpu->pdptrs[(addr >> 30) & 3];
  91. if (!is_present_pte(pte))
  92. goto not_present;
  93. --walker->level;
  94. }
  95. #endif
  96. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  97. (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  98. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  99. for (;;) {
  100. index = PT_INDEX(addr, walker->level);
  101. table_gfn = gpte_to_gfn(pte);
  102. pte_gpa = gfn_to_gpa(table_gfn);
  103. pte_gpa += index * sizeof(pt_element_t);
  104. walker->table_gfn[walker->level - 1] = table_gfn;
  105. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  106. walker->level - 1, table_gfn);
  107. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  108. if (!is_present_pte(pte))
  109. goto not_present;
  110. if (write_fault && !is_writeble_pte(pte))
  111. if (user_fault || is_write_protection(vcpu))
  112. goto access_error;
  113. if (user_fault && !(pte & PT_USER_MASK))
  114. goto access_error;
  115. #if PTTYPE == 64
  116. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  117. goto access_error;
  118. #endif
  119. if (!(pte & PT_ACCESSED_MASK)) {
  120. mark_page_dirty(vcpu->kvm, table_gfn);
  121. pte |= PT_ACCESSED_MASK;
  122. kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  123. }
  124. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  125. walker->gfn = gpte_to_gfn(pte);
  126. break;
  127. }
  128. if (walker->level == PT_DIRECTORY_LEVEL
  129. && (pte & PT_PAGE_SIZE_MASK)
  130. && (PTTYPE == 64 || is_pse(vcpu))) {
  131. walker->gfn = gpte_to_gfn_pde(pte);
  132. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  133. if (PTTYPE == 32 && is_cpuid_PSE36())
  134. walker->gfn += pse36_gfn_delta(pte);
  135. break;
  136. }
  137. walker->inherited_ar &= pte;
  138. --walker->level;
  139. }
  140. if (write_fault && !is_dirty_pte(pte)) {
  141. mark_page_dirty(vcpu->kvm, table_gfn);
  142. pte |= PT_DIRTY_MASK;
  143. kvm_write_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  144. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  145. }
  146. walker->pte = pte;
  147. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
  148. return 1;
  149. not_present:
  150. walker->error_code = 0;
  151. goto err;
  152. access_error:
  153. walker->error_code = PFERR_PRESENT_MASK;
  154. err:
  155. if (write_fault)
  156. walker->error_code |= PFERR_WRITE_MASK;
  157. if (user_fault)
  158. walker->error_code |= PFERR_USER_MASK;
  159. if (fetch_fault)
  160. walker->error_code |= PFERR_FETCH_MASK;
  161. return 0;
  162. }
  163. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  164. u64 *shadow_pte, u64 access_bits,
  165. int user_fault, int write_fault,
  166. int *ptwrite, struct guest_walker *walker,
  167. gfn_t gfn)
  168. {
  169. int dirty = gpte & PT_DIRTY_MASK;
  170. u64 spte;
  171. int was_rmapped = is_rmap_pte(*shadow_pte);
  172. struct page *page;
  173. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  174. " user_fault %d gfn %lx\n",
  175. __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
  176. write_fault, user_fault, gfn);
  177. access_bits &= gpte;
  178. /*
  179. * We don't set the accessed bit, since we sometimes want to see
  180. * whether the guest actually used the pte (in order to detect
  181. * demand paging).
