xhci.c 141 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #define DRIVER_AUTHOR "Sarah Sharp"
  31. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  32. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33. static int link_quirk;
  34. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  37. /*
  38. * handshake - spin reading hc until handshake completes or fails
  39. * @ptr: address of hc register to be read
  40. * @mask: bits to look at in result of read
  41. * @done: value of those bits when handshake succeeds
  42. * @usec: timeout in microseconds
  43. *
  44. * Returns negative errno, or zero on success
  45. *
  46. * Success happens when the "mask" bits have the specified value (hardware
  47. * handshake done). There are two failure modes: "usec" have passed (major
  48. * hardware flakeout), or the register reads as all-ones (hardware removed).
  49. */
  50. static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  51. u32 mask, u32 done, int usec)
  52. {
  53. u32 result;
  54. do {
  55. result = xhci_readl(xhci, ptr);
  56. if (result == ~(u32)0) /* card removed */
  57. return -ENODEV;
  58. result &= mask;
  59. if (result == done)
  60. return 0;
  61. udelay(1);
  62. usec--;
  63. } while (usec > 0);
  64. return -ETIMEDOUT;
  65. }
  66. /*
  67. * Disable interrupts and begin the xHCI halting process.
  68. */
  69. void xhci_quiesce(struct xhci_hcd *xhci)
  70. {
  71. u32 halted;
  72. u32 cmd;
  73. u32 mask;
  74. mask = ~(XHCI_IRQS);
  75. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  76. if (!halted)
  77. mask &= ~CMD_RUN;
  78. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  79. cmd &= mask;
  80. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  81. }
  82. /*
  83. * Force HC into halt state.
  84. *
  85. * Disable any IRQs and clear the run/stop bit.
  86. * HC will complete any current and actively pipelined transactions, and
  87. * should halt within 16 ms of the run/stop bit being cleared.
  88. * Read HC Halted bit in the status register to see when the HC is finished.
  89. */
  90. int xhci_halt(struct xhci_hcd *xhci)
  91. {
  92. int ret;
  93. xhci_dbg(xhci, "// Halt the HC\n");
  94. xhci_quiesce(xhci);
  95. ret = handshake(xhci, &xhci->op_regs->status,
  96. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  97. if (!ret)
  98. xhci->xhc_state |= XHCI_STATE_HALTED;
  99. else
  100. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  101. XHCI_MAX_HALT_USEC);
  102. return ret;
  103. }
  104. /*
  105. * Set the run bit and wait for the host to be running.
  106. */
  107. static int xhci_start(struct xhci_hcd *xhci)
  108. {
  109. u32 temp;
  110. int ret;
  111. temp = xhci_readl(xhci, &xhci->op_regs->command);
  112. temp |= (CMD_RUN);
  113. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  114. temp);
  115. xhci_writel(xhci, temp, &xhci->op_regs->command);
  116. /*
  117. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  118. * running.
  119. */
  120. ret = handshake(xhci, &xhci->op_regs->status,
  121. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  122. if (ret == -ETIMEDOUT)
  123. xhci_err(xhci, "Host took too long to start, "
  124. "waited %u microseconds.\n",
  125. XHCI_MAX_HALT_USEC);
  126. if (!ret)
  127. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  128. return ret;
  129. }
  130. /*
  131. * Reset a halted HC.
  132. *
  133. * This resets pipelines, timers, counters, state machines, etc.
  134. * Transactions will be terminated immediately, and operational registers
  135. * will be set to their defaults.
  136. */
  137. int xhci_reset(struct xhci_hcd *xhci)
  138. {
  139. u32 command;
  140. u32 state;
  141. int ret, i;
  142. state = xhci_readl(xhci, &xhci->op_regs->status);
  143. if ((state & STS_HALT) == 0) {
  144. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  145. return 0;
  146. }
  147. xhci_dbg(xhci, "// Reset the HC\n");
  148. command = xhci_readl(xhci, &xhci->op_regs->command);
  149. command |= CMD_RESET;
  150. xhci_writel(xhci, command, &xhci->op_regs->command);
  151. ret = handshake(xhci, &xhci->op_regs->command,
  152. CMD_RESET, 0, 10 * 1000 * 1000);
  153. if (ret)
  154. return ret;
  155. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  156. /*
  157. * xHCI cannot write to any doorbells or operational registers other
  158. * than status until the "Controller Not Ready" flag is cleared.
  159. */
  160. ret = handshake(xhci, &xhci->op_regs->status,
  161. STS_CNR, 0, 10 * 1000 * 1000);
  162. for (i = 0; i < 2; ++i) {
  163. xhci->bus_state[i].port_c_suspend = 0;
  164. xhci->bus_state[i].suspended_ports = 0;
  165. xhci->bus_state[i].resuming_ports = 0;
  166. }
  167. return ret;
  168. }
  169. #ifdef CONFIG_PCI
  170. static int xhci_free_msi(struct xhci_hcd *xhci)
  171. {
  172. int i;
  173. if (!xhci->msix_entries)
  174. return -EINVAL;
  175. for (i = 0; i < xhci->msix_count; i++)
  176. if (xhci->msix_entries[i].vector)
  177. free_irq(xhci->msix_entries[i].vector,
  178. xhci_to_hcd(xhci));
  179. return 0;
  180. }
  181. /*
  182. * Set up MSI
  183. */
  184. static int xhci_setup_msi(struct xhci_hcd *xhci)
  185. {
  186. int ret;
  187. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  188. ret = pci_enable_msi(pdev);
  189. if (ret) {
  190. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  191. return ret;
  192. }
  193. ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
  194. 0, "xhci_hcd", xhci_to_hcd(xhci));
  195. if (ret) {
  196. xhci_dbg(xhci, "disable MSI interrupt\n");
  197. pci_disable_msi(pdev);
  198. }
  199. return ret;
  200. }
  201. /*
  202. * Free IRQs
  203. * free all IRQs request
  204. */
  205. static void xhci_free_irq(struct xhci_hcd *xhci)
  206. {
  207. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  208. int ret;
  209. /* return if using legacy interrupt */
  210. if (xhci_to_hcd(xhci)->irq > 0)
  211. return;
  212. ret = xhci_free_msi(xhci);
  213. if (!ret)
  214. return;
  215. if (pdev->irq > 0)
  216. free_irq(pdev->irq, xhci_to_hcd(xhci));
  217. return;
  218. }
  219. /*
  220. * Set up MSI-X
  221. */
  222. static int xhci_setup_msix(struct xhci_hcd *xhci)
  223. {
  224. int i, ret = 0;
  225. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  226. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  227. /*
  228. * calculate number of msi-x vectors supported.
  229. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  230. * with max number of interrupters based on the xhci HCSPARAMS1.
  231. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  232. * Add additional 1 vector to ensure always available interrupt.
