kvm_main.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/pgtable.h>
  54. #include "coalesced_mmio.h"
  55. #include "async_pf.h"
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  64. */
  65. DEFINE_RAW_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. static int kvm_usage_count = 0;
  69. static atomic_t hardware_enable_failed;
  70. struct kmem_cache *kvm_vcpu_cache;
  71. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  72. static __read_mostly struct preempt_ops kvm_preempt_ops;
  73. struct dentry *kvm_debugfs_dir;
  74. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  75. unsigned long arg);
  76. #ifdef CONFIG_COMPAT
  77. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  78. unsigned long arg);
  79. #endif
  80. static int hardware_enable_all(void);
  81. static void hardware_disable_all(void);
  82. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  83. bool kvm_rebooting;
  84. EXPORT_SYMBOL_GPL(kvm_rebooting);
  85. static bool largepages_enabled = true;
  86. static struct page *hwpoison_page;
  87. static pfn_t hwpoison_pfn;
  88. struct page *fault_page;
  89. pfn_t fault_pfn;
  90. inline int kvm_is_mmio_pfn(pfn_t pfn)
  91. {
  92. if (pfn_valid(pfn)) {
  93. int reserved;
  94. struct page *tail = pfn_to_page(pfn);
  95. struct page *head = compound_trans_head(tail);
  96. reserved = PageReserved(head);
  97. if (head != tail) {
  98. /*
  99. * "head" is not a dangling pointer
  100. * (compound_trans_head takes care of that)
  101. * but the hugepage may have been splitted
  102. * from under us (and we may not hold a
  103. * reference count on the head page so it can
  104. * be reused before we run PageReferenced), so
  105. * we've to check PageTail before returning
  106. * what we just read.
  107. */
  108. smp_rmb();
  109. if (PageTail(tail))
  110. return reserved;
  111. }
  112. return PageReserved(tail);
  113. }
  114. return true;
  115. }
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  124. /* The thread running this VCPU changed. */
  125. struct pid *oldpid = vcpu->pid;
  126. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  127. rcu_assign_pointer(vcpu->pid, newpid);
  128. synchronize_rcu();
  129. put_pid(oldpid);
  130. }
  131. cpu = get_cpu();
  132. preempt_notifier_register(&vcpu->preempt_notifier);
  133. kvm_arch_vcpu_load(vcpu, cpu);
  134. put_cpu();
  135. }
  136. void vcpu_put(struct kvm_vcpu *vcpu)
  137. {
  138. preempt_disable();
  139. kvm_arch_vcpu_put(vcpu);
  140. preempt_notifier_unregister(&vcpu->preempt_notifier);
  141. preempt_enable();
  142. mutex_unlock(&vcpu->mutex);
  143. }
  144. static void ack_flush(void *_completed)
  145. {
  146. }
  147. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  148. {
  149. int i, cpu, me;
  150. cpumask_var_t cpus;
  151. bool called = true;
  152. struct kvm_vcpu *vcpu;
  153. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  154. me = get_cpu();
  155. kvm_for_each_vcpu(i, vcpu, kvm) {
  156. kvm_make_request(req, vcpu);
  157. cpu = vcpu->cpu;
  158. /* Set ->requests bit before we read ->mode */
  159. smp_mb();
  160. if (cpus != NULL && cpu != -1 && cpu != me &&
  161. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  162. cpumask_set_cpu(cpu, cpus);
  163. }
  164. if (unlikely(cpus == NULL))
  165. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  166. else if (!cpumask_empty(cpus))
  167. smp_call_function_many(cpus, ack_flush, NULL, 1);
  168. else
  169. called = false;
  170. put_cpu();
  171. free_cpumask_var(cpus);
  172. return called;
  173. }
  174. void kvm_flush_remote_tlbs(struct kvm *kvm)
  175. {
  176. long dirty_count = kvm->tlbs_dirty;
  177. smp_mb();
  178. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  179. ++kvm->stat.remote_tlb_flush;
  180. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  181. }
  182. void kvm_reload_remote_mmus(struct kvm *kvm)
  183. {
  184. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  185. }
  186. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  187. {
  188. struct page *page;
  189. int r;
  190. mutex_init(&vcpu->mutex);
  191. vcpu->cpu = -1;
  192. vcpu->kvm = kvm;
  193. vcpu->vcpu_id = id;
  194. vcpu->pid = NULL;
  195. init_waitqueue_head(&vcpu->wq);
  196. kvm_async_pf_vcpu_init(vcpu);
  197. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  198. if (!page) {
  199. r = -ENOMEM;
  200. goto fail;
  201. }
  202. vcpu->run = page_address(page);
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. spin_unlock(&kvm->mmu_lock);
  257. srcu_read_unlock(&kvm->srcu, idx);
  258. }
  259. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  260. struct mm_struct *mm,
  261. unsigned long address,
  262. pte_t pte)
  263. {
  264. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  265. int idx;
  266. idx = srcu_read_lock(&kvm->srcu);
  267. spin_lock(&kvm->mmu_lock);
  268. kvm->mmu_notifier_seq++;
  269. kvm_set_spte_hva(kvm, address, pte);
  270. spin_unlock(&kvm->mmu_lock);
  271. srcu_read_unlock(&kvm->srcu, idx);
  272. }
  273. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  274. struct mm_struct *mm,
  275. unsigned long start,
  276. unsigned long end)
  277. {
  278. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  279. int need_tlb_flush = 0, idx;
  280. idx = srcu_read_lock(&kvm->srcu);
  281. spin_lock(&kvm->mmu_lock);
  282. /*
  283. * The count increase must become visible at unlock time as no
  284. * spte can be established without taking the mmu_lock and
  285. * count is also read inside the mmu_lock critical section.
  286. */
  287. kvm->mmu_notifier_count++;
  288. for (; start < end; start += PAGE_SIZE)
  289. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  290. need_tlb_flush |= kvm->tlbs_dirty;
  291. /* we've to flush the tlb before the pages can be freed */
  292. if (need_tlb_flush)
  293. kvm_flush_remote_tlbs(kvm);
  294. spin_unlock(&kvm->mmu_lock);
  295. srcu_read_unlock(&kvm->srcu, idx);
  296. }
  297. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  298. struct mm_struct *mm,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  303. spin_lock(&kvm->mmu_lock);
  304. /*
  305. * This sequence increase will notify the kvm page fault that
  306. * the page that is going to be mapped in the spte could have
  307. * been freed.
  308. */
  309. kvm->mmu_notifier_seq++;
  310. smp_wmb();
  311. /*
  312. * The above sequence increase must be visible before the
  313. * below count decrease, which is ensured by the smp_wmb above
  314. * in conjunction with the smp_rmb in mmu_notifier_retry().
  315. */
  316. kvm->mmu_notifier_count--;
  317. spin_unlock(&kvm->mmu_lock);
  318. BUG_ON(kvm->mmu_notifier_count < 0);
  319. }
  320. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_age_hva(kvm, address);
  329. if (young)
  330. kvm_flush_remote_tlbs(kvm);
  331. spin_unlock(&kvm->mmu_lock);
  332. srcu_read_unlock(&kvm->srcu, idx);
  333. return young;
  334. }
  335. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  336. struct mm_struct *mm,
  337. unsigned long address)
  338. {
  339. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  340. int young, idx;
  341. idx = srcu_read_lock(&kvm->srcu);
  342. spin_lock(&kvm->mmu_lock);
  343. young = kvm_test_age_hva(kvm, address);
  344. spin_unlock(&kvm->mmu_lock);
  345. srcu_read_unlock(&kvm->srcu, idx);
  346. return young;
  347. }
  348. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  349. struct mm_struct *mm)
  350. {
  351. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  352. int idx;
  353. idx = srcu_read_lock(&kvm->srcu);
  354. kvm_arch_flush_shadow(kvm);
  355. srcu_read_unlock(&kvm->srcu, idx);
  356. }
  357. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  358. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  359. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  360. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  361. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  362. .test_young = kvm_mmu_notifier_test_young,
  363. .change_pte = kvm_mmu_notifier_change_pte,
  364. .release = kvm_mmu_notifier_release,
  365. };
  366. static int kvm_init_mmu_notifier(struct kvm *kvm)
  367. {
  368. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  369. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  370. }
  371. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  372. static int kvm_init_mmu_notifier(struct kvm *kvm)
  373. {
  374. return 0;
  375. }
  376. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  377. static void kvm_init_memslots_id(struct kvm *kvm)
  378. {
  379. int i;
  380. struct kvm_memslots *slots = kvm->memslots;
  381. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  382. slots->id_to_index[i] = slots->memslots[i].id = i;
  383. }
  384. static struct kvm *kvm_create_vm(unsigned long type)
  385. {
  386. int r, i;
  387. struct kvm *kvm = kvm_arch_alloc_vm();
  388. if (!kvm)
  389. return ERR_PTR(-ENOMEM);
  390. r = kvm_arch_init_vm(kvm, type);
  391. if (r)
  392. goto out_err_nodisable;
  393. r = hardware_enable_all();
  394. if (r)
  395. goto out_err_nodisable;
  396. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  397. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  398. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  399. #endif
  400. r = -ENOMEM;
  401. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  402. if (!kvm->memslots)
  403. goto out_err_nosrcu;
  404. kvm_init_memslots_id(kvm);
  405. if (init_srcu_struct(&kvm->srcu))
  406. goto out_err_nosrcu;
  407. for (i = 0; i < KVM_NR_BUSES; i++) {
  408. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  409. GFP_KERNEL);
  410. if (!kvm->buses[i])
  411. goto out_err;
  412. }
  413. spin_lock_init(&kvm->mmu_lock);
  414. kvm->mm = current->mm;
  415. atomic_inc(&kvm->mm->mm_count);
  416. kvm_eventfd_init(kvm);
  417. mutex_init(&kvm->lock);
  418. mutex_init(&kvm->irq_lock);
  419. mutex_init(&kvm->slots_lock);
  420. atomic_set(&kvm->users_count, 1);
  421. r = kvm_init_mmu_notifier(kvm);
  422. if (r)
  423. goto out_err;
  424. raw_spin_lock(&kvm_lock);
  425. list_add(&kvm->vm_list, &vm_list);
  426. raw_spin_unlock(&kvm_lock);
  427. return kvm;
  428. out_err:
  429. cleanup_srcu_struct(&kvm->srcu);
  430. out_err_nosrcu:
  431. hardware_disable_all();
  432. out_err_nodisable:
  433. for (i = 0; i < KVM_NR_BUSES; i++)
  434. kfree(kvm->buses[i]);
  435. kfree(kvm->memslots);
  436. kvm_arch_free_vm(kvm);
  437. return ERR_PTR(r);
  438. }
  439. /*
  440. * Avoid using vmalloc for a small buffer.
