slub.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  111. SLAB_TRACE | SLAB_DEBUG_FREE)
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. static int kmem_size = sizeof(struct kmem_cache);
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s->name);
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. __this_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  206. {
  207. return s->node[node];
  208. }
  209. /* Verify that a pointer has an address that is valid within a slab page */
  210. static inline int check_valid_pointer(struct kmem_cache *s,
  211. struct page *page, const void *object)
  212. {
  213. void *base;
  214. if (!object)
  215. return 1;
  216. base = page_address(page);
  217. if (object < base || object >= base + page->objects * s->size ||
  218. (object - base) % s->size) {
  219. return 0;
  220. }
  221. return 1;
  222. }
  223. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  224. {
  225. return *(void **)(object + s->offset);
  226. }
  227. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  228. {
  229. prefetch(object + s->offset);
  230. }
  231. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  232. {
  233. void *p;
  234. #ifdef CONFIG_DEBUG_PAGEALLOC
  235. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  236. #else
  237. p = get_freepointer(s, object);
  238. #endif
  239. return p;
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Determine object index from a given position */
  250. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  251. {
  252. return (p - addr) / s->size;
  253. }
  254. static inline size_t slab_ksize(const struct kmem_cache *s)
  255. {
  256. #ifdef CONFIG_SLUB_DEBUG
  257. /*
  258. * Debugging requires use of the padding between object
  259. * and whatever may come after it.
  260. */
  261. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  262. return s->object_size;
  263. #endif
  264. /*
  265. * If we have the need to store the freelist pointer
  266. * back there or track user information then we can
  267. * only use the space before that information.
  268. */
  269. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  270. return s->inuse;
  271. /*
  272. * Else we can use all the padding etc for the allocation
  273. */
  274. return s->size;
  275. }
  276. static inline int order_objects(int order, unsigned long size, int reserved)
  277. {
  278. return ((PAGE_SIZE << order) - reserved) / size;
  279. }
  280. static inline struct kmem_cache_order_objects oo_make(int order,
  281. unsigned long size, int reserved)
  282. {
  283. struct kmem_cache_order_objects x = {
  284. (order << OO_SHIFT) + order_objects(order, size, reserved)
  285. };
  286. return x;
  287. }
  288. static inline int oo_order(struct kmem_cache_order_objects x)
  289. {
  290. return x.x >> OO_SHIFT;
  291. }
  292. static inline int oo_objects(struct kmem_cache_order_objects x)
  293. {
  294. return x.x & OO_MASK;
  295. }
  296. /*
  297. * Per slab locking using the pagelock
  298. */
  299. static __always_inline void slab_lock(struct page *page)
  300. {
  301. bit_spin_lock(PG_locked, &page->flags);
  302. }
  303. static __always_inline void slab_unlock(struct page *page)
  304. {
  305. __bit_spin_unlock(PG_locked, &page->flags);
  306. }
  307. /* Interrupts must be disabled (for the fallback code to work right) */
  308. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  309. void *freelist_old, unsigned long counters_old,
  310. void *freelist_new, unsigned long counters_new,
  311. const char *n)
  312. {
  313. VM_BUG_ON(!irqs_disabled());
  314. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  315. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  316. if (s->flags & __CMPXCHG_DOUBLE) {
  317. if (cmpxchg_double(&page->freelist, &page->counters,
  318. freelist_old, counters_old,
  319. freelist_new, counters_new))
  320. return 1;
  321. } else
  322. #endif
  323. {
  324. slab_lock(page);
  325. if (page->freelist == freelist_old && page->counters == counters_old) {
  326. page->freelist = freelist_new;
  327. page->counters = counters_new;
  328. slab_unlock(page);
  329. return 1;
  330. }
  331. slab_unlock(page);
  332. }
  333. cpu_relax();
  334. stat(s, CMPXCHG_DOUBLE_FAIL);
  335. #ifdef SLUB_DEBUG_CMPXCHG
  336. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  337. #endif
  338. return 0;
  339. }
  340. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  341. void *freelist_old, unsigned long counters_old,
  342. void *freelist_new, unsigned long counters_new,
  343. const char *n)
  344. {
  345. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  346. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  347. if (s->flags & __CMPXCHG_DOUBLE) {
  348. if (cmpxchg_double(&page->freelist, &page->counters,
  349. freelist_old, counters_old,
  350. freelist_new, counters_new))
  351. return 1;
  352. } else
  353. #endif
  354. {
  355. unsigned long flags;
  356. local_irq_save(flags);
  357. slab_lock(page);
  358. if (page->freelist == freelist_old && page->counters == counters_old) {
  359. page->freelist = freelist_new;
  360. page->counters = counters_new;
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. return 1;
  364. }
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. }
  368. cpu_relax();
  369. stat(s, CMPXCHG_DOUBLE_FAIL);
  370. #ifdef SLUB_DEBUG_CMPXCHG
  371. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  372. #endif
  373. return 0;
  374. }
  375. #ifdef CONFIG_SLUB_DEBUG
  376. /*
  377. * Determine a map of object in use on a page.
  378. *
  379. * Node listlock must be held to guarantee that the page does
  380. * not vanish from under us.
  381. */
  382. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  383. {
  384. void *p;
  385. void *addr = page_address(page);
  386. for (p = page->freelist; p; p = get_freepointer(s, p))
  387. set_bit(slab_index(p, s, addr), map);
  388. }
  389. /*
  390. * Debug settings:
  391. */
  392. #ifdef CONFIG_SLUB_DEBUG_ON
  393. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  394. #else
  395. static int slub_debug;
  396. #endif
  397. static char *slub_debug_slabs;
  398. static int disable_higher_order_debug;
  399. /*
  400. * Object debugging
  401. */
  402. static void print_section(char *text, u8 *addr, unsigned int length)
  403. {
  404. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  405. length, 1);
  406. }
  407. static struct track *get_track(struct kmem_cache *s, void *object,
  408. enum track_item alloc)
  409. {
  410. struct track *p;
  411. if (s->offset)
  412. p = object + s->offset + sizeof(void *);
  413. else
  414. p = object + s->inuse;
  415. return p + alloc;
  416. }
  417. static void set_track(struct kmem_cache *s, void *object,
  418. enum track_item alloc, unsigned long addr)
  419. {
  420. struct track *p = get_track(s, object, alloc);
  421. if (addr) {
  422. #ifdef CONFIG_STACKTRACE
  423. struct stack_trace trace;
  424. int i;
  425. trace.nr_entries = 0;
  426. trace.max_entries = TRACK_ADDRS_COUNT;
  427. trace.entries = p->addrs;
  428. trace.skip = 3;
  429. save_stack_trace(&trace);
  430. /* See rant in lockdep.c */
  431. if (trace.nr_entries != 0 &&
  432. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  433. trace.nr_entries--;
  434. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  435. p->addrs[i] = 0;
  436. #endif
  437. p->addr = addr;
  438. p->cpu = smp_processor_id();
  439. p->pid = current->pid;
  440. p->when = jiffies;
  441. } else
  442. memset(p, 0, sizeof(struct track));
  443. }
  444. static void init_tracking(struct kmem_cache *s, void *object)
  445. {
  446. if (!(s->flags & SLAB_STORE_USER))
  447. return;
  448. set_track(s, object, TRACK_FREE, 0UL);
  449. set_track(s, object, TRACK_ALLOC, 0UL);
  450. }
  451. static void print_track(const char *s, struct track *t)
  452. {
  453. if (!t->addr)
  454. return;
  455. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  456. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  457. #ifdef CONFIG_STACKTRACE
  458. {
  459. int i;
  460. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  461. if (t->addrs[i])
  462. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  463. else
  464. break;
  465. }
  466. #endif
  467. }
  468. static void print_tracking(struct kmem_cache *s, void *object)
  469. {
  470. if (!(s->flags & SLAB_STORE_USER))
  471. return;
  472. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  473. print_track("Freed", get_track(s, object, TRACK_FREE));
  474. }
  475. static void print_page_info(struct page *page)
  476. {
  477. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  478. page, page->objects, page->inuse, page->freelist, page->flags);
  479. }
  480. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  481. {
  482. va_list args;
  483. char buf[100];
  484. va_start(args, fmt);
  485. vsnprintf(buf, sizeof(buf), fmt, args);
  486. va_end(args);
  487. printk(KERN_ERR "========================================"
  488. "=====================================\n");
  489. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  490. printk(KERN_ERR "----------------------------------------"
  491. "-------------------------------------\n\n");
  492. }
  493. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  494. {
  495. va_list args;
  496. char buf[100];
  497. va_start(args, fmt);
  498. vsnprintf(buf, sizeof(buf), fmt, args);
  499. va_end(args);
  500. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  501. }
  502. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  503. {
  504. unsigned int off; /* Offset of last byte */
  505. u8 *addr = page_address(page);
  506. print_tracking(s, p);
  507. print_page_info(page);
  508. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  509. p, p - addr, get_freepointer(s, p));
  510. if (p > addr + 16)
  511. print_section("Bytes b4 ", p - 16, 16);
  512. print_section("Object ", p, min_t(unsigned long, s->object_size,
  513. PAGE_SIZE));
  514. if (s->flags & SLAB_RED_ZONE)
  515. print_section("Redzone ", p + s->object_size,
  516. s->inuse - s->object_size);
  517. if (s->offset)
  518. off = s->offset + sizeof(void *);
  519. else
  520. off = s->inuse;
  521. if (s->flags & SLAB_STORE_USER)
  522. off += 2 * sizeof(struct track);
  523. if (off != s->size)
  524. /* Beginning of the filler is the free pointer */
  525. print_section("Padding ", p + off, s->size - off);
  526. dump_stack();
  527. }
  528. static void object_err(struct kmem_cache *s, struct page *page,
  529. u8 *object, char *reason)
  530. {
  531. slab_bug(s, "%s", reason);
  532. print_trailer(s, page, object);
  533. }
  534. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  535. {
  536. va_list args;
  537. char buf[100];
  538. va_start(args, fmt);
  539. vsnprintf(buf, sizeof(buf), fmt, args);
  540. va_end(args);
  541. slab_bug(s, "%s", buf);
  542. print_page_info(page);
  543. dump_stack();
  544. }
  545. static void init_object(struct kmem_cache *s, void *object, u8 val)
  546. {
  547. u8 *p = object;
  548. if (s->flags & __OBJECT_POISON) {
  549. memset(p, POISON_FREE, s->object_size - 1);
  550. p[s->object_size - 1] = POISON_END;
  551. }
  552. if (s->flags & SLAB_RED_ZONE)
  553. memset(p + s->object_size, val, s->inuse - s->object_size);
  554. }
  555. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  556. void *from, void *to)
  557. {
  558. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  559. memset(from, data, to - from);
  560. }
  561. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  562. u8 *object, char *what,
  563. u8 *start, unsigned int value, unsigned int bytes)
  564. {
  565. u8 *fault;
  566. u8 *end;
  567. fault = memchr_inv(start, value, bytes);
  568. if (!fault)
  569. return 1;
  570. end = start + bytes;
  571. while (end > fault && end[-1] == value)
  572. end--;
  573. slab_bug(s, "%s overwritten", what);
  574. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  575. fault, end - 1, fault[0], value);
  576. print_trailer(s, page, object);
  577. restore_bytes(s, what, value, fault, end);
  578. return 0;
  579. }
  580. /*
  581. * Object layout:
  582. *
  583. * object address
  584. * Bytes of the object to be managed.
  585. * If the freepointer may overlay the object then the free
  586. * pointer is the first word of the object.
  587. *
  588. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  589. * 0xa5 (POISON_END)
  590. *
  591. * object + s->object_size
  592. * Padding to reach word boundary. This is also used for Redzoning.
  593. * Padding is extended by another word if Redzoning is enabled and
  594. * object_size == inuse.
  595. *
  596. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  597. * 0xcc (RED_ACTIVE) for objects in use.
  598. *
  599. * object + s->inuse
  600. * Meta data starts here.
  601. *
  602. * A. Free pointer (if we cannot overwrite object on free)
  603. * B. Tracking data for SLAB_STORE_USER
  604. * C. Padding to reach required alignment boundary or at mininum
  605. * one word if debugging is on to be able to detect writes
  606. * before the word boundary.
  607. *
  608. * Padding is done using 0x5a (POISON_INUSE)
  609. *
  610. * object + s->size
  611. * Nothing is used beyond s->size.
  612. *
  613. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  614. * ignored. And therefore no slab options that rely on these boundaries
  615. * may be used with merged slabcaches.
  616. */
  617. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  618. {
  619. unsigned long off = s->inuse; /* The end of info */
  620. if (s->offset)
  621. /* Freepointer is placed after the object. */
  622. off += sizeof(void *);
  623. if (s->flags & SLAB_STORE_USER)
  624. /* We also have user information there */
  625. off += 2 * sizeof(struct track);
  626. if (s->size == off)
  627. return 1;
  628. return check_bytes_and_report(s, page, p, "Object padding",
  629. p + off, POISON_INUSE, s->size - off);
  630. }
  631. /* Check the pad bytes at the end of a slab page */
  632. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  633. {
  634. u8 *start;
  635. u8 *fault;
  636. u8 *end;
  637. int length;
  638. int remainder;
  639. if (!(s->flags & SLAB_POISON))
  640. return 1;
  641. start = page_address(page);
  642. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  643. end = start + length;
  644. remainder = length % s->size;
  645. if (!remainder)
  646. return 1;
  647. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  648. if (!fault)
  649. return 1;
  650. while (end > fault && end[-1] == POISON_INUSE)
  651. end--;
  652. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  653. print_section("Padding ", end - remainder, remainder);
  654. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  655. return 0;
  656. }
  657. static int check_object(struct kmem_cache *s, struct page *page,
  658. void *object, u8 val)
  659. {
  660. u8 *p = object;
  661. u8 *endobject = object + s->object_size;
  662. if (s->flags & SLAB_RED_ZONE) {
  663. if (!check_bytes_and_report(s, page, object, "Redzone",
  664. endobject, val, s->inuse - s->object_size))
  665. return 0;
  666. } else {
  667. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  668. check_bytes_and_report(s, page, p, "Alignment padding",
  669. endobject, POISON_INUSE, s->inuse - s->object_size);
  670. }
  671. }
  672. if (s->flags & SLAB_POISON) {
  673. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  674. (!check_bytes_and_report(s, page, p, "Poison", p,
  675. POISON_FREE, s->object_size - 1) ||
  676. !check_bytes_and_report(s, page, p, "Poison",
  677. p + s->object_size - 1, POISON_END, 1)))
  678. return 0;
  679. /*
  680. * check_pad_bytes cleans up on its own.
  681. */
  682. check_pad_bytes(s, page, p);
  683. }
  684. if (!s->offset && val == SLUB_RED_ACTIVE)
  685. /*
  686. * Object and freepointer overlap. Cannot check
  687. * freepointer while object is allocated.
  688. */
  689. return 1;
  690. /* Check free pointer validity */
  691. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  692. object_err(s, page, p, "Freepointer corrupt");
  693. /*
  694. * No choice but to zap it and thus lose the remainder
  695. * of the free objects in this slab. May cause
  696. * another error because the object count is now wrong.
  697. */
  698. set_freepointer(s, p, NULL);
  699. return 0;
  700. }
  701. return 1;
  702. }
  703. static int check_slab(struct kmem_cache *s, struct page *page)
  704. {
  705. int maxobj;
  706. VM_BUG_ON(!irqs_disabled());
  707. if (!PageSlab(page)) {
  708. slab_err(s, page, "Not a valid slab page");
  709. return 0;
  710. }
  711. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  712. if (page->objects > maxobj) {
  713. slab_err(s, page, "objects %u > max %u",
  714. s->name, page->objects, maxobj);
  715. return 0;
  716. }
  717. if (page->inuse > page->objects) {
  718. slab_err(s, page, "inuse %u > max %u",
  719. s->name, page->inuse, page->objects);
  720. return 0;
  721. }
  722. /* Slab_pad_check fixes things up after itself */
  723. slab_pad_check(s, page);
  724. return 1;
  725. }
  726. /*
  727. * Determine if a certain object on a page is on the freelist. Must hold the
  728. * slab lock to guarantee that the chains are in a consistent state.
  729. */
  730. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  731. {
  732. int nr = 0;
  733. void *fp;
  734. void *object = NULL;
  735. unsigned long max_objects;
  736. fp = page->freelist;
  737. while (fp && nr <= page->objects) {
  738. if (fp == search)
  739. return 1;
  740. if (!check_valid_pointer(s, page, fp)) {
  741. if (object) {
  742. object_err(s, page, object,
  743. "Freechain corrupt");
  744. set_freepointer(s, object, NULL);
  745. break;
  746. } else {
  747. slab_err(s, page, "Freepointer corrupt");
  748. page->freelist = NULL;
  749. page->inuse = page->objects;
  750. slab_fix(s, "Freelist cleared");
  751. return 0;
  752. }
  753. break;
  754. }
  755. object = fp;
  756. fp = get_freepointer(s, object);
  757. nr++;
  758. }
  759. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  760. if (max_objects > MAX_OBJS_PER_PAGE)
  761. max_objects = MAX_OBJS_PER_PAGE;
  762. if (page->objects != max_objects) {
  763. slab_err(s, page, "Wrong number of objects. Found %d but "
  764. "should be %d", page->objects, max_objects);
  765. page->objects = max_objects;
  766. slab_fix(s, "Number of objects adjusted.");
  767. }
  768. if (page->inuse != page->objects - nr) {
  769. slab_err(s, page, "Wrong object count. Counter is %d but "
  770. "counted were %d", page->inuse, page->objects - nr);
  771. page->inuse = page->objects - nr;
  772. slab_fix(s, "Object count adjusted.");
  773. }
  774. return search == NULL;
  775. }
  776. static void trace(struct kmem_cache *s, struct page *page, void *object,
  777. int alloc)
  778. {
  779. if (s->flags & SLAB_TRACE) {
  780. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  781. s->name,
  782. alloc ? "alloc" : "free",
  783. object, page->inuse,
  784. page->freelist);
  785. if (!alloc)
  786. print_section("Object ", (void *)object, s->object_size);
  787. dump_stack();
  788. }
  789. }
  790. /*
  791. * Hooks for other subsystems that check memory allocations. In a typical
  792. * production configuration these hooks all should produce no code at all.
  793. */
  794. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  795. {
  796. flags &= gfp_allowed_mask;
  797. lockdep_trace_alloc(flags);
  798. might_sleep_if(flags & __GFP_WAIT);
  799. return should_failslab(s->object_size, flags, s->flags);
  800. }
  801. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  802. {
  803. flags &= gfp_allowed_mask;
  804. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  805. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  806. }
  807. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  808. {
  809. kmemleak_free_recursive(x, s->flags);
  810. /*
  811. * Trouble is that we may no longer disable interupts in the fast path
  812. * So in order to make the debug calls that expect irqs to be
  813. * disabled we need to disable interrupts temporarily.