  233. */
  234. xhci->msix_count = min(num_online_cpus() + 1,
  235. HCS_MAX_INTRS(xhci->hcs_params1));
  236. xhci->msix_entries =
  237. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  238. GFP_KERNEL);
  239. if (!xhci->msix_entries) {
  240. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  241. return -ENOMEM;
  242. }
  243. for (i = 0; i < xhci->msix_count; i++) {
  244. xhci->msix_entries[i].entry = i;
  245. xhci->msix_entries[i].vector = 0;
  246. }
  247. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  248. if (ret) {
  249. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  250. goto free_entries;
  251. }
  252. for (i = 0; i < xhci->msix_count; i++) {
  253. ret = request_irq(xhci->msix_entries[i].vector,
  254. (irq_handler_t)xhci_msi_irq,
  255. 0, "xhci_hcd", xhci_to_hcd(xhci));
  256. if (ret)
  257. goto disable_msix;
  258. }
  259. hcd->msix_enabled = 1;
  260. return ret;
  261. disable_msix:
  262. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  263. xhci_free_irq(xhci);
  264. pci_disable_msix(pdev);
  265. free_entries:
  266. kfree(xhci->msix_entries);
  267. xhci->msix_entries = NULL;
  268. return ret;
  269. }
  270. /* Free any IRQs and disable MSI-X */
  271. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  272. {
  273. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  274. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  275. xhci_free_irq(xhci);
  276. if (xhci->msix_entries) {
  277. pci_disable_msix(pdev);
  278. kfree(xhci->msix_entries);
  279. xhci->msix_entries = NULL;
  280. } else {
  281. pci_disable_msi(pdev);
  282. }
  283. hcd->msix_enabled = 0;
  284. return;
  285. }
  286. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  287. {
  288. int i;
  289. if (xhci->msix_entries) {
  290. for (i = 0; i < xhci->msix_count; i++)
  291. synchronize_irq(xhci->msix_entries[i].vector);
  292. }
  293. }
  294. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  295. {
  296. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  297. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  298. int ret;
  299. /*
  300. * Some Fresco Logic host controllers advertise MSI, but fail to
  301. * generate interrupts. Don't even try to enable MSI.
  302. */
  303. if (xhci->quirks & XHCI_BROKEN_MSI)
  304. return 0;
  305. /* unregister the legacy interrupt */
  306. if (hcd->irq)
  307. free_irq(hcd->irq, hcd);
  308. hcd->irq = 0;
  309. ret = xhci_setup_msix(xhci);
  310. if (ret)
  311. /* fall back to msi*/
  312. ret = xhci_setup_msi(xhci);
  313. if (!ret)
  314. /* hcd->irq is 0, we have MSI */
  315. return 0;
  316. if (!pdev->irq) {
  317. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  318. return -EINVAL;
  319. }
  320. /* fall back to legacy interrupt*/
  321. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  322. hcd->irq_descr, hcd);
  323. if (ret) {
  324. xhci_err(xhci, "request interrupt %d failed\n",
  325. pdev->irq);
  326. return ret;
  327. }
  328. hcd->irq = pdev->irq;
  329. return 0;
  330. }
  331. #else
  332. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  333. {
  334. return 0;
  335. }
  336. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  337. {
  338. }
  339. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  340. {
  341. }
  342. #endif
  343. static void compliance_mode_recovery(unsigned long arg)
  344. {
  345. struct xhci_hcd *xhci;
  346. struct usb_hcd *hcd;
  347. u32 temp;
  348. int i;
  349. xhci = (struct xhci_hcd *)arg;
  350. for (i = 0; i < xhci->num_usb3_ports; i++) {
  351. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  352. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  353. /*
  354. * Compliance Mode Detected. Letting USB Core
  355. * handle the Warm Reset
  356. */
  357. xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
  358. i + 1);
  359. xhci_dbg(xhci, "Attempting Recovery routine!\n");
  360. hcd = xhci->shared_hcd;
  361. if (hcd->state == HC_STATE_SUSPENDED)
  362. usb_hcd_resume_root_hub(hcd);
  363. usb_hcd_poll_rh_status(hcd);
  364. }
  365. }
  366. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  367. mod_timer(&xhci->comp_mode_recovery_timer,
  368. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  369. }
  370. /*
  371. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  372. * that causes ports behind that hardware to enter compliance mode sometimes.
  373. * The quirk creates a timer that polls every 2 seconds the link state of
  374. * each host controller's port and recovers it by issuing a Warm reset
  375. * if Compliance mode is detected, otherwise the port will become "dead" (no
  376. * device connections or disconnections will be detected anymore). Becasue no
  377. * status event is generated when entering compliance mode (per xhci spec),
  378. * this quirk is needed on systems that have the failing hardware installed.
  379. */
  380. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  381. {
  382. xhci->port_status_u0 = 0;
  383. init_timer(&xhci->comp_mode_recovery_timer);
  384. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  385. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  386. xhci->comp_mode_recovery_timer.expires = jiffies +
  387. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  388. set_timer_slack(&xhci->comp_mode_recovery_timer,
  389. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  390. add_timer(&xhci->comp_mode_recovery_timer);
  391. xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
  392. }
  393. /*
  394. * This function identifies the systems that have installed the SN65LVPE502CP
  395. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  396. * Systems:
  397. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  398. */
  399. static bool compliance_mode_recovery_timer_quirk_check(void)
  400. {
  401. const char *dmi_product_name, *dmi_sys_vendor;
  402. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  403. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  404. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  405. return false;
  406. if (strstr(dmi_product_name, "Z420") ||
  407. strstr(dmi_product_name, "Z620") ||
  408. strstr(dmi_product_name, "Z820"))
  409. return true;
  410. return false;
  411. }
  412. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  413. {
  414. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  415. }
  416. /*
  417. * Initialize memory for HCD and xHC (one-time init).
  418. *
  419. * Program the PAGESIZE register, initialize the device context array, create
  420. * device contexts (?), set up a command ring segment (or two?), create event
  421. * ring (one for now).
  422. */
  423. int xhci_init(struct usb_hcd *hcd)
  424. {
  425. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  426. int retval = 0;
  427. xhci_dbg(xhci, "xhci_init\n");
  428. spin_lock_init(&xhci->lock);
  429. if (xhci->hci_version == 0x95 && link_quirk) {
  430. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  431. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  432. } else {
  433. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  434. }
  435. retval = xhci_mem_init(xhci, GFP_KERNEL);
  436. xhci_dbg(xhci, "Finished xhci_init\n");
  437. /* Initializing Compliance Mode Recovery Data If Needed */
  438. if (compliance_mode_recovery_timer_quirk_check()) {
  439. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  440. compliance_mode_recovery_timer_init(xhci);
  441. }
  442. return retval;
  443. }
  444. /*-------------------------------------------------------------------------*/
  445. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  446. static void xhci_event_ring_work(unsigned long arg)
  447. {
  448. unsigned long flags;
  449. int temp;
  450. u64 temp_64;
  451. struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
  452. int i, j;
  453. xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
  454. spin_lock_irqsave(&xhci->lock, flags);
  455. temp = xhci_readl(xhci, &xhci->op_regs->status);
  456. xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
  457. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  458. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  459. xhci_dbg(xhci, "HW died, polling stopped.\n");
  460. spin_unlock_irqrestore(&xhci->lock, flags);
  461. return;
  462. }
  463. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  464. xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
  465. xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
  466. xhci->error_bitmask = 0;
  467. xhci_dbg(xhci, "Event ring:\n");
  468. xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
  469. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  470. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  471. temp_64 &= ~ERST_PTR_MASK;
  472. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  473. xhci_dbg(xhci, "Command ring:\n");
  474. xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
  475. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  476. xhci_dbg_cmd_ptrs(xhci);
  477. for (i = 0; i < MAX_HC_SLOTS; ++i) {
  478. if (!xhci->devs[i])
  479. continue;
  480. for (j = 0; j < 31; ++j) {
  481. xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
  482. }
  483. }
  484. spin_unlock_irqrestore(&xhci->lock, flags);
  485. if (!xhci->zombie)
  486. mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
  487. else
  488. xhci_dbg(xhci, "Quit polling the event ring.\n");
  489. }
  490. #endif
  491. static int xhci_run_finished(struct xhci_hcd *xhci)
  492. {
  493. if (xhci_start(xhci)) {
  494. xhci_halt(xhci);
  495. return -ENODEV;
  496. }
  497. xhci->shared_hcd->state = HC_STATE_RUNNING;
  498. if (xhci->quirks & XHCI_NEC_HOST)
  499. xhci_ring_cmd_db(xhci);
  500. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  501. return 0;
  502. }
  503. /*
  504. * Start the HC after it was halted.