  182. */
  183. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  184. spte |= gpte & PT64_NX_MASK;
  185. if (!dirty)
  186. access_bits &= ~PT_WRITABLE_MASK;
  187. page = gfn_to_page(vcpu->kvm, gfn);
  188. spte |= PT_PRESENT_MASK;
  189. if (access_bits & PT_USER_MASK)
  190. spte |= PT_USER_MASK;
  191. if (is_error_page(page)) {
  192. set_shadow_pte(shadow_pte,
  193. shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
  194. kvm_release_page_clean(page);
  195. return;
  196. }
  197. spte |= page_to_phys(page);
  198. if ((access_bits & PT_WRITABLE_MASK)
  199. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  200. struct kvm_mmu_page *shadow;
  201. spte |= PT_WRITABLE_MASK;
  202. if (user_fault) {
  203. mmu_unshadow(vcpu->kvm, gfn);
  204. goto unshadowed;
  205. }
  206. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  207. if (shadow) {
  208. pgprintk("%s: found shadow page for %lx, marking ro\n",
  209. __FUNCTION__, gfn);
  210. access_bits &= ~PT_WRITABLE_MASK;
  211. if (is_writeble_pte(spte)) {
  212. spte &= ~PT_WRITABLE_MASK;
  213. kvm_x86_ops->tlb_flush(vcpu);
  214. }
  215. if (write_fault)
  216. *ptwrite = 1;
  217. }
  218. }
  219. unshadowed:
  220. if (access_bits & PT_WRITABLE_MASK)
  221. mark_page_dirty(vcpu->kvm, gfn);
  222. pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
  223. set_shadow_pte(shadow_pte, spte);
  224. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  225. if (!was_rmapped) {
  226. rmap_add(vcpu, shadow_pte, gfn);
  227. if (!is_rmap_pte(*shadow_pte))
  228. kvm_release_page_clean(page);
  229. }
  230. else
  231. kvm_release_page_clean(page);
  232. if (!ptwrite || !*ptwrite)
  233. vcpu->last_pte_updated = shadow_pte;
  234. }
  235. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  236. u64 *spte, const void *pte, int bytes,
  237. int offset_in_pte)
  238. {
  239. pt_element_t gpte;
  240. gpte = *(const pt_element_t *)pte;
  241. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  242. if (!offset_in_pte && !is_present_pte(gpte))
  243. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  244. return;
  245. }
  246. if (bytes < sizeof(pt_element_t))
  247. return;
  248. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  249. FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  250. 0, NULL, NULL, gpte_to_gfn(gpte));
  251. }
  252. /*
  253. * Fetch a shadow pte for a specific level in the paging hierarchy.
  254. */
  255. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  256. struct guest_walker *walker,
  257. int user_fault, int write_fault, int *ptwrite)
  258. {
  259. hpa_t shadow_addr;
  260. int level;
  261. u64 *shadow_ent;
  262. u64 *prev_shadow_ent = NULL;
  263. if (!is_present_pte(walker->pte))
  264. return NULL;
  265. shadow_addr = vcpu->mmu.root_hpa;
  266. level = vcpu->mmu.shadow_root_level;
  267. if (level == PT32E_ROOT_LEVEL) {
  268. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  269. shadow_addr &= PT64_BASE_ADDR_MASK;
  270. --level;
  271. }
  272. for (; ; level--) {
  273. u32 index = SHADOW_PT_INDEX(addr, level);
  274. struct kvm_mmu_page *shadow_page;
  275. u64 shadow_pte;
  276. int metaphysical;
  277. gfn_t table_gfn;
  278. unsigned hugepage_access = 0;
  279. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  280. if (is_shadow_present_pte(*shadow_ent)) {
  281. if (level == PT_PAGE_TABLE_LEVEL)
  282. break;
  283. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  284. prev_shadow_ent = shadow_ent;
  285. continue;
  286. }
  287. if (level == PT_PAGE_TABLE_LEVEL)
  288. break;
  289. if (level - 1 == PT_PAGE_TABLE_LEVEL
  290. && walker->level == PT_DIRECTORY_LEVEL) {
  291. metaphysical = 1;
  292. hugepage_access = walker->pte;
  293. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  294. if (!is_dirty_pte(walker->pte))
  295. hugepage_access &= ~PT_WRITABLE_MASK;
  296. hugepage_access >>= PT_WRITABLE_SHIFT;
  297. if (walker->pte & PT64_NX_MASK)
  298. hugepage_access |= (1 << 2);
  299. table_gfn = gpte_to_gfn(walker->pte);
  300. } else {
  301. metaphysical = 0;
  302. table_gfn = walker->table_gfn[level - 2];
  303. }
  304. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  305. metaphysical, hugepage_access,
  306. shadow_ent);
  307. shadow_addr = __pa(shadow_page->spt);
  308. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  309. | PT_WRITABLE_MASK | PT_USER_MASK;
  310. *shadow_ent = shadow_pte;
  311. prev_shadow_ent = shadow_ent;
  312. }
  313. FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
  314. walker->inherited_ar, user_fault, write_fault,
  315. ptwrite, walker, walker->gfn);
  316. return shadow_ent;
  317. }
  318. /*
  319. * Page fault handler. There are several causes for a page fault:
  320. * - there is no shadow pte for the guest pte
  321. * - write access through a shadow pte marked read only so that we can set
  322. * the dirty bit
  323. * - write access to a shadow pte marked read only so we can update the page
  324. * dirty bitmap, when userspace requests it
  325. * - mmio access; in this case we will never install a present shadow pte
  326. * - normal guest page fault due to the guest pte marked not present, not
  327. * writable, or not executable
  328. *
  329. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  330. * a negative value on error.