  814. */
  815. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  816. {
  817. unsigned long flags;
  818. local_irq_save(flags);
  819. kmemcheck_slab_free(s, x, s->object_size);
  820. debug_check_no_locks_freed(x, s->object_size);
  821. local_irq_restore(flags);
  822. }
  823. #endif
  824. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  825. debug_check_no_obj_freed(x, s->object_size);
  826. }
  827. /*
  828. * Tracking of fully allocated slabs for debugging purposes.
  829. *
  830. * list_lock must be held.
  831. */
  832. static void add_full(struct kmem_cache *s,
  833. struct kmem_cache_node *n, struct page *page)
  834. {
  835. if (!(s->flags & SLAB_STORE_USER))
  836. return;
  837. list_add(&page->lru, &n->full);
  838. }
  839. /*
  840. * list_lock must be held.
  841. */
  842. static void remove_full(struct kmem_cache *s, struct page *page)
  843. {
  844. if (!(s->flags & SLAB_STORE_USER))
  845. return;
  846. list_del(&page->lru);
  847. }
  848. /* Tracking of the number of slabs for debugging purposes */
  849. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. return atomic_long_read(&n->nr_slabs);
  853. }
  854. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  855. {
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  859. {
  860. struct kmem_cache_node *n = get_node(s, node);
  861. /*
  862. * May be called early in order to allocate a slab for the
  863. * kmem_cache_node structure. Solve the chicken-egg
  864. * dilemma by deferring the increment of the count during
  865. * bootstrap (see early_kmem_cache_node_alloc).
  866. */
  867. if (n) {
  868. atomic_long_inc(&n->nr_slabs);
  869. atomic_long_add(objects, &n->total_objects);
  870. }
  871. }
  872. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  873. {
  874. struct kmem_cache_node *n = get_node(s, node);
  875. atomic_long_dec(&n->nr_slabs);
  876. atomic_long_sub(objects, &n->total_objects);
  877. }
  878. /* Object debug checks for alloc/free paths */
  879. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  880. void *object)
  881. {
  882. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  883. return;
  884. init_object(s, object, SLUB_RED_INACTIVE);
  885. init_tracking(s, object);
  886. }
  887. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  888. void *object, unsigned long addr)
  889. {
  890. if (!check_slab(s, page))
  891. goto bad;
  892. if (!check_valid_pointer(s, page, object)) {
  893. object_err(s, page, object, "Freelist Pointer check fails");
  894. goto bad;
  895. }
  896. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  897. goto bad;
  898. /* Success perform special debug activities for allocs */
  899. if (s->flags & SLAB_STORE_USER)
  900. set_track(s, object, TRACK_ALLOC, addr);
  901. trace(s, page, object, 1);
  902. init_object(s, object, SLUB_RED_ACTIVE);
  903. return 1;
  904. bad:
  905. if (PageSlab(page)) {
  906. /*
  907. * If this is a slab page then lets do the best we can
  908. * to avoid issues in the future. Marking all objects
  909. * as used avoids touching the remaining objects.
  910. */
  911. slab_fix(s, "Marking all objects used");
  912. page->inuse = page->objects;
  913. page->freelist = NULL;
  914. }
  915. return 0;
  916. }
  917. static noinline int free_debug_processing(struct kmem_cache *s,
  918. struct page *page, void *object, unsigned long addr)
  919. {
  920. unsigned long flags;
  921. int rc = 0;
  922. local_irq_save(flags);
  923. slab_lock(page);
  924. if (!check_slab(s, page))
  925. goto fail;
  926. if (!check_valid_pointer(s, page, object)) {
  927. slab_err(s, page, "Invalid object pointer 0x%p", object);
  928. goto fail;
  929. }
  930. if (on_freelist(s, page, object)) {
  931. object_err(s, page, object, "Object already free");
  932. goto fail;
  933. }
  934. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  935. goto out;
  936. if (unlikely(s != page->slab)) {
  937. if (!PageSlab(page)) {
  938. slab_err(s, page, "Attempt to free object(0x%p) "
  939. "outside of slab", object);
  940. } else if (!page->slab) {
  941. printk(KERN_ERR
  942. "SLUB <none>: no slab for object 0x%p.\n",
  943. object);
  944. dump_stack();
  945. } else
  946. object_err(s, page, object,
  947. "page slab pointer corrupt.");
  948. goto fail;
  949. }
  950. if (s->flags & SLAB_STORE_USER)
  951. set_track(s, object, TRACK_FREE, addr);
  952. trace(s, page, object, 0);
  953. init_object(s, object, SLUB_RED_INACTIVE);
  954. rc = 1;
  955. out:
  956. slab_unlock(page);
  957. local_irq_restore(flags);
  958. return rc;
  959. fail:
  960. slab_fix(s, "Object at 0x%p not freed", object);
  961. goto out;
  962. }
  963. static int __init setup_slub_debug(char *str)
  964. {
  965. slub_debug = DEBUG_DEFAULT_FLAGS;
  966. if (*str++ != '=' || !*str)
  967. /*
  968. * No options specified. Switch on full debugging.
  969. */
  970. goto out;
  971. if (*str == ',')
  972. /*
  973. * No options but restriction on slabs. This means full
  974. * debugging for slabs matching a pattern.
  975. */
  976. goto check_slabs;
  977. if (tolower(*str) == 'o') {
  978. /*
  979. * Avoid enabling debugging on caches if its minimum order
  980. * would increase as a result.
  981. */
  982. disable_higher_order_debug = 1;
  983. goto out;
  984. }
  985. slub_debug = 0;
  986. if (*str == '-')
  987. /*
  988. * Switch off all debugging measures.
  989. */
  990. goto out;
  991. /*
  992. * Determine which debug features should be switched on
  993. */
  994. for (; *str && *str != ','; str++) {
  995. switch (tolower(*str)) {
  996. case 'f':
  997. slub_debug |= SLAB_DEBUG_FREE;
  998. break;
  999. case 'z':
  1000. slub_debug |= SLAB_RED_ZONE;
  1001. break;
  1002. case 'p':
  1003. slub_debug |= SLAB_POISON;
  1004. break;
  1005. case 'u':
  1006. slub_debug |= SLAB_STORE_USER;
  1007. break;
  1008. case 't':
  1009. slub_debug |= SLAB_TRACE;
  1010. break;
  1011. case 'a':
  1012. slub_debug |= SLAB_FAILSLAB;
  1013. break;
  1014. default:
  1015. printk(KERN_ERR "slub_debug option '%c' "
  1016. "unknown. skipped\n", *str);
  1017. }
  1018. }
  1019. check_slabs:
  1020. if (*str == ',')
  1021. slub_debug_slabs = str + 1;
  1022. out:
  1023. return 1;
  1024. }
  1025. __setup("slub_debug", setup_slub_debug);
  1026. static unsigned long kmem_cache_flags(unsigned long object_size,
  1027. unsigned long flags, const char *name,
  1028. void (*ctor)(void *))
  1029. {
  1030. /*
  1031. * Enable debugging if selected on the kernel commandline.
  1032. */
  1033. if (slub_debug && (!slub_debug_slabs ||
  1034. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1035. flags |= slub_debug;
  1036. return flags;
  1037. }
  1038. #else
  1039. static inline void setup_object_debug(struct kmem_cache *s,
  1040. struct page *page, void *object) {}
  1041. static inline int alloc_debug_processing(struct kmem_cache *s,
  1042. struct page *page, void *object, unsigned long addr) { return 0; }
  1043. static inline int free_debug_processing(struct kmem_cache *s,
  1044. struct page *page, void *object, unsigned long addr) { return 0; }
  1045. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1046. { return 1; }
  1047. static inline int check_object(struct kmem_cache *s, struct page *page,
  1048. void *object, u8 val) { return 1; }
  1049. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1050. struct page *page) {}
  1051. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1052. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1053. unsigned long flags, const char *name,
  1054. void (*ctor)(void *))
  1055. {
  1056. return flags;
  1057. }
  1058. #define slub_debug 0
  1059. #define disable_higher_order_debug 0
  1060. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1061. { return 0; }
  1062. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1063. { return 0; }
  1064. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1065. int objects) {}
  1066. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1069. { return 0; }
  1070. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1071. void *object) {}
  1072. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1073. #endif /* CONFIG_SLUB_DEBUG */
  1074. /*
  1075. * Slab allocation and freeing
  1076. */
  1077. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1078. struct kmem_cache_order_objects oo)
  1079. {
  1080. int order = oo_order(oo);
  1081. flags |= __GFP_NOTRACK;
  1082. if (node == NUMA_NO_NODE)
  1083. return alloc_pages(flags, order);
  1084. else
  1085. return alloc_pages_exact_node(node, flags, order);
  1086. }
  1087. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1088. {
  1089. struct page *page;
  1090. struct kmem_cache_order_objects oo = s->oo;
  1091. gfp_t alloc_gfp;
  1092. flags &= gfp_allowed_mask;
  1093. if (flags & __GFP_WAIT)
  1094. local_irq_enable();
  1095. flags |= s->allocflags;
  1096. /*
  1097. * Let the initial higher-order allocation fail under memory pressure
  1098. * so we fall-back to the minimum order allocation.
  1099. */
  1100. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1101. page = alloc_slab_page(alloc_gfp, node, oo);
  1102. if (unlikely(!page)) {
  1103. oo = s->min;
  1104. /*
  1105. * Allocation may have failed due to fragmentation.
  1106. * Try a lower order alloc if possible
  1107. */
  1108. page = alloc_slab_page(flags, node, oo);
  1109. if (page)
  1110. stat(s, ORDER_FALLBACK);
  1111. }
  1112. if (kmemcheck_enabled && page
  1113. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1114. int pages = 1 << oo_order(oo);
  1115. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1116. /*
  1117. * Objects from caches that have a constructor don't get
  1118. * cleared when they're allocated, so we need to do it here.
  1119. */
  1120. if (s->ctor)
  1121. kmemcheck_mark_uninitialized_pages(page, pages);
  1122. else
  1123. kmemcheck_mark_unallocated_pages(page, pages);
  1124. }
  1125. if (flags & __GFP_WAIT)
  1126. local_irq_disable();
  1127. if (!page)
  1128. return NULL;
  1129. page->objects = oo_objects(oo);
  1130. mod_zone_page_state(page_zone(page),
  1131. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1132. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1133. 1 << oo_order(oo));
  1134. return page;
  1135. }
  1136. static void setup_object(struct kmem_cache *s, struct page *page,
  1137. void *object)
  1138. {
  1139. setup_object_debug(s, page, object);
  1140. if (unlikely(s->ctor))
  1141. s->ctor(object);
  1142. }
  1143. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1144. {
  1145. struct page *page;
  1146. void *start;
  1147. void *last;
  1148. void *p;
  1149. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1150. page = allocate_slab(s,
  1151. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1152. if (!page)
  1153. goto out;
  1154. inc_slabs_node(s, page_to_nid(page), page->objects);
  1155. page->slab = s;
  1156. __SetPageSlab(page);
  1157. if (page->pfmemalloc)
  1158. SetPageSlabPfmemalloc(page);
  1159. start = page_address(page);
  1160. if (unlikely(s->flags & SLAB_POISON))
  1161. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1162. last = start;
  1163. for_each_object(p, s, start, page->objects) {
  1164. setup_object(s, page, last);
  1165. set_freepointer(s, last, p);
  1166. last = p;
  1167. }
  1168. setup_object(s, page, last);
  1169. set_freepointer(s, last, NULL);
  1170. page->freelist = start;
  1171. page->inuse = page->objects;
  1172. page->frozen = 1;
  1173. out:
  1174. return page;
  1175. }
  1176. static void __free_slab(struct kmem_cache *s, struct page *page)
  1177. {
  1178. int order = compound_order(page);
  1179. int pages = 1 << order;
  1180. if (kmem_cache_debug(s)) {
  1181. void *p;
  1182. slab_pad_check(s, page);
  1183. for_each_object(p, s, page_address(page),
  1184. page->objects)
  1185. check_object(s, page, p, SLUB_RED_INACTIVE);
  1186. }
  1187. kmemcheck_free_shadow(page, compound_order(page));
  1188. mod_zone_page_state(page_zone(page),
  1189. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1190. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1191. -pages);
  1192. __ClearPageSlabPfmemalloc(page);
  1193. __ClearPageSlab(page);
  1194. reset_page_mapcount(page);
  1195. if (current->reclaim_state)
  1196. current->reclaim_state->reclaimed_slab += pages;
  1197. __free_pages(page, order);
  1198. }
  1199. #define need_reserve_slab_rcu \
  1200. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1201. static void rcu_free_slab(struct rcu_head *h)
  1202. {
  1203. struct page *page;
  1204. if (need_reserve_slab_rcu)
  1205. page = virt_to_head_page(h);
  1206. else
  1207. page = container_of((struct list_head *)h, struct page, lru);
  1208. __free_slab(page->slab, page);
  1209. }
  1210. static void free_slab(struct kmem_cache *s, struct page *page)
  1211. {
  1212. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1213. struct rcu_head *head;
  1214. if (need_reserve_slab_rcu) {
  1215. int order = compound_order(page);
  1216. int offset = (PAGE_SIZE << order) - s->reserved;
  1217. VM_BUG_ON(s->reserved != sizeof(*head));
  1218. head = page_address(page) + offset;
  1219. } else {
  1220. /*
  1221. * RCU free overloads the RCU head over the LRU
  1222. */
  1223. head = (void *)&page->lru;
  1224. }
  1225. call_rcu(head, rcu_free_slab);
  1226. } else
  1227. __free_slab(s, page);
  1228. }
  1229. static void discard_slab(struct kmem_cache *s, struct page *page)
  1230. {
  1231. dec_slabs_node(s, page_to_nid(page), page->objects);
  1232. free_slab(s, page);
  1233. }
  1234. /*
  1235. * Management of partially allocated slabs.
  1236. *
  1237. * list_lock must be held.
  1238. */
  1239. static inline void add_partial(struct kmem_cache_node *n,
  1240. struct page *page, int tail)
  1241. {
  1242. n->nr_partial++;
  1243. if (tail == DEACTIVATE_TO_TAIL)
  1244. list_add_tail(&page->lru, &n->partial);
  1245. else
  1246. list_add(&page->lru, &n->partial);
  1247. }
  1248. /*
  1249. * list_lock must be held.
  1250. */
  1251. static inline void remove_partial(struct kmem_cache_node *n,
  1252. struct page *page)
  1253. {
  1254. list_del(&page->lru);
  1255. n->nr_partial--;
  1256. }
  1257. /*
  1258. * Remove slab from the partial list, freeze it and
  1259. * return the pointer to the freelist.
  1260. *
  1261. * Returns a list of objects or NULL if it fails.
  1262. *
  1263. * Must hold list_lock since we modify the partial list.
  1264. */
  1265. static inline void *acquire_slab(struct kmem_cache *s,
  1266. struct kmem_cache_node *n, struct page *page,
  1267. int mode)
  1268. {
  1269. void *freelist;
  1270. unsigned long counters;
  1271. struct page new;
  1272. /*
  1273. * Zap the freelist and set the frozen bit.
  1274. * The old freelist is the list of objects for the
  1275. * per cpu allocation list.
  1276. */
  1277. freelist = page->freelist;
  1278. counters = page->counters;
  1279. new.counters = counters;
  1280. if (mode) {
  1281. new.inuse = page->objects;
  1282. new.freelist = NULL;
  1283. } else {
  1284. new.freelist = freelist;
  1285. }
  1286. VM_BUG_ON(new.frozen);
  1287. new.frozen = 1;
  1288. if (!__cmpxchg_double_slab(s, page,
  1289. freelist, counters,
  1290. new.freelist, new.counters,
  1291. "acquire_slab"))
  1292. return NULL;
  1293. remove_partial(n, page);
  1294. WARN_ON(!freelist);
  1295. return freelist;
  1296. }
  1297. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1298. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1299. /*
  1300. * Try to allocate a partial slab from a specific node.
  1301. */
  1302. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1303. struct kmem_cache_cpu *c, gfp_t flags)
  1304. {
  1305. struct page *page, *page2;
  1306. void *object = NULL;
  1307. /*
  1308. * Racy check. If we mistakenly see no partial slabs then we
  1309. * just allocate an empty slab. If we mistakenly try to get a
  1310. * partial slab and there is none available then get_partials()
  1311. * will return NULL.
  1312. */
  1313. if (!n || !n->nr_partial)
  1314. return NULL;
  1315. spin_lock(&n->list_lock);
  1316. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1317. void *t;
  1318. int available;
  1319. if (!pfmemalloc_match(page, flags))
  1320. continue;
  1321. t = acquire_slab(s, n, page, object == NULL);
  1322. if (!t)
  1323. break;
  1324. if (!object) {
  1325. c->page = page;
  1326. stat(s, ALLOC_FROM_PARTIAL);
  1327. object = t;
  1328. available = page->objects - page->inuse;
  1329. } else {
  1330. available = put_cpu_partial(s, page, 0);
  1331. stat(s, CPU_PARTIAL_NODE);
  1332. }
  1333. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1334. break;
  1335. }
  1336. spin_unlock(&n->list_lock);
  1337. return object;
  1338. }
  1339. /*
  1340. * Get a page from somewhere. Search in increasing NUMA distances.
  1341. */
  1342. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1343. struct kmem_cache_cpu *c)
  1344. {
  1345. #ifdef CONFIG_NUMA
  1346. struct zonelist *zonelist;
  1347. struct zoneref *z;
  1348. struct zone *zone;
  1349. enum zone_type high_zoneidx = gfp_zone(flags);
  1350. void *object;
  1351. unsigned int cpuset_mems_cookie;
  1352. /*
  1353. * The defrag ratio allows a configuration of the tradeoffs between
  1354. * inter node defragmentation and node local allocations. A lower
  1355. * defrag_ratio increases the tendency to do local allocations
  1356. * instead of attempting to obtain partial slabs from other nodes.
  1357. *
  1358. * If the defrag_ratio is set to 0 then kmalloc() always
  1359. * returns node local objects. If the ratio is higher then kmalloc()
  1360. * may return off node objects because partial slabs are obtained
  1361. * from other nodes and filled up.
  1362. *
  1363. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1364. * defrag_ratio = 1000) then every (well almost) allocation will
  1365. * first attempt to defrag slab caches on other nodes. This means
  1366. * scanning over all nodes to look for partial slabs which may be
  1367. * expensive if we do it every time we are trying to find a slab
  1368. * with available objects.