  505. *
  506. * This function is called by the USB core when the HC driver is added.
  507. * Its opposite is xhci_stop().
  508. *
  509. * xhci_init() must be called once before this function can be called.
  510. * Reset the HC, enable device slot contexts, program DCBAAP, and
  511. * set command ring pointer and event ring pointer.
  512. *
  513. * Setup MSI-X vectors and enable interrupts.
  514. */
  515. int xhci_run(struct usb_hcd *hcd)
  516. {
  517. u32 temp;
  518. u64 temp_64;
  519. int ret;
  520. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  521. /* Start the xHCI host controller running only after the USB 2.0 roothub
  522. * is setup.
  523. */
  524. hcd->uses_new_polling = 1;
  525. if (!usb_hcd_is_primary_hcd(hcd))
  526. return xhci_run_finished(xhci);
  527. xhci_dbg(xhci, "xhci_run\n");
  528. ret = xhci_try_enable_msi(hcd);
  529. if (ret)
  530. return ret;
  531. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  532. init_timer(&xhci->event_ring_timer);
  533. xhci->event_ring_timer.data = (unsigned long) xhci;
  534. xhci->event_ring_timer.function = xhci_event_ring_work;
  535. /* Poll the event ring */
  536. xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
  537. xhci->zombie = 0;
  538. xhci_dbg(xhci, "Setting event ring polling timer\n");
  539. add_timer(&xhci->event_ring_timer);
  540. #endif
  541. xhci_dbg(xhci, "Command ring memory map follows:\n");
  542. xhci_debug_ring(xhci, xhci->cmd_ring);
  543. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  544. xhci_dbg_cmd_ptrs(xhci);
  545. xhci_dbg(xhci, "ERST memory map follows:\n");
  546. xhci_dbg_erst(xhci, &xhci->erst);
  547. xhci_dbg(xhci, "Event ring:\n");
  548. xhci_debug_ring(xhci, xhci->event_ring);
  549. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  550. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  551. temp_64 &= ~ERST_PTR_MASK;
  552. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  553. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  554. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  555. temp &= ~ER_IRQ_INTERVAL_MASK;
  556. temp |= (u32) 160;
  557. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  558. /* Set the HCD state before we enable the irqs */
  559. temp = xhci_readl(xhci, &xhci->op_regs->command);
  560. temp |= (CMD_EIE);
  561. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  562. temp);
  563. xhci_writel(xhci, temp, &xhci->op_regs->command);
  564. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  565. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  566. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  567. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  568. &xhci->ir_set->irq_pending);
  569. xhci_print_ir_set(xhci, 0);
  570. if (xhci->quirks & XHCI_NEC_HOST)
  571. xhci_queue_vendor_command(xhci, 0, 0, 0,
  572. TRB_TYPE(TRB_NEC_GET_FW));
  573. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  574. return 0;
  575. }
  576. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  577. {
  578. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  579. spin_lock_irq(&xhci->lock);
  580. xhci_halt(xhci);
  581. /* The shared_hcd is going to be deallocated shortly (the USB core only
  582. * calls this function when allocation fails in usb_add_hcd(), or
  583. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  584. */
  585. xhci->shared_hcd = NULL;
  586. spin_unlock_irq(&xhci->lock);
  587. }
  588. /*
  589. * Stop xHCI driver.
  590. *
  591. * This function is called by the USB core when the HC driver is removed.
  592. * Its opposite is xhci_run().
  593. *
  594. * Disable device contexts, disable IRQs, and quiesce the HC.
  595. * Reset the HC, finish any completed transactions, and cleanup memory.
  596. */
  597. void xhci_stop(struct usb_hcd *hcd)
  598. {
  599. u32 temp;
  600. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  601. if (!usb_hcd_is_primary_hcd(hcd)) {
  602. xhci_only_stop_hcd(xhci->shared_hcd);
  603. return;
  604. }
  605. spin_lock_irq(&xhci->lock);
  606. /* Make sure the xHC is halted for a USB3 roothub
  607. * (xhci_stop() could be called as part of failed init).
  608. */
  609. xhci_halt(xhci);
  610. xhci_reset(xhci);
  611. spin_unlock_irq(&xhci->lock);
  612. xhci_cleanup_msix(xhci);
  613. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  614. /* Tell the event ring poll function not to reschedule */
  615. xhci->zombie = 1;
  616. del_timer_sync(&xhci->event_ring_timer);
  617. #endif
  618. /* Deleting Compliance Mode Recovery Timer */
  619. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  620. (!(xhci_all_ports_seen_u0(xhci))))
  621. del_timer_sync(&xhci->comp_mode_recovery_timer);
  622. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  623. usb_amd_dev_put();
  624. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  625. temp = xhci_readl(xhci, &xhci->op_regs->status);
  626. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  627. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  628. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  629. &xhci->ir_set->irq_pending);
  630. xhci_print_ir_set(xhci, 0);
  631. xhci_dbg(xhci, "cleaning up memory\n");
  632. xhci_mem_cleanup(xhci);
  633. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  634. xhci_readl(xhci, &xhci->op_regs->status));
  635. }
  636. /*
  637. * Shutdown HC (not bus-specific)
  638. *
  639. * This is called when the machine is rebooting or halting. We assume that the
  640. * machine will be powered off, and the HC's internal state will be reset.
  641. * Don't bother to free memory.
  642. *
  643. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  644. */
  645. void xhci_shutdown(struct usb_hcd *hcd)
  646. {
  647. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  648. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  649. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  650. spin_lock_irq(&xhci->lock);
  651. xhci_halt(xhci);
  652. spin_unlock_irq(&xhci->lock);
  653. xhci_cleanup_msix(xhci);
  654. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  655. xhci_readl(xhci, &xhci->op_regs->status));
  656. }
  657. #ifdef CONFIG_PM
  658. static void xhci_save_registers(struct xhci_hcd *xhci)
  659. {
  660. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  661. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  662. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  663. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  664. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  665. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  666. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  667. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  668. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  669. }
  670. static void xhci_restore_registers(struct xhci_hcd *xhci)
  671. {
  672. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  673. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  674. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  675. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  676. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  677. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  678. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  679. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  680. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  681. }
  682. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  683. {
  684. u64 val_64;
  685. /* step 2: initialize command ring buffer */
  686. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  687. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  688. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  689. xhci->cmd_ring->dequeue) &
  690. (u64) ~CMD_RING_RSVD_BITS) |
  691. xhci->cmd_ring->cycle_state;
  692. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  693. (long unsigned long) val_64);
  694. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  695. }
  696. /*
  697. * The whole command ring must be cleared to zero when we suspend the host.
  698. *
  699. * The host doesn't save the command ring pointer in the suspend well, so we
  700. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  701. * aligned, because of the reserved bits in the command ring dequeue pointer
  702. * register. Therefore, we can't just set the dequeue pointer back in the
  703. * middle of the ring (TRBs are 16-byte aligned).