  441. * Should not be used when the size is statically known.
  442. */
  443. void *kvm_kvzalloc(unsigned long size)
  444. {
  445. if (size > PAGE_SIZE)
  446. return vzalloc(size);
  447. else
  448. return kzalloc(size, GFP_KERNEL);
  449. }
  450. void kvm_kvfree(const void *addr)
  451. {
  452. if (is_vmalloc_addr(addr))
  453. vfree(addr);
  454. else
  455. kfree(addr);
  456. }
  457. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  458. {
  459. if (!memslot->dirty_bitmap)
  460. return;
  461. kvm_kvfree(memslot->dirty_bitmap);
  462. memslot->dirty_bitmap = NULL;
  463. }
  464. /*
  465. * Free any memory in @free but not in @dont.
  466. */
  467. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  468. struct kvm_memory_slot *dont)
  469. {
  470. if (!dont || free->rmap != dont->rmap)
  471. vfree(free->rmap);
  472. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  473. kvm_destroy_dirty_bitmap(free);
  474. kvm_arch_free_memslot(free, dont);
  475. free->npages = 0;
  476. free->rmap = NULL;
  477. }
  478. void kvm_free_physmem(struct kvm *kvm)
  479. {
  480. struct kvm_memslots *slots = kvm->memslots;
  481. struct kvm_memory_slot *memslot;
  482. kvm_for_each_memslot(memslot, slots)
  483. kvm_free_physmem_slot(memslot, NULL);
  484. kfree(kvm->memslots);
  485. }
  486. static void kvm_destroy_vm(struct kvm *kvm)
  487. {
  488. int i;
  489. struct mm_struct *mm = kvm->mm;
  490. kvm_arch_sync_events(kvm);
  491. raw_spin_lock(&kvm_lock);
  492. list_del(&kvm->vm_list);
  493. raw_spin_unlock(&kvm_lock);
  494. kvm_free_irq_routing(kvm);
  495. for (i = 0; i < KVM_NR_BUSES; i++)
  496. kvm_io_bus_destroy(kvm->buses[i]);
  497. kvm_coalesced_mmio_free(kvm);
  498. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  499. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  500. #else
  501. kvm_arch_flush_shadow(kvm);
  502. #endif
  503. kvm_arch_destroy_vm(kvm);
  504. kvm_free_physmem(kvm);
  505. cleanup_srcu_struct(&kvm->srcu);
  506. kvm_arch_free_vm(kvm);
  507. hardware_disable_all();
  508. mmdrop(mm);
  509. }
  510. void kvm_get_kvm(struct kvm *kvm)
  511. {
  512. atomic_inc(&kvm->users_count);
  513. }
  514. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  515. void kvm_put_kvm(struct kvm *kvm)
  516. {
  517. if (atomic_dec_and_test(&kvm->users_count))
  518. kvm_destroy_vm(kvm);
  519. }
  520. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  521. static int kvm_vm_release(struct inode *inode, struct file *filp)
  522. {
  523. struct kvm *kvm = filp->private_data;
  524. kvm_irqfd_release(kvm);
  525. kvm_put_kvm(kvm);
  526. return 0;
  527. }
  528. /*
  529. * Allocation size is twice as large as the actual dirty bitmap size.
  530. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  531. */
  532. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  533. {
  534. #ifndef CONFIG_S390
  535. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  536. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  537. if (!memslot->dirty_bitmap)
  538. return -ENOMEM;
  539. #endif /* !CONFIG_S390 */
  540. return 0;
  541. }
  542. static int cmp_memslot(const void *slot1, const void *slot2)
  543. {
  544. struct kvm_memory_slot *s1, *s2;
  545. s1 = (struct kvm_memory_slot *)slot1;
  546. s2 = (struct kvm_memory_slot *)slot2;
  547. if (s1->npages < s2->npages)
  548. return 1;
  549. if (s1->npages > s2->npages)
  550. return -1;
  551. return 0;
  552. }
  553. /*
  554. * Sort the memslots base on its size, so the larger slots
  555. * will get better fit.
  556. */
  557. static void sort_memslots(struct kvm_memslots *slots)
  558. {
  559. int i;
  560. sort(slots->memslots, KVM_MEM_SLOTS_NUM,
  561. sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
  562. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  563. slots->id_to_index[slots->memslots[i].id] = i;
  564. }
  565. void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
  566. {
  567. if (new) {
  568. int id = new->id;
  569. struct kvm_memory_slot *old = id_to_memslot(slots, id);
  570. unsigned long npages = old->npages;
  571. *old = *new;
  572. if (new->npages != npages)
  573. sort_memslots(slots);
  574. }
  575. slots->generation++;
  576. }
  577. /*
  578. * Allocate some memory and give it an address in the guest physical address
  579. * space.
  580. *
  581. * Discontiguous memory is allowed, mostly for framebuffers.
  582. *
  583. * Must be called holding mmap_sem for write.
  584. */
  585. int __kvm_set_memory_region(struct kvm *kvm,
  586. struct kvm_userspace_memory_region *mem,
  587. int user_alloc)
  588. {
  589. int r;
  590. gfn_t base_gfn;
  591. unsigned long npages;
  592. unsigned long i;
  593. struct kvm_memory_slot *memslot;
  594. struct kvm_memory_slot old, new;
  595. struct kvm_memslots *slots, *old_memslots;
  596. r = -EINVAL;
  597. /* General sanity checks */
  598. if (mem->memory_size & (PAGE_SIZE - 1))
  599. goto out;
  600. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  601. goto out;
  602. /* We can read the guest memory with __xxx_user() later on. */
  603. if (user_alloc &&
  604. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  605. !access_ok(VERIFY_WRITE,
  606. (void __user *)(unsigned long)mem->userspace_addr,
  607. mem->memory_size)))
  608. goto out;
  609. if (mem->slot >= KVM_MEM_SLOTS_NUM)
  610. goto out;
  611. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  612. goto out;
  613. memslot = id_to_memslot(kvm->memslots, mem->slot);
  614. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  615. npages = mem->memory_size >> PAGE_SHIFT;
  616. r = -EINVAL;
  617. if (npages > KVM_MEM_MAX_NR_PAGES)
  618. goto out;
  619. if (!npages)
  620. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  621. new = old = *memslot;
  622. new.id = mem->slot;
  623. new.base_gfn = base_gfn;
  624. new.npages = npages;
  625. new.flags = mem->flags;
  626. /* Disallow changing a memory slot's size. */
  627. r = -EINVAL;
  628. if (npages && old.npages && npages != old.npages)
  629. goto out_free;
  630. /* Check for overlaps */
  631. r = -EEXIST;
  632. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  633. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  634. if (s == memslot || !s->npages)
  635. continue;
  636. if (!((base_gfn + npages <= s->base_gfn) ||
  637. (base_gfn >= s->base_gfn + s->npages)))
  638. goto out_free;
  639. }
  640. /* Free page dirty bitmap if unneeded */
  641. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  642. new.dirty_bitmap = NULL;
  643. r = -ENOMEM;
  644. /* Allocate if a slot is being created */
  645. if (npages && !old.npages) {
  646. new.user_alloc = user_alloc;
  647. new.userspace_addr = mem->userspace_addr;
  648. #ifndef CONFIG_S390
  649. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  650. if (!new.rmap)
  651. goto out_free;
  652. #endif /* not defined CONFIG_S390 */
  653. if (kvm_arch_create_memslot(&new, npages))
  654. goto out_free;
  655. }
  656. /* Allocate page dirty bitmap if needed */
  657. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  658. if (kvm_create_dirty_bitmap(&new) < 0)
  659. goto out_free;
  660. /* destroy any largepage mappings for dirty tracking */
  661. }
  662. if (!npages) {
  663. struct kvm_memory_slot *slot;
  664. r = -ENOMEM;
  665. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  666. GFP_KERNEL);
  667. if (!slots)
  668. goto out_free;
  669. slot = id_to_memslot(slots, mem->slot);
  670. slot->flags |= KVM_MEMSLOT_INVALID;
  671. update_memslots(slots, NULL);
  672. old_memslots = kvm->memslots;
  673. rcu_assign_pointer(kvm->memslots, slots);
  674. synchronize_srcu_expedited(&kvm->srcu);
  675. /* From this point no new shadow pages pointing to a deleted
  676. * memslot will be created.