  1369. */
  1370. if (!s->remote_node_defrag_ratio ||
  1371. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1372. return NULL;
  1373. do {
  1374. cpuset_mems_cookie = get_mems_allowed();
  1375. zonelist = node_zonelist(slab_node(), flags);
  1376. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1377. struct kmem_cache_node *n;
  1378. n = get_node(s, zone_to_nid(zone));
  1379. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1380. n->nr_partial > s->min_partial) {
  1381. object = get_partial_node(s, n, c, flags);
  1382. if (object) {
  1383. /*
  1384. * Return the object even if
  1385. * put_mems_allowed indicated that
  1386. * the cpuset mems_allowed was
  1387. * updated in parallel. It's a
  1388. * harmless race between the alloc
  1389. * and the cpuset update.
  1390. */
  1391. put_mems_allowed(cpuset_mems_cookie);
  1392. return object;
  1393. }
  1394. }
  1395. }
  1396. } while (!put_mems_allowed(cpuset_mems_cookie));
  1397. #endif
  1398. return NULL;
  1399. }
  1400. /*
  1401. * Get a partial page, lock it and return it.
  1402. */
  1403. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1404. struct kmem_cache_cpu *c)
  1405. {
  1406. void *object;
  1407. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1408. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1409. if (object || node != NUMA_NO_NODE)
  1410. return object;
  1411. return get_any_partial(s, flags, c);
  1412. }
  1413. #ifdef CONFIG_PREEMPT
  1414. /*
  1415. * Calculate the next globally unique transaction for disambiguiation
  1416. * during cmpxchg. The transactions start with the cpu number and are then
  1417. * incremented by CONFIG_NR_CPUS.
  1418. */
  1419. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1420. #else
  1421. /*
  1422. * No preemption supported therefore also no need to check for
  1423. * different cpus.
  1424. */
  1425. #define TID_STEP 1
  1426. #endif
  1427. static inline unsigned long next_tid(unsigned long tid)
  1428. {
  1429. return tid + TID_STEP;
  1430. }
  1431. static inline unsigned int tid_to_cpu(unsigned long tid)
  1432. {
  1433. return tid % TID_STEP;
  1434. }
  1435. static inline unsigned long tid_to_event(unsigned long tid)
  1436. {
  1437. return tid / TID_STEP;
  1438. }
  1439. static inline unsigned int init_tid(int cpu)
  1440. {
  1441. return cpu;
  1442. }
  1443. static inline void note_cmpxchg_failure(const char *n,
  1444. const struct kmem_cache *s, unsigned long tid)
  1445. {
  1446. #ifdef SLUB_DEBUG_CMPXCHG
  1447. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1448. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1449. #ifdef CONFIG_PREEMPT
  1450. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1451. printk("due to cpu change %d -> %d\n",
  1452. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1453. else
  1454. #endif
  1455. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1456. printk("due to cpu running other code. Event %ld->%ld\n",
  1457. tid_to_event(tid), tid_to_event(actual_tid));
  1458. else
  1459. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1460. actual_tid, tid, next_tid(tid));
  1461. #endif
  1462. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1463. }
  1464. void init_kmem_cache_cpus(struct kmem_cache *s)
  1465. {
  1466. int cpu;
  1467. for_each_possible_cpu(cpu)
  1468. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1469. }
  1470. /*
  1471. * Remove the cpu slab
  1472. */
  1473. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1474. {
  1475. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1476. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1477. int lock = 0;
  1478. enum slab_modes l = M_NONE, m = M_NONE;
  1479. void *nextfree;
  1480. int tail = DEACTIVATE_TO_HEAD;
  1481. struct page new;
  1482. struct page old;
  1483. if (page->freelist) {
  1484. stat(s, DEACTIVATE_REMOTE_FREES);
  1485. tail = DEACTIVATE_TO_TAIL;
  1486. }
  1487. /*
  1488. * Stage one: Free all available per cpu objects back
  1489. * to the page freelist while it is still frozen. Leave the
  1490. * last one.
  1491. *
  1492. * There is no need to take the list->lock because the page
  1493. * is still frozen.
  1494. */
  1495. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1496. void *prior;
  1497. unsigned long counters;
  1498. do {
  1499. prior = page->freelist;
  1500. counters = page->counters;
  1501. set_freepointer(s, freelist, prior);
  1502. new.counters = counters;
  1503. new.inuse--;
  1504. VM_BUG_ON(!new.frozen);
  1505. } while (!__cmpxchg_double_slab(s, page,
  1506. prior, counters,
  1507. freelist, new.counters,
  1508. "drain percpu freelist"));
  1509. freelist = nextfree;
  1510. }
  1511. /*
  1512. * Stage two: Ensure that the page is unfrozen while the
  1513. * list presence reflects the actual number of objects
  1514. * during unfreeze.
  1515. *
  1516. * We setup the list membership and then perform a cmpxchg
  1517. * with the count. If there is a mismatch then the page
  1518. * is not unfrozen but the page is on the wrong list.
  1519. *
  1520. * Then we restart the process which may have to remove
  1521. * the page from the list that we just put it on again
  1522. * because the number of objects in the slab may have
  1523. * changed.
  1524. */
  1525. redo:
  1526. old.freelist = page->freelist;
  1527. old.counters = page->counters;
  1528. VM_BUG_ON(!old.frozen);
  1529. /* Determine target state of the slab */
  1530. new.counters = old.counters;
  1531. if (freelist) {
  1532. new.inuse--;
  1533. set_freepointer(s, freelist, old.freelist);
  1534. new.freelist = freelist;
  1535. } else
  1536. new.freelist = old.freelist;
  1537. new.frozen = 0;
  1538. if (!new.inuse && n->nr_partial > s->min_partial)
  1539. m = M_FREE;
  1540. else if (new.freelist) {
  1541. m = M_PARTIAL;
  1542. if (!lock) {
  1543. lock = 1;
  1544. /*
  1545. * Taking the spinlock removes the possiblity
  1546. * that acquire_slab() will see a slab page that
  1547. * is frozen
  1548. */
  1549. spin_lock(&n->list_lock);
  1550. }
  1551. } else {
  1552. m = M_FULL;
  1553. if (kmem_cache_debug(s) && !lock) {
  1554. lock = 1;
  1555. /*
  1556. * This also ensures that the scanning of full
  1557. * slabs from diagnostic functions will not see
  1558. * any frozen slabs.
  1559. */
  1560. spin_lock(&n->list_lock);
  1561. }
  1562. }
  1563. if (l != m) {
  1564. if (l == M_PARTIAL)
  1565. remove_partial(n, page);
  1566. else if (l == M_FULL)
  1567. remove_full(s, page);
  1568. if (m == M_PARTIAL) {
  1569. add_partial(n, page, tail);
  1570. stat(s, tail);
  1571. } else if (m == M_FULL) {
  1572. stat(s, DEACTIVATE_FULL);
  1573. add_full(s, n, page);
  1574. }
  1575. }
  1576. l = m;
  1577. if (!__cmpxchg_double_slab(s, page,
  1578. old.freelist, old.counters,
  1579. new.freelist, new.counters,
  1580. "unfreezing slab"))
  1581. goto redo;
  1582. if (lock)
  1583. spin_unlock(&n->list_lock);
  1584. if (m == M_FREE) {
  1585. stat(s, DEACTIVATE_EMPTY);
  1586. discard_slab(s, page);
  1587. stat(s, FREE_SLAB);
  1588. }
  1589. }
  1590. /*
  1591. * Unfreeze all the cpu partial slabs.
  1592. *
  1593. * This function must be called with interrupt disabled.
  1594. */
  1595. static void unfreeze_partials(struct kmem_cache *s)
  1596. {
  1597. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1598. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1599. struct page *page, *discard_page = NULL;
  1600. while ((page = c->partial)) {
  1601. struct page new;
  1602. struct page old;
  1603. c->partial = page->next;
  1604. n2 = get_node(s, page_to_nid(page));
  1605. if (n != n2) {
  1606. if (n)
  1607. spin_unlock(&n->list_lock);
  1608. n = n2;
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. do {
  1612. old.freelist = page->freelist;
  1613. old.counters = page->counters;
  1614. VM_BUG_ON(!old.frozen);
  1615. new.counters = old.counters;
  1616. new.freelist = old.freelist;
  1617. new.frozen = 0;
  1618. } while (!__cmpxchg_double_slab(s, page,
  1619. old.freelist, old.counters,
  1620. new.freelist, new.counters,
  1621. "unfreezing slab"));
  1622. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1623. page->next = discard_page;
  1624. discard_page = page;
  1625. } else {
  1626. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1627. stat(s, FREE_ADD_PARTIAL);
  1628. }
  1629. }
  1630. if (n)
  1631. spin_unlock(&n->list_lock);
  1632. while (discard_page) {
  1633. page = discard_page;
  1634. discard_page = discard_page->next;
  1635. stat(s, DEACTIVATE_EMPTY);
  1636. discard_slab(s, page);
  1637. stat(s, FREE_SLAB);
  1638. }
  1639. }
  1640. /*
  1641. * Put a page that was just frozen (in __slab_free) into a partial page
  1642. * slot if available. This is done without interrupts disabled and without
  1643. * preemption disabled. The cmpxchg is racy and may put the partial page
  1644. * onto a random cpus partial slot.
  1645. *
  1646. * If we did not find a slot then simply move all the partials to the
  1647. * per node partial list.
  1648. */
  1649. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1650. {
  1651. struct page *oldpage;
  1652. int pages;
  1653. int pobjects;
  1654. do {
  1655. pages = 0;
  1656. pobjects = 0;
  1657. oldpage = this_cpu_read(s->cpu_slab->partial);
  1658. if (oldpage) {
  1659. pobjects = oldpage->pobjects;
  1660. pages = oldpage->pages;
  1661. if (drain && pobjects > s->cpu_partial) {
  1662. unsigned long flags;
  1663. /*
  1664. * partial array is full. Move the existing
  1665. * set to the per node partial list.
  1666. */
  1667. local_irq_save(flags);
  1668. unfreeze_partials(s);
  1669. local_irq_restore(flags);
  1670. pobjects = 0;
  1671. pages = 0;
  1672. stat(s, CPU_PARTIAL_DRAIN);
  1673. }
  1674. }
  1675. pages++;
  1676. pobjects += page->objects - page->inuse;
  1677. page->pages = pages;
  1678. page->pobjects = pobjects;
  1679. page->next = oldpage;
  1680. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1681. return pobjects;
  1682. }
  1683. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1684. {
  1685. stat(s, CPUSLAB_FLUSH);
  1686. deactivate_slab(s, c->page, c->freelist);
  1687. c->tid = next_tid(c->tid);
  1688. c->page = NULL;
  1689. c->freelist = NULL;
  1690. }
  1691. /*
  1692. * Flush cpu slab.
  1693. *
  1694. * Called from IPI handler with interrupts disabled.
  1695. */
  1696. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1697. {
  1698. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1699. if (likely(c)) {
  1700. if (c->page)
  1701. flush_slab(s, c);
  1702. unfreeze_partials(s);
  1703. }
  1704. }
  1705. static void flush_cpu_slab(void *d)
  1706. {
  1707. struct kmem_cache *s = d;
  1708. __flush_cpu_slab(s, smp_processor_id());
  1709. }
  1710. static bool has_cpu_slab(int cpu, void *info)
  1711. {
  1712. struct kmem_cache *s = info;
  1713. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1714. return c->page || c->partial;
  1715. }
  1716. static void flush_all(struct kmem_cache *s)
  1717. {
  1718. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1719. }
  1720. /*
  1721. * Check if the objects in a per cpu structure fit numa
  1722. * locality expectations.
  1723. */
  1724. static inline int node_match(struct page *page, int node)
  1725. {
  1726. #ifdef CONFIG_NUMA
  1727. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1728. return 0;
  1729. #endif
  1730. return 1;
  1731. }
  1732. static int count_free(struct page *page)
  1733. {
  1734. return page->objects - page->inuse;
  1735. }
  1736. static unsigned long count_partial(struct kmem_cache_node *n,
  1737. int (*get_count)(struct page *))
  1738. {
  1739. unsigned long flags;
  1740. unsigned long x = 0;
  1741. struct page *page;
  1742. spin_lock_irqsave(&n->list_lock, flags);
  1743. list_for_each_entry(page, &n->partial, lru)
  1744. x += get_count(page);
  1745. spin_unlock_irqrestore(&n->list_lock, flags);
  1746. return x;
  1747. }
  1748. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1749. {
  1750. #ifdef CONFIG_SLUB_DEBUG
  1751. return atomic_long_read(&n->total_objects);
  1752. #else
  1753. return 0;
  1754. #endif
  1755. }
  1756. static noinline void
  1757. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1758. {
  1759. int node;
  1760. printk(KERN_WARNING
  1761. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1762. nid, gfpflags);
  1763. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1764. "default order: %d, min order: %d\n", s->name, s->object_size,
  1765. s->size, oo_order(s->oo), oo_order(s->min));
  1766. if (oo_order(s->min) > get_order(s->object_size))
  1767. printk(KERN_WARNING " %s debugging increased min order, use "
  1768. "slub_debug=O to disable.\n", s->name);
  1769. for_each_online_node(node) {
  1770. struct kmem_cache_node *n = get_node(s, node);
  1771. unsigned long nr_slabs;
  1772. unsigned long nr_objs;
  1773. unsigned long nr_free;
  1774. if (!n)
  1775. continue;
  1776. nr_free = count_partial(n, count_free);
  1777. nr_slabs = node_nr_slabs(n);
  1778. nr_objs = node_nr_objs(n);
  1779. printk(KERN_WARNING
  1780. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1781. node, nr_slabs, nr_objs, nr_free);
  1782. }
  1783. }
  1784. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1785. int node, struct kmem_cache_cpu **pc)
  1786. {
  1787. void *freelist;
  1788. struct kmem_cache_cpu *c = *pc;
  1789. struct page *page;
  1790. freelist = get_partial(s, flags, node, c);
  1791. if (freelist)
  1792. return freelist;
  1793. page = new_slab(s, flags, node);
  1794. if (page) {
  1795. c = __this_cpu_ptr(s->cpu_slab);
  1796. if (c->page)
  1797. flush_slab(s, c);
  1798. /*
  1799. * No other reference to the page yet so we can
  1800. * muck around with it freely without cmpxchg
  1801. */
  1802. freelist = page->freelist;
  1803. page->freelist = NULL;
  1804. stat(s, ALLOC_SLAB);
  1805. c->page = page;
  1806. *pc = c;
  1807. } else
  1808. freelist = NULL;
  1809. return freelist;
  1810. }
  1811. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1812. {
  1813. if (unlikely(PageSlabPfmemalloc(page)))
  1814. return gfp_pfmemalloc_allowed(gfpflags);
  1815. return true;
  1816. }
  1817. /*
  1818. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1819. * or deactivate the page.
  1820. *
  1821. * The page is still frozen if the return value is not NULL.
  1822. *
  1823. * If this function returns NULL then the page has been unfrozen.
  1824. *
  1825. * This function must be called with interrupt disabled.
  1826. */
  1827. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1828. {
  1829. struct page new;
  1830. unsigned long counters;
  1831. void *freelist;
  1832. do {
  1833. freelist = page->freelist;
  1834. counters = page->counters;
  1835. new.counters = counters;
  1836. VM_BUG_ON(!new.frozen);
  1837. new.inuse = page->objects;
  1838. new.frozen = freelist != NULL;
  1839. } while (!__cmpxchg_double_slab(s, page,
  1840. freelist, counters,
  1841. NULL, new.counters,
  1842. "get_freelist"));
  1843. return freelist;
  1844. }
  1845. /*
  1846. * Slow path. The lockless freelist is empty or we need to perform
  1847. * debugging duties.
  1848. *
  1849. * Processing is still very fast if new objects have been freed to the
  1850. * regular freelist. In that case we simply take over the regular freelist
  1851. * as the lockless freelist and zap the regular freelist.
  1852. *
  1853. * If that is not working then we fall back to the partial lists. We take the
  1854. * first element of the freelist as the object to allocate now and move the
  1855. * rest of the freelist to the lockless freelist.
  1856. *
  1857. * And if we were unable to get a new slab from the partial slab lists then
  1858. * we need to allocate a new slab. This is the slowest path since it involves
  1859. * a call to the page allocator and the setup of a new slab.
  1860. */
  1861. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1862. unsigned long addr, struct kmem_cache_cpu *c)
  1863. {
  1864. void *freelist;
  1865. struct page *page;
  1866. unsigned long flags;
  1867. local_irq_save(flags);
  1868. #ifdef CONFIG_PREEMPT
  1869. /*
  1870. * We may have been preempted and rescheduled on a different
  1871. * cpu before disabling interrupts. Need to reload cpu area
  1872. * pointer.
  1873. */
  1874. c = this_cpu_ptr(s->cpu_slab);
  1875. #endif
  1876. page = c->page;
  1877. if (!page)
  1878. goto new_slab;
  1879. redo:
  1880. if (unlikely(!node_match(page, node))) {
  1881. stat(s, ALLOC_NODE_MISMATCH);
  1882. deactivate_slab(s, page, c->freelist);
  1883. c->page = NULL;
  1884. c->freelist = NULL;
  1885. goto new_slab;
  1886. }
  1887. /*
  1888. * By rights, we should be searching for a slab page that was
  1889. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1890. * information when the page leaves the per-cpu allocator
  1891. */
  1892. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1893. deactivate_slab(s, page, c->freelist);
  1894. c->page = NULL;
  1895. c->freelist = NULL;
  1896. goto new_slab;
  1897. }
  1898. /* must check again c->freelist in case of cpu migration or IRQ */
  1899. freelist = c->freelist;
  1900. if (freelist)
  1901. goto load_freelist;
  1902. stat(s, ALLOC_SLOWPATH);
  1903. freelist = get_freelist(s, page);
  1904. if (!freelist) {
  1905. c->page = NULL;
  1906. stat(s, DEACTIVATE_BYPASS);
  1907. goto new_slab;
  1908. }
  1909. stat(s, ALLOC_REFILL);
  1910. load_freelist:
  1911. /*
  1912. * freelist is pointing to the list of objects to be used.
  1913. * page is pointing to the page from which the objects are obtained.
  1914. * That page must be frozen for per cpu allocations to work.
