rt2x00dev.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2x00lib
  19. Abstract: rt2x00 generic device routines.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include "rt2x00.h"
  24. #include "rt2x00lib.h"
  25. /*
  26. * Radio control handlers.
  27. */
  28. int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  29. {
  30. int status;
  31. /*
  32. * Don't enable the radio twice.
  33. * And check if the hardware button has been disabled.
  34. */
  35. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  36. return 0;
  37. /*
  38. * Initialize all data queues.
  39. */
  40. rt2x00queue_init_queues(rt2x00dev);
  41. /*
  42. * Enable radio.
  43. */
  44. status =
  45. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  46. if (status)
  47. return status;
  48. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  49. rt2x00leds_led_radio(rt2x00dev, true);
  50. rt2x00led_led_activity(rt2x00dev, true);
  51. set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  52. /*
  53. * Enable RX.
  54. */
  55. rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  56. /*
  57. * Start the TX queues.
  58. */
  59. ieee80211_wake_queues(rt2x00dev->hw);
  60. return 0;
  61. }
  62. void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  63. {
  64. if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  65. return;
  66. /*
  67. * Stop the TX queues in mac80211.
  68. */
  69. ieee80211_stop_queues(rt2x00dev->hw);
  70. rt2x00queue_stop_queues(rt2x00dev);
  71. /*
  72. * Disable RX.
  73. */
  74. rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  75. /*
  76. * Disable radio.
  77. */
  78. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
  79. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  80. rt2x00led_led_activity(rt2x00dev, false);
  81. rt2x00leds_led_radio(rt2x00dev, false);
  82. }
  83. void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  84. {
  85. /*
  86. * When we are disabling the RX, we should also stop the link tuner.
  87. */
  88. if (state == STATE_RADIO_RX_OFF)
  89. rt2x00link_stop_tuner(rt2x00dev);
  90. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  91. /*
  92. * When we are enabling the RX, we should also start the link tuner.
  93. */
  94. if (state == STATE_RADIO_RX_ON)
  95. rt2x00link_start_tuner(rt2x00dev);
  96. }
  97. static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
  98. {
  99. struct rt2x00_dev *rt2x00dev =
  100. container_of(work, struct rt2x00_dev, filter_work);
  101. rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
  102. }
  103. static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
  104. struct ieee80211_vif *vif)
  105. {
  106. struct rt2x00_dev *rt2x00dev = data;
  107. struct rt2x00_intf *intf = vif_to_intf(vif);
  108. struct ieee80211_bss_conf conf;
  109. int delayed_flags;
  110. /*
  111. * Copy all data we need during this action under the protection
  112. * of a spinlock. Otherwise race conditions might occur which results
  113. * into an invalid configuration.
  114. */
  115. spin_lock(&intf->lock);
  116. memcpy(&conf, &vif->bss_conf, sizeof(conf));
  117. delayed_flags = intf->delayed_flags;
  118. intf->delayed_flags = 0;
  119. spin_unlock(&intf->lock);
  120. /*
  121. * It is possible the radio was disabled while the work had been
  122. * scheduled. If that happens we should return here immediately,
  123. * note that in the spinlock protected area above the delayed_flags
  124. * have been cleared correctly.
  125. */
  126. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  127. return;
  128. if (delayed_flags & DELAYED_UPDATE_BEACON)
  129. rt2x00queue_update_beacon(rt2x00dev, vif, true);
  130. if (delayed_flags & DELAYED_CONFIG_ERP)
  131. rt2x00lib_config_erp(rt2x00dev, intf, &conf);
  132. if (delayed_flags & DELAYED_LED_ASSOC)
  133. rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
  134. }
  135. static void rt2x00lib_intf_scheduled(struct work_struct *work)
  136. {
  137. struct rt2x00_dev *rt2x00dev =
  138. container_of(work, struct rt2x00_dev, intf_work);
  139. /*
  140. * Iterate over each interface and perform the
  141. * requested configurations.
  142. */
  143. ieee80211_iterate_active_interfaces(rt2x00dev->hw,
  144. rt2x00lib_intf_scheduled_iter,
  145. rt2x00dev);
  146. }
  147. /*
  148. * Interrupt context handlers.