  704. */
  705. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  706. {
  707. struct xhci_ring *ring;
  708. struct xhci_segment *seg;
  709. ring = xhci->cmd_ring;
  710. seg = ring->deq_seg;
  711. do {
  712. memset(seg->trbs, 0,
  713. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  714. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  715. cpu_to_le32(~TRB_CYCLE);
  716. seg = seg->next;
  717. } while (seg != ring->deq_seg);
  718. /* Reset the software enqueue and dequeue pointers */
  719. ring->deq_seg = ring->first_seg;
  720. ring->dequeue = ring->first_seg->trbs;
  721. ring->enq_seg = ring->deq_seg;
  722. ring->enqueue = ring->dequeue;
  723. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  724. /*
  725. * Ring is now zeroed, so the HW should look for change of ownership
  726. * when the cycle bit is set to 1.
  727. */
  728. ring->cycle_state = 1;
  729. /*
  730. * Reset the hardware dequeue pointer.
  731. * Yes, this will need to be re-written after resume, but we're paranoid
  732. * and want to make sure the hardware doesn't access bogus memory
  733. * because, say, the BIOS or an SMI started the host without changing
  734. * the command ring pointers.
  735. */
  736. xhci_set_cmd_ring_deq(xhci);
  737. }
  738. /*
  739. * Stop HC (not bus-specific)
  740. *
  741. * This is called when the machine transition into S3/S4 mode.
  742. *
  743. */
  744. int xhci_suspend(struct xhci_hcd *xhci)
  745. {
  746. int rc = 0;
  747. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  748. u32 command;
  749. spin_lock_irq(&xhci->lock);
  750. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  751. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  752. /* step 1: stop endpoint */
  753. /* skipped assuming that port suspend has done */
  754. /* step 2: clear Run/Stop bit */
  755. command = xhci_readl(xhci, &xhci->op_regs->command);
  756. command &= ~CMD_RUN;
  757. xhci_writel(xhci, command, &xhci->op_regs->command);
  758. if (handshake(xhci, &xhci->op_regs->status,
  759. STS_HALT, STS_HALT, 100*100)) {
  760. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  761. spin_unlock_irq(&xhci->lock);
  762. return -ETIMEDOUT;
  763. }
  764. xhci_clear_command_ring(xhci);
  765. /* step 3: save registers */
  766. xhci_save_registers(xhci);
  767. /* step 4: set CSS flag */
  768. command = xhci_readl(xhci, &xhci->op_regs->command);
  769. command |= CMD_CSS;
  770. xhci_writel(xhci, command, &xhci->op_regs->command);
  771. if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
  772. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  773. spin_unlock_irq(&xhci->lock);
  774. return -ETIMEDOUT;
  775. }
  776. spin_unlock_irq(&xhci->lock);
  777. /*
  778. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  779. * is about to be suspended.
  780. */
  781. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  782. (!(xhci_all_ports_seen_u0(xhci)))) {
  783. del_timer_sync(&xhci->comp_mode_recovery_timer);
  784. xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
  785. }
  786. /* step 5: remove core well power */
  787. /* synchronize irq when using MSI-X */
  788. xhci_msix_sync_irqs(xhci);
  789. return rc;
  790. }
  791. /*
  792. * start xHC (not bus-specific)
  793. *
  794. * This is called when the machine transition from S3/S4 mode.
  795. *
  796. */
  797. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  798. {
  799. u32 command, temp = 0;
  800. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  801. struct usb_hcd *secondary_hcd;
  802. int retval = 0;
  803. /* Wait a bit if either of the roothubs need to settle from the
  804. * transition into bus suspend.
  805. */
  806. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  807. time_before(jiffies,
  808. xhci->bus_state[1].next_statechange))
  809. msleep(100);
  810. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  811. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  812. spin_lock_irq(&xhci->lock);
  813. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  814. hibernated = true;
  815. if (!hibernated) {
  816. /* step 1: restore register */
  817. xhci_restore_registers(xhci);
  818. /* step 2: initialize command ring buffer */
  819. xhci_set_cmd_ring_deq(xhci);
  820. /* step 3: restore state and start state*/
  821. /* step 3: set CRS flag */
  822. command = xhci_readl(xhci, &xhci->op_regs->command);
  823. command |= CMD_CRS;
  824. xhci_writel(xhci, command, &xhci->op_regs->command);
  825. if (handshake(xhci, &xhci->op_regs->status,
  826. STS_RESTORE, 0, 10 * 1000)) {
  827. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  828. spin_unlock_irq(&xhci->lock);
  829. return -ETIMEDOUT;
  830. }
  831. temp = xhci_readl(xhci, &xhci->op_regs->status);
  832. }
  833. /* If restore operation fails, re-initialize the HC during resume */
  834. if ((temp & STS_SRE) || hibernated) {
  835. /* Let the USB core know _both_ roothubs lost power. */
  836. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  837. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  838. xhci_dbg(xhci, "Stop HCD\n");
  839. xhci_halt(xhci);
  840. xhci_reset(xhci);
  841. spin_unlock_irq(&xhci->lock);
  842. xhci_cleanup_msix(xhci);
  843. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  844. /* Tell the event ring poll function not to reschedule */
  845. xhci->zombie = 1;
  846. del_timer_sync(&xhci->event_ring_timer);
  847. #endif
  848. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  849. temp = xhci_readl(xhci, &xhci->op_regs->status);
  850. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  851. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  852. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  853. &xhci->ir_set->irq_pending);
  854. xhci_print_ir_set(xhci, 0);
  855. xhci_dbg(xhci, "cleaning up memory\n");
  856. xhci_mem_cleanup(xhci);
  857. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  858. xhci_readl(xhci, &xhci->op_regs->status));
  859. /* USB core calls the PCI reinit and start functions twice:
  860. * first with the primary HCD, and then with the secondary HCD.
  861. * If we don't do the same, the host will never be started.
  862. */
  863. if (!usb_hcd_is_primary_hcd(hcd))
  864. secondary_hcd = hcd;
  865. else
  866. secondary_hcd = xhci->shared_hcd;
  867. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  868. retval = xhci_init(hcd->primary_hcd);
  869. if (retval)
  870. return retval;
  871. xhci_dbg(xhci, "Start the primary HCD\n");
  872. retval = xhci_run(hcd->primary_hcd);
  873. if (!retval) {
  874. xhci_dbg(xhci, "Start the secondary HCD\n");
  875. retval = xhci_run(secondary_hcd);
  876. }
  877. hcd->state = HC_STATE_SUSPENDED;
  878. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  879. goto done;
  880. }
  881. /* step 4: set Run/Stop bit */
  882. command = xhci_readl(xhci, &xhci->op_regs->command);
  883. command |= CMD_RUN;
  884. xhci_writel(xhci, command, &xhci->op_regs->command);
  885. handshake(xhci, &xhci->op_regs->status, STS_HALT,
  886. 0, 250 * 1000);
  887. /* step 5: walk topology and initialize portsc,
  888. * portpmsc and portli
  889. */
  890. /* this is done in bus_resume */
  891. /* step 6: restart each of the previously
  892. * Running endpoints by ringing their doorbells
  893. */
  894. spin_unlock_irq(&xhci->lock);
  895. done:
  896. if (retval == 0) {
  897. usb_hcd_resume_root_hub(hcd);
  898. usb_hcd_resume_root_hub(xhci->shared_hcd);
  899. }
  900. /*
  901. * If system is subject to the Quirk, Compliance Mode Timer needs to
  902. * be re-initialized Always after a system resume. Ports are subject
  903. * to suffer the Compliance Mode issue again. It doesn't matter if
  904. * ports have entered previously to U0 before system's suspension.