  1915. */
  1916. VM_BUG_ON(!c->page->frozen);
  1917. c->freelist = get_freepointer(s, freelist);
  1918. c->tid = next_tid(c->tid);
  1919. local_irq_restore(flags);
  1920. return freelist;
  1921. new_slab:
  1922. if (c->partial) {
  1923. page = c->page = c->partial;
  1924. c->partial = page->next;
  1925. stat(s, CPU_PARTIAL_ALLOC);
  1926. c->freelist = NULL;
  1927. goto redo;
  1928. }
  1929. freelist = new_slab_objects(s, gfpflags, node, &c);
  1930. if (unlikely(!freelist)) {
  1931. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1932. slab_out_of_memory(s, gfpflags, node);
  1933. local_irq_restore(flags);
  1934. return NULL;
  1935. }
  1936. page = c->page;
  1937. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1938. goto load_freelist;
  1939. /* Only entered in the debug case */
  1940. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1941. goto new_slab; /* Slab failed checks. Next slab needed */
  1942. deactivate_slab(s, page, get_freepointer(s, freelist));
  1943. c->page = NULL;
  1944. c->freelist = NULL;
  1945. local_irq_restore(flags);
  1946. return freelist;
  1947. }
  1948. /*
  1949. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1950. * have the fastpath folded into their functions. So no function call
  1951. * overhead for requests that can be satisfied on the fastpath.
  1952. *
  1953. * The fastpath works by first checking if the lockless freelist can be used.
  1954. * If not then __slab_alloc is called for slow processing.
  1955. *
  1956. * Otherwise we can simply pick the next object from the lockless free list.
  1957. */
  1958. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1959. gfp_t gfpflags, int node, unsigned long addr)
  1960. {
  1961. void **object;
  1962. struct kmem_cache_cpu *c;
  1963. struct page *page;
  1964. unsigned long tid;
  1965. if (slab_pre_alloc_hook(s, gfpflags))
  1966. return NULL;
  1967. redo:
  1968. /*
  1969. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1970. * enabled. We may switch back and forth between cpus while
  1971. * reading from one cpu area. That does not matter as long
  1972. * as we end up on the original cpu again when doing the cmpxchg.
  1973. */
  1974. c = __this_cpu_ptr(s->cpu_slab);
  1975. /*
  1976. * The transaction ids are globally unique per cpu and per operation on
  1977. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1978. * occurs on the right processor and that there was no operation on the
  1979. * linked list in between.
  1980. */
  1981. tid = c->tid;
  1982. barrier();
  1983. object = c->freelist;
  1984. page = c->page;
  1985. if (unlikely(!object || !node_match(page, node)))
  1986. object = __slab_alloc(s, gfpflags, node, addr, c);
  1987. else {
  1988. void *next_object = get_freepointer_safe(s, object);
  1989. /*
  1990. * The cmpxchg will only match if there was no additional
  1991. * operation and if we are on the right processor.
  1992. *
  1993. * The cmpxchg does the following atomically (without lock semantics!)
  1994. * 1. Relocate first pointer to the current per cpu area.
  1995. * 2. Verify that tid and freelist have not been changed
  1996. * 3. If they were not changed replace tid and freelist
  1997. *
  1998. * Since this is without lock semantics the protection is only against
  1999. * code executing on this cpu *not* from access by other cpus.
  2000. */
  2001. if (unlikely(!this_cpu_cmpxchg_double(
  2002. s->cpu_slab->freelist, s->cpu_slab->tid,
  2003. object, tid,
  2004. next_object, next_tid(tid)))) {
  2005. note_cmpxchg_failure("slab_alloc", s, tid);
  2006. goto redo;
  2007. }
  2008. prefetch_freepointer(s, next_object);
  2009. stat(s, ALLOC_FASTPATH);
  2010. }
  2011. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2012. memset(object, 0, s->object_size);
  2013. slab_post_alloc_hook(s, gfpflags, object);
  2014. return object;
  2015. }
  2016. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2017. {
  2018. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2019. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2020. return ret;
  2021. }
  2022. EXPORT_SYMBOL(kmem_cache_alloc);
  2023. #ifdef CONFIG_TRACING
  2024. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2025. {
  2026. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2027. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2028. return ret;
  2029. }
  2030. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2031. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2032. {
  2033. void *ret = kmalloc_order(size, flags, order);
  2034. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2035. return ret;
  2036. }
  2037. EXPORT_SYMBOL(kmalloc_order_trace);
  2038. #endif
  2039. #ifdef CONFIG_NUMA
  2040. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2041. {
  2042. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2043. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2044. s->object_size, s->size, gfpflags, node);
  2045. return ret;
  2046. }
  2047. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2048. #ifdef CONFIG_TRACING
  2049. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2050. gfp_t gfpflags,
  2051. int node, size_t size)
  2052. {
  2053. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2054. trace_kmalloc_node(_RET_IP_, ret,
  2055. size, s->size, gfpflags, node);
  2056. return ret;
  2057. }
  2058. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2059. #endif
  2060. #endif
  2061. /*
  2062. * Slow patch handling. This may still be called frequently since objects
  2063. * have a longer lifetime than the cpu slabs in most processing loads.
  2064. *
  2065. * So we still attempt to reduce cache line usage. Just take the slab
  2066. * lock and free the item. If there is no additional partial page
  2067. * handling required then we can return immediately.
  2068. */
  2069. static void __slab_free(struct kmem_cache *s, struct page *page,
  2070. void *x, unsigned long addr)
  2071. {
  2072. void *prior;
  2073. void **object = (void *)x;
  2074. int was_frozen;
  2075. int inuse;
  2076. struct page new;
  2077. unsigned long counters;
  2078. struct kmem_cache_node *n = NULL;
  2079. unsigned long uninitialized_var(flags);
  2080. stat(s, FREE_SLOWPATH);
  2081. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2082. return;
  2083. do {
  2084. prior = page->freelist;
  2085. counters = page->counters;
  2086. set_freepointer(s, object, prior);
  2087. new.counters = counters;
  2088. was_frozen = new.frozen;
  2089. new.inuse--;
  2090. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2091. if (!kmem_cache_debug(s) && !prior)
  2092. /*
  2093. * Slab was on no list before and will be partially empty
  2094. * We can defer the list move and instead freeze it.
  2095. */
  2096. new.frozen = 1;
  2097. else { /* Needs to be taken off a list */
  2098. n = get_node(s, page_to_nid(page));
  2099. /*
  2100. * Speculatively acquire the list_lock.
  2101. * If the cmpxchg does not succeed then we may
  2102. * drop the list_lock without any processing.
  2103. *
  2104. * Otherwise the list_lock will synchronize with
  2105. * other processors updating the list of slabs.
  2106. */
  2107. spin_lock_irqsave(&n->list_lock, flags);
  2108. }
  2109. }
  2110. inuse = new.inuse;
  2111. } while (!cmpxchg_double_slab(s, page,
  2112. prior, counters,
  2113. object, new.counters,
  2114. "__slab_free"));
  2115. if (likely(!n)) {
  2116. /*
  2117. * If we just froze the page then put it onto the
  2118. * per cpu partial list.
  2119. */
  2120. if (new.frozen && !was_frozen) {
  2121. put_cpu_partial(s, page, 1);
  2122. stat(s, CPU_PARTIAL_FREE);
  2123. }
  2124. /*
  2125. * The list lock was not taken therefore no list
  2126. * activity can be necessary.
  2127. */
  2128. if (was_frozen)
  2129. stat(s, FREE_FROZEN);
  2130. return;
  2131. }
  2132. /*
  2133. * was_frozen may have been set after we acquired the list_lock in
  2134. * an earlier loop. So we need to check it here again.
  2135. */
  2136. if (was_frozen)
  2137. stat(s, FREE_FROZEN);
  2138. else {
  2139. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2140. goto slab_empty;
  2141. /*
  2142. * Objects left in the slab. If it was not on the partial list before
  2143. * then add it.
  2144. */
  2145. if (unlikely(!prior)) {
  2146. remove_full(s, page);
  2147. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2148. stat(s, FREE_ADD_PARTIAL);
  2149. }
  2150. }
  2151. spin_unlock_irqrestore(&n->list_lock, flags);
  2152. return;
  2153. slab_empty:
  2154. if (prior) {
  2155. /*
  2156. * Slab on the partial list.
  2157. */
  2158. remove_partial(n, page);
  2159. stat(s, FREE_REMOVE_PARTIAL);
  2160. } else
  2161. /* Slab must be on the full list */
  2162. remove_full(s, page);
  2163. spin_unlock_irqrestore(&n->list_lock, flags);
  2164. stat(s, FREE_SLAB);
  2165. discard_slab(s, page);
  2166. }
  2167. /*
  2168. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2169. * can perform fastpath freeing without additional function calls.
  2170. *
  2171. * The fastpath is only possible if we are freeing to the current cpu slab
  2172. * of this processor. This typically the case if we have just allocated
  2173. * the item before.
  2174. *
  2175. * If fastpath is not possible then fall back to __slab_free where we deal
  2176. * with all sorts of special processing.
  2177. */
  2178. static __always_inline void slab_free(struct kmem_cache *s,
  2179. struct page *page, void *x, unsigned long addr)
  2180. {
  2181. void **object = (void *)x;
  2182. struct kmem_cache_cpu *c;
  2183. unsigned long tid;
  2184. slab_free_hook(s, x);
  2185. redo:
  2186. /*
  2187. * Determine the currently cpus per cpu slab.
  2188. * The cpu may change afterward. However that does not matter since
  2189. * data is retrieved via this pointer. If we are on the same cpu
  2190. * during the cmpxchg then the free will succedd.
  2191. */
  2192. c = __this_cpu_ptr(s->cpu_slab);
  2193. tid = c->tid;
  2194. barrier();
  2195. if (likely(page == c->page)) {
  2196. set_freepointer(s, object, c->freelist);
  2197. if (unlikely(!this_cpu_cmpxchg_double(
  2198. s->cpu_slab->freelist, s->cpu_slab->tid,
  2199. c->freelist, tid,
  2200. object, next_tid(tid)))) {
  2201. note_cmpxchg_failure("slab_free", s, tid);
  2202. goto redo;
  2203. }
  2204. stat(s, FREE_FASTPATH);
  2205. } else
  2206. __slab_free(s, page, x, addr);
  2207. }
  2208. void kmem_cache_free(struct kmem_cache *s, void *x)
  2209. {
  2210. struct page *page;
  2211. page = virt_to_head_page(x);
  2212. slab_free(s, page, x, _RET_IP_);
  2213. trace_kmem_cache_free(_RET_IP_, x);
  2214. }
  2215. EXPORT_SYMBOL(kmem_cache_free);
  2216. /*
  2217. * Object placement in a slab is made very easy because we always start at
  2218. * offset 0. If we tune the size of the object to the alignment then we can
  2219. * get the required alignment by putting one properly sized object after
  2220. * another.
  2221. *
  2222. * Notice that the allocation order determines the sizes of the per cpu
  2223. * caches. Each processor has always one slab available for allocations.
  2224. * Increasing the allocation order reduces the number of times that slabs
  2225. * must be moved on and off the partial lists and is therefore a factor in
  2226. * locking overhead.
  2227. */
  2228. /*
  2229. * Mininum / Maximum order of slab pages. This influences locking overhead
  2230. * and slab fragmentation. A higher order reduces the number of partial slabs
  2231. * and increases the number of allocations possible without having to
  2232. * take the list_lock.
  2233. */
  2234. static int slub_min_order;
  2235. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2236. static int slub_min_objects;
  2237. /*
  2238. * Merge control. If this is set then no merging of slab caches will occur.
  2239. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2240. */
  2241. static int slub_nomerge;
  2242. /*
  2243. * Calculate the order of allocation given an slab object size.
  2244. *
  2245. * The order of allocation has significant impact on performance and other
  2246. * system components. Generally order 0 allocations should be preferred since
  2247. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2248. * be problematic to put into order 0 slabs because there may be too much
  2249. * unused space left. We go to a higher order if more than 1/16th of the slab
  2250. * would be wasted.
  2251. *
  2252. * In order to reach satisfactory performance we must ensure that a minimum
  2253. * number of objects is in one slab. Otherwise we may generate too much
  2254. * activity on the partial lists which requires taking the list_lock. This is
  2255. * less a concern for large slabs though which are rarely used.
  2256. *
  2257. * slub_max_order specifies the order where we begin to stop considering the
  2258. * number of objects in a slab as critical. If we reach slub_max_order then
  2259. * we try to keep the page order as low as possible. So we accept more waste
  2260. * of space in favor of a small page order.
  2261. *
  2262. * Higher order allocations also allow the placement of more objects in a
  2263. * slab and thereby reduce object handling overhead. If the user has
  2264. * requested a higher mininum order then we start with that one instead of
  2265. * the smallest order which will fit the object.
  2266. */
  2267. static inline int slab_order(int size, int min_objects,
  2268. int max_order, int fract_leftover, int reserved)
  2269. {
  2270. int order;
  2271. int rem;
  2272. int min_order = slub_min_order;
  2273. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2274. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2275. for (order = max(min_order,
  2276. fls(min_objects * size - 1) - PAGE_SHIFT);
  2277. order <= max_order; order++) {
  2278. unsigned long slab_size = PAGE_SIZE << order;
  2279. if (slab_size < min_objects * size + reserved)
  2280. continue;
  2281. rem = (slab_size - reserved) % size;
  2282. if (rem <= slab_size / fract_leftover)
  2283. break;
  2284. }
  2285. return order;
  2286. }
  2287. static inline int calculate_order(int size, int reserved)
  2288. {
  2289. int order;
  2290. int min_objects;
  2291. int fraction;
  2292. int max_objects;
  2293. /*
  2294. * Attempt to find best configuration for a slab. This
  2295. * works by first attempting to generate a layout with
  2296. * the best configuration and backing off gradually.
  2297. *
  2298. * First we reduce the acceptable waste in a slab. Then
  2299. * we reduce the minimum objects required in a slab.
  2300. */
  2301. min_objects = slub_min_objects;
  2302. if (!min_objects)
  2303. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2304. max_objects = order_objects(slub_max_order, size, reserved);
  2305. min_objects = min(min_objects, max_objects);
  2306. while (min_objects > 1) {
  2307. fraction = 16;
  2308. while (fraction >= 4) {
  2309. order = slab_order(size, min_objects,
  2310. slub_max_order, fraction, reserved);
  2311. if (order <= slub_max_order)
  2312. return order;
  2313. fraction /= 2;
  2314. }
  2315. min_objects--;
  2316. }
  2317. /*
  2318. * We were unable to place multiple objects in a slab. Now
  2319. * lets see if we can place a single object there.
  2320. */
  2321. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2322. if (order <= slub_max_order)
  2323. return order;
  2324. /*
  2325. * Doh this slab cannot be placed using slub_max_order.
  2326. */
  2327. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2328. if (order < MAX_ORDER)
  2329. return order;
  2330. return -ENOSYS;
  2331. }
  2332. /*
  2333. * Figure out what the alignment of the objects will be.
  2334. */
  2335. static unsigned long calculate_alignment(unsigned long flags,
  2336. unsigned long align, unsigned long size)
  2337. {
  2338. /*
  2339. * If the user wants hardware cache aligned objects then follow that
  2340. * suggestion if the object is sufficiently large.
  2341. *
  2342. * The hardware cache alignment cannot override the specified
  2343. * alignment though. If that is greater then use it.
  2344. */
  2345. if (flags & SLAB_HWCACHE_ALIGN) {
  2346. unsigned long ralign = cache_line_size();
  2347. while (size <= ralign / 2)
  2348. ralign /= 2;
  2349. align = max(align, ralign);
  2350. }
  2351. if (align < ARCH_SLAB_MINALIGN)
  2352. align = ARCH_SLAB_MINALIGN;
  2353. return ALIGN(align, sizeof(void *));
  2354. }
  2355. static void
  2356. init_kmem_cache_node(struct kmem_cache_node *n)
  2357. {
  2358. n->nr_partial = 0;
  2359. spin_lock_init(&n->list_lock);
  2360. INIT_LIST_HEAD(&n->partial);
  2361. #ifdef CONFIG_SLUB_DEBUG
  2362. atomic_long_set(&n->nr_slabs, 0);
  2363. atomic_long_set(&n->total_objects, 0);
  2364. INIT_LIST_HEAD(&n->full);
  2365. #endif
  2366. }
  2367. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2368. {
  2369. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2370. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2371. /*
  2372. * Must align to double word boundary for the double cmpxchg
  2373. * instructions to work; see __pcpu_double_call_return_bool().
  2374. */
  2375. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2376. 2 * sizeof(void *));
  2377. if (!s->cpu_slab)
  2378. return 0;
  2379. init_kmem_cache_cpus(s);
  2380. return 1;
  2381. }
  2382. static struct kmem_cache *kmem_cache_node;
  2383. /*
  2384. * No kmalloc_node yet so do it by hand. We know that this is the first
  2385. * slab on the node for this slabcache. There are no concurrent accesses
  2386. * possible.
  2387. *
  2388. * Note that this function only works on the kmalloc_node_cache
  2389. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2390. * memory on a fresh node that has no slab structures yet.
  2391. */
  2392. static void early_kmem_cache_node_alloc(int node)
  2393. {
  2394. struct page *page;
  2395. struct kmem_cache_node *n;
  2396. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2397. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2398. BUG_ON(!page);
  2399. if (page_to_nid(page) != node) {
  2400. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2401. "node %d\n", node);
  2402. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2403. "in order to be able to continue\n");
  2404. }
  2405. n = page->freelist;
  2406. BUG_ON(!n);
  2407. page->freelist = get_freepointer(kmem_cache_node, n);
  2408. page->inuse = 1;
  2409. page->frozen = 0;
  2410. kmem_cache_node->node[node] = n;
  2411. #ifdef CONFIG_SLUB_DEBUG
  2412. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2413. init_tracking(kmem_cache_node, n);
  2414. #endif
  2415. init_kmem_cache_node(n);
  2416. inc_slabs_node(kmem_cache_node, node, page->objects);
  2417. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2418. }
  2419. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2420. {
  2421. int node;
  2422. for_each_node_state(node, N_NORMAL_MEMORY) {
  2423. struct kmem_cache_node *n = s->node[node];
  2424. if (n)
  2425. kmem_cache_free(kmem_cache_node, n);
  2426. s->node[node] = NULL;
  2427. }
  2428. }
  2429. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2430. {
  2431. int node;
  2432. for_each_node_state(node, N_NORMAL_MEMORY) {
  2433. struct kmem_cache_node *n;
  2434. if (slab_state == DOWN) {
  2435. early_kmem_cache_node_alloc(node);
  2436. continue;
  2437. }
  2438. n = kmem_cache_alloc_node(kmem_cache_node,
  2439. GFP_KERNEL, node);
  2440. if (!n) {
  2441. free_kmem_cache_nodes(s);
  2442. return 0;
  2443. }
  2444. s->node[node] = n;
  2445. init_kmem_cache_node(n);
  2446. }
  2447. return 1;
  2448. }
  2449. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2450. {
  2451. if (min < MIN_PARTIAL)
  2452. min = MIN_PARTIAL;
  2453. else if (min > MAX_PARTIAL)
  2454. min = MAX_PARTIAL;
  2455. s->min_partial = min;
  2456. }
  2457. /*
  2458. * calculate_sizes() determines the order and the distribution of data within
  2459. * a slab object.