  149. */
  150. static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
  151. struct ieee80211_vif *vif)
  152. {
  153. struct rt2x00_intf *intf = vif_to_intf(vif);
  154. if (vif->type != NL80211_IFTYPE_AP &&
  155. vif->type != NL80211_IFTYPE_ADHOC &&
  156. vif->type != NL80211_IFTYPE_MESH_POINT &&
  157. vif->type != NL80211_IFTYPE_WDS)
  158. return;
  159. spin_lock(&intf->lock);
  160. intf->delayed_flags |= DELAYED_UPDATE_BEACON;
  161. spin_unlock(&intf->lock);
  162. }
  163. void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
  164. {
  165. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  166. return;
  167. ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
  168. rt2x00lib_beacondone_iter,
  169. rt2x00dev);
  170. ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
  171. }
  172. EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
  173. void rt2x00lib_txdone(struct queue_entry *entry,
  174. struct txdone_entry_desc *txdesc)
  175. {
  176. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  177. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  178. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  179. enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
  180. unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  181. u8 rate_idx, rate_flags;
  182. /*
  183. * Unmap the skb.
  184. */
  185. rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
  186. /*
  187. * Remove L2 padding which was added during
  188. */
  189. if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
  190. rt2x00queue_payload_align(entry->skb, true, header_length);
  191. /*
  192. * If the IV/EIV data was stripped from the frame before it was
  193. * passed to the hardware, we should now reinsert it again because
  194. * mac80211 will expect the the same data to be present it the
  195. * frame as it was passed to us.
  196. */
  197. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
  198. rt2x00crypto_tx_insert_iv(entry->skb, header_length);
  199. /*
  200. * Send frame to debugfs immediately, after this call is completed
  201. * we are going to overwrite the skb->cb array.
  202. */
  203. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
  204. /*
  205. * Update TX statistics.
  206. */
  207. rt2x00dev->link.qual.tx_success +=
  208. test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  209. test_bit(TXDONE_UNKNOWN, &txdesc->flags);
  210. rt2x00dev->link.qual.tx_failed +=
  211. test_bit(TXDONE_FAILURE, &txdesc->flags);
  212. rate_idx = skbdesc->tx_rate_idx;
  213. rate_flags = skbdesc->tx_rate_flags;
  214. /*
  215. * Initialize TX status
  216. */
  217. memset(&tx_info->status, 0, sizeof(tx_info->status));
  218. tx_info->status.ack_signal = 0;
  219. tx_info->status.rates[0].idx = rate_idx;
  220. tx_info->status.rates[0].flags = rate_flags;
  221. tx_info->status.rates[0].count = txdesc->retry + 1;
  222. tx_info->status.rates[1].idx = -1; /* terminate */
  223. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
  224. if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  225. test_bit(TXDONE_UNKNOWN, &txdesc->flags))
  226. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  227. else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
  228. rt2x00dev->low_level_stats.dot11ACKFailureCount++;
  229. }
  230. if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  231. if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  232. test_bit(TXDONE_UNKNOWN, &txdesc->flags))
  233. rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
  234. else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
  235. rt2x00dev->low_level_stats.dot11RTSFailureCount++;
  236. }
  237. /*
  238. * Only send the status report to mac80211 when TX status was
  239. * requested by it. If this was a extra frame coming through
  240. * a mac80211 library call (RTS/CTS) then we should not send the
  241. * status report back.
  242. */
  243. if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
  244. ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
  245. else
  246. dev_kfree_skb_irq(entry->skb);
  247. /*
  248. * Make this entry available for reuse.
  249. */
  250. entry->skb = NULL;
  251. entry->flags = 0;
  252. rt2x00dev->ops->lib->clear_entry(entry);
  253. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  254. rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
  255. /*
  256. * If the data queue was below the threshold before the txdone
  257. * handler we must make sure the packet queue in the mac80211 stack
  258. * is reenabled when the txdone handler has finished.
  259. */
  260. if (!rt2x00queue_threshold(entry->queue))
  261. ieee80211_wake_queue(rt2x00dev->hw, qid);
  262. }
  263. EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
  264. static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
  265. struct rxdone_entry_desc *rxdesc)
  266. {
  267. struct ieee80211_supported_band *sband;
  268. const struct rt2x00_rate *rate;
  269. unsigned int i;
  270. int signal;
  271. int type;
  272. /*
  273. * For non-HT rates the MCS value needs to contain the
  274. * actually used rate modulation (CCK or OFDM).