  905. */
  906. if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
  907. compliance_mode_recovery_timer_init(xhci);
  908. return retval;
  909. }
  910. #endif /* CONFIG_PM */
  911. /*-------------------------------------------------------------------------*/
  912. /**
  913. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  914. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  915. * value to right shift 1 for the bitmask.
  916. *
  917. * Index = (epnum * 2) + direction - 1,
  918. * where direction = 0 for OUT, 1 for IN.
  919. * For control endpoints, the IN index is used (OUT index is unused), so
  920. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  921. */
  922. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  923. {
  924. unsigned int index;
  925. if (usb_endpoint_xfer_control(desc))
  926. index = (unsigned int) (usb_endpoint_num(desc)*2);
  927. else
  928. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  929. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  930. return index;
  931. }
  932. /* Find the flag for this endpoint (for use in the control context). Use the
  933. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  934. * bit 1, etc.
  935. */
  936. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  937. {
  938. return 1 << (xhci_get_endpoint_index(desc) + 1);
  939. }
  940. /* Find the flag for this endpoint (for use in the control context). Use the
  941. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  942. * bit 1, etc.
  943. */
  944. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  945. {
  946. return 1 << (ep_index + 1);
  947. }
  948. /* Compute the last valid endpoint context index. Basically, this is the
  949. * endpoint index plus one. For slot contexts with more than valid endpoint,
  950. * we find the most significant bit set in the added contexts flags.
  951. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  952. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  953. */
  954. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  955. {
  956. return fls(added_ctxs) - 1;
  957. }
  958. /* Returns 1 if the arguments are OK;
  959. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  960. */
  961. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  962. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  963. const char *func) {
  964. struct xhci_hcd *xhci;
  965. struct xhci_virt_device *virt_dev;
  966. if (!hcd || (check_ep && !ep) || !udev) {
  967. printk(KERN_DEBUG "xHCI %s called with invalid args\n",
  968. func);
  969. return -EINVAL;
  970. }
  971. if (!udev->parent) {
  972. printk(KERN_DEBUG "xHCI %s called for root hub\n",
  973. func);
  974. return 0;
  975. }
  976. xhci = hcd_to_xhci(hcd);
  977. if (xhci->xhc_state & XHCI_STATE_HALTED)
  978. return -ENODEV;
  979. if (check_virt_dev) {
  980. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  981. printk(KERN_DEBUG "xHCI %s called with unaddressed "
  982. "device\n", func);
  983. return -EINVAL;
  984. }
  985. virt_dev = xhci->devs[udev->slot_id];
  986. if (virt_dev->udev != udev) {
  987. printk(KERN_DEBUG "xHCI %s called with udev and "
  988. "virt_dev does not match\n", func);
  989. return -EINVAL;
  990. }
  991. }
  992. return 1;
  993. }
  994. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  995. struct usb_device *udev, struct xhci_command *command,
  996. bool ctx_change, bool must_succeed);
  997. /*
  998. * Full speed devices may have a max packet size greater than 8 bytes, but the
  999. * USB core doesn't know that until it reads the first 8 bytes of the
  1000. * descriptor. If the usb_device's max packet size changes after that point,
  1001. * we need to issue an evaluate context command and wait on it.
  1002. */
  1003. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  1004. unsigned int ep_index, struct urb *urb)
  1005. {
  1006. struct xhci_container_ctx *in_ctx;
  1007. struct xhci_container_ctx *out_ctx;
  1008. struct xhci_input_control_ctx *ctrl_ctx;
  1009. struct xhci_ep_ctx *ep_ctx;
  1010. int max_packet_size;
  1011. int hw_max_packet_size;
  1012. int ret = 0;
  1013. out_ctx = xhci->devs[slot_id]->out_ctx;
  1014. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1015. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  1016. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  1017. if (hw_max_packet_size != max_packet_size) {
  1018. xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
  1019. xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
  1020. max_packet_size);
  1021. xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
  1022. hw_max_packet_size);
  1023. xhci_dbg(xhci, "Issuing evaluate context command.\n");
  1024. /* Set up the modified control endpoint 0 */
  1025. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1026. xhci->devs[slot_id]->out_ctx, ep_index);
  1027. in_ctx = xhci->devs[slot_id]->in_ctx;
  1028. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1029. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1030. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1031. /* Set up the input context flags for the command */
  1032. /* FIXME: This won't work if a non-default control endpoint
  1033. * changes max packet sizes.
  1034. */
  1035. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1036. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1037. ctrl_ctx->drop_flags = 0;
  1038. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1039. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1040. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1041. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1042. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1043. true, false);
  1044. /* Clean up the input context for later use by bandwidth
  1045. * functions.
  1046. */
  1047. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1048. }
  1049. return ret;
  1050. }
  1051. /*
  1052. * non-error returns are a promise to giveback() the urb later
  1053. * we drop ownership so next owner (or urb unlink) can get it
  1054. */
  1055. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1056. {
  1057. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1058. struct xhci_td *buffer;
  1059. unsigned long flags;
  1060. int ret = 0;
  1061. unsigned int slot_id, ep_index;
  1062. struct urb_priv *urb_priv;
  1063. int size, i;
  1064. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1065. true, true, __func__) <= 0)
  1066. return -EINVAL;
  1067. slot_id = urb->dev->slot_id;
  1068. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1069. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1070. if (!in_interrupt())
  1071. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1072. ret = -ESHUTDOWN;
  1073. goto exit;
  1074. }
  1075. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1076. size = urb->number_of_packets;
  1077. else
  1078. size = 1;
  1079. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1080. size * sizeof(struct xhci_td *), mem_flags);
  1081. if (!urb_priv)
  1082. return -ENOMEM;
  1083. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1084. if (!buffer) {
  1085. kfree(urb_priv);
  1086. return -ENOMEM;
  1087. }
  1088. for (i = 0; i < size; i++) {
  1089. urb_priv->td[i] = buffer;
  1090. buffer++;
  1091. }
  1092. urb_priv->length = size;
  1093. urb_priv->td_cnt = 0;
  1094. urb->hcpriv = urb_priv;
  1095. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1096. /* Check to see if the max packet size for the default control
  1097. * endpoint changed during FS device enumeration
  1098. */
  1099. if (urb->dev->speed == USB_SPEED_FULL) {
  1100. ret = xhci_check_maxpacket(xhci, slot_id,
  1101. ep_index, urb);
  1102. if (ret < 0) {
  1103. xhci_urb_free_priv(xhci, urb_priv);
  1104. urb->hcpriv = NULL;
  1105. return ret;
  1106. }
  1107. }
  1108. /* We have a spinlock and interrupts disabled, so we must pass
  1109. * atomic context to this function, which may allocate memory.