  2460. */
  2461. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2462. {
  2463. unsigned long flags = s->flags;
  2464. unsigned long size = s->object_size;
  2465. unsigned long align = s->align;
  2466. int order;
  2467. /*
  2468. * Round up object size to the next word boundary. We can only
  2469. * place the free pointer at word boundaries and this determines
  2470. * the possible location of the free pointer.
  2471. */
  2472. size = ALIGN(size, sizeof(void *));
  2473. #ifdef CONFIG_SLUB_DEBUG
  2474. /*
  2475. * Determine if we can poison the object itself. If the user of
  2476. * the slab may touch the object after free or before allocation
  2477. * then we should never poison the object itself.
  2478. */
  2479. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2480. !s->ctor)
  2481. s->flags |= __OBJECT_POISON;
  2482. else
  2483. s->flags &= ~__OBJECT_POISON;
  2484. /*
  2485. * If we are Redzoning then check if there is some space between the
  2486. * end of the object and the free pointer. If not then add an
  2487. * additional word to have some bytes to store Redzone information.
  2488. */
  2489. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2490. size += sizeof(void *);
  2491. #endif
  2492. /*
  2493. * With that we have determined the number of bytes in actual use
  2494. * by the object. This is the potential offset to the free pointer.
  2495. */
  2496. s->inuse = size;
  2497. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2498. s->ctor)) {
  2499. /*
  2500. * Relocate free pointer after the object if it is not
  2501. * permitted to overwrite the first word of the object on
  2502. * kmem_cache_free.
  2503. *
  2504. * This is the case if we do RCU, have a constructor or
  2505. * destructor or are poisoning the objects.
  2506. */
  2507. s->offset = size;
  2508. size += sizeof(void *);
  2509. }
  2510. #ifdef CONFIG_SLUB_DEBUG
  2511. if (flags & SLAB_STORE_USER)
  2512. /*
  2513. * Need to store information about allocs and frees after
  2514. * the object.
  2515. */
  2516. size += 2 * sizeof(struct track);
  2517. if (flags & SLAB_RED_ZONE)
  2518. /*
  2519. * Add some empty padding so that we can catch
  2520. * overwrites from earlier objects rather than let
  2521. * tracking information or the free pointer be
  2522. * corrupted if a user writes before the start
  2523. * of the object.
  2524. */
  2525. size += sizeof(void *);
  2526. #endif
  2527. /*
  2528. * Determine the alignment based on various parameters that the
  2529. * user specified and the dynamic determination of cache line size
  2530. * on bootup.
  2531. */
  2532. align = calculate_alignment(flags, align, s->object_size);
  2533. s->align = align;
  2534. /*
  2535. * SLUB stores one object immediately after another beginning from
  2536. * offset 0. In order to align the objects we have to simply size
  2537. * each object to conform to the alignment.
  2538. */
  2539. size = ALIGN(size, align);
  2540. s->size = size;
  2541. if (forced_order >= 0)
  2542. order = forced_order;
  2543. else
  2544. order = calculate_order(size, s->reserved);
  2545. if (order < 0)
  2546. return 0;
  2547. s->allocflags = 0;
  2548. if (order)
  2549. s->allocflags |= __GFP_COMP;
  2550. if (s->flags & SLAB_CACHE_DMA)
  2551. s->allocflags |= SLUB_DMA;
  2552. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2553. s->allocflags |= __GFP_RECLAIMABLE;
  2554. /*
  2555. * Determine the number of objects per slab
  2556. */
  2557. s->oo = oo_make(order, size, s->reserved);
  2558. s->min = oo_make(get_order(size), size, s->reserved);
  2559. if (oo_objects(s->oo) > oo_objects(s->max))
  2560. s->max = s->oo;
  2561. return !!oo_objects(s->oo);
  2562. }
  2563. static int kmem_cache_open(struct kmem_cache *s,
  2564. const char *name, size_t size,
  2565. size_t align, unsigned long flags,
  2566. void (*ctor)(void *))
  2567. {
  2568. memset(s, 0, kmem_size);
  2569. s->name = name;
  2570. s->ctor = ctor;
  2571. s->object_size = size;
  2572. s->align = align;
  2573. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2574. s->reserved = 0;
  2575. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2576. s->reserved = sizeof(struct rcu_head);
  2577. if (!calculate_sizes(s, -1))
  2578. goto error;
  2579. if (disable_higher_order_debug) {
  2580. /*
  2581. * Disable debugging flags that store metadata if the min slab
  2582. * order increased.
  2583. */
  2584. if (get_order(s->size) > get_order(s->object_size)) {
  2585. s->flags &= ~DEBUG_METADATA_FLAGS;
  2586. s->offset = 0;
  2587. if (!calculate_sizes(s, -1))
  2588. goto error;
  2589. }
  2590. }
  2591. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2592. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2593. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2594. /* Enable fast mode */
  2595. s->flags |= __CMPXCHG_DOUBLE;
  2596. #endif
  2597. /*
  2598. * The larger the object size is, the more pages we want on the partial
  2599. * list to avoid pounding the page allocator excessively.
  2600. */
  2601. set_min_partial(s, ilog2(s->size) / 2);
  2602. /*
  2603. * cpu_partial determined the maximum number of objects kept in the
  2604. * per cpu partial lists of a processor.
  2605. *
  2606. * Per cpu partial lists mainly contain slabs that just have one
  2607. * object freed. If they are used for allocation then they can be
  2608. * filled up again with minimal effort. The slab will never hit the
  2609. * per node partial lists and therefore no locking will be required.
  2610. *
  2611. * This setting also determines
  2612. *
  2613. * A) The number of objects from per cpu partial slabs dumped to the
  2614. * per node list when we reach the limit.
  2615. * B) The number of objects in cpu partial slabs to extract from the
  2616. * per node list when we run out of per cpu objects. We only fetch 50%
  2617. * to keep some capacity around for frees.
  2618. */
  2619. if (kmem_cache_debug(s))
  2620. s->cpu_partial = 0;
  2621. else if (s->size >= PAGE_SIZE)
  2622. s->cpu_partial = 2;
  2623. else if (s->size >= 1024)
  2624. s->cpu_partial = 6;
  2625. else if (s->size >= 256)
  2626. s->cpu_partial = 13;
  2627. else
  2628. s->cpu_partial = 30;
  2629. s->refcount = 1;
  2630. #ifdef CONFIG_NUMA
  2631. s->remote_node_defrag_ratio = 1000;
  2632. #endif
  2633. if (!init_kmem_cache_nodes(s))
  2634. goto error;
  2635. if (alloc_kmem_cache_cpus(s))
  2636. return 1;
  2637. free_kmem_cache_nodes(s);
  2638. error:
  2639. if (flags & SLAB_PANIC)
  2640. panic("Cannot create slab %s size=%lu realsize=%u "
  2641. "order=%u offset=%u flags=%lx\n",
  2642. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2643. s->offset, flags);
  2644. return 0;
  2645. }
  2646. /*
  2647. * Determine the size of a slab object
  2648. */
  2649. unsigned int kmem_cache_size(struct kmem_cache *s)
  2650. {
  2651. return s->object_size;
  2652. }
  2653. EXPORT_SYMBOL(kmem_cache_size);
  2654. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2655. const char *text)
  2656. {
  2657. #ifdef CONFIG_SLUB_DEBUG
  2658. void *addr = page_address(page);
  2659. void *p;
  2660. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2661. sizeof(long), GFP_ATOMIC);
  2662. if (!map)
  2663. return;
  2664. slab_err(s, page, "%s", text);
  2665. slab_lock(page);
  2666. get_map(s, page, map);
  2667. for_each_object(p, s, addr, page->objects) {
  2668. if (!test_bit(slab_index(p, s, addr), map)) {
  2669. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2670. p, p - addr);
  2671. print_tracking(s, p);
  2672. }
  2673. }
  2674. slab_unlock(page);
  2675. kfree(map);
  2676. #endif
  2677. }
  2678. /*
  2679. * Attempt to free all partial slabs on a node.
  2680. * This is called from kmem_cache_close(). We must be the last thread
  2681. * using the cache and therefore we do not need to lock anymore.
  2682. */
  2683. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2684. {
  2685. struct page *page, *h;
  2686. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2687. if (!page->inuse) {
  2688. remove_partial(n, page);
  2689. discard_slab(s, page);
  2690. } else {
  2691. list_slab_objects(s, page,
  2692. "Objects remaining on kmem_cache_close()");
  2693. }
  2694. }
  2695. }
  2696. /*
  2697. * Release all resources used by a slab cache.
  2698. */
  2699. static inline int kmem_cache_close(struct kmem_cache *s)
  2700. {
  2701. int node;
  2702. flush_all(s);
  2703. free_percpu(s->cpu_slab);
  2704. /* Attempt to free all objects */
  2705. for_each_node_state(node, N_NORMAL_MEMORY) {
  2706. struct kmem_cache_node *n = get_node(s, node);
  2707. free_partial(s, n);
  2708. if (n->nr_partial || slabs_node(s, node))
  2709. return 1;
  2710. }
  2711. free_kmem_cache_nodes(s);
  2712. return 0;
  2713. }
  2714. /*
  2715. * Close a cache and release the kmem_cache structure
  2716. * (must be used for caches created using kmem_cache_create)
  2717. */
  2718. void kmem_cache_destroy(struct kmem_cache *s)
  2719. {
  2720. mutex_lock(&slab_mutex);
  2721. s->refcount--;
  2722. if (!s->refcount) {
  2723. list_del(&s->list);
  2724. mutex_unlock(&slab_mutex);
  2725. if (kmem_cache_close(s)) {
  2726. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2727. "still has objects.\n", s->name, __func__);
  2728. dump_stack();
  2729. }
  2730. if (s->flags & SLAB_DESTROY_BY_RCU)
  2731. rcu_barrier();
  2732. sysfs_slab_remove(s);
  2733. } else
  2734. mutex_unlock(&slab_mutex);
  2735. }
  2736. EXPORT_SYMBOL(kmem_cache_destroy);
  2737. /********************************************************************
  2738. * Kmalloc subsystem
  2739. *******************************************************************/
  2740. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2741. EXPORT_SYMBOL(kmalloc_caches);
  2742. static struct kmem_cache *kmem_cache;
  2743. #ifdef CONFIG_ZONE_DMA
  2744. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2745. #endif
  2746. static int __init setup_slub_min_order(char *str)
  2747. {
  2748. get_option(&str, &slub_min_order);
  2749. return 1;
  2750. }
  2751. __setup("slub_min_order=", setup_slub_min_order);
  2752. static int __init setup_slub_max_order(char *str)
  2753. {
  2754. get_option(&str, &slub_max_order);
  2755. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2756. return 1;
  2757. }
  2758. __setup("slub_max_order=", setup_slub_max_order);
  2759. static int __init setup_slub_min_objects(char *str)
  2760. {
  2761. get_option(&str, &slub_min_objects);
  2762. return 1;
  2763. }
  2764. __setup("slub_min_objects=", setup_slub_min_objects);
  2765. static int __init setup_slub_nomerge(char *str)
  2766. {
  2767. slub_nomerge = 1;
  2768. return 1;
  2769. }
  2770. __setup("slub_nomerge", setup_slub_nomerge);
  2771. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2772. int size, unsigned int flags)
  2773. {
  2774. struct kmem_cache *s;
  2775. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2776. /*
  2777. * This function is called with IRQs disabled during early-boot on
  2778. * single CPU so there's no need to take slab_mutex here.
  2779. */
  2780. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2781. flags, NULL))
  2782. goto panic;
  2783. list_add(&s->list, &slab_caches);
  2784. return s;
  2785. panic:
  2786. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2787. return NULL;
  2788. }
  2789. /*
  2790. * Conversion table for small slabs sizes / 8 to the index in the
  2791. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2792. * of two cache sizes there. The size of larger slabs can be determined using
  2793. * fls.
  2794. */
  2795. static s8 size_index[24] = {
  2796. 3, /* 8 */
  2797. 4, /* 16 */
  2798. 5, /* 24 */
  2799. 5, /* 32 */
  2800. 6, /* 40 */
  2801. 6, /* 48 */
  2802. 6, /* 56 */
  2803. 6, /* 64 */
  2804. 1, /* 72 */
  2805. 1, /* 80 */
  2806. 1, /* 88 */
  2807. 1, /* 96 */
  2808. 7, /* 104 */
  2809. 7, /* 112 */
  2810. 7, /* 120 */
  2811. 7, /* 128 */
  2812. 2, /* 136 */
  2813. 2, /* 144 */
  2814. 2, /* 152 */
  2815. 2, /* 160 */
  2816. 2, /* 168 */
  2817. 2, /* 176 */
  2818. 2, /* 184 */
  2819. 2 /* 192 */
  2820. };
  2821. static inline int size_index_elem(size_t bytes)
  2822. {
  2823. return (bytes - 1) / 8;
  2824. }
  2825. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2826. {
  2827. int index;
  2828. if (size <= 192) {
  2829. if (!size)
  2830. return ZERO_SIZE_PTR;
  2831. index = size_index[size_index_elem(size)];
  2832. } else
  2833. index = fls(size - 1);
  2834. #ifdef CONFIG_ZONE_DMA
  2835. if (unlikely((flags & SLUB_DMA)))
  2836. return kmalloc_dma_caches[index];
  2837. #endif
  2838. return kmalloc_caches[index];
  2839. }
  2840. void *__kmalloc(size_t size, gfp_t flags)
  2841. {
  2842. struct kmem_cache *s;
  2843. void *ret;
  2844. if (unlikely(size > SLUB_MAX_SIZE))
  2845. return kmalloc_large(size, flags);
  2846. s = get_slab(size, flags);
  2847. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2848. return s;
  2849. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2850. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2851. return ret;
  2852. }
  2853. EXPORT_SYMBOL(__kmalloc);
  2854. #ifdef CONFIG_NUMA
  2855. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2856. {
  2857. struct page *page;
  2858. void *ptr = NULL;
  2859. flags |= __GFP_COMP | __GFP_NOTRACK;
  2860. page = alloc_pages_node(node, flags, get_order(size));
  2861. if (page)
  2862. ptr = page_address(page);
  2863. kmemleak_alloc(ptr, size, 1, flags);
  2864. return ptr;
  2865. }
  2866. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2867. {
  2868. struct kmem_cache *s;
  2869. void *ret;
  2870. if (unlikely(size > SLUB_MAX_SIZE)) {
  2871. ret = kmalloc_large_node(size, flags, node);
  2872. trace_kmalloc_node(_RET_IP_, ret,
  2873. size, PAGE_SIZE << get_order(size),
  2874. flags, node);
  2875. return ret;
  2876. }
  2877. s = get_slab(size, flags);
  2878. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2879. return s;
  2880. ret = slab_alloc(s, flags, node, _RET_IP_);
  2881. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2882. return ret;
  2883. }
  2884. EXPORT_SYMBOL(__kmalloc_node);
  2885. #endif
  2886. size_t ksize(const void *object)
  2887. {
  2888. struct page *page;
  2889. if (unlikely(object == ZERO_SIZE_PTR))
  2890. return 0;
  2891. page = virt_to_head_page(object);
  2892. if (unlikely(!PageSlab(page))) {
  2893. WARN_ON(!PageCompound(page));
  2894. return PAGE_SIZE << compound_order(page);
  2895. }
  2896. return slab_ksize(page->slab);
  2897. }
  2898. EXPORT_SYMBOL(ksize);
  2899. #ifdef CONFIG_SLUB_DEBUG
  2900. bool verify_mem_not_deleted(const void *x)
  2901. {
  2902. struct page *page;
  2903. void *object = (void *)x;
  2904. unsigned long flags;
  2905. bool rv;
  2906. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2907. return false;
  2908. local_irq_save(flags);
  2909. page = virt_to_head_page(x);
  2910. if (unlikely(!PageSlab(page))) {
  2911. /* maybe it was from stack? */
  2912. rv = true;
  2913. goto out_unlock;
  2914. }
  2915. slab_lock(page);
  2916. if (on_freelist(page->slab, page, object)) {
  2917. object_err(page->slab, page, object, "Object is on free-list");
  2918. rv = false;
  2919. } else {
  2920. rv = true;
  2921. }
  2922. slab_unlock(page);
  2923. out_unlock:
  2924. local_irq_restore(flags);
  2925. return rv;
  2926. }
  2927. EXPORT_SYMBOL(verify_mem_not_deleted);
  2928. #endif
  2929. void kfree(const void *x)
  2930. {
  2931. struct page *page;
  2932. void *object = (void *)x;
  2933. trace_kfree(_RET_IP_, x);
  2934. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2935. return;
  2936. page = virt_to_head_page(x);
  2937. if (unlikely(!PageSlab(page))) {
  2938. BUG_ON(!PageCompound(page));
  2939. kmemleak_free(x);
  2940. put_page(page);
  2941. return;
  2942. }
  2943. slab_free(page->slab, page, object, _RET_IP_);
  2944. }
  2945. EXPORT_SYMBOL(kfree);
  2946. /*
  2947. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2948. * the remaining slabs by the number of items in use. The slabs with the
  2949. * most items in use come first. New allocations will then fill those up
  2950. * and thus they can be removed from the partial lists.
  2951. *
  2952. * The slabs with the least items are placed last. This results in them
  2953. * being allocated from last increasing the chance that the last objects
  2954. * are freed in them.
  2955. */
  2956. int kmem_cache_shrink(struct kmem_cache *s)
  2957. {
  2958. int node;
  2959. int i;
  2960. struct kmem_cache_node *n;
  2961. struct page *page;
  2962. struct page *t;
  2963. int objects = oo_objects(s->max);
  2964. struct list_head *slabs_by_inuse =
  2965. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2966. unsigned long flags;
  2967. if (!slabs_by_inuse)
  2968. return -ENOMEM;
  2969. flush_all(s);
  2970. for_each_node_state(node, N_NORMAL_MEMORY) {
  2971. n = get_node(s, node);
  2972. if (!n->nr_partial)
  2973. continue;
  2974. for (i = 0; i < objects; i++)
  2975. INIT_LIST_HEAD(slabs_by_inuse + i);
  2976. spin_lock_irqsave(&n->list_lock, flags);
  2977. /*
  2978. * Build lists indexed by the items in use in each slab.
  2979. *
  2980. * Note that concurrent frees may occur while we hold the
  2981. * list_lock. page->inuse here is the upper limit.