  331. */
  332. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  333. u32 error_code)
  334. {
  335. int write_fault = error_code & PFERR_WRITE_MASK;
  336. int user_fault = error_code & PFERR_USER_MASK;
  337. int fetch_fault = error_code & PFERR_FETCH_MASK;
  338. struct guest_walker walker;
  339. u64 *shadow_pte;
  340. int write_pt = 0;
  341. int r;
  342. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  343. kvm_mmu_audit(vcpu, "pre page fault");
  344. r = mmu_topup_memory_caches(vcpu);
  345. if (r)
  346. return r;
  347. /*
  348. * Look up the shadow pte for the faulting address.
  349. */
  350. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  351. fetch_fault);
  352. /*
  353. * The page is not mapped by the guest. Let the guest handle it.
  354. */
  355. if (!r) {
  356. pgprintk("%s: guest page fault\n", __FUNCTION__);
  357. inject_page_fault(vcpu, addr, walker.error_code);
  358. vcpu->last_pt_write_count = 0; /* reset fork detector */
  359. return 0;
  360. }
  361. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  362. &write_pt);
  363. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  364. shadow_pte, *shadow_pte, write_pt);
  365. if (!write_pt)
  366. vcpu->last_pt_write_count = 0; /* reset fork detector */
  367. /*
  368. * mmio: emulate if accessible, otherwise its a guest fault.
  369. */
  370. if (is_io_pte(*shadow_pte))
  371. return 1;
  372. ++vcpu->stat.pf_fixed;
  373. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  374. return write_pt;
  375. }
  376. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  377. {
  378. struct guest_walker walker;
  379. gpa_t gpa = UNMAPPED_GVA;
  380. int r;
  381. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  382. if (r) {
  383. gpa = gfn_to_gpa(walker.gfn);
  384. gpa |= vaddr & ~PAGE_MASK;
  385. }
  386. return gpa;
  387. }
  388. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  389. struct kvm_mmu_page *sp)
  390. {
  391. int i, offset = 0;
  392. pt_element_t *gpt;
  393. struct page *page;
  394. if (sp->role.metaphysical
  395. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  396. nonpaging_prefetch_page(vcpu, sp);
  397. return;
  398. }
  399. if (PTTYPE == 32)
  400. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  401. page = gfn_to_page(vcpu->kvm, sp->gfn);
  402. gpt = kmap_atomic(page, KM_USER0);
  403. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  404. if (is_present_pte(gpt[offset + i]))
  405. sp->spt[i] = shadow_trap_nonpresent_pte;
  406. else
  407. sp->spt[i] = shadow_notrap_nonpresent_pte;
  408. kunmap_atomic(gpt, KM_USER0);
  409. kvm_release_page_clean(page);
  410. }
  411. #undef pt_element_t
  412. #undef guest_walker
  413. #undef FNAME
  414. #undef PT_BASE_ADDR_MASK
  415. #undef PT_INDEX
  416. #undef SHADOW_PT_INDEX
  417. #undef PT_LEVEL_MASK
  418. #undef PT_DIR_BASE_ADDR_MASK
  419. #undef PT_LEVEL_BITS
  420. #undef PT_MAX_FULL_LEVELS
  421. #undef gpte_to_gfn
  422. #undef gpte_to_gfn_pde