  1110. */
  1111. spin_lock_irqsave(&xhci->lock, flags);
  1112. if (xhci->xhc_state & XHCI_STATE_DYING)
  1113. goto dying;
  1114. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1115. slot_id, ep_index);
  1116. if (ret)
  1117. goto free_priv;
  1118. spin_unlock_irqrestore(&xhci->lock, flags);
  1119. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1120. spin_lock_irqsave(&xhci->lock, flags);
  1121. if (xhci->xhc_state & XHCI_STATE_DYING)
  1122. goto dying;
  1123. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1124. EP_GETTING_STREAMS) {
  1125. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1126. "is transitioning to using streams.\n");
  1127. ret = -EINVAL;
  1128. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1129. EP_GETTING_NO_STREAMS) {
  1130. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1131. "is transitioning to "
  1132. "not having streams.\n");
  1133. ret = -EINVAL;
  1134. } else {
  1135. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1136. slot_id, ep_index);
  1137. }
  1138. if (ret)
  1139. goto free_priv;
  1140. spin_unlock_irqrestore(&xhci->lock, flags);
  1141. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1142. spin_lock_irqsave(&xhci->lock, flags);
  1143. if (xhci->xhc_state & XHCI_STATE_DYING)
  1144. goto dying;
  1145. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1146. slot_id, ep_index);
  1147. if (ret)
  1148. goto free_priv;
  1149. spin_unlock_irqrestore(&xhci->lock, flags);
  1150. } else {
  1151. spin_lock_irqsave(&xhci->lock, flags);
  1152. if (xhci->xhc_state & XHCI_STATE_DYING)
  1153. goto dying;
  1154. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1155. slot_id, ep_index);
  1156. if (ret)
  1157. goto free_priv;
  1158. spin_unlock_irqrestore(&xhci->lock, flags);
  1159. }
  1160. exit:
  1161. return ret;
  1162. dying:
  1163. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1164. "non-responsive xHCI host.\n",
  1165. urb->ep->desc.bEndpointAddress, urb);
  1166. ret = -ESHUTDOWN;
  1167. free_priv:
  1168. xhci_urb_free_priv(xhci, urb_priv);
  1169. urb->hcpriv = NULL;
  1170. spin_unlock_irqrestore(&xhci->lock, flags);
  1171. return ret;
  1172. }
  1173. /* Get the right ring for the given URB.
  1174. * If the endpoint supports streams, boundary check the URB's stream ID.
  1175. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1176. */
  1177. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1178. struct urb *urb)
  1179. {
  1180. unsigned int slot_id;
  1181. unsigned int ep_index;
  1182. unsigned int stream_id;
  1183. struct xhci_virt_ep *ep;
  1184. slot_id = urb->dev->slot_id;
  1185. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1186. stream_id = urb->stream_id;
  1187. ep = &xhci->devs[slot_id]->eps[ep_index];
  1188. /* Common case: no streams */
  1189. if (!(ep->ep_state & EP_HAS_STREAMS))
  1190. return ep->ring;
  1191. if (stream_id == 0) {
  1192. xhci_warn(xhci,
  1193. "WARN: Slot ID %u, ep index %u has streams, "
  1194. "but URB has no stream ID.\n",
  1195. slot_id, ep_index);
  1196. return NULL;
  1197. }
  1198. if (stream_id < ep->stream_info->num_streams)
  1199. return ep->stream_info->stream_rings[stream_id];
  1200. xhci_warn(xhci,
  1201. "WARN: Slot ID %u, ep index %u has "
  1202. "stream IDs 1 to %u allocated, "
  1203. "but stream ID %u is requested.\n",
  1204. slot_id, ep_index,
  1205. ep->stream_info->num_streams - 1,
  1206. stream_id);
  1207. return NULL;
  1208. }
  1209. /*
  1210. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1211. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1212. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1213. * Dequeue Pointer is issued.
  1214. *
  1215. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1216. * the ring. Since the ring is a contiguous structure, they can't be physically
  1217. * removed. Instead, there are two options:
  1218. *
  1219. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1220. * simply move the ring's dequeue pointer past those TRBs using the Set
  1221. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1222. * when drivers timeout on the last submitted URB and attempt to cancel.
  1223. *
  1224. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1225. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1226. * HC will need to invalidate the any TRBs it has cached after the stop
  1227. * endpoint command, as noted in the xHCI 0.95 errata.
  1228. *
  1229. * 3) The TD may have completed by the time the Stop Endpoint Command
  1230. * completes, so software needs to handle that case too.
  1231. *
  1232. * This function should protect against the TD enqueueing code ringing the
  1233. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1234. * It also needs to account for multiple cancellations on happening at the same
  1235. * time for the same endpoint.
  1236. *
  1237. * Note that this function can be called in any context, or so says
  1238. * usb_hcd_unlink_urb()
  1239. */
  1240. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1241. {
  1242. unsigned long flags;
  1243. int ret, i;
  1244. u32 temp;
  1245. struct xhci_hcd *xhci;
  1246. struct urb_priv *urb_priv;
  1247. struct xhci_td *td;
  1248. unsigned int ep_index;
  1249. struct xhci_ring *ep_ring;
  1250. struct xhci_virt_ep *ep;
  1251. xhci = hcd_to_xhci(hcd);
  1252. spin_lock_irqsave(&xhci->lock, flags);
  1253. /* Make sure the URB hasn't completed or been unlinked already */
  1254. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1255. if (ret || !urb->hcpriv)
  1256. goto done;
  1257. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1258. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1259. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1260. urb_priv = urb->hcpriv;
  1261. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1262. td = urb_priv->td[i];
  1263. if (!list_empty(&td->td_list))
  1264. list_del_init(&td->td_list);
  1265. if (!list_empty(&td->cancelled_td_list))
  1266. list_del_init(&td->cancelled_td_list);
  1267. }
  1268. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1269. spin_unlock_irqrestore(&xhci->lock, flags);
  1270. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1271. xhci_urb_free_priv(xhci, urb_priv);
  1272. return ret;
  1273. }
  1274. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1275. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1276. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1277. "non-responsive xHCI host.\n",
  1278. urb->ep->desc.bEndpointAddress, urb);
  1279. /* Let the stop endpoint command watchdog timer (which set this
  1280. * state) finish cleaning up the endpoint TD lists. We must
  1281. * have caught it in the middle of dropping a lock and giving
  1282. * back an URB.
  1283. */
  1284. goto done;
  1285. }
  1286. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1287. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1288. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1289. if (!ep_ring) {
  1290. ret = -EINVAL;
  1291. goto done;
  1292. }
  1293. urb_priv = urb->hcpriv;
  1294. i = urb_priv->td_cnt;
  1295. if (i < urb_priv->length)
  1296. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1297. "starting at offset 0x%llx\n",
  1298. urb, urb->dev->devpath,
  1299. urb->ep->desc.bEndpointAddress,
  1300. (unsigned long long) xhci_trb_virt_to_dma(
  1301. urb_priv->td[i]->start_seg,
  1302. urb_priv->td[i]->first_trb));
  1303. for (; i < urb_priv->length; i++) {
  1304. td = urb_priv->td[i];
  1305. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1306. }
  1307. /* Queue a stop endpoint command, but only if this is
  1308. * the first cancellation to be handled.
  1309. */
  1310. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1311. ep->ep_state |= EP_HALT_PENDING;
  1312. ep->stop_cmds_pending++;
  1313. ep->stop_cmd_timer.expires = jiffies +
  1314. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1315. add_timer(&ep->stop_cmd_timer);
  1316. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1317. xhci_ring_cmd_db(xhci);
  1318. }
  1319. done:
  1320. spin_unlock_irqrestore(&xhci->lock, flags);
  1321. return ret;
  1322. }
  1323. /* Drop an endpoint from a new bandwidth configuration for this device.
  1324. * Only one call to this function is allowed per endpoint before
  1325. * check_bandwidth() or reset_bandwidth() must be called.