  677. *
  678. * validation of sp->gfn happens in:
  679. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  680. * - kvm_is_visible_gfn (mmu_check_roots)
  681. */
  682. kvm_arch_flush_shadow(kvm);
  683. kfree(old_memslots);
  684. }
  685. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  686. if (r)
  687. goto out_free;
  688. /* map/unmap the pages in iommu page table */
  689. if (npages) {
  690. r = kvm_iommu_map_pages(kvm, &new);
  691. if (r)
  692. goto out_free;
  693. } else
  694. kvm_iommu_unmap_pages(kvm, &old);
  695. r = -ENOMEM;
  696. slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
  697. GFP_KERNEL);
  698. if (!slots)
  699. goto out_free;
  700. /* actual memory is freed via old in kvm_free_physmem_slot below */
  701. if (!npages) {
  702. new.rmap = NULL;
  703. new.dirty_bitmap = NULL;
  704. memset(&new.arch, 0, sizeof(new.arch));
  705. }
  706. update_memslots(slots, &new);
  707. old_memslots = kvm->memslots;
  708. rcu_assign_pointer(kvm->memslots, slots);
  709. synchronize_srcu_expedited(&kvm->srcu);
  710. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  711. /*
  712. * If the new memory slot is created, we need to clear all
  713. * mmio sptes.
  714. */
  715. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
  716. kvm_arch_flush_shadow(kvm);
  717. kvm_free_physmem_slot(&old, &new);
  718. kfree(old_memslots);
  719. return 0;
  720. out_free:
  721. kvm_free_physmem_slot(&new, &old);
  722. out:
  723. return r;
  724. }
  725. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  726. int kvm_set_memory_region(struct kvm *kvm,
  727. struct kvm_userspace_memory_region *mem,
  728. int user_alloc)
  729. {
  730. int r;
  731. mutex_lock(&kvm->slots_lock);
  732. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  733. mutex_unlock(&kvm->slots_lock);
  734. return r;
  735. }
  736. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  737. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  738. struct
  739. kvm_userspace_memory_region *mem,
  740. int user_alloc)
  741. {
  742. if (mem->slot >= KVM_MEMORY_SLOTS)
  743. return -EINVAL;
  744. return kvm_set_memory_region(kvm, mem, user_alloc);
  745. }
  746. int kvm_get_dirty_log(struct kvm *kvm,
  747. struct kvm_dirty_log *log, int *is_dirty)
  748. {
  749. struct kvm_memory_slot *memslot;
  750. int r, i;
  751. unsigned long n;
  752. unsigned long any = 0;
  753. r = -EINVAL;
  754. if (log->slot >= KVM_MEMORY_SLOTS)
  755. goto out;
  756. memslot = id_to_memslot(kvm->memslots, log->slot);
  757. r = -ENOENT;
  758. if (!memslot->dirty_bitmap)
  759. goto out;
  760. n = kvm_dirty_bitmap_bytes(memslot);
  761. for (i = 0; !any && i < n/sizeof(long); ++i)
  762. any = memslot->dirty_bitmap[i];
  763. r = -EFAULT;
  764. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  765. goto out;
  766. if (any)
  767. *is_dirty = 1;
  768. r = 0;
  769. out:
  770. return r;
  771. }
  772. bool kvm_largepages_enabled(void)
  773. {
  774. return largepages_enabled;
  775. }
  776. void kvm_disable_largepages(void)
  777. {
  778. largepages_enabled = false;
  779. }
  780. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  781. int is_error_page(struct page *page)
  782. {
  783. return page == bad_page || page == hwpoison_page || page == fault_page;
  784. }
  785. EXPORT_SYMBOL_GPL(is_error_page);
  786. int is_error_pfn(pfn_t pfn)
  787. {
  788. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  789. }
  790. EXPORT_SYMBOL_GPL(is_error_pfn);
  791. int is_hwpoison_pfn(pfn_t pfn)
  792. {
  793. return pfn == hwpoison_pfn;
  794. }
  795. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  796. int is_fault_pfn(pfn_t pfn)
  797. {
  798. return pfn == fault_pfn;
  799. }
  800. EXPORT_SYMBOL_GPL(is_fault_pfn);
  801. int is_noslot_pfn(pfn_t pfn)
  802. {
  803. return pfn == bad_pfn;
  804. }
  805. EXPORT_SYMBOL_GPL(is_noslot_pfn);
  806. int is_invalid_pfn(pfn_t pfn)
  807. {
  808. return pfn == hwpoison_pfn || pfn == fault_pfn;
  809. }
  810. EXPORT_SYMBOL_GPL(is_invalid_pfn);
  811. static inline unsigned long bad_hva(void)
  812. {
  813. return PAGE_OFFSET;
  814. }
  815. int kvm_is_error_hva(unsigned long addr)
  816. {
  817. return addr == bad_hva();
  818. }
  819. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  820. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  821. {
  822. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  823. }
  824. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  825. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  826. {
  827. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  828. if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
  829. memslot->flags & KVM_MEMSLOT_INVALID)
  830. return 0;
  831. return 1;
  832. }
  833. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  834. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  835. {
  836. struct vm_area_struct *vma;
  837. unsigned long addr, size;
  838. size = PAGE_SIZE;
  839. addr = gfn_to_hva(kvm, gfn);
  840. if (kvm_is_error_hva(addr))
  841. return PAGE_SIZE;
  842. down_read(&current->mm->mmap_sem);
  843. vma = find_vma(current->mm, addr);
  844. if (!vma)
  845. goto out;
  846. size = vma_kernel_pagesize(vma);
  847. out:
  848. up_read(&current->mm->mmap_sem);
  849. return size;
  850. }
  851. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  852. gfn_t *nr_pages)
  853. {
  854. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  855. return bad_hva();
  856. if (nr_pages)
  857. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  858. return gfn_to_hva_memslot(slot, gfn);
  859. }
  860. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  861. {
  862. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  863. }
  864. EXPORT_SYMBOL_GPL(gfn_to_hva);
  865. static pfn_t get_fault_pfn(void)
  866. {
  867. get_page(fault_page);
  868. return fault_pfn;
  869. }
  870. int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  871. unsigned long start, int write, struct page **page)
  872. {
  873. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  874. if (write)
  875. flags |= FOLL_WRITE;
  876. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  877. }
  878. static inline int check_user_page_hwpoison(unsigned long addr)
  879. {
  880. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  881. rc = __get_user_pages(current, current->mm, addr, 1,
  882. flags, NULL, NULL, NULL);
  883. return rc == -EHWPOISON;
  884. }
  885. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  886. bool *async, bool write_fault, bool *writable)
  887. {
  888. struct page *page[1];
  889. int npages = 0;
  890. pfn_t pfn;
  891. /* we can do it either atomically or asynchronously, not both */
  892. BUG_ON(atomic && async);
  893. BUG_ON(!write_fault && !writable);
  894. if (writable)
  895. *writable = true;
  896. if (atomic || async)
  897. npages = __get_user_pages_fast(addr, 1, 1, page);
  898. if (unlikely(npages != 1) && !atomic) {
  899. might_sleep();
  900. if (writable)
  901. *writable = write_fault;
  902. if (async) {
  903. down_read(&current->mm->mmap_sem);
  904. npages = get_user_page_nowait(current, current->mm,
  905. addr, write_fault, page);
  906. up_read(&current->mm->mmap_sem);
  907. } else
  908. npages = get_user_pages_fast(addr, 1, write_fault,
  909. page);
  910. /* map read fault as writable if possible */
  911. if (unlikely(!write_fault) && npages == 1) {
  912. struct page *wpage[1];
  913. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  914. if (npages == 1) {
  915. *writable = true;
  916. put_page(page[0]);
  917. page[0] = wpage[0];
  918. }
  919. npages = 1;
  920. }
  921. }
  922. if (unlikely(npages != 1)) {
  923. struct vm_area_struct *vma;
  924. if (atomic)
  925. return get_fault_pfn();
  926. down_read(&current->mm->mmap_sem);
  927. if (npages == -EHWPOISON ||
  928. (!async && check_user_page_hwpoison(addr))) {
  929. up_read(&current->mm->mmap_sem);
  930. get_page(hwpoison_page);
  931. return page_to_pfn(hwpoison_page);
  932. }
  933. vma = find_vma_intersection(current->mm, addr, addr+1);
  934. if (vma == NULL)
  935. pfn = get_fault_pfn();
  936. else if ((vma->vm_flags & VM_PFNMAP)) {
  937. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  938. vma->vm_pgoff;
  939. BUG_ON(!kvm_is_mmio_pfn(pfn));
  940. } else {
  941. if (async && (vma->vm_flags & VM_WRITE))
  942. *async = true;
  943. pfn = get_fault_pfn();
  944. }
  945. up_read(&current->mm->mmap_sem);
  946. } else
  947. pfn = page_to_pfn(page[0]);
  948. return pfn;
  949. }
  950. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  951. {
  952. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  953. }
  954. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  955. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  956. bool write_fault, bool *writable)
  957. {
  958. unsigned long addr;
  959. if (async)
  960. *async = false;
  961. addr = gfn_to_hva(kvm, gfn);
  962. if (kvm_is_error_hva(addr)) {
  963. get_page(bad_page);
  964. return page_to_pfn(bad_page);
  965. }
  966. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  967. }
  968. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  969. {
  970. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  971. }
  972. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  973. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  974. bool write_fault, bool *writable)
  975. {
  976. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  977. }
  978. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  979. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  980. {
  981. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  982. }
  983. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  984. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  985. bool *writable)
  986. {
  987. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  988. }
  989. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  990. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  991. struct kvm_memory_slot *slot, gfn_t gfn)
  992. {
  993. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  994. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  995. }
  996. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  997. int nr_pages)
  998. {