  275. */
  276. if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
  277. signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
  278. else
  279. signal = rxdesc->signal;
  280. type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
  281. sband = &rt2x00dev->bands[rt2x00dev->curr_band];
  282. for (i = 0; i < sband->n_bitrates; i++) {
  283. rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
  284. if (((type == RXDONE_SIGNAL_PLCP) &&
  285. (rate->plcp == signal)) ||
  286. ((type == RXDONE_SIGNAL_BITRATE) &&
  287. (rate->bitrate == signal)) ||
  288. ((type == RXDONE_SIGNAL_MCS) &&
  289. (rate->mcs == signal))) {
  290. return i;
  291. }
  292. }
  293. WARNING(rt2x00dev, "Frame received with unrecognized signal, "
  294. "signal=0x%.4x, type=%d.\n", signal, type);
  295. return 0;
  296. }
  297. void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
  298. struct queue_entry *entry)
  299. {
  300. struct rxdone_entry_desc rxdesc;
  301. struct sk_buff *skb;
  302. struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
  303. unsigned int header_length;
  304. bool l2pad;
  305. int rate_idx;
  306. /*
  307. * Allocate a new sk_buffer. If no new buffer available, drop the
  308. * received frame and reuse the existing buffer.
  309. */
  310. skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
  311. if (!skb)
  312. return;
  313. /*
  314. * Unmap the skb.
  315. */
  316. rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
  317. /*
  318. * Extract the RXD details.
  319. */
  320. memset(&rxdesc, 0, sizeof(rxdesc));
  321. rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
  322. /* Trim buffer to correct size */
  323. skb_trim(entry->skb, rxdesc.size);
  324. /*
  325. * The data behind the ieee80211 header must be
  326. * aligned on a 4 byte boundary.
  327. */
  328. header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  329. l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
  330. /*
  331. * Hardware might have stripped the IV/EIV/ICV data,
  332. * in that case it is possible that the data was
  333. * provided seperately (through hardware descriptor)
  334. * in which case we should reinsert the data into the frame.
  335. */
  336. if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
  337. (rxdesc.flags & RX_FLAG_IV_STRIPPED))
  338. rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
  339. &rxdesc);
  340. else
  341. rt2x00queue_payload_align(entry->skb, l2pad, header_length);
  342. /*
  343. * Check if the frame was received using HT. In that case,
  344. * the rate is the MCS index and should be passed to mac80211
  345. * directly. Otherwise we need to translate the signal to
  346. * the correct bitrate index.
  347. */
  348. if (rxdesc.rate_mode == RATE_MODE_CCK ||
  349. rxdesc.rate_mode == RATE_MODE_OFDM) {
  350. rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
  351. } else {
  352. rxdesc.flags |= RX_FLAG_HT;
  353. rate_idx = rxdesc.signal;
  354. }
  355. /*
  356. * Update extra components
  357. */
  358. rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
  359. rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
  360. rx_status->mactime = rxdesc.timestamp;
  361. rx_status->rate_idx = rate_idx;
  362. rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
  363. rx_status->signal = rxdesc.rssi;
  364. rx_status->noise = rxdesc.noise;
  365. rx_status->flag = rxdesc.flags;
  366. rx_status->antenna = rt2x00dev->link.ant.active.rx;
  367. /*
  368. * Send frame to mac80211 & debugfs.
  369. * mac80211 will clean up the skb structure.
  370. */
  371. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
  372. memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
  373. ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
  374. /*
  375. * Replace the skb with the freshly allocated one.
  376. */
  377. entry->skb = skb;
  378. entry->flags = 0;
  379. rt2x00dev->ops->lib->clear_entry(entry);
  380. rt2x00queue_index_inc(entry->queue, Q_INDEX);
  381. }
  382. EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
  383. /*
  384. * Driver initialization handlers.