  1326. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1327. * add the endpoint to the schedule with possibly new parameters denoted by a
  1328. * different endpoint descriptor in usb_host_endpoint.
  1329. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1330. * not allowed.
  1331. *
  1332. * The USB core will not allow URBs to be queued to an endpoint that is being
  1333. * disabled, so there's no need for mutual exclusion to protect
  1334. * the xhci->devs[slot_id] structure.
  1335. */
  1336. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1337. struct usb_host_endpoint *ep)
  1338. {
  1339. struct xhci_hcd *xhci;
  1340. struct xhci_container_ctx *in_ctx, *out_ctx;
  1341. struct xhci_input_control_ctx *ctrl_ctx;
  1342. struct xhci_slot_ctx *slot_ctx;
  1343. unsigned int last_ctx;
  1344. unsigned int ep_index;
  1345. struct xhci_ep_ctx *ep_ctx;
  1346. u32 drop_flag;
  1347. u32 new_add_flags, new_drop_flags, new_slot_info;
  1348. int ret;
  1349. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1350. if (ret <= 0)
  1351. return ret;
  1352. xhci = hcd_to_xhci(hcd);
  1353. if (xhci->xhc_state & XHCI_STATE_DYING)
  1354. return -ENODEV;
  1355. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1356. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1357. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1358. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1359. __func__, drop_flag);
  1360. return 0;
  1361. }
  1362. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1363. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1364. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1365. ep_index = xhci_get_endpoint_index(&ep->desc);
  1366. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1367. /* If the HC already knows the endpoint is disabled,
  1368. * or the HCD has noted it is disabled, ignore this request
  1369. */
  1370. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1371. cpu_to_le32(EP_STATE_DISABLED)) ||
  1372. le32_to_cpu(ctrl_ctx->drop_flags) &
  1373. xhci_get_endpoint_flag(&ep->desc)) {
  1374. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1375. __func__, ep);
  1376. return 0;
  1377. }
  1378. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1379. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1380. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1381. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1382. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1383. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1384. /* Update the last valid endpoint context, if we deleted the last one */
  1385. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1386. LAST_CTX(last_ctx)) {
  1387. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1388. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1389. }
  1390. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1391. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1392. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1393. (unsigned int) ep->desc.bEndpointAddress,
  1394. udev->slot_id,
  1395. (unsigned int) new_drop_flags,
  1396. (unsigned int) new_add_flags,
  1397. (unsigned int) new_slot_info);
  1398. return 0;
  1399. }
  1400. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1401. * Only one call to this function is allowed per endpoint before
  1402. * check_bandwidth() or reset_bandwidth() must be called.
  1403. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1404. * add the endpoint to the schedule with possibly new parameters denoted by a
  1405. * different endpoint descriptor in usb_host_endpoint.
  1406. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1407. * not allowed.
  1408. *
  1409. * The USB core will not allow URBs to be queued to an endpoint until the
  1410. * configuration or alt setting is installed in the device, so there's no need
  1411. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1412. */
  1413. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1414. struct usb_host_endpoint *ep)
  1415. {
  1416. struct xhci_hcd *xhci;
  1417. struct xhci_container_ctx *in_ctx, *out_ctx;
  1418. unsigned int ep_index;
  1419. struct xhci_ep_ctx *ep_ctx;
  1420. struct xhci_slot_ctx *slot_ctx;
  1421. struct xhci_input_control_ctx *ctrl_ctx;
  1422. u32 added_ctxs;
  1423. unsigned int last_ctx;
  1424. u32 new_add_flags, new_drop_flags, new_slot_info;
  1425. struct xhci_virt_device *virt_dev;
  1426. int ret = 0;
  1427. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1428. if (ret <= 0) {
  1429. /* So we won't queue a reset ep command for a root hub */
  1430. ep->hcpriv = NULL;
  1431. return ret;
  1432. }
  1433. xhci = hcd_to_xhci(hcd);
  1434. if (xhci->xhc_state & XHCI_STATE_DYING)
  1435. return -ENODEV;
  1436. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1437. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1438. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1439. /* FIXME when we have to issue an evaluate endpoint command to
  1440. * deal with ep0 max packet size changing once we get the
  1441. * descriptors
  1442. */
  1443. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1444. __func__, added_ctxs);
  1445. return 0;
  1446. }
  1447. virt_dev = xhci->devs[udev->slot_id];
  1448. in_ctx = virt_dev->in_ctx;
  1449. out_ctx = virt_dev->out_ctx;
  1450. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1451. ep_index = xhci_get_endpoint_index(&ep->desc);
  1452. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1453. /* If this endpoint is already in use, and the upper layers are trying
  1454. * to add it again without dropping it, reject the addition.
  1455. */
  1456. if (virt_dev->eps[ep_index].ring &&
  1457. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1458. xhci_get_endpoint_flag(&ep->desc))) {
  1459. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1460. "without dropping it.\n",
  1461. (unsigned int) ep->desc.bEndpointAddress);
  1462. return -EINVAL;
  1463. }
  1464. /* If the HCD has already noted the endpoint is enabled,
  1465. * ignore this request.
  1466. */
  1467. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1468. xhci_get_endpoint_flag(&ep->desc)) {
  1469. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1470. __func__, ep);
  1471. return 0;
  1472. }
  1473. /*
  1474. * Configuration and alternate setting changes must be done in
  1475. * process context, not interrupt context (or so documenation
  1476. * for usb_set_interface() and usb_set_configuration() claim).
  1477. */
  1478. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1479. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1480. __func__, ep->desc.bEndpointAddress);
  1481. return -ENOMEM;
  1482. }
  1483. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1484. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1485. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1486. * xHC hasn't been notified yet through the check_bandwidth() call,
  1487. * this re-adds a new state for the endpoint from the new endpoint
  1488. * descriptors. We must drop and re-add this endpoint, so we leave the
  1489. * drop flags alone.
  1490. */
  1491. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1492. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1493. /* Update the last valid endpoint context, if we just added one past */
  1494. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1495. LAST_CTX(last_ctx)) {
  1496. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1497. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1498. }
  1499. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1500. /* Store the usb_device pointer for later use */
  1501. ep->hcpriv = udev;
  1502. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1503. (unsigned int) ep->desc.bEndpointAddress,
  1504. udev->slot_id,
  1505. (unsigned int) new_drop_flags,
  1506. (unsigned int) new_add_flags,
  1507. (unsigned int) new_slot_info);
  1508. return 0;
  1509. }
  1510. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1511. {
  1512. struct xhci_input_control_ctx *ctrl_ctx;
  1513. struct xhci_ep_ctx *ep_ctx;
  1514. struct xhci_slot_ctx *slot_ctx;
  1515. int i;
  1516. /* When a device's add flag and drop flag are zero, any subsequent
  1517. * configure endpoint command will leave that endpoint's state
  1518. * untouched. Make sure we don't leave any old state in the input
  1519. * endpoint contexts.