  999. unsigned long addr;
  1000. gfn_t entry;
  1001. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  1002. if (kvm_is_error_hva(addr))
  1003. return -1;
  1004. if (entry < nr_pages)
  1005. return 0;
  1006. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1007. }
  1008. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1009. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1010. {
  1011. pfn_t pfn;
  1012. pfn = gfn_to_pfn(kvm, gfn);
  1013. if (!kvm_is_mmio_pfn(pfn))
  1014. return pfn_to_page(pfn);
  1015. WARN_ON(kvm_is_mmio_pfn(pfn));
  1016. get_page(bad_page);
  1017. return bad_page;
  1018. }
  1019. EXPORT_SYMBOL_GPL(gfn_to_page);
  1020. void kvm_release_page_clean(struct page *page)
  1021. {
  1022. kvm_release_pfn_clean(page_to_pfn(page));
  1023. }
  1024. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1025. void kvm_release_pfn_clean(pfn_t pfn)
  1026. {
  1027. if (!kvm_is_mmio_pfn(pfn))
  1028. put_page(pfn_to_page(pfn));
  1029. }
  1030. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1031. void kvm_release_page_dirty(struct page *page)
  1032. {
  1033. kvm_release_pfn_dirty(page_to_pfn(page));
  1034. }
  1035. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1036. void kvm_release_pfn_dirty(pfn_t pfn)
  1037. {
  1038. kvm_set_pfn_dirty(pfn);
  1039. kvm_release_pfn_clean(pfn);
  1040. }
  1041. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1042. void kvm_set_page_dirty(struct page *page)
  1043. {
  1044. kvm_set_pfn_dirty(page_to_pfn(page));
  1045. }
  1046. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1047. void kvm_set_pfn_dirty(pfn_t pfn)
  1048. {
  1049. if (!kvm_is_mmio_pfn(pfn)) {
  1050. struct page *page = pfn_to_page(pfn);
  1051. if (!PageReserved(page))
  1052. SetPageDirty(page);
  1053. }
  1054. }
  1055. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1056. void kvm_set_pfn_accessed(pfn_t pfn)
  1057. {
  1058. if (!kvm_is_mmio_pfn(pfn))
  1059. mark_page_accessed(pfn_to_page(pfn));
  1060. }
  1061. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1062. void kvm_get_pfn(pfn_t pfn)
  1063. {
  1064. if (!kvm_is_mmio_pfn(pfn))
  1065. get_page(pfn_to_page(pfn));
  1066. }
  1067. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1068. static int next_segment(unsigned long len, int offset)
  1069. {
  1070. if (len > PAGE_SIZE - offset)
  1071. return PAGE_SIZE - offset;
  1072. else
  1073. return len;
  1074. }
  1075. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1076. int len)
  1077. {
  1078. int r;
  1079. unsigned long addr;
  1080. addr = gfn_to_hva(kvm, gfn);
  1081. if (kvm_is_error_hva(addr))
  1082. return -EFAULT;
  1083. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1084. if (r)
  1085. return -EFAULT;
  1086. return 0;
  1087. }
  1088. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1089. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1090. {
  1091. gfn_t gfn = gpa >> PAGE_SHIFT;
  1092. int seg;
  1093. int offset = offset_in_page(gpa);
  1094. int ret;
  1095. while ((seg = next_segment(len, offset)) != 0) {
  1096. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1097. if (ret < 0)
  1098. return ret;
  1099. offset = 0;
  1100. len -= seg;
  1101. data += seg;
  1102. ++gfn;
  1103. }
  1104. return 0;
  1105. }
  1106. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1107. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1108. unsigned long len)
  1109. {
  1110. int r;
  1111. unsigned long addr;
  1112. gfn_t gfn = gpa >> PAGE_SHIFT;
  1113. int offset = offset_in_page(gpa);
  1114. addr = gfn_to_hva(kvm, gfn);
  1115. if (kvm_is_error_hva(addr))
  1116. return -EFAULT;
  1117. pagefault_disable();
  1118. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1119. pagefault_enable();
  1120. if (r)
  1121. return -EFAULT;
  1122. return 0;
  1123. }
  1124. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1125. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1126. int offset, int len)
  1127. {
  1128. int r;
  1129. unsigned long addr;
  1130. addr = gfn_to_hva(kvm, gfn);
  1131. if (kvm_is_error_hva(addr))
  1132. return -EFAULT;
  1133. r = __copy_to_user((void __user *)addr + offset, data, len);
  1134. if (r)
  1135. return -EFAULT;
  1136. mark_page_dirty(kvm, gfn);
  1137. return 0;
  1138. }
  1139. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1140. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1141. unsigned long len)
  1142. {
  1143. gfn_t gfn = gpa >> PAGE_SHIFT;
  1144. int seg;
  1145. int offset = offset_in_page(gpa);
  1146. int ret;
  1147. while ((seg = next_segment(len, offset)) != 0) {
  1148. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1149. if (ret < 0)
  1150. return ret;
  1151. offset = 0;
  1152. len -= seg;
  1153. data += seg;
  1154. ++gfn;
  1155. }
  1156. return 0;
  1157. }
  1158. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1159. gpa_t gpa)
  1160. {
  1161. struct kvm_memslots *slots = kvm_memslots(kvm);
  1162. int offset = offset_in_page(gpa);
  1163. gfn_t gfn = gpa >> PAGE_SHIFT;
  1164. ghc->gpa = gpa;
  1165. ghc->generation = slots->generation;
  1166. ghc->memslot = gfn_to_memslot(kvm, gfn);
  1167. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1168. if (!kvm_is_error_hva(ghc->hva))
  1169. ghc->hva += offset;
  1170. else
  1171. return -EFAULT;
  1172. return 0;
  1173. }
  1174. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1175. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1176. void *data, unsigned long len)
  1177. {
  1178. struct kvm_memslots *slots = kvm_memslots(kvm);
  1179. int r;
  1180. if (slots->generation != ghc->generation)
  1181. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1182. if (kvm_is_error_hva(ghc->hva))
  1183. return -EFAULT;
  1184. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1185. if (r)
  1186. return -EFAULT;
  1187. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1188. return 0;
  1189. }
  1190. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1191. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1192. void *data, unsigned long len)
  1193. {
  1194. struct kvm_memslots *slots = kvm_memslots(kvm);
  1195. int r;
  1196. if (slots->generation != ghc->generation)
  1197. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1198. if (kvm_is_error_hva(ghc->hva))
  1199. return -EFAULT;
  1200. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1201. if (r)
  1202. return -EFAULT;
  1203. return 0;
  1204. }
  1205. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1206. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1207. {
  1208. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1209. offset, len);
  1210. }
  1211. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1212. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1213. {
  1214. gfn_t gfn = gpa >> PAGE_SHIFT;
  1215. int seg;
  1216. int offset = offset_in_page(gpa);
  1217. int ret;
  1218. while ((seg = next_segment(len, offset)) != 0) {
  1219. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1220. if (ret < 0)
  1221. return ret;
  1222. offset = 0;
  1223. len -= seg;
  1224. ++gfn;
  1225. }
  1226. return 0;
  1227. }
  1228. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1229. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1230. gfn_t gfn)
  1231. {
  1232. if (memslot && memslot->dirty_bitmap) {
  1233. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1234. /* TODO: introduce set_bit_le() and use it */
  1235. test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1236. }
  1237. }
  1238. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1239. {
  1240. struct kvm_memory_slot *memslot;
  1241. memslot = gfn_to_memslot(kvm, gfn);
  1242. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1243. }
  1244. /*
  1245. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1246. */
  1247. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1248. {
  1249. DEFINE_WAIT(wait);
  1250. for (;;) {
  1251. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1252. if (kvm_arch_vcpu_runnable(vcpu)) {
  1253. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1254. break;
  1255. }
  1256. if (kvm_cpu_has_pending_timer(vcpu))
  1257. break;
  1258. if (signal_pending(current))
  1259. break;
  1260. schedule();
  1261. }
  1262. finish_wait(&vcpu->wq, &wait);
  1263. }
  1264. #ifndef CONFIG_S390
  1265. /*
  1266. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1267. */
  1268. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1269. {
  1270. int me;
  1271. int cpu = vcpu->cpu;
  1272. wait_queue_head_t *wqp;
  1273. wqp = kvm_arch_vcpu_wq(vcpu);
  1274. if (waitqueue_active(wqp)) {
  1275. wake_up_interruptible(wqp);
  1276. ++vcpu->stat.halt_wakeup;
  1277. }
  1278. me = get_cpu();
  1279. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1280. if (kvm_arch_vcpu_should_kick(vcpu))
  1281. smp_send_reschedule(cpu);
  1282. put_cpu();
  1283. }
  1284. #endif /* !CONFIG_S390 */
  1285. void kvm_resched(struct kvm_vcpu *vcpu)
  1286. {
  1287. if (!need_resched())
  1288. return;
  1289. cond_resched();
  1290. }
  1291. EXPORT_SYMBOL_GPL(kvm_resched);
  1292. bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1293. {
  1294. struct pid *pid;
  1295. struct task_struct *task = NULL;
  1296. rcu_read_lock();
  1297. pid = rcu_dereference(target->pid);
  1298. if (pid)
  1299. task = get_pid_task(target->pid, PIDTYPE_PID);
  1300. rcu_read_unlock();
  1301. if (!task)
  1302. return false;
  1303. if (task->flags & PF_VCPU) {
  1304. put_task_struct(task);
  1305. return false;
  1306. }
  1307. if (yield_to(task, 1)) {
  1308. put_task_struct(task);
  1309. return true;
  1310. }
  1311. put_task_struct(task);
  1312. return false;
  1313. }
  1314. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1315. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1316. {
  1317. struct kvm *kvm = me->kvm;
  1318. struct kvm_vcpu *vcpu;
  1319. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1320. int yielded = 0;
  1321. int pass;
  1322. int i;
  1323. /*
  1324. * We boost the priority of a VCPU that is runnable but not
  1325. * currently running, because it got preempted by something
  1326. * else and called schedule in __vcpu_run. Hopefully that
  1327. * VCPU is holding the lock that we need and will release it.