  385. */
  386. const struct rt2x00_rate rt2x00_supported_rates[12] = {
  387. {
  388. .flags = DEV_RATE_CCK,
  389. .bitrate = 10,
  390. .ratemask = BIT(0),
  391. .plcp = 0x00,
  392. .mcs = RATE_MCS(RATE_MODE_CCK, 0),
  393. },
  394. {
  395. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  396. .bitrate = 20,
  397. .ratemask = BIT(1),
  398. .plcp = 0x01,
  399. .mcs = RATE_MCS(RATE_MODE_CCK, 1),
  400. },
  401. {
  402. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  403. .bitrate = 55,
  404. .ratemask = BIT(2),
  405. .plcp = 0x02,
  406. .mcs = RATE_MCS(RATE_MODE_CCK, 2),
  407. },
  408. {
  409. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  410. .bitrate = 110,
  411. .ratemask = BIT(3),
  412. .plcp = 0x03,
  413. .mcs = RATE_MCS(RATE_MODE_CCK, 3),
  414. },
  415. {
  416. .flags = DEV_RATE_OFDM,
  417. .bitrate = 60,
  418. .ratemask = BIT(4),
  419. .plcp = 0x0b,
  420. .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
  421. },
  422. {
  423. .flags = DEV_RATE_OFDM,
  424. .bitrate = 90,
  425. .ratemask = BIT(5),
  426. .plcp = 0x0f,
  427. .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
  428. },
  429. {
  430. .flags = DEV_RATE_OFDM,
  431. .bitrate = 120,
  432. .ratemask = BIT(6),
  433. .plcp = 0x0a,
  434. .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
  435. },
  436. {
  437. .flags = DEV_RATE_OFDM,
  438. .bitrate = 180,
  439. .ratemask = BIT(7),
  440. .plcp = 0x0e,
  441. .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
  442. },
  443. {
  444. .flags = DEV_RATE_OFDM,
  445. .bitrate = 240,
  446. .ratemask = BIT(8),
  447. .plcp = 0x09,
  448. .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
  449. },
  450. {
  451. .flags = DEV_RATE_OFDM,
  452. .bitrate = 360,
  453. .ratemask = BIT(9),
  454. .plcp = 0x0d,
  455. .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
  456. },
  457. {
  458. .flags = DEV_RATE_OFDM,
  459. .bitrate = 480,
  460. .ratemask = BIT(10),
  461. .plcp = 0x08,
  462. .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
  463. },
  464. {
  465. .flags = DEV_RATE_OFDM,
  466. .bitrate = 540,
  467. .ratemask = BIT(11),
  468. .plcp = 0x0c,
  469. .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
  470. },
  471. };
  472. static void rt2x00lib_channel(struct ieee80211_channel *entry,
  473. const int channel, const int tx_power,
  474. const int value)
  475. {
  476. entry->center_freq = ieee80211_channel_to_frequency(channel);
  477. entry->hw_value = value;
  478. entry->max_power = tx_power;
  479. entry->max_antenna_gain = 0xff;
  480. }
  481. static void rt2x00lib_rate(struct ieee80211_rate *entry,
  482. const u16 index, const struct rt2x00_rate *rate)
  483. {
  484. entry->flags = 0;
  485. entry->bitrate = rate->bitrate;
  486. entry->hw_value =index;
  487. entry->hw_value_short = index;
  488. if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
  489. entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
  490. }
  491. static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
  492. struct hw_mode_spec *spec)
  493. {
  494. struct ieee80211_hw *hw = rt2x00dev->hw;
  495. struct ieee80211_channel *channels;
  496. struct ieee80211_rate *rates;
  497. unsigned int num_rates;
  498. unsigned int i;
  499. num_rates = 0;
  500. if (spec->supported_rates & SUPPORT_RATE_CCK)
  501. num_rates += 4;
  502. if (spec->supported_rates & SUPPORT_RATE_OFDM)
  503. num_rates += 8;
  504. channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
  505. if (!channels)
  506. return -ENOMEM;
  507. rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
  508. if (!rates)
  509. goto exit_free_channels;
  510. /*
  511. * Initialize Rate list.
  512. */
  513. for (i = 0; i < num_rates; i++)
  514. rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
  515. /*
  516. * Initialize Channel list.
  517. */
  518. for (i = 0; i < spec->num_channels; i++) {
  519. rt2x00lib_channel(&channels[i],
  520. spec->channels[i].channel,
  521. spec->channels_info[i].tx_power1, i);
  522. }
  523. /*
  524. * Intitialize 802.11b, 802.11g
  525. * Rates: CCK, OFDM.
  526. * Channels: 2.4 GHz
  527. */
  528. if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
  529. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
  530. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
  531. rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
  532. rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
  533. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  534. &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
  535. memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
  536. &spec->ht, sizeof(spec->ht));
  537. }
  538. /*
  539. * Intitialize 802.11a
  540. * Rates: OFDM.
  541. * Channels: OFDM, UNII, HiperLAN2.