  2982. */
  2983. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2984. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2985. if (!page->inuse)
  2986. n->nr_partial--;
  2987. }
  2988. /*
  2989. * Rebuild the partial list with the slabs filled up most
  2990. * first and the least used slabs at the end.
  2991. */
  2992. for (i = objects - 1; i > 0; i--)
  2993. list_splice(slabs_by_inuse + i, n->partial.prev);
  2994. spin_unlock_irqrestore(&n->list_lock, flags);
  2995. /* Release empty slabs */
  2996. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2997. discard_slab(s, page);
  2998. }
  2999. kfree(slabs_by_inuse);
  3000. return 0;
  3001. }
  3002. EXPORT_SYMBOL(kmem_cache_shrink);
  3003. #if defined(CONFIG_MEMORY_HOTPLUG)
  3004. static int slab_mem_going_offline_callback(void *arg)
  3005. {
  3006. struct kmem_cache *s;
  3007. mutex_lock(&slab_mutex);
  3008. list_for_each_entry(s, &slab_caches, list)
  3009. kmem_cache_shrink(s);
  3010. mutex_unlock(&slab_mutex);
  3011. return 0;
  3012. }
  3013. static void slab_mem_offline_callback(void *arg)
  3014. {
  3015. struct kmem_cache_node *n;
  3016. struct kmem_cache *s;
  3017. struct memory_notify *marg = arg;
  3018. int offline_node;
  3019. offline_node = marg->status_change_nid;
  3020. /*
  3021. * If the node still has available memory. we need kmem_cache_node
  3022. * for it yet.
  3023. */
  3024. if (offline_node < 0)
  3025. return;
  3026. mutex_lock(&slab_mutex);
  3027. list_for_each_entry(s, &slab_caches, list) {
  3028. n = get_node(s, offline_node);
  3029. if (n) {
  3030. /*
  3031. * if n->nr_slabs > 0, slabs still exist on the node
  3032. * that is going down. We were unable to free them,
  3033. * and offline_pages() function shouldn't call this
  3034. * callback. So, we must fail.
  3035. */
  3036. BUG_ON(slabs_node(s, offline_node));
  3037. s->node[offline_node] = NULL;
  3038. kmem_cache_free(kmem_cache_node, n);
  3039. }
  3040. }
  3041. mutex_unlock(&slab_mutex);
  3042. }
  3043. static int slab_mem_going_online_callback(void *arg)
  3044. {
  3045. struct kmem_cache_node *n;
  3046. struct kmem_cache *s;
  3047. struct memory_notify *marg = arg;
  3048. int nid = marg->status_change_nid;
  3049. int ret = 0;
  3050. /*
  3051. * If the node's memory is already available, then kmem_cache_node is
  3052. * already created. Nothing to do.
  3053. */
  3054. if (nid < 0)
  3055. return 0;
  3056. /*
  3057. * We are bringing a node online. No memory is available yet. We must
  3058. * allocate a kmem_cache_node structure in order to bring the node
  3059. * online.
  3060. */
  3061. mutex_lock(&slab_mutex);
  3062. list_for_each_entry(s, &slab_caches, list) {
  3063. /*
  3064. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3065. * since memory is not yet available from the node that
  3066. * is brought up.
  3067. */
  3068. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3069. if (!n) {
  3070. ret = -ENOMEM;
  3071. goto out;
  3072. }
  3073. init_kmem_cache_node(n);
  3074. s->node[nid] = n;
  3075. }
  3076. out:
  3077. mutex_unlock(&slab_mutex);
  3078. return ret;
  3079. }
  3080. static int slab_memory_callback(struct notifier_block *self,
  3081. unsigned long action, void *arg)
  3082. {
  3083. int ret = 0;
  3084. switch (action) {
  3085. case MEM_GOING_ONLINE:
  3086. ret = slab_mem_going_online_callback(arg);
  3087. break;
  3088. case MEM_GOING_OFFLINE:
  3089. ret = slab_mem_going_offline_callback(arg);
  3090. break;
  3091. case MEM_OFFLINE:
  3092. case MEM_CANCEL_ONLINE:
  3093. slab_mem_offline_callback(arg);
  3094. break;
  3095. case MEM_ONLINE:
  3096. case MEM_CANCEL_OFFLINE:
  3097. break;
  3098. }
  3099. if (ret)
  3100. ret = notifier_from_errno(ret);
  3101. else
  3102. ret = NOTIFY_OK;
  3103. return ret;
  3104. }
  3105. #endif /* CONFIG_MEMORY_HOTPLUG */
  3106. /********************************************************************
  3107. * Basic setup of slabs
  3108. *******************************************************************/
  3109. /*
  3110. * Used for early kmem_cache structures that were allocated using
  3111. * the page allocator
  3112. */
  3113. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3114. {
  3115. int node;
  3116. list_add(&s->list, &slab_caches);
  3117. s->refcount = -1;
  3118. for_each_node_state(node, N_NORMAL_MEMORY) {
  3119. struct kmem_cache_node *n = get_node(s, node);
  3120. struct page *p;
  3121. if (n) {
  3122. list_for_each_entry(p, &n->partial, lru)
  3123. p->slab = s;
  3124. #ifdef CONFIG_SLUB_DEBUG
  3125. list_for_each_entry(p, &n->full, lru)
  3126. p->slab = s;
  3127. #endif
  3128. }
  3129. }
  3130. }
  3131. void __init kmem_cache_init(void)
  3132. {
  3133. int i;
  3134. int caches = 0;
  3135. struct kmem_cache *temp_kmem_cache;
  3136. int order;
  3137. struct kmem_cache *temp_kmem_cache_node;
  3138. unsigned long kmalloc_size;
  3139. if (debug_guardpage_minorder())
  3140. slub_max_order = 0;
  3141. kmem_size = offsetof(struct kmem_cache, node) +
  3142. nr_node_ids * sizeof(struct kmem_cache_node *);
  3143. /* Allocate two kmem_caches from the page allocator */
  3144. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3145. order = get_order(2 * kmalloc_size);
  3146. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3147. /*
  3148. * Must first have the slab cache available for the allocations of the
  3149. * struct kmem_cache_node's. There is special bootstrap code in
  3150. * kmem_cache_open for slab_state == DOWN.
  3151. */
  3152. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3153. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3154. sizeof(struct kmem_cache_node),
  3155. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3156. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3157. /* Able to allocate the per node structures */
  3158. slab_state = PARTIAL;
  3159. temp_kmem_cache = kmem_cache;
  3160. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3161. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3162. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3163. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3164. /*
  3165. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3166. * kmem_cache_node is separately allocated so no need to
  3167. * update any list pointers.
  3168. */
  3169. temp_kmem_cache_node = kmem_cache_node;
  3170. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3171. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3172. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3173. caches++;
  3174. kmem_cache_bootstrap_fixup(kmem_cache);
  3175. caches++;
  3176. /* Free temporary boot structure */
  3177. free_pages((unsigned long)temp_kmem_cache, order);
  3178. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3179. /*
  3180. * Patch up the size_index table if we have strange large alignment
  3181. * requirements for the kmalloc array. This is only the case for
  3182. * MIPS it seems. The standard arches will not generate any code here.
  3183. *
  3184. * Largest permitted alignment is 256 bytes due to the way we
  3185. * handle the index determination for the smaller caches.
  3186. *
  3187. * Make sure that nothing crazy happens if someone starts tinkering
  3188. * around with ARCH_KMALLOC_MINALIGN
  3189. */
  3190. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3191. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3192. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3193. int elem = size_index_elem(i);
  3194. if (elem >= ARRAY_SIZE(size_index))
  3195. break;
  3196. size_index[elem] = KMALLOC_SHIFT_LOW;
  3197. }
  3198. if (KMALLOC_MIN_SIZE == 64) {
  3199. /*
  3200. * The 96 byte size cache is not used if the alignment
  3201. * is 64 byte.
  3202. */
  3203. for (i = 64 + 8; i <= 96; i += 8)
  3204. size_index[size_index_elem(i)] = 7;
  3205. } else if (KMALLOC_MIN_SIZE == 128) {
  3206. /*
  3207. * The 192 byte sized cache is not used if the alignment
  3208. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3209. * instead.
  3210. */
  3211. for (i = 128 + 8; i <= 192; i += 8)
  3212. size_index[size_index_elem(i)] = 8;
  3213. }
  3214. /* Caches that are not of the two-to-the-power-of size */
  3215. if (KMALLOC_MIN_SIZE <= 32) {
  3216. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3217. caches++;
  3218. }
  3219. if (KMALLOC_MIN_SIZE <= 64) {
  3220. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3221. caches++;
  3222. }
  3223. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3224. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3225. caches++;
  3226. }
  3227. slab_state = UP;
  3228. /* Provide the correct kmalloc names now that the caches are up */
  3229. if (KMALLOC_MIN_SIZE <= 32) {
  3230. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3231. BUG_ON(!kmalloc_caches[1]->name);
  3232. }
  3233. if (KMALLOC_MIN_SIZE <= 64) {
  3234. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3235. BUG_ON(!kmalloc_caches[2]->name);
  3236. }
  3237. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3238. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3239. BUG_ON(!s);
  3240. kmalloc_caches[i]->name = s;
  3241. }
  3242. #ifdef CONFIG_SMP
  3243. register_cpu_notifier(&slab_notifier);
  3244. #endif
  3245. #ifdef CONFIG_ZONE_DMA
  3246. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3247. struct kmem_cache *s = kmalloc_caches[i];
  3248. if (s && s->size) {
  3249. char *name = kasprintf(GFP_NOWAIT,
  3250. "dma-kmalloc-%d", s->object_size);
  3251. BUG_ON(!name);
  3252. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3253. s->object_size, SLAB_CACHE_DMA);
  3254. }
  3255. }
  3256. #endif
  3257. printk(KERN_INFO
  3258. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3259. " CPUs=%d, Nodes=%d\n",
  3260. caches, cache_line_size(),
  3261. slub_min_order, slub_max_order, slub_min_objects,
  3262. nr_cpu_ids, nr_node_ids);
  3263. }
  3264. void __init kmem_cache_init_late(void)
  3265. {
  3266. }
  3267. /*
  3268. * Find a mergeable slab cache
  3269. */
  3270. static int slab_unmergeable(struct kmem_cache *s)
  3271. {
  3272. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3273. return 1;
  3274. if (s->ctor)
  3275. return 1;
  3276. /*
  3277. * We may have set a slab to be unmergeable during bootstrap.
  3278. */
  3279. if (s->refcount < 0)
  3280. return 1;
  3281. return 0;
  3282. }
  3283. static struct kmem_cache *find_mergeable(size_t size,
  3284. size_t align, unsigned long flags, const char *name,
  3285. void (*ctor)(void *))
  3286. {
  3287. struct kmem_cache *s;
  3288. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3289. return NULL;
  3290. if (ctor)
  3291. return NULL;
  3292. size = ALIGN(size, sizeof(void *));
  3293. align = calculate_alignment(flags, align, size);
  3294. size = ALIGN(size, align);
  3295. flags = kmem_cache_flags(size, flags, name, NULL);
  3296. list_for_each_entry(s, &slab_caches, list) {
  3297. if (slab_unmergeable(s))
  3298. continue;
  3299. if (size > s->size)
  3300. continue;
  3301. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3302. continue;
  3303. /*
  3304. * Check if alignment is compatible.
  3305. * Courtesy of Adrian Drzewiecki
  3306. */
  3307. if ((s->size & ~(align - 1)) != s->size)
  3308. continue;
  3309. if (s->size - size >= sizeof(void *))
  3310. continue;
  3311. return s;
  3312. }
  3313. return NULL;
  3314. }
  3315. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3316. size_t align, unsigned long flags, void (*ctor)(void *))
  3317. {
  3318. struct kmem_cache *s;
  3319. char *n;
  3320. s = find_mergeable(size, align, flags, name, ctor);
  3321. if (s) {
  3322. s->refcount++;
  3323. /*
  3324. * Adjust the object sizes so that we clear
  3325. * the complete object on kzalloc.
  3326. */
  3327. s->object_size = max(s->object_size, (int)size);
  3328. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3329. if (sysfs_slab_alias(s, name)) {
  3330. s->refcount--;
  3331. return NULL;
  3332. }
  3333. return s;
  3334. }
  3335. n = kstrdup(name, GFP_KERNEL);
  3336. if (!n)
  3337. return NULL;
  3338. s = kmalloc(kmem_size, GFP_KERNEL);
  3339. if (s) {
  3340. if (kmem_cache_open(s, n,
  3341. size, align, flags, ctor)) {
  3342. int r;
  3343. list_add(&s->list, &slab_caches);
  3344. mutex_unlock(&slab_mutex);
  3345. r = sysfs_slab_add(s);
  3346. mutex_lock(&slab_mutex);
  3347. if (!r)
  3348. return s;
  3349. list_del(&s->list);
  3350. kmem_cache_close(s);
  3351. }
  3352. kfree(s);
  3353. }
  3354. kfree(n);
  3355. return NULL;
  3356. }
  3357. #ifdef CONFIG_SMP
  3358. /*
  3359. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3360. * necessary.
  3361. */
  3362. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3363. unsigned long action, void *hcpu)
  3364. {
  3365. long cpu = (long)hcpu;
  3366. struct kmem_cache *s;
  3367. unsigned long flags;
  3368. switch (action) {
  3369. case CPU_UP_CANCELED:
  3370. case CPU_UP_CANCELED_FROZEN:
  3371. case CPU_DEAD:
  3372. case CPU_DEAD_FROZEN:
  3373. mutex_lock(&slab_mutex);
  3374. list_for_each_entry(s, &slab_caches, list) {
  3375. local_irq_save(flags);
  3376. __flush_cpu_slab(s, cpu);
  3377. local_irq_restore(flags);
  3378. }
  3379. mutex_unlock(&slab_mutex);
  3380. break;
  3381. default:
  3382. break;
  3383. }
  3384. return NOTIFY_OK;
  3385. }
  3386. static struct notifier_block __cpuinitdata slab_notifier = {
  3387. .notifier_call = slab_cpuup_callback
  3388. };
  3389. #endif
  3390. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3391. {
  3392. struct kmem_cache *s;
  3393. void *ret;
  3394. if (unlikely(size > SLUB_MAX_SIZE))
  3395. return kmalloc_large(size, gfpflags);
  3396. s = get_slab(size, gfpflags);
  3397. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3398. return s;
  3399. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3400. /* Honor the call site pointer we received. */
  3401. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3402. return ret;
  3403. }
  3404. #ifdef CONFIG_NUMA
  3405. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3406. int node, unsigned long caller)
  3407. {
  3408. struct kmem_cache *s;
  3409. void *ret;
  3410. if (unlikely(size > SLUB_MAX_SIZE)) {
  3411. ret = kmalloc_large_node(size, gfpflags, node);
  3412. trace_kmalloc_node(caller, ret,
  3413. size, PAGE_SIZE << get_order(size),
  3414. gfpflags, node);
  3415. return ret;
  3416. }
  3417. s = get_slab(size, gfpflags);
  3418. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3419. return s;
  3420. ret = slab_alloc(s, gfpflags, node, caller);
  3421. /* Honor the call site pointer we received. */
  3422. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3423. return ret;
  3424. }
  3425. #endif
  3426. #ifdef CONFIG_SYSFS
  3427. static int count_inuse(struct page *page)
  3428. {
  3429. return page->inuse;
  3430. }
  3431. static int count_total(struct page *page)
  3432. {
  3433. return page->objects;
  3434. }
  3435. #endif
  3436. #ifdef CONFIG_SLUB_DEBUG
  3437. static int validate_slab(struct kmem_cache *s, struct page *page,
  3438. unsigned long *map)
  3439. {
  3440. void *p;
  3441. void *addr = page_address(page);
  3442. if (!check_slab(s, page) ||
  3443. !on_freelist(s, page, NULL))
  3444. return 0;
  3445. /* Now we know that a valid freelist exists */
  3446. bitmap_zero(map, page->objects);
  3447. get_map(s, page, map);
  3448. for_each_object(p, s, addr, page->objects) {
  3449. if (test_bit(slab_index(p, s, addr), map))
  3450. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3451. return 0;
  3452. }
  3453. for_each_object(p, s, addr, page->objects)
  3454. if (!test_bit(slab_index(p, s, addr), map))
  3455. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3456. return 0;
  3457. return 1;
  3458. }
  3459. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3460. unsigned long *map)
  3461. {
  3462. slab_lock(page);
  3463. validate_slab(s, page, map);
  3464. slab_unlock(page);
  3465. }
  3466. static int validate_slab_node(struct kmem_cache *s,
  3467. struct kmem_cache_node *n, unsigned long *map)
  3468. {
  3469. unsigned long count = 0;
  3470. struct page *page;
  3471. unsigned long flags;
  3472. spin_lock_irqsave(&n->list_lock, flags);
  3473. list_for_each_entry(page, &n->partial, lru) {
  3474. validate_slab_slab(s, page, map);
  3475. count++;
  3476. }
  3477. if (count != n->nr_partial)
  3478. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3479. "counter=%ld\n", s->name, count, n->nr_partial);
  3480. if (!(s->flags & SLAB_STORE_USER))
  3481. goto out;
  3482. list_for_each_entry(page, &n->full, lru) {
  3483. validate_slab_slab(s, page, map);
  3484. count++;
  3485. }
  3486. if (count != atomic_long_read(&n->nr_slabs))
  3487. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3488. "counter=%ld\n", s->name, count,
  3489. atomic_long_read(&n->nr_slabs));
  3490. out:
  3491. spin_unlock_irqrestore(&n->list_lock, flags);
  3492. return count;
  3493. }
  3494. static long validate_slab_cache(struct kmem_cache *s)
  3495. {
  3496. int node;
  3497. unsigned long count = 0;
  3498. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3499. sizeof(unsigned long), GFP_KERNEL);
  3500. if (!map)
  3501. return -ENOMEM;
  3502. flush_all(s);
  3503. for_each_node_state(node, N_NORMAL_MEMORY) {
  3504. struct kmem_cache_node *n = get_node(s, node);
  3505. count += validate_slab_node(s, n, map);
  3506. }
  3507. kfree(map);
  3508. return count;
  3509. }
  3510. /*
  3511. * Generate lists of code addresses where slabcache objects are allocated
  3512. * and freed.