  1328. * We approximate round-robin by starting at the last boosted VCPU.
  1329. */
  1330. for (pass = 0; pass < 2 && !yielded; pass++) {
  1331. kvm_for_each_vcpu(i, vcpu, kvm) {
  1332. if (!pass && i <= last_boosted_vcpu) {
  1333. i = last_boosted_vcpu;
  1334. continue;
  1335. } else if (pass && i > last_boosted_vcpu)
  1336. break;
  1337. if (vcpu == me)
  1338. continue;
  1339. if (waitqueue_active(&vcpu->wq))
  1340. continue;
  1341. if (kvm_vcpu_yield_to(vcpu)) {
  1342. kvm->last_boosted_vcpu = i;
  1343. yielded = 1;
  1344. break;
  1345. }
  1346. }
  1347. }
  1348. }
  1349. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1350. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1351. {
  1352. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1353. struct page *page;
  1354. if (vmf->pgoff == 0)
  1355. page = virt_to_page(vcpu->run);
  1356. #ifdef CONFIG_X86
  1357. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1358. page = virt_to_page(vcpu->arch.pio_data);
  1359. #endif
  1360. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1361. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1362. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1363. #endif
  1364. else
  1365. return kvm_arch_vcpu_fault(vcpu, vmf);
  1366. get_page(page);
  1367. vmf->page = page;
  1368. return 0;
  1369. }
  1370. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1371. .fault = kvm_vcpu_fault,
  1372. };
  1373. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1374. {
  1375. vma->vm_ops = &kvm_vcpu_vm_ops;
  1376. return 0;
  1377. }
  1378. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1379. {
  1380. struct kvm_vcpu *vcpu = filp->private_data;
  1381. kvm_put_kvm(vcpu->kvm);
  1382. return 0;
  1383. }
  1384. static struct file_operations kvm_vcpu_fops = {
  1385. .release = kvm_vcpu_release,
  1386. .unlocked_ioctl = kvm_vcpu_ioctl,
  1387. #ifdef CONFIG_COMPAT
  1388. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1389. #endif
  1390. .mmap = kvm_vcpu_mmap,
  1391. .llseek = noop_llseek,
  1392. };
  1393. /*
  1394. * Allocates an inode for the vcpu.
  1395. */
  1396. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1397. {
  1398. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1399. }
  1400. /*
  1401. * Creates some virtual cpus. Good luck creating more than one.
  1402. */
  1403. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1404. {
  1405. int r;
  1406. struct kvm_vcpu *vcpu, *v;
  1407. vcpu = kvm_arch_vcpu_create(kvm, id);
  1408. if (IS_ERR(vcpu))
  1409. return PTR_ERR(vcpu);
  1410. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1411. r = kvm_arch_vcpu_setup(vcpu);
  1412. if (r)
  1413. goto vcpu_destroy;
  1414. mutex_lock(&kvm->lock);
  1415. if (!kvm_vcpu_compatible(vcpu)) {
  1416. r = -EINVAL;
  1417. goto unlock_vcpu_destroy;
  1418. }
  1419. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1420. r = -EINVAL;
  1421. goto unlock_vcpu_destroy;
  1422. }
  1423. kvm_for_each_vcpu(r, v, kvm)
  1424. if (v->vcpu_id == id) {
  1425. r = -EEXIST;
  1426. goto unlock_vcpu_destroy;
  1427. }
  1428. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1429. /* Now it's all set up, let userspace reach it */
  1430. kvm_get_kvm(kvm);
  1431. r = create_vcpu_fd(vcpu);
  1432. if (r < 0) {
  1433. kvm_put_kvm(kvm);
  1434. goto unlock_vcpu_destroy;
  1435. }
  1436. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1437. smp_wmb();
  1438. atomic_inc(&kvm->online_vcpus);
  1439. mutex_unlock(&kvm->lock);
  1440. return r;
  1441. unlock_vcpu_destroy:
  1442. mutex_unlock(&kvm->lock);
  1443. vcpu_destroy:
  1444. kvm_arch_vcpu_destroy(vcpu);
  1445. return r;
  1446. }
  1447. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1448. {
  1449. if (sigset) {
  1450. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1451. vcpu->sigset_active = 1;
  1452. vcpu->sigset = *sigset;
  1453. } else
  1454. vcpu->sigset_active = 0;
  1455. return 0;
  1456. }
  1457. static long kvm_vcpu_ioctl(struct file *filp,
  1458. unsigned int ioctl, unsigned long arg)
  1459. {
  1460. struct kvm_vcpu *vcpu = filp->private_data;
  1461. void __user *argp = (void __user *)arg;
  1462. int r;
  1463. struct kvm_fpu *fpu = NULL;
  1464. struct kvm_sregs *kvm_sregs = NULL;
  1465. if (vcpu->kvm->mm != current->mm)
  1466. return -EIO;
  1467. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1468. /*
  1469. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1470. * so vcpu_load() would break it.
  1471. */
  1472. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1473. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1474. #endif
  1475. vcpu_load(vcpu);
  1476. switch (ioctl) {
  1477. case KVM_RUN:
  1478. r = -EINVAL;
  1479. if (arg)
  1480. goto out;
  1481. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1482. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1483. break;
  1484. case KVM_GET_REGS: {
  1485. struct kvm_regs *kvm_regs;
  1486. r = -ENOMEM;
  1487. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1488. if (!kvm_regs)
  1489. goto out;
  1490. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1491. if (r)
  1492. goto out_free1;
  1493. r = -EFAULT;
  1494. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1495. goto out_free1;
  1496. r = 0;
  1497. out_free1:
  1498. kfree(kvm_regs);
  1499. break;
  1500. }
  1501. case KVM_SET_REGS: {
  1502. struct kvm_regs *kvm_regs;
  1503. r = -ENOMEM;
  1504. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1505. if (IS_ERR(kvm_regs)) {
  1506. r = PTR_ERR(kvm_regs);
  1507. goto out;
  1508. }
  1509. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1510. if (r)
  1511. goto out_free2;
  1512. r = 0;
  1513. out_free2:
  1514. kfree(kvm_regs);
  1515. break;
  1516. }
  1517. case KVM_GET_SREGS: {
  1518. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1519. r = -ENOMEM;
  1520. if (!kvm_sregs)
  1521. goto out;
  1522. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1523. if (r)
  1524. goto out;
  1525. r = -EFAULT;
  1526. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1527. goto out;
  1528. r = 0;
  1529. break;
  1530. }
  1531. case KVM_SET_SREGS: {
  1532. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  1533. if (IS_ERR(kvm_sregs)) {
  1534. r = PTR_ERR(kvm_sregs);
  1535. goto out;
  1536. }
  1537. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1538. if (r)
  1539. goto out;
  1540. r = 0;
  1541. break;
  1542. }
  1543. case KVM_GET_MP_STATE: {
  1544. struct kvm_mp_state mp_state;
  1545. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1546. if (r)
  1547. goto out;
  1548. r = -EFAULT;
  1549. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1550. goto out;
  1551. r = 0;
  1552. break;
  1553. }
  1554. case KVM_SET_MP_STATE: {
  1555. struct kvm_mp_state mp_state;
  1556. r = -EFAULT;
  1557. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1558. goto out;
  1559. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1560. if (r)
  1561. goto out;
  1562. r = 0;
  1563. break;
  1564. }
  1565. case KVM_TRANSLATE: {
  1566. struct kvm_translation tr;
  1567. r = -EFAULT;
  1568. if (copy_from_user(&tr, argp, sizeof tr))
  1569. goto out;
  1570. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1571. if (r)
  1572. goto out;
  1573. r = -EFAULT;
  1574. if (copy_to_user(argp, &tr, sizeof tr))
  1575. goto out;
  1576. r = 0;
  1577. break;
  1578. }
  1579. case KVM_SET_GUEST_DEBUG: {
  1580. struct kvm_guest_debug dbg;
  1581. r = -EFAULT;
  1582. if (copy_from_user(&dbg, argp, sizeof dbg))
  1583. goto out;
  1584. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1585. if (r)
  1586. goto out;
  1587. r = 0;
  1588. break;
  1589. }
  1590. case KVM_SET_SIGNAL_MASK: {
  1591. struct kvm_signal_mask __user *sigmask_arg = argp;
  1592. struct kvm_signal_mask kvm_sigmask;
  1593. sigset_t sigset, *p;
  1594. p = NULL;
  1595. if (argp) {
  1596. r = -EFAULT;
  1597. if (copy_from_user(&kvm_sigmask, argp,
  1598. sizeof kvm_sigmask))
  1599. goto out;
  1600. r = -EINVAL;
  1601. if (kvm_sigmask.len != sizeof sigset)
  1602. goto out;
  1603. r = -EFAULT;
  1604. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1605. sizeof sigset))