  542. */
  543. if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
  544. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
  545. spec->num_channels - 14;
  546. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
  547. num_rates - 4;
  548. rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
  549. rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
  550. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  551. &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
  552. memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
  553. &spec->ht, sizeof(spec->ht));
  554. }
  555. return 0;
  556. exit_free_channels:
  557. kfree(channels);
  558. ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
  559. return -ENOMEM;
  560. }
  561. static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
  562. {
  563. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  564. ieee80211_unregister_hw(rt2x00dev->hw);
  565. if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
  566. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
  567. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
  568. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
  569. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
  570. }
  571. kfree(rt2x00dev->spec.channels_info);
  572. }
  573. static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
  574. {
  575. struct hw_mode_spec *spec = &rt2x00dev->spec;
  576. int status;
  577. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  578. return 0;
  579. /*
  580. * Initialize HW modes.
  581. */
  582. status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
  583. if (status)
  584. return status;
  585. /*
  586. * Initialize HW fields.
  587. */
  588. rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
  589. /*
  590. * Register HW.
  591. */
  592. status = ieee80211_register_hw(rt2x00dev->hw);
  593. if (status)
  594. return status;
  595. set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
  596. return 0;
  597. }
  598. /*
  599. * Initialization/uninitialization handlers.
  600. */
  601. static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
  602. {
  603. if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  604. return;
  605. /*
  606. * Unregister extra components.
  607. */
  608. rt2x00rfkill_unregister(rt2x00dev);
  609. /*
  610. * Allow the HW to uninitialize.
  611. */
  612. rt2x00dev->ops->lib->uninitialize(rt2x00dev);
  613. /*
  614. * Free allocated queue entries.
  615. */
  616. rt2x00queue_uninitialize(rt2x00dev);
  617. }
  618. static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
  619. {
  620. int status;
  621. if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  622. return 0;
  623. /*
  624. * Allocate all queue entries.
  625. */
  626. status = rt2x00queue_initialize(rt2x00dev);
  627. if (status)
  628. return status;
  629. /*
  630. * Initialize the device.
  631. */
  632. status = rt2x00dev->ops->lib->initialize(rt2x00dev);
  633. if (status) {
  634. rt2x00queue_uninitialize(rt2x00dev);
  635. return status;
  636. }
  637. set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
  638. /*
  639. * Register the extra components.
  640. */
  641. rt2x00rfkill_register(rt2x00dev);
  642. return 0;
  643. }
  644. int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
  645. {
  646. int retval;
  647. if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  648. return 0;
  649. /*
  650. * If this is the first interface which is added,
  651. * we should load the firmware now.
  652. */
  653. retval = rt2x00lib_load_firmware(rt2x00dev);
  654. if (retval)
  655. return retval;
  656. /*
  657. * Initialize the device.
  658. */
  659. retval = rt2x00lib_initialize(rt2x00dev);
  660. if (retval)
  661. return retval;
  662. rt2x00dev->intf_ap_count = 0;
  663. rt2x00dev->intf_sta_count = 0;
  664. rt2x00dev->intf_associated = 0;
  665. /* Enable the radio */
  666. retval = rt2x00lib_enable_radio(rt2x00dev);
  667. if (retval) {
  668. rt2x00queue_uninitialize(rt2x00dev);
  669. return retval;
  670. }
  671. set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
  672. return 0;
  673. }
  674. void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
  675. {
  676. if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  677. return;
  678. /*
  679. * Perhaps we can add something smarter here,
  680. * but for now just disabling the radio should do.
  681. */
  682. rt2x00lib_disable_radio(rt2x00dev);
  683. rt2x00dev->intf_ap_count = 0;
  684. rt2x00dev->intf_sta_count = 0;
  685. rt2x00dev->intf_associated = 0;
  686. }
  687. /*
  688. * driver allocation handlers.
  689. */
  690. int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
  691. {
  692. int retval = -ENOMEM;
  693. mutex_init(&rt2x00dev->csr_mutex);
  694. /*
  695. * Make room for rt2x00_intf inside the per-interface
  696. * structure ieee80211_vif.
  697. */
  698. rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
  699. /*
  700. * Determine which operating modes are supported, all modes
  701. * which require beaconing, depend on the availability of
  702. * beacon entries.
  703. */
  704. rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
  705. if (rt2x00dev->ops->bcn->entry_num > 0)
  706. rt2x00dev->hw->wiphy->interface_modes |=
  707. BIT(NL80211_IFTYPE_ADHOC) |
  708. BIT(NL80211_IFTYPE_AP) |
  709. BIT(NL80211_IFTYPE_MESH_POINT) |
  710. BIT(NL80211_IFTYPE_WDS);
  711. /*
  712. * Let the driver probe the device to detect the capabilities.