  3513. */
  3514. struct location {
  3515. unsigned long count;
  3516. unsigned long addr;
  3517. long long sum_time;
  3518. long min_time;
  3519. long max_time;
  3520. long min_pid;
  3521. long max_pid;
  3522. DECLARE_BITMAP(cpus, NR_CPUS);
  3523. nodemask_t nodes;
  3524. };
  3525. struct loc_track {
  3526. unsigned long max;
  3527. unsigned long count;
  3528. struct location *loc;
  3529. };
  3530. static void free_loc_track(struct loc_track *t)
  3531. {
  3532. if (t->max)
  3533. free_pages((unsigned long)t->loc,
  3534. get_order(sizeof(struct location) * t->max));
  3535. }
  3536. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3537. {
  3538. struct location *l;
  3539. int order;
  3540. order = get_order(sizeof(struct location) * max);
  3541. l = (void *)__get_free_pages(flags, order);
  3542. if (!l)
  3543. return 0;
  3544. if (t->count) {
  3545. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3546. free_loc_track(t);
  3547. }
  3548. t->max = max;
  3549. t->loc = l;
  3550. return 1;
  3551. }
  3552. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3553. const struct track *track)
  3554. {
  3555. long start, end, pos;
  3556. struct location *l;
  3557. unsigned long caddr;
  3558. unsigned long age = jiffies - track->when;
  3559. start = -1;
  3560. end = t->count;
  3561. for ( ; ; ) {
  3562. pos = start + (end - start + 1) / 2;
  3563. /*
  3564. * There is nothing at "end". If we end up there
  3565. * we need to add something to before end.
  3566. */
  3567. if (pos == end)
  3568. break;
  3569. caddr = t->loc[pos].addr;
  3570. if (track->addr == caddr) {
  3571. l = &t->loc[pos];
  3572. l->count++;
  3573. if (track->when) {
  3574. l->sum_time += age;
  3575. if (age < l->min_time)
  3576. l->min_time = age;
  3577. if (age > l->max_time)
  3578. l->max_time = age;
  3579. if (track->pid < l->min_pid)
  3580. l->min_pid = track->pid;
  3581. if (track->pid > l->max_pid)
  3582. l->max_pid = track->pid;
  3583. cpumask_set_cpu(track->cpu,
  3584. to_cpumask(l->cpus));
  3585. }
  3586. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3587. return 1;
  3588. }
  3589. if (track->addr < caddr)
  3590. end = pos;
  3591. else
  3592. start = pos;
  3593. }
  3594. /*
  3595. * Not found. Insert new tracking element.
  3596. */
  3597. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3598. return 0;
  3599. l = t->loc + pos;
  3600. if (pos < t->count)
  3601. memmove(l + 1, l,
  3602. (t->count - pos) * sizeof(struct location));
  3603. t->count++;
  3604. l->count = 1;
  3605. l->addr = track->addr;
  3606. l->sum_time = age;
  3607. l->min_time = age;
  3608. l->max_time = age;
  3609. l->min_pid = track->pid;
  3610. l->max_pid = track->pid;
  3611. cpumask_clear(to_cpumask(l->cpus));
  3612. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3613. nodes_clear(l->nodes);
  3614. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3615. return 1;
  3616. }
  3617. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3618. struct page *page, enum track_item alloc,
  3619. unsigned long *map)
  3620. {
  3621. void *addr = page_address(page);
  3622. void *p;
  3623. bitmap_zero(map, page->objects);
  3624. get_map(s, page, map);
  3625. for_each_object(p, s, addr, page->objects)
  3626. if (!test_bit(slab_index(p, s, addr), map))
  3627. add_location(t, s, get_track(s, p, alloc));
  3628. }
  3629. static int list_locations(struct kmem_cache *s, char *buf,
  3630. enum track_item alloc)
  3631. {
  3632. int len = 0;
  3633. unsigned long i;
  3634. struct loc_track t = { 0, 0, NULL };
  3635. int node;
  3636. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3637. sizeof(unsigned long), GFP_KERNEL);
  3638. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3639. GFP_TEMPORARY)) {
  3640. kfree(map);
  3641. return sprintf(buf, "Out of memory\n");
  3642. }
  3643. /* Push back cpu slabs */
  3644. flush_all(s);
  3645. for_each_node_state(node, N_NORMAL_MEMORY) {
  3646. struct kmem_cache_node *n = get_node(s, node);
  3647. unsigned long flags;
  3648. struct page *page;
  3649. if (!atomic_long_read(&n->nr_slabs))
  3650. continue;
  3651. spin_lock_irqsave(&n->list_lock, flags);
  3652. list_for_each_entry(page, &n->partial, lru)
  3653. process_slab(&t, s, page, alloc, map);
  3654. list_for_each_entry(page, &n->full, lru)
  3655. process_slab(&t, s, page, alloc, map);
  3656. spin_unlock_irqrestore(&n->list_lock, flags);
  3657. }
  3658. for (i = 0; i < t.count; i++) {
  3659. struct location *l = &t.loc[i];
  3660. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3661. break;
  3662. len += sprintf(buf + len, "%7ld ", l->count);
  3663. if (l->addr)
  3664. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3665. else
  3666. len += sprintf(buf + len, "<not-available>");
  3667. if (l->sum_time != l->min_time) {
  3668. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3669. l->min_time,
  3670. (long)div_u64(l->sum_time, l->count),
  3671. l->max_time);
  3672. } else
  3673. len += sprintf(buf + len, " age=%ld",
  3674. l->min_time);
  3675. if (l->min_pid != l->max_pid)
  3676. len += sprintf(buf + len, " pid=%ld-%ld",
  3677. l->min_pid, l->max_pid);
  3678. else
  3679. len += sprintf(buf + len, " pid=%ld",
  3680. l->min_pid);
  3681. if (num_online_cpus() > 1 &&
  3682. !cpumask_empty(to_cpumask(l->cpus)) &&
  3683. len < PAGE_SIZE - 60) {
  3684. len += sprintf(buf + len, " cpus=");
  3685. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3686. to_cpumask(l->cpus));
  3687. }
  3688. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3689. len < PAGE_SIZE - 60) {
  3690. len += sprintf(buf + len, " nodes=");
  3691. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3692. l->nodes);
  3693. }
  3694. len += sprintf(buf + len, "\n");
  3695. }
  3696. free_loc_track(&t);
  3697. kfree(map);
  3698. if (!t.count)
  3699. len += sprintf(buf, "No data\n");
  3700. return len;
  3701. }
  3702. #endif
  3703. #ifdef SLUB_RESILIENCY_TEST
  3704. static void resiliency_test(void)
  3705. {
  3706. u8 *p;
  3707. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3708. printk(KERN_ERR "SLUB resiliency testing\n");
  3709. printk(KERN_ERR "-----------------------\n");
  3710. printk(KERN_ERR "A. Corruption after allocation\n");
  3711. p = kzalloc(16, GFP_KERNEL);
  3712. p[16] = 0x12;
  3713. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3714. " 0x12->0x%p\n\n", p + 16);
  3715. validate_slab_cache(kmalloc_caches[4]);
  3716. /* Hmmm... The next two are dangerous */
  3717. p = kzalloc(32, GFP_KERNEL);
  3718. p[32 + sizeof(void *)] = 0x34;
  3719. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3720. " 0x34 -> -0x%p\n", p);
  3721. printk(KERN_ERR
  3722. "If allocated object is overwritten then not detectable\n\n");
  3723. validate_slab_cache(kmalloc_caches[5]);
  3724. p = kzalloc(64, GFP_KERNEL);
  3725. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3726. *p = 0x56;
  3727. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3728. p);
  3729. printk(KERN_ERR
  3730. "If allocated object is overwritten then not detectable\n\n");
  3731. validate_slab_cache(kmalloc_caches[6]);
  3732. printk(KERN_ERR "\nB. Corruption after free\n");
  3733. p = kzalloc(128, GFP_KERNEL);
  3734. kfree(p);
  3735. *p = 0x78;
  3736. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3737. validate_slab_cache(kmalloc_caches[7]);
  3738. p = kzalloc(256, GFP_KERNEL);
  3739. kfree(p);
  3740. p[50] = 0x9a;
  3741. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3742. p);
  3743. validate_slab_cache(kmalloc_caches[8]);
  3744. p = kzalloc(512, GFP_KERNEL);
  3745. kfree(p);
  3746. p[512] = 0xab;
  3747. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3748. validate_slab_cache(kmalloc_caches[9]);
  3749. }
  3750. #else
  3751. #ifdef CONFIG_SYSFS
  3752. static void resiliency_test(void) {};
  3753. #endif
  3754. #endif
  3755. #ifdef CONFIG_SYSFS
  3756. enum slab_stat_type {
  3757. SL_ALL, /* All slabs */
  3758. SL_PARTIAL, /* Only partially allocated slabs */
  3759. SL_CPU, /* Only slabs used for cpu caches */
  3760. SL_OBJECTS, /* Determine allocated objects not slabs */
  3761. SL_TOTAL /* Determine object capacity not slabs */
  3762. };
  3763. #define SO_ALL (1 << SL_ALL)
  3764. #define SO_PARTIAL (1 << SL_PARTIAL)
  3765. #define SO_CPU (1 << SL_CPU)
  3766. #define SO_OBJECTS (1 << SL_OBJECTS)
  3767. #define SO_TOTAL (1 << SL_TOTAL)
  3768. static ssize_t show_slab_objects(struct kmem_cache *s,
  3769. char *buf, unsigned long flags)
  3770. {
  3771. unsigned long total = 0;
  3772. int node;
  3773. int x;
  3774. unsigned long *nodes;
  3775. unsigned long *per_cpu;
  3776. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3777. if (!nodes)
  3778. return -ENOMEM;
  3779. per_cpu = nodes + nr_node_ids;
  3780. if (flags & SO_CPU) {
  3781. int cpu;
  3782. for_each_possible_cpu(cpu) {
  3783. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3784. int node;
  3785. struct page *page;
  3786. page = ACCESS_ONCE(c->page);
  3787. if (!page)
  3788. continue;
  3789. node = page_to_nid(page);
  3790. if (flags & SO_TOTAL)
  3791. x = page->objects;
  3792. else if (flags & SO_OBJECTS)
  3793. x = page->inuse;
  3794. else
  3795. x = 1;
  3796. total += x;
  3797. nodes[node] += x;
  3798. page = ACCESS_ONCE(c->partial);
  3799. if (page) {
  3800. x = page->pobjects;
  3801. total += x;
  3802. nodes[node] += x;
  3803. }
  3804. per_cpu[node]++;
  3805. }
  3806. }
  3807. lock_memory_hotplug();
  3808. #ifdef CONFIG_SLUB_DEBUG
  3809. if (flags & SO_ALL) {
  3810. for_each_node_state(node, N_NORMAL_MEMORY) {
  3811. struct kmem_cache_node *n = get_node(s, node);
  3812. if (flags & SO_TOTAL)
  3813. x = atomic_long_read(&n->total_objects);
  3814. else if (flags & SO_OBJECTS)
  3815. x = atomic_long_read(&n->total_objects) -
  3816. count_partial(n, count_free);
  3817. else
  3818. x = atomic_long_read(&n->nr_slabs);
  3819. total += x;
  3820. nodes[node] += x;
  3821. }
  3822. } else
  3823. #endif
  3824. if (flags & SO_PARTIAL) {
  3825. for_each_node_state(node, N_NORMAL_MEMORY) {
  3826. struct kmem_cache_node *n = get_node(s, node);
  3827. if (flags & SO_TOTAL)
  3828. x = count_partial(n, count_total);
  3829. else if (flags & SO_OBJECTS)
  3830. x = count_partial(n, count_inuse);
  3831. else
  3832. x = n->nr_partial;
  3833. total += x;
  3834. nodes[node] += x;
  3835. }
  3836. }
  3837. x = sprintf(buf, "%lu", total);
  3838. #ifdef CONFIG_NUMA
  3839. for_each_node_state(node, N_NORMAL_MEMORY)
  3840. if (nodes[node])
  3841. x += sprintf(buf + x, " N%d=%lu",
  3842. node, nodes[node]);
  3843. #endif
  3844. unlock_memory_hotplug();
  3845. kfree(nodes);
  3846. return x + sprintf(buf + x, "\n");
  3847. }
  3848. #ifdef CONFIG_SLUB_DEBUG
  3849. static int any_slab_objects(struct kmem_cache *s)
  3850. {
  3851. int node;
  3852. for_each_online_node(node) {
  3853. struct kmem_cache_node *n = get_node(s, node);
  3854. if (!n)
  3855. continue;
  3856. if (atomic_long_read(&n->total_objects))
  3857. return 1;
  3858. }
  3859. return 0;
  3860. }
  3861. #endif
  3862. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3863. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3864. struct slab_attribute {
  3865. struct attribute attr;
  3866. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3867. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3868. };
  3869. #define SLAB_ATTR_RO(_name) \
  3870. static struct slab_attribute _name##_attr = \
  3871. __ATTR(_name, 0400, _name##_show, NULL)
  3872. #define SLAB_ATTR(_name) \
  3873. static struct slab_attribute _name##_attr = \
  3874. __ATTR(_name, 0600, _name##_show, _name##_store)
  3875. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3876. {
  3877. return sprintf(buf, "%d\n", s->size);
  3878. }
  3879. SLAB_ATTR_RO(slab_size);
  3880. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3881. {
  3882. return sprintf(buf, "%d\n", s->align);
  3883. }
  3884. SLAB_ATTR_RO(align);
  3885. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3886. {
  3887. return sprintf(buf, "%d\n", s->object_size);
  3888. }
  3889. SLAB_ATTR_RO(object_size);
  3890. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3891. {
  3892. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3893. }
  3894. SLAB_ATTR_RO(objs_per_slab);
  3895. static ssize_t order_store(struct kmem_cache *s,
  3896. const char *buf, size_t length)
  3897. {
  3898. unsigned long order;
  3899. int err;
  3900. err = strict_strtoul(buf, 10, &order);
  3901. if (err)
  3902. return err;
  3903. if (order > slub_max_order || order < slub_min_order)
  3904. return -EINVAL;
  3905. calculate_sizes(s, order);
  3906. return length;
  3907. }
  3908. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3909. {
  3910. return sprintf(buf, "%d\n", oo_order(s->oo));
  3911. }
  3912. SLAB_ATTR(order);
  3913. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3914. {
  3915. return sprintf(buf, "%lu\n", s->min_partial);
  3916. }
  3917. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3918. size_t length)
  3919. {
  3920. unsigned long min;
  3921. int err;
  3922. err = strict_strtoul(buf, 10, &min);
  3923. if (err)
  3924. return err;
  3925. set_min_partial(s, min);
  3926. return length;
  3927. }
  3928. SLAB_ATTR(min_partial);
  3929. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3930. {
  3931. return sprintf(buf, "%u\n", s->cpu_partial);
  3932. }
  3933. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3934. size_t length)
  3935. {
  3936. unsigned long objects;
  3937. int err;
  3938. err = strict_strtoul(buf, 10, &objects);
  3939. if (err)
  3940. return err;
  3941. if (objects && kmem_cache_debug(s))
  3942. return -EINVAL;
  3943. s->cpu_partial = objects;
  3944. flush_all(s);
  3945. return length;
  3946. }
  3947. SLAB_ATTR(cpu_partial);
  3948. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3949. {
  3950. if (!s->ctor)
  3951. return 0;
  3952. return sprintf(buf, "%pS\n", s->ctor);
  3953. }
  3954. SLAB_ATTR_RO(ctor);
  3955. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3956. {
  3957. return sprintf(buf, "%d\n", s->refcount - 1);
  3958. }
  3959. SLAB_ATTR_RO(aliases);
  3960. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3961. {
  3962. return show_slab_objects(s, buf, SO_PARTIAL);
  3963. }
  3964. SLAB_ATTR_RO(partial);
  3965. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3966. {
  3967. return show_slab_objects(s, buf, SO_CPU);
  3968. }
  3969. SLAB_ATTR_RO(cpu_slabs);
  3970. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3971. {
  3972. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3973. }
  3974. SLAB_ATTR_RO(objects);
  3975. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3976. {
  3977. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3978. }
  3979. SLAB_ATTR_RO(objects_partial);
  3980. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3981. {
  3982. int objects = 0;
  3983. int pages = 0;
  3984. int cpu;
  3985. int len;
  3986. for_each_online_cpu(cpu) {
  3987. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3988. if (page) {
  3989. pages += page->pages;
  3990. objects += page->pobjects;
  3991. }
  3992. }
  3993. len = sprintf(buf, "%d(%d)", objects, pages);
  3994. #ifdef CONFIG_SMP
  3995. for_each_online_cpu(cpu) {
  3996. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3997. if (page && len < PAGE_SIZE - 20)
  3998. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3999. page->pobjects, page->pages);
  4000. }
  4001. #endif
  4002. return len + sprintf(buf + len, "\n");
  4003. }
  4004. SLAB_ATTR_RO(slabs_cpu_partial);
  4005. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4006. {
  4007. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4008. }
  4009. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4010. const char *buf, size_t length)
  4011. {
  4012. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4013. if (buf[0] == '1')
  4014. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4015. return length;
  4016. }
  4017. SLAB_ATTR(reclaim_account);
  4018. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4019. {
  4020. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4021. }
  4022. SLAB_ATTR_RO(hwcache_align);
  4023. #ifdef CONFIG_ZONE_DMA
  4024. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4025. {
  4026. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4027. }
  4028. SLAB_ATTR_RO(cache_dma);
  4029. #endif
  4030. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4031. {
  4032. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4033. }
  4034. SLAB_ATTR_RO(destroy_by_rcu);
  4035. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4036. {
  4037. return sprintf(buf, "%d\n", s->reserved);
  4038. }
  4039. SLAB_ATTR_RO(reserved);
  4040. #ifdef CONFIG_SLUB_DEBUG
  4041. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4042. {
  4043. return show_slab_objects(s, buf, SO_ALL);
  4044. }
  4045. SLAB_ATTR_RO(slabs);
  4046. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4047. {
  4048. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4049. }
  4050. SLAB_ATTR_RO(total_objects);
  4051. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4052. {
  4053. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4054. }
  4055. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4056. const char *buf, size_t length)
  4057. {
  4058. s->flags &= ~SLAB_DEBUG_FREE;
  4059. if (buf[0] == '1') {
  4060. s->flags &= ~__CMPXCHG_DOUBLE;
  4061. s->flags |= SLAB_DEBUG_FREE;
  4062. }
  4063. return length;
  4064. }
  4065. SLAB_ATTR(sanity_checks);
  4066. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4067. {
  4068. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4069. }
  4070. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4071. size_t length)
  4072. {
  4073. s->flags &= ~SLAB_TRACE;
  4074. if (buf[0] == '1') {
  4075. s->flags &= ~__CMPXCHG_DOUBLE;
  4076. s->flags |= SLAB_TRACE;