  1606. goto out;
  1607. p = &sigset;
  1608. }
  1609. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1610. break;
  1611. }
  1612. case KVM_GET_FPU: {
  1613. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1614. r = -ENOMEM;
  1615. if (!fpu)
  1616. goto out;
  1617. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1618. if (r)
  1619. goto out;
  1620. r = -EFAULT;
  1621. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1622. goto out;
  1623. r = 0;
  1624. break;
  1625. }
  1626. case KVM_SET_FPU: {
  1627. fpu = memdup_user(argp, sizeof(*fpu));
  1628. if (IS_ERR(fpu)) {
  1629. r = PTR_ERR(fpu);
  1630. goto out;
  1631. }
  1632. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1633. if (r)
  1634. goto out;
  1635. r = 0;
  1636. break;
  1637. }
  1638. default:
  1639. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1640. }
  1641. out:
  1642. vcpu_put(vcpu);
  1643. kfree(fpu);
  1644. kfree(kvm_sregs);
  1645. return r;
  1646. }
  1647. #ifdef CONFIG_COMPAT
  1648. static long kvm_vcpu_compat_ioctl(struct file *filp,
  1649. unsigned int ioctl, unsigned long arg)
  1650. {
  1651. struct kvm_vcpu *vcpu = filp->private_data;
  1652. void __user *argp = compat_ptr(arg);
  1653. int r;
  1654. if (vcpu->kvm->mm != current->mm)
  1655. return -EIO;
  1656. switch (ioctl) {
  1657. case KVM_SET_SIGNAL_MASK: {
  1658. struct kvm_signal_mask __user *sigmask_arg = argp;
  1659. struct kvm_signal_mask kvm_sigmask;
  1660. compat_sigset_t csigset;
  1661. sigset_t sigset;
  1662. if (argp) {
  1663. r = -EFAULT;
  1664. if (copy_from_user(&kvm_sigmask, argp,
  1665. sizeof kvm_sigmask))
  1666. goto out;
  1667. r = -EINVAL;
  1668. if (kvm_sigmask.len != sizeof csigset)
  1669. goto out;
  1670. r = -EFAULT;
  1671. if (copy_from_user(&csigset, sigmask_arg->sigset,
  1672. sizeof csigset))
  1673. goto out;
  1674. sigset_from_compat(&sigset, &csigset);
  1675. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1676. } else
  1677. r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
  1678. break;
  1679. }
  1680. default:
  1681. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  1682. }
  1683. out:
  1684. return r;
  1685. }
  1686. #endif
  1687. static long kvm_vm_ioctl(struct file *filp,
  1688. unsigned int ioctl, unsigned long arg)
  1689. {
  1690. struct kvm *kvm = filp->private_data;
  1691. void __user *argp = (void __user *)arg;
  1692. int r;
  1693. if (kvm->mm != current->mm)
  1694. return -EIO;
  1695. switch (ioctl) {
  1696. case KVM_CREATE_VCPU:
  1697. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1698. if (r < 0)
  1699. goto out;
  1700. break;
  1701. case KVM_SET_USER_MEMORY_REGION: {
  1702. struct kvm_userspace_memory_region kvm_userspace_mem;
  1703. r = -EFAULT;
  1704. if (copy_from_user(&kvm_userspace_mem, argp,
  1705. sizeof kvm_userspace_mem))
  1706. goto out;
  1707. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1708. if (r)
  1709. goto out;
  1710. break;
  1711. }
  1712. case KVM_GET_DIRTY_LOG: {
  1713. struct kvm_dirty_log log;
  1714. r = -EFAULT;
  1715. if (copy_from_user(&log, argp, sizeof log))
  1716. goto out;
  1717. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1718. if (r)
  1719. goto out;
  1720. break;
  1721. }
  1722. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1723. case KVM_REGISTER_COALESCED_MMIO: {
  1724. struct kvm_coalesced_mmio_zone zone;
  1725. r = -EFAULT;
  1726. if (copy_from_user(&zone, argp, sizeof zone))
  1727. goto out;
  1728. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1729. if (r)
  1730. goto out;
  1731. r = 0;
  1732. break;
  1733. }
  1734. case KVM_UNREGISTER_COALESCED_MMIO: {
  1735. struct kvm_coalesced_mmio_zone zone;
  1736. r = -EFAULT;
  1737. if (copy_from_user(&zone, argp, sizeof zone))
  1738. goto out;
  1739. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1740. if (r)
  1741. goto out;
  1742. r = 0;
  1743. break;
  1744. }
  1745. #endif
  1746. case KVM_IRQFD: {
  1747. struct kvm_irqfd data;
  1748. r = -EFAULT;
  1749. if (copy_from_user(&data, argp, sizeof data))
  1750. goto out;
  1751. r = kvm_irqfd(kvm, &data);
  1752. break;
  1753. }
  1754. case KVM_IOEVENTFD: {
  1755. struct kvm_ioeventfd data;
  1756. r = -EFAULT;
  1757. if (copy_from_user(&data, argp, sizeof data))
  1758. goto out;
  1759. r = kvm_ioeventfd(kvm, &data);
  1760. break;
  1761. }
  1762. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1763. case KVM_SET_BOOT_CPU_ID:
  1764. r = 0;
  1765. mutex_lock(&kvm->lock);
  1766. if (atomic_read(&kvm->online_vcpus) != 0)
  1767. r = -EBUSY;
  1768. else
  1769. kvm->bsp_vcpu_id = arg;
  1770. mutex_unlock(&kvm->lock);
  1771. break;
  1772. #endif
  1773. #ifdef CONFIG_HAVE_KVM_MSI
  1774. case KVM_SIGNAL_MSI: {
  1775. struct kvm_msi msi;
  1776. r = -EFAULT;
  1777. if (copy_from_user(&msi, argp, sizeof msi))
  1778. goto out;
  1779. r = kvm_send_userspace_msi(kvm, &msi);
  1780. break;
  1781. }
  1782. #endif
  1783. default:
  1784. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1785. if (r == -ENOTTY)
  1786. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1787. }
  1788. out:
  1789. return r;
  1790. }
  1791. #ifdef CONFIG_COMPAT
  1792. struct compat_kvm_dirty_log {
  1793. __u32 slot;
  1794. __u32 padding1;
  1795. union {
  1796. compat_uptr_t dirty_bitmap; /* one bit per page */
  1797. __u64 padding2;
  1798. };
  1799. };
  1800. static long kvm_vm_compat_ioctl(struct file *filp,
  1801. unsigned int ioctl, unsigned long arg)
  1802. {
  1803. struct kvm *kvm = filp->private_data;
  1804. int r;
  1805. if (kvm->mm != current->mm)
  1806. return -EIO;
  1807. switch (ioctl) {
  1808. case KVM_GET_DIRTY_LOG: {
  1809. struct compat_kvm_dirty_log compat_log;
  1810. struct kvm_dirty_log log;
  1811. r = -EFAULT;
  1812. if (copy_from_user(&compat_log, (void __user *)arg,
  1813. sizeof(compat_log)))
  1814. goto out;
  1815. log.slot = compat_log.slot;
  1816. log.padding1 = compat_log.padding1;
  1817. log.padding2 = compat_log.padding2;
  1818. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1819. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1820. if (r)
  1821. goto out;
  1822. break;
  1823. }
  1824. default:
  1825. r = kvm_vm_ioctl(filp, ioctl, arg);
  1826. }
  1827. out:
  1828. return r;
  1829. }
  1830. #endif
  1831. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1832. {
  1833. struct page *page[1];
  1834. unsigned long addr;
  1835. int npages;
  1836. gfn_t gfn = vmf->pgoff;
  1837. struct kvm *kvm = vma->vm_file->private_data;
  1838. addr = gfn_to_hva(kvm, gfn);
  1839. if (kvm_is_error_hva(addr))
  1840. return VM_FAULT_SIGBUS;
  1841. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1842. NULL);
  1843. if (unlikely(npages != 1))
  1844. return VM_FAULT_SIGBUS;
  1845. vmf->page = page[0];
  1846. return 0;
  1847. }
  1848. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1849. .fault = kvm_vm_fault,
  1850. };
  1851. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1852. {
  1853. vma->vm_ops = &kvm_vm_vm_ops;
  1854. return 0;
  1855. }
  1856. static struct file_operations kvm_vm_fops = {
  1857. .release = kvm_vm_release,
  1858. .unlocked_ioctl = kvm_vm_ioctl,
  1859. #ifdef CONFIG_COMPAT
  1860. .compat_ioctl = kvm_vm_compat_ioctl,
  1861. #endif
  1862. .mmap = kvm_vm_mmap,
  1863. .llseek = noop_llseek,
  1864. };
  1865. static int kvm_dev_ioctl_create_vm(unsigned long type)
  1866. {
  1867. int r;
  1868. struct kvm *kvm;
  1869. kvm = kvm_create_vm(type);
  1870. if (IS_ERR(kvm))
  1871. return PTR_ERR(kvm);
  1872. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1873. r = kvm_coalesced_mmio_init(kvm);
  1874. if (r < 0) {
  1875. kvm_put_kvm(kvm);
  1876. return r;
  1877. }
  1878. #endif
  1879. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1880. if (r < 0)
  1881. kvm_put_kvm(kvm);
  1882. return r;
  1883. }
  1884. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1885. {
  1886. switch (arg) {
  1887. case KVM_CAP_USER_MEMORY:
  1888. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1889. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1890. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1891. case KVM_CAP_SET_BOOT_CPU_ID:
  1892. #endif
  1893. case KVM_CAP_INTERNAL_ERROR_DATA:
  1894. #ifdef CONFIG_HAVE_KVM_MSI
  1895. case KVM_CAP_SIGNAL_MSI:
  1896. #endif
  1897. return 1;
  1898. #ifdef KVM_CAP_IRQ_ROUTING
  1899. case KVM_CAP_IRQ_ROUTING:
  1900. return KVM_MAX_IRQ_ROUTES;
  1901. #endif
  1902. default:
  1903. break;
  1904. }
  1905. return kvm_dev_ioctl_check_extension(arg);
  1906. }
  1907. static long kvm_dev_ioctl(struct file *filp,
  1908. unsigned int ioctl, unsigned long arg)
  1909. {
  1910. long r = -EINVAL;
  1911. switch (ioctl) {
  1912. case KVM_GET_API_VERSION:
  1913. r = -EINVAL;
  1914. if (arg)
  1915. goto out;
  1916. r = KVM_API_VERSION;
  1917. break;
  1918. case KVM_CREATE_VM:
  1919. r = kvm_dev_ioctl_create_vm(arg);
  1920. break;
  1921. case KVM_CHECK_EXTENSION:
  1922. r = kvm_dev_ioctl_check_extension_generic(arg);
  1923. break;
  1924. case KVM_GET_VCPU_MMAP_SIZE:
  1925. r = -EINVAL;
  1926. if (arg)
  1927. goto out;
  1928. r = PAGE_SIZE; /* struct kvm_run */
  1929. #ifdef CONFIG_X86
  1930. r += PAGE_SIZE; /* pio data page */
  1931. #endif
  1932. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1933. r += PAGE_SIZE; /* coalesced mmio ring page */
  1934. #endif
  1935. break;
  1936. case KVM_TRACE_ENABLE:
  1937. case KVM_TRACE_PAUSE:
  1938. case KVM_TRACE_DISABLE:
  1939. r = -EOPNOTSUPP;
  1940. break;
  1941. default:
  1942. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1943. }
  1944. out:
  1945. return r;
  1946. }
  1947. static struct file_operations kvm_chardev_ops = {
  1948. .unlocked_ioctl = kvm_dev_ioctl,
  1949. .compat_ioctl = kvm_dev_ioctl,
  1950. .llseek = noop_llseek,
  1951. };
  1952. static struct miscdevice kvm_dev = {
  1953. KVM_MINOR,
  1954. "kvm",
  1955. &kvm_chardev_ops,
  1956. };
  1957. static void hardware_enable_nolock(void *junk)
  1958. {
  1959. int cpu = raw_smp_processor_id();
  1960. int r;
  1961. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1962. return;
  1963. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1964. r = kvm_arch_hardware_enable(NULL);
  1965. if (r) {
  1966. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1967. atomic_inc(&hardware_enable_failed);
  1968. printk(KERN_INFO "kvm: enabling virtualization on "
  1969. "CPU%d failed\n", cpu);
  1970. }
  1971. }
  1972. static void hardware_enable(void *junk)
  1973. {
  1974. raw_spin_lock(&kvm_lock);
  1975. hardware_enable_nolock(junk);
  1976. raw_spin_unlock(&kvm_lock);
  1977. }
  1978. static void hardware_disable_nolock(void *junk)
  1979. {
  1980. int cpu = raw_smp_processor_id();
  1981. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1982. return;
  1983. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1984. kvm_arch_hardware_disable(NULL);
  1985. }
  1986. static void hardware_disable(void *junk)
  1987. {
  1988. raw_spin_lock(&kvm_lock);
  1989. hardware_disable_nolock(junk);
  1990. raw_spin_unlock(&kvm_lock);
  1991. }
  1992. static void hardware_disable_all_nolock(void)
  1993. {
  1994. BUG_ON(!kvm_usage_count);
  1995. kvm_usage_count--;
  1996. if (!kvm_usage_count)
  1997. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1998. }
  1999. static void hardware_disable_all(void)
  2000. {
  2001. raw_spin_lock(&kvm_lock);
  2002. hardware_disable_all_nolock();
  2003. raw_spin_unlock(&kvm_lock);
  2004. }
  2005. static int hardware_enable_all(void)
  2006. {
  2007. int r = 0;
  2008. raw_spin_lock(&kvm_lock);
  2009. kvm_usage_count++;
  2010. if (kvm_usage_count == 1) {
  2011. atomic_set(&hardware_enable_failed, 0);
  2012. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2013. if (atomic_read(&hardware_enable_failed)) {
  2014. hardware_disable_all_nolock();
  2015. r = -EBUSY;
  2016. }
  2017. }
  2018. raw_spin_unlock(&kvm_lock);
  2019. return r;
  2020. }
  2021. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2022. void *v)
  2023. {
  2024. int cpu = (long)v;
  2025. if (!kvm_usage_count)
  2026. return NOTIFY_OK;
  2027. val &= ~CPU_TASKS_FROZEN;
  2028. switch (val) {
  2029. case CPU_DYING:
  2030. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2031. cpu);
  2032. hardware_disable(NULL);
  2033. break;
  2034. case CPU_STARTING:
  2035. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2036. cpu);
  2037. hardware_enable(NULL);
  2038. break;
  2039. }
  2040. return NOTIFY_OK;
  2041. }
  2042. asmlinkage void kvm_spurious_fault(void)
  2043. {
  2044. /* Fault while not rebooting. We want the trace. */
  2045. BUG();
  2046. }
  2047. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  2048. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2049. void *v)
  2050. {
  2051. /*
  2052. * Some (well, at least mine) BIOSes hang on reboot if
  2053. * in vmx root mode.
  2054. *
  2055. * And Intel TXT required VMX off for all cpu when system shutdown.
  2056. */
  2057. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2058. kvm_rebooting = true;
  2059. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2060. return NOTIFY_OK;
  2061. }
  2062. static struct notifier_block kvm_reboot_notifier = {
  2063. .notifier_call = kvm_reboot,
  2064. .priority = 0,
  2065. };
  2066. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2067. {
  2068. int i;
  2069. for (i = 0; i < bus->dev_count; i++) {
  2070. struct kvm_io_device *pos = bus->range[i].dev;
  2071. kvm_iodevice_destructor(pos);
  2072. }
  2073. kfree(bus);
  2074. }
  2075. int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2076. {
  2077. const struct kvm_io_range *r1 = p1;
  2078. const struct kvm_io_range *r2 = p2;
  2079. if (r1->addr < r2->addr)
  2080. return -1;
  2081. if (r1->addr + r1->len > r2->addr + r2->len)
  2082. return 1;
  2083. return 0;
  2084. }
  2085. int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2086. gpa_t addr, int len)
  2087. {
  2088. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2089. .addr = addr,
  2090. .len = len,
  2091. .dev = dev,
  2092. };
  2093. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2094. kvm_io_bus_sort_cmp, NULL);
  2095. return 0;
  2096. }
  2097. int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2098. gpa_t addr, int len)
  2099. {
  2100. struct kvm_io_range *range, key;
  2101. int off;
  2102. key = (struct kvm_io_range) {
  2103. .addr = addr,
  2104. .len = len,
  2105. };
  2106. range = bsearch(&key, bus->range, bus->dev_count,
  2107. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2108. if (range == NULL)
  2109. return -ENOENT;
  2110. off = range - bus->range;
  2111. while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
  2112. off--;
  2113. return off;
  2114. }
  2115. /* kvm_io_bus_write - called under kvm->slots_lock */
  2116. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2117. int len, const void *val)
  2118. {
  2119. int idx;
  2120. struct kvm_io_bus *bus;
  2121. struct kvm_io_range range;
  2122. range = (struct kvm_io_range) {
  2123. .addr = addr,
  2124. .len = len,
  2125. };
  2126. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2127. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2128. if (idx < 0)
  2129. return -EOPNOTSUPP;
  2130. while (idx < bus->dev_count &&
  2131. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2132. if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
  2133. return 0;
  2134. idx++;
  2135. }
  2136. return -EOPNOTSUPP;
  2137. }
  2138. /* kvm_io_bus_read - called under kvm->slots_lock */
  2139. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2140. int len, void *val)
  2141. {
  2142. int idx;
  2143. struct kvm_io_bus *bus;
  2144. struct kvm_io_range range;
  2145. range = (struct kvm_io_range) {
  2146. .addr = addr,
  2147. .len = len,
  2148. };
  2149. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  2150. idx = kvm_io_bus_get_first_dev(bus, addr, len);
  2151. if (idx < 0)
  2152. return -EOPNOTSUPP;
  2153. while (idx < bus->dev_count &&
  2154. kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
  2155. if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
  2156. return 0;
  2157. idx++;
  2158. }
  2159. return -EOPNOTSUPP;
  2160. }
  2161. /* Caller must hold slots_lock. */
  2162. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2163. int len, struct kvm_io_device *dev)