  713. */
  714. retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
  715. if (retval) {
  716. ERROR(rt2x00dev, "Failed to allocate device.\n");
  717. goto exit;
  718. }
  719. /*
  720. * Initialize configuration work.
  721. */
  722. INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
  723. INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
  724. /*
  725. * Allocate queue array.
  726. */
  727. retval = rt2x00queue_allocate(rt2x00dev);
  728. if (retval)
  729. goto exit;
  730. /*
  731. * Initialize ieee80211 structure.
  732. */
  733. retval = rt2x00lib_probe_hw(rt2x00dev);
  734. if (retval) {
  735. ERROR(rt2x00dev, "Failed to initialize hw.\n");
  736. goto exit;
  737. }
  738. /*
  739. * Register extra components.
  740. */
  741. rt2x00link_register(rt2x00dev);
  742. rt2x00leds_register(rt2x00dev);
  743. rt2x00debug_register(rt2x00dev);
  744. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  745. return 0;
  746. exit:
  747. rt2x00lib_remove_dev(rt2x00dev);
  748. return retval;
  749. }
  750. EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
  751. void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
  752. {
  753. clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  754. /*
  755. * Disable radio.
  756. */
  757. rt2x00lib_disable_radio(rt2x00dev);
  758. /*
  759. * Stop all work.
  760. */
  761. cancel_work_sync(&rt2x00dev->filter_work);
  762. cancel_work_sync(&rt2x00dev->intf_work);
  763. /*
  764. * Uninitialize device.
  765. */
  766. rt2x00lib_uninitialize(rt2x00dev);
  767. /*
  768. * Free extra components
  769. */
  770. rt2x00debug_deregister(rt2x00dev);
  771. rt2x00leds_unregister(rt2x00dev);
  772. /*
  773. * Free ieee80211_hw memory.
  774. */
  775. rt2x00lib_remove_hw(rt2x00dev);
  776. /*
  777. * Free firmware image.
  778. */
  779. rt2x00lib_free_firmware(rt2x00dev);
  780. /*
  781. * Free queue structures.
  782. */
  783. rt2x00queue_free(rt2x00dev);
  784. }
  785. EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
  786. /*
  787. * Device state handlers
  788. */
  789. #ifdef CONFIG_PM
  790. int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
  791. {
  792. NOTICE(rt2x00dev, "Going to sleep.\n");
  793. /*
  794. * Prevent mac80211 from accessing driver while suspended.
  795. */
  796. if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
  797. return 0;
  798. /*
  799. * Cleanup as much as possible.
  800. */
  801. rt2x00lib_uninitialize(rt2x00dev);
  802. /*
  803. * Suspend/disable extra components.
  804. */
  805. rt2x00leds_suspend(rt2x00dev);
  806. rt2x00debug_deregister(rt2x00dev);
  807. /*
  808. * Set device mode to sleep for power management,
  809. * on some hardware this call seems to consistently fail.
  810. * From the specifications it is hard to tell why it fails,
  811. * and if this is a "bad thing".
  812. * Overall it is safe to just ignore the failure and
  813. * continue suspending. The only downside is that the
  814. * device will not be in optimal power save mode, but with
  815. * the radio and the other components already disabled the
  816. * device is as good as disabled.
  817. */
  818. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
  819. WARNING(rt2x00dev, "Device failed to enter sleep state, "
  820. "continue suspending.\n");
  821. return 0;
  822. }
  823. EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
  824. int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
  825. {
  826. NOTICE(rt2x00dev, "Waking up.\n");
  827. /*
  828. * Restore/enable extra components.
  829. */
  830. rt2x00debug_register(rt2x00dev);
  831. rt2x00leds_resume(rt2x00dev);
  832. /*
  833. * We are ready again to receive requests from mac80211.
  834. */
  835. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  836. return 0;
  837. }
  838. EXPORT_SYMBOL_GPL(rt2x00lib_resume);
  839. #endif /* CONFIG_PM */
  840. /*
  841. * rt2x00lib module information.
  842. */
  843. MODULE_AUTHOR(DRV_PROJECT);
  844. MODULE_VERSION(DRV_VERSION);
  845. MODULE_DESCRIPTION("rt2x00 library");
  846. MODULE_LICENSE("GPL");