  4077. }
  4078. return length;
  4079. }
  4080. SLAB_ATTR(trace);
  4081. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4082. {
  4083. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4084. }
  4085. static ssize_t red_zone_store(struct kmem_cache *s,
  4086. const char *buf, size_t length)
  4087. {
  4088. if (any_slab_objects(s))
  4089. return -EBUSY;
  4090. s->flags &= ~SLAB_RED_ZONE;
  4091. if (buf[0] == '1') {
  4092. s->flags &= ~__CMPXCHG_DOUBLE;
  4093. s->flags |= SLAB_RED_ZONE;
  4094. }
  4095. calculate_sizes(s, -1);
  4096. return length;
  4097. }
  4098. SLAB_ATTR(red_zone);
  4099. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4100. {
  4101. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4102. }
  4103. static ssize_t poison_store(struct kmem_cache *s,
  4104. const char *buf, size_t length)
  4105. {
  4106. if (any_slab_objects(s))
  4107. return -EBUSY;
  4108. s->flags &= ~SLAB_POISON;
  4109. if (buf[0] == '1') {
  4110. s->flags &= ~__CMPXCHG_DOUBLE;
  4111. s->flags |= SLAB_POISON;
  4112. }
  4113. calculate_sizes(s, -1);
  4114. return length;
  4115. }
  4116. SLAB_ATTR(poison);
  4117. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4118. {
  4119. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4120. }
  4121. static ssize_t store_user_store(struct kmem_cache *s,
  4122. const char *buf, size_t length)
  4123. {
  4124. if (any_slab_objects(s))
  4125. return -EBUSY;
  4126. s->flags &= ~SLAB_STORE_USER;
  4127. if (buf[0] == '1') {
  4128. s->flags &= ~__CMPXCHG_DOUBLE;
  4129. s->flags |= SLAB_STORE_USER;
  4130. }
  4131. calculate_sizes(s, -1);
  4132. return length;
  4133. }
  4134. SLAB_ATTR(store_user);
  4135. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4136. {
  4137. return 0;
  4138. }
  4139. static ssize_t validate_store(struct kmem_cache *s,
  4140. const char *buf, size_t length)
  4141. {
  4142. int ret = -EINVAL;
  4143. if (buf[0] == '1') {
  4144. ret = validate_slab_cache(s);
  4145. if (ret >= 0)
  4146. ret = length;
  4147. }
  4148. return ret;
  4149. }
  4150. SLAB_ATTR(validate);
  4151. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4152. {
  4153. if (!(s->flags & SLAB_STORE_USER))
  4154. return -ENOSYS;
  4155. return list_locations(s, buf, TRACK_ALLOC);
  4156. }
  4157. SLAB_ATTR_RO(alloc_calls);
  4158. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4159. {
  4160. if (!(s->flags & SLAB_STORE_USER))
  4161. return -ENOSYS;
  4162. return list_locations(s, buf, TRACK_FREE);
  4163. }
  4164. SLAB_ATTR_RO(free_calls);
  4165. #endif /* CONFIG_SLUB_DEBUG */
  4166. #ifdef CONFIG_FAILSLAB
  4167. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4168. {
  4169. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4170. }
  4171. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4172. size_t length)
  4173. {
  4174. s->flags &= ~SLAB_FAILSLAB;
  4175. if (buf[0] == '1')
  4176. s->flags |= SLAB_FAILSLAB;
  4177. return length;
  4178. }
  4179. SLAB_ATTR(failslab);
  4180. #endif
  4181. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4182. {
  4183. return 0;
  4184. }
  4185. static ssize_t shrink_store(struct kmem_cache *s,
  4186. const char *buf, size_t length)
  4187. {
  4188. if (buf[0] == '1') {
  4189. int rc = kmem_cache_shrink(s);
  4190. if (rc)
  4191. return rc;
  4192. } else
  4193. return -EINVAL;
  4194. return length;
  4195. }
  4196. SLAB_ATTR(shrink);
  4197. #ifdef CONFIG_NUMA
  4198. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4199. {
  4200. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4201. }
  4202. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4203. const char *buf, size_t length)
  4204. {
  4205. unsigned long ratio;
  4206. int err;
  4207. err = strict_strtoul(buf, 10, &ratio);
  4208. if (err)
  4209. return err;
  4210. if (ratio <= 100)
  4211. s->remote_node_defrag_ratio = ratio * 10;
  4212. return length;
  4213. }
  4214. SLAB_ATTR(remote_node_defrag_ratio);
  4215. #endif
  4216. #ifdef CONFIG_SLUB_STATS
  4217. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4218. {
  4219. unsigned long sum = 0;
  4220. int cpu;
  4221. int len;
  4222. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4223. if (!data)
  4224. return -ENOMEM;
  4225. for_each_online_cpu(cpu) {
  4226. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4227. data[cpu] = x;
  4228. sum += x;
  4229. }
  4230. len = sprintf(buf, "%lu", sum);
  4231. #ifdef CONFIG_SMP
  4232. for_each_online_cpu(cpu) {
  4233. if (data[cpu] && len < PAGE_SIZE - 20)
  4234. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4235. }
  4236. #endif
  4237. kfree(data);
  4238. return len + sprintf(buf + len, "\n");
  4239. }
  4240. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4241. {
  4242. int cpu;
  4243. for_each_online_cpu(cpu)
  4244. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4245. }
  4246. #define STAT_ATTR(si, text) \
  4247. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4248. { \
  4249. return show_stat(s, buf, si); \
  4250. } \
  4251. static ssize_t text##_store(struct kmem_cache *s, \
  4252. const char *buf, size_t length) \
  4253. { \
  4254. if (buf[0] != '0') \
  4255. return -EINVAL; \
  4256. clear_stat(s, si); \
  4257. return length; \
  4258. } \
  4259. SLAB_ATTR(text); \
  4260. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4261. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4262. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4263. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4264. STAT_ATTR(FREE_FROZEN, free_frozen);
  4265. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4266. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4267. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4268. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4269. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4270. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4271. STAT_ATTR(FREE_SLAB, free_slab);
  4272. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4273. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4274. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4275. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4276. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4277. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4278. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4279. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4280. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4281. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4282. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4283. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4284. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4285. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4286. #endif
  4287. static struct attribute *slab_attrs[] = {
  4288. &slab_size_attr.attr,
  4289. &object_size_attr.attr,
  4290. &objs_per_slab_attr.attr,
  4291. &order_attr.attr,
  4292. &min_partial_attr.attr,
  4293. &cpu_partial_attr.attr,
  4294. &objects_attr.attr,
  4295. &objects_partial_attr.attr,
  4296. &partial_attr.attr,
  4297. &cpu_slabs_attr.attr,
  4298. &ctor_attr.attr,
  4299. &aliases_attr.attr,
  4300. &align_attr.attr,
  4301. &hwcache_align_attr.attr,
  4302. &reclaim_account_attr.attr,
  4303. &destroy_by_rcu_attr.attr,
  4304. &shrink_attr.attr,
  4305. &reserved_attr.attr,
  4306. &slabs_cpu_partial_attr.attr,
  4307. #ifdef CONFIG_SLUB_DEBUG
  4308. &total_objects_attr.attr,
  4309. &slabs_attr.attr,
  4310. &sanity_checks_attr.attr,
  4311. &trace_attr.attr,
  4312. &red_zone_attr.attr,
  4313. &poison_attr.attr,
  4314. &store_user_attr.attr,
  4315. &validate_attr.attr,
  4316. &alloc_calls_attr.attr,
  4317. &free_calls_attr.attr,
  4318. #endif
  4319. #ifdef CONFIG_ZONE_DMA
  4320. &cache_dma_attr.attr,
  4321. #endif
  4322. #ifdef CONFIG_NUMA
  4323. &remote_node_defrag_ratio_attr.attr,
  4324. #endif
  4325. #ifdef CONFIG_SLUB_STATS
  4326. &alloc_fastpath_attr.attr,
  4327. &alloc_slowpath_attr.attr,
  4328. &free_fastpath_attr.attr,
  4329. &free_slowpath_attr.attr,
  4330. &free_frozen_attr.attr,
  4331. &free_add_partial_attr.attr,
  4332. &free_remove_partial_attr.attr,
  4333. &alloc_from_partial_attr.attr,
  4334. &alloc_slab_attr.attr,
  4335. &alloc_refill_attr.attr,
  4336. &alloc_node_mismatch_attr.attr,
  4337. &free_slab_attr.attr,
  4338. &cpuslab_flush_attr.attr,
  4339. &deactivate_full_attr.attr,
  4340. &deactivate_empty_attr.attr,
  4341. &deactivate_to_head_attr.attr,
  4342. &deactivate_to_tail_attr.attr,
  4343. &deactivate_remote_frees_attr.attr,
  4344. &deactivate_bypass_attr.attr,
  4345. &order_fallback_attr.attr,
  4346. &cmpxchg_double_fail_attr.attr,
  4347. &cmpxchg_double_cpu_fail_attr.attr,
  4348. &cpu_partial_alloc_attr.attr,
  4349. &cpu_partial_free_attr.attr,
  4350. &cpu_partial_node_attr.attr,
  4351. &cpu_partial_drain_attr.attr,
  4352. #endif
  4353. #ifdef CONFIG_FAILSLAB
  4354. &failslab_attr.attr,
  4355. #endif
  4356. NULL
  4357. };
  4358. static struct attribute_group slab_attr_group = {
  4359. .attrs = slab_attrs,
  4360. };
  4361. static ssize_t slab_attr_show(struct kobject *kobj,
  4362. struct attribute *attr,
  4363. char *buf)
  4364. {
  4365. struct slab_attribute *attribute;
  4366. struct kmem_cache *s;
  4367. int err;
  4368. attribute = to_slab_attr(attr);
  4369. s = to_slab(kobj);
  4370. if (!attribute->show)
  4371. return -EIO;
  4372. err = attribute->show(s, buf);
  4373. return err;
  4374. }
  4375. static ssize_t slab_attr_store(struct kobject *kobj,
  4376. struct attribute *attr,
  4377. const char *buf, size_t len)
  4378. {
  4379. struct slab_attribute *attribute;
  4380. struct kmem_cache *s;
  4381. int err;
  4382. attribute = to_slab_attr(attr);
  4383. s = to_slab(kobj);
  4384. if (!attribute->store)
  4385. return -EIO;
  4386. err = attribute->store(s, buf, len);
  4387. return err;
  4388. }
  4389. static void kmem_cache_release(struct kobject *kobj)
  4390. {
  4391. struct kmem_cache *s = to_slab(kobj);
  4392. kfree(s->name);
  4393. kfree(s);
  4394. }
  4395. static const struct sysfs_ops slab_sysfs_ops = {
  4396. .show = slab_attr_show,
  4397. .store = slab_attr_store,
  4398. };
  4399. static struct kobj_type slab_ktype = {
  4400. .sysfs_ops = &slab_sysfs_ops,
  4401. .release = kmem_cache_release
  4402. };
  4403. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4404. {
  4405. struct kobj_type *ktype = get_ktype(kobj);
  4406. if (ktype == &slab_ktype)
  4407. return 1;
  4408. return 0;
  4409. }
  4410. static const struct kset_uevent_ops slab_uevent_ops = {
  4411. .filter = uevent_filter,
  4412. };
  4413. static struct kset *slab_kset;
  4414. #define ID_STR_LENGTH 64
  4415. /* Create a unique string id for a slab cache:
  4416. *
  4417. * Format :[flags-]size
  4418. */
  4419. static char *create_unique_id(struct kmem_cache *s)
  4420. {
  4421. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4422. char *p = name;
  4423. BUG_ON(!name);
  4424. *p++ = ':';
  4425. /*
  4426. * First flags affecting slabcache operations. We will only
  4427. * get here for aliasable slabs so we do not need to support
  4428. * too many flags. The flags here must cover all flags that
  4429. * are matched during merging to guarantee that the id is
  4430. * unique.
  4431. */
  4432. if (s->flags & SLAB_CACHE_DMA)
  4433. *p++ = 'd';
  4434. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4435. *p++ = 'a';
  4436. if (s->flags & SLAB_DEBUG_FREE)
  4437. *p++ = 'F';
  4438. if (!(s->flags & SLAB_NOTRACK))
  4439. *p++ = 't';
  4440. if (p != name + 1)
  4441. *p++ = '-';
  4442. p += sprintf(p, "%07d", s->size);
  4443. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4444. return name;
  4445. }
  4446. static int sysfs_slab_add(struct kmem_cache *s)
  4447. {
  4448. int err;
  4449. const char *name;
  4450. int unmergeable;
  4451. if (slab_state < FULL)
  4452. /* Defer until later */
  4453. return 0;
  4454. unmergeable = slab_unmergeable(s);
  4455. if (unmergeable) {
  4456. /*
  4457. * Slabcache can never be merged so we can use the name proper.
  4458. * This is typically the case for debug situations. In that
  4459. * case we can catch duplicate names easily.
  4460. */
  4461. sysfs_remove_link(&slab_kset->kobj, s->name);
  4462. name = s->name;
  4463. } else {
  4464. /*
  4465. * Create a unique name for the slab as a target
  4466. * for the symlinks.
  4467. */
  4468. name = create_unique_id(s);
  4469. }
  4470. s->kobj.kset = slab_kset;
  4471. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4472. if (err) {
  4473. kobject_put(&s->kobj);
  4474. return err;
  4475. }
  4476. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4477. if (err) {
  4478. kobject_del(&s->kobj);
  4479. kobject_put(&s->kobj);
  4480. return err;
  4481. }
  4482. kobject_uevent(&s->kobj, KOBJ_ADD);
  4483. if (!unmergeable) {
  4484. /* Setup first alias */
  4485. sysfs_slab_alias(s, s->name);
  4486. kfree(name);
  4487. }
  4488. return 0;
  4489. }
  4490. static void sysfs_slab_remove(struct kmem_cache *s)
  4491. {
  4492. if (slab_state < FULL)
  4493. /*
  4494. * Sysfs has not been setup yet so no need to remove the
  4495. * cache from sysfs.
  4496. */
  4497. return;
  4498. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4499. kobject_del(&s->kobj);
  4500. kobject_put(&s->kobj);
  4501. }
  4502. /*
  4503. * Need to buffer aliases during bootup until sysfs becomes
  4504. * available lest we lose that information.
  4505. */
  4506. struct saved_alias {
  4507. struct kmem_cache *s;
  4508. const char *name;
  4509. struct saved_alias *next;
  4510. };
  4511. static struct saved_alias *alias_list;
  4512. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4513. {
  4514. struct saved_alias *al;
  4515. if (slab_state == FULL) {
  4516. /*
  4517. * If we have a leftover link then remove it.
  4518. */
  4519. sysfs_remove_link(&slab_kset->kobj, name);
  4520. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4521. }
  4522. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4523. if (!al)
  4524. return -ENOMEM;
  4525. al->s = s;
  4526. al->name = name;
  4527. al->next = alias_list;
  4528. alias_list = al;
  4529. return 0;
  4530. }
  4531. static int __init slab_sysfs_init(void)
  4532. {
  4533. struct kmem_cache *s;
  4534. int err;
  4535. mutex_lock(&slab_mutex);
  4536. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4537. if (!slab_kset) {
  4538. mutex_unlock(&slab_mutex);
  4539. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4540. return -ENOSYS;
  4541. }
  4542. slab_state = FULL;
  4543. list_for_each_entry(s, &slab_caches, list) {
  4544. err = sysfs_slab_add(s);
  4545. if (err)
  4546. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4547. " to sysfs\n", s->name);
  4548. }
  4549. while (alias_list) {
  4550. struct saved_alias *al = alias_list;
  4551. alias_list = alias_list->next;
  4552. err = sysfs_slab_alias(al->s, al->name);
  4553. if (err)
  4554. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4555. " %s to sysfs\n", al->name);
  4556. kfree(al);
  4557. }
  4558. mutex_unlock(&slab_mutex);
  4559. resiliency_test();
  4560. return 0;
  4561. }
  4562. __initcall(slab_sysfs_init);
  4563. #endif /* CONFIG_SYSFS */
  4564. /*
  4565. * The /proc/slabinfo ABI
  4566. */
  4567. #ifdef CONFIG_SLABINFO
  4568. static void print_slabinfo_header(struct seq_file *m)
  4569. {
  4570. seq_puts(m, "slabinfo - version: 2.1\n");
  4571. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4572. "<objperslab> <pagesperslab>");
  4573. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4574. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4575. seq_putc(m, '\n');
  4576. }
  4577. static void *s_start(struct seq_file *m, loff_t *pos)
  4578. {
  4579. loff_t n = *pos;
  4580. mutex_lock(&slab_mutex);
  4581. if (!n)
  4582. print_slabinfo_header(m);
  4583. return seq_list_start(&slab_caches, *pos);
  4584. }
  4585. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4586. {
  4587. return seq_list_next(p, &slab_caches, pos);
  4588. }
  4589. static void s_stop(struct seq_file *m, void *p)
  4590. {
  4591. mutex_unlock(&slab_mutex);
  4592. }
  4593. static int s_show(struct seq_file *m, void *p)
  4594. {
  4595. unsigned long nr_partials = 0;
  4596. unsigned long nr_slabs = 0;
  4597. unsigned long nr_inuse = 0;
  4598. unsigned long nr_objs = 0;
  4599. unsigned long nr_free = 0;
  4600. struct kmem_cache *s;
  4601. int node;
  4602. s = list_entry(p, struct kmem_cache, list);
  4603. for_each_online_node(node) {
  4604. struct kmem_cache_node *n = get_node(s, node);
  4605. if (!n)
  4606. continue;
  4607. nr_partials += n->nr_partial;
  4608. nr_slabs += atomic_long_read(&n->nr_slabs);
  4609. nr_objs += atomic_long_read(&n->total_objects);
  4610. nr_free += count_partial(n, count_free);
  4611. }
  4612. nr_inuse = nr_objs - nr_free;
  4613. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4614. nr_objs, s->size, oo_objects(s->oo),
  4615. (1 << oo_order(s->oo)));
  4616. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4617. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4618. 0UL);
  4619. seq_putc(m, '\n');
  4620. return 0;
  4621. }
  4622. static const struct seq_operations slabinfo_op = {
  4623. .start = s_start,
  4624. .next = s_next,
  4625. .stop = s_stop,
  4626. .show = s_show,
  4627. };
  4628. static int slabinfo_open(struct inode *inode, struct file *file)
  4629. {
  4630. return seq_open(file, &slabinfo_op);
  4631. }
  4632. static const struct file_operations proc_slabinfo_operations = {
  4633. .open = slabinfo_open,
  4634. .read = seq_read,
  4635. .llseek = seq_lseek,
  4636. .release = seq_release,
  4637. };
  4638. static int __init slab_proc_init(void)
  4639. {
  4640. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4641. return 0;
  4642. }
  4643. module_init(slab_proc_init);
  4644. #endif /* CONFIG_SLABINFO */