  2164. {
  2165. struct kvm_io_bus *new_bus, *bus;
  2166. bus = kvm->buses[bus_idx];
  2167. if (bus->dev_count > NR_IOBUS_DEVS - 1)
  2168. return -ENOSPC;
  2169. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2170. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2171. if (!new_bus)
  2172. return -ENOMEM;
  2173. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2174. sizeof(struct kvm_io_range)));
  2175. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2176. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2177. synchronize_srcu_expedited(&kvm->srcu);
  2178. kfree(bus);
  2179. return 0;
  2180. }
  2181. /* Caller must hold slots_lock. */
  2182. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2183. struct kvm_io_device *dev)
  2184. {
  2185. int i, r;
  2186. struct kvm_io_bus *new_bus, *bus;
  2187. bus = kvm->buses[bus_idx];
  2188. r = -ENOENT;
  2189. for (i = 0; i < bus->dev_count; i++)
  2190. if (bus->range[i].dev == dev) {
  2191. r = 0;
  2192. break;
  2193. }
  2194. if (r)
  2195. return r;
  2196. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2197. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2198. if (!new_bus)
  2199. return -ENOMEM;
  2200. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2201. new_bus->dev_count--;
  2202. memcpy(new_bus->range + i, bus->range + i + 1,
  2203. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2204. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2205. synchronize_srcu_expedited(&kvm->srcu);
  2206. kfree(bus);
  2207. return r;
  2208. }
  2209. static struct notifier_block kvm_cpu_notifier = {
  2210. .notifier_call = kvm_cpu_hotplug,
  2211. };
  2212. static int vm_stat_get(void *_offset, u64 *val)
  2213. {
  2214. unsigned offset = (long)_offset;
  2215. struct kvm *kvm;
  2216. *val = 0;
  2217. raw_spin_lock(&kvm_lock);
  2218. list_for_each_entry(kvm, &vm_list, vm_list)
  2219. *val += *(u32 *)((void *)kvm + offset);
  2220. raw_spin_unlock(&kvm_lock);
  2221. return 0;
  2222. }
  2223. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2224. static int vcpu_stat_get(void *_offset, u64 *val)
  2225. {
  2226. unsigned offset = (long)_offset;
  2227. struct kvm *kvm;
  2228. struct kvm_vcpu *vcpu;
  2229. int i;
  2230. *val = 0;
  2231. raw_spin_lock(&kvm_lock);
  2232. list_for_each_entry(kvm, &vm_list, vm_list)
  2233. kvm_for_each_vcpu(i, vcpu, kvm)
  2234. *val += *(u32 *)((void *)vcpu + offset);
  2235. raw_spin_unlock(&kvm_lock);
  2236. return 0;
  2237. }
  2238. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2239. static const struct file_operations *stat_fops[] = {
  2240. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2241. [KVM_STAT_VM] = &vm_stat_fops,
  2242. };
  2243. static int kvm_init_debug(void)
  2244. {
  2245. int r = -EFAULT;
  2246. struct kvm_stats_debugfs_item *p;
  2247. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2248. if (kvm_debugfs_dir == NULL)
  2249. goto out;
  2250. for (p = debugfs_entries; p->name; ++p) {
  2251. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2252. (void *)(long)p->offset,
  2253. stat_fops[p->kind]);
  2254. if (p->dentry == NULL)
  2255. goto out_dir;
  2256. }
  2257. return 0;
  2258. out_dir:
  2259. debugfs_remove_recursive(kvm_debugfs_dir);
  2260. out:
  2261. return r;
  2262. }
  2263. static void kvm_exit_debug(void)
  2264. {
  2265. struct kvm_stats_debugfs_item *p;
  2266. for (p = debugfs_entries; p->name; ++p)
  2267. debugfs_remove(p->dentry);
  2268. debugfs_remove(kvm_debugfs_dir);
  2269. }
  2270. static int kvm_suspend(void)
  2271. {
  2272. if (kvm_usage_count)
  2273. hardware_disable_nolock(NULL);
  2274. return 0;
  2275. }
  2276. static void kvm_resume(void)
  2277. {
  2278. if (kvm_usage_count) {
  2279. WARN_ON(raw_spin_is_locked(&kvm_lock));
  2280. hardware_enable_nolock(NULL);
  2281. }
  2282. }
  2283. static struct syscore_ops kvm_syscore_ops = {
  2284. .suspend = kvm_suspend,
  2285. .resume = kvm_resume,
  2286. };
  2287. struct page *bad_page;
  2288. pfn_t bad_pfn;
  2289. static inline
  2290. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2291. {
  2292. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2293. }
  2294. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2295. {
  2296. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2297. kvm_arch_vcpu_load(vcpu, cpu);
  2298. }
  2299. static void kvm_sched_out(struct preempt_notifier *pn,
  2300. struct task_struct *next)
  2301. {
  2302. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2303. kvm_arch_vcpu_put(vcpu);
  2304. }
  2305. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2306. struct module *module)
  2307. {
  2308. int r;
  2309. int cpu;
  2310. r = kvm_arch_init(opaque);
  2311. if (r)
  2312. goto out_fail;
  2313. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2314. if (bad_page == NULL) {
  2315. r = -ENOMEM;
  2316. goto out;
  2317. }
  2318. bad_pfn = page_to_pfn(bad_page);
  2319. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2320. if (hwpoison_page == NULL) {
  2321. r = -ENOMEM;
  2322. goto out_free_0;
  2323. }
  2324. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2325. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2326. if (fault_page == NULL) {
  2327. r = -ENOMEM;
  2328. goto out_free_0;
  2329. }
  2330. fault_pfn = page_to_pfn(fault_page);
  2331. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2332. r = -ENOMEM;
  2333. goto out_free_0;
  2334. }
  2335. r = kvm_arch_hardware_setup();
  2336. if (r < 0)
  2337. goto out_free_0a;
  2338. for_each_online_cpu(cpu) {
  2339. smp_call_function_single(cpu,
  2340. kvm_arch_check_processor_compat,
  2341. &r, 1);
  2342. if (r < 0)
  2343. goto out_free_1;
  2344. }
  2345. r = register_cpu_notifier(&kvm_cpu_notifier);
  2346. if (r)
  2347. goto out_free_2;
  2348. register_reboot_notifier(&kvm_reboot_notifier);
  2349. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2350. if (!vcpu_align)
  2351. vcpu_align = __alignof__(struct kvm_vcpu);
  2352. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2353. 0, NULL);
  2354. if (!kvm_vcpu_cache) {
  2355. r = -ENOMEM;
  2356. goto out_free_3;
  2357. }
  2358. r = kvm_async_pf_init();
  2359. if (r)
  2360. goto out_free;
  2361. kvm_chardev_ops.owner = module;
  2362. kvm_vm_fops.owner = module;
  2363. kvm_vcpu_fops.owner = module;
  2364. r = misc_register(&kvm_dev);
  2365. if (r) {
  2366. printk(KERN_ERR "kvm: misc device register failed\n");
  2367. goto out_unreg;
  2368. }
  2369. register_syscore_ops(&kvm_syscore_ops);
  2370. kvm_preempt_ops.sched_in = kvm_sched_in;
  2371. kvm_preempt_ops.sched_out = kvm_sched_out;
  2372. r = kvm_init_debug();
  2373. if (r) {
  2374. printk(KERN_ERR "kvm: create debugfs files failed\n");
  2375. goto out_undebugfs;
  2376. }
  2377. return 0;
  2378. out_undebugfs:
  2379. unregister_syscore_ops(&kvm_syscore_ops);
  2380. out_unreg:
  2381. kvm_async_pf_deinit();
  2382. out_free:
  2383. kmem_cache_destroy(kvm_vcpu_cache);
  2384. out_free_3:
  2385. unregister_reboot_notifier(&kvm_reboot_notifier);
  2386. unregister_cpu_notifier(&kvm_cpu_notifier);
  2387. out_free_2:
  2388. out_free_1:
  2389. kvm_arch_hardware_unsetup();
  2390. out_free_0a:
  2391. free_cpumask_var(cpus_hardware_enabled);
  2392. out_free_0:
  2393. if (fault_page)
  2394. __free_page(fault_page);
  2395. if (hwpoison_page)
  2396. __free_page(hwpoison_page);
  2397. __free_page(bad_page);
  2398. out:
  2399. kvm_arch_exit();
  2400. out_fail:
  2401. return r;
  2402. }
  2403. EXPORT_SYMBOL_GPL(kvm_init);
  2404. void kvm_exit(void)
  2405. {
  2406. kvm_exit_debug();
  2407. misc_deregister(&kvm_dev);
  2408. kmem_cache_destroy(kvm_vcpu_cache);
  2409. kvm_async_pf_deinit();
  2410. unregister_syscore_ops(&kvm_syscore_ops);
  2411. unregister_reboot_notifier(&kvm_reboot_notifier);
  2412. unregister_cpu_notifier(&kvm_cpu_notifier);
  2413. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2414. kvm_arch_hardware_unsetup();
  2415. kvm_arch_exit();
  2416. free_cpumask_var(cpus_hardware_enabled);
  2417. __free_page(fault_page);
  2418. __free_page(hwpoison_page);
  2419. __free_page(bad_page);
  2420. }
  2421. EXPORT_SYMBOL_GPL(kvm_exit);