  1520. */
  1521. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1522. ctrl_ctx->drop_flags = 0;
  1523. ctrl_ctx->add_flags = 0;
  1524. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1525. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1526. /* Endpoint 0 is always valid */
  1527. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1528. for (i = 1; i < 31; ++i) {
  1529. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1530. ep_ctx->ep_info = 0;
  1531. ep_ctx->ep_info2 = 0;
  1532. ep_ctx->deq = 0;
  1533. ep_ctx->tx_info = 0;
  1534. }
  1535. }
  1536. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1537. struct usb_device *udev, u32 *cmd_status)
  1538. {
  1539. int ret;
  1540. switch (*cmd_status) {
  1541. case COMP_ENOMEM:
  1542. dev_warn(&udev->dev, "Not enough host controller resources "
  1543. "for new device state.\n");
  1544. ret = -ENOMEM;
  1545. /* FIXME: can we allocate more resources for the HC? */
  1546. break;
  1547. case COMP_BW_ERR:
  1548. case COMP_2ND_BW_ERR:
  1549. dev_warn(&udev->dev, "Not enough bandwidth "
  1550. "for new device state.\n");
  1551. ret = -ENOSPC;
  1552. /* FIXME: can we go back to the old state? */
  1553. break;
  1554. case COMP_TRB_ERR:
  1555. /* the HCD set up something wrong */
  1556. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1557. "add flag = 1, "
  1558. "and endpoint is not disabled.\n");
  1559. ret = -EINVAL;
  1560. break;
  1561. case COMP_DEV_ERR:
  1562. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1563. "configure command.\n");
  1564. ret = -ENODEV;
  1565. break;
  1566. case COMP_SUCCESS:
  1567. dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
  1568. ret = 0;
  1569. break;
  1570. default:
  1571. xhci_err(xhci, "ERROR: unexpected command completion "
  1572. "code 0x%x.\n", *cmd_status);
  1573. ret = -EINVAL;
  1574. break;
  1575. }
  1576. return ret;
  1577. }
  1578. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1579. struct usb_device *udev, u32 *cmd_status)
  1580. {
  1581. int ret;
  1582. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1583. switch (*cmd_status) {
  1584. case COMP_EINVAL:
  1585. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1586. "context command.\n");
  1587. ret = -EINVAL;
  1588. break;
  1589. case COMP_EBADSLT:
  1590. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1591. "evaluate context command.\n");
  1592. case COMP_CTX_STATE:
  1593. dev_warn(&udev->dev, "WARN: invalid context state for "
  1594. "evaluate context command.\n");
  1595. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1596. ret = -EINVAL;
  1597. break;
  1598. case COMP_DEV_ERR:
  1599. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1600. "context command.\n");
  1601. ret = -ENODEV;
  1602. break;
  1603. case COMP_MEL_ERR:
  1604. /* Max Exit Latency too large error */
  1605. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1606. ret = -EINVAL;
  1607. break;
  1608. case COMP_SUCCESS:
  1609. dev_dbg(&udev->dev, "Successful evaluate context command\n");
  1610. ret = 0;
  1611. break;
  1612. default:
  1613. xhci_err(xhci, "ERROR: unexpected command completion "
  1614. "code 0x%x.\n", *cmd_status);
  1615. ret = -EINVAL;
  1616. break;
  1617. }
  1618. return ret;
  1619. }
  1620. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1621. struct xhci_container_ctx *in_ctx)
  1622. {
  1623. struct xhci_input_control_ctx *ctrl_ctx;
  1624. u32 valid_add_flags;
  1625. u32 valid_drop_flags;
  1626. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1627. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1628. * (bit 1). The default control endpoint is added during the Address
  1629. * Device command and is never removed until the slot is disabled.
  1630. */
  1631. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1632. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1633. /* Use hweight32 to count the number of ones in the add flags, or
  1634. * number of endpoints added. Don't count endpoints that are changed
  1635. * (both added and dropped).
  1636. */
  1637. return hweight32(valid_add_flags) -
  1638. hweight32(valid_add_flags & valid_drop_flags);
  1639. }
  1640. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1641. struct xhci_container_ctx *in_ctx)
  1642. {
  1643. struct xhci_input_control_ctx *ctrl_ctx;
  1644. u32 valid_add_flags;
  1645. u32 valid_drop_flags;
  1646. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1647. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1648. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1649. return hweight32(valid_drop_flags) -
  1650. hweight32(valid_add_flags & valid_drop_flags);
  1651. }
  1652. /*
  1653. * We need to reserve the new number of endpoints before the configure endpoint
  1654. * command completes. We can't subtract the dropped endpoints from the number
  1655. * of active endpoints until the command completes because we can oversubscribe
  1656. * the host in this case:
  1657. *
  1658. * - the first configure endpoint command drops more endpoints than it adds
  1659. * - a second configure endpoint command that adds more endpoints is queued
  1660. * - the first configure endpoint command fails, so the config is unchanged
  1661. * - the second command may succeed, even though there isn't enough resources
  1662. *
  1663. * Must be called with xhci->lock held.
  1664. */
  1665. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1666. struct xhci_container_ctx *in_ctx)
  1667. {
  1668. u32 added_eps;
  1669. added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1670. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1671. xhci_dbg(xhci, "Not enough ep ctxs: "
  1672. "%u active, need to add %u, limit is %u.\n",
  1673. xhci->num_active_eps, added_eps,
  1674. xhci->limit_active_eps);
  1675. return -ENOMEM;
  1676. }
  1677. xhci->num_active_eps += added_eps;
  1678. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1679. xhci->num_active_eps);
  1680. return 0;
  1681. }
  1682. /*
  1683. * The configure endpoint was failed by the xHC for some other reason, so we
  1684. * need to revert the resources that failed configuration would have used.
  1685. *
  1686. * Must be called with xhci->lock held.
  1687. */
  1688. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1689. struct xhci_container_ctx *in_ctx)
  1690. {
  1691. u32 num_failed_eps;
  1692. num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
  1693. xhci->num_active_eps -= num_failed_eps;
  1694. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1695. num_failed_eps,
  1696. xhci->num_active_eps);
  1697. }
  1698. /*
  1699. * Now that the command has completed, clean up the active endpoint count by
  1700. * subtracting out the endpoints that were dropped (but not changed).
  1701. *
  1702. * Must be called with xhci->lock held.
  1703. */
  1704. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1705. struct xhci_container_ctx *in_ctx)
  1706. {
  1707. u32 num_dropped_eps;
  1708. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
  1709. xhci->num_active_eps -= num_dropped_eps;
  1710. if (num_dropped_eps)
  1711. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1712. num_dropped_eps,
  1713. xhci->num_active_eps);
  1714. }
  1715. unsigned int xhci_get_block_size(struct usb_device *udev)
  1716. {
  1717. switch (udev->speed) {
  1718. case USB_SPEED_LOW:
  1719. case USB_SPEED_FULL:
  1720. return FS_BLOCK;
  1721. case USB_SPEED_HIGH:
  1722. return HS_BLOCK;
  1723. case USB_SPEED_SUPER:
  1724. return SS_BLOCK;
  1725. case USB_SPEED_UNKNOWN:
  1726. case USB_SPEED_WIRELESS:
  1727. default:
  1728. /* Should never happen */
  1729. return 1;
  1730. }
  1731. }
  1732. unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1733. {
  1734. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1735. return LS_OVERHEAD;
  1736. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1737. return FS_OVERHEAD;
  1738. return HS_OVERHEAD;
  1739. }
  1740. /* If we are changing a LS/FS device under a HS hub,
  1741. * make sure (if we are activating a new TT) that the HS bus has enough
  1742. * bandwidth for this new TT.
  1743. */
  1744. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1745. struct xhci_virt_device *virt_dev,
  1746. int old_active_eps)
  1747. {
  1748. struct xhci_interval_bw_table *bw_table;
  1749. struct xhci_tt_bw_info *tt_info;
  1750. /* Find the bandwidth table for the root port this TT is attached to. */
  1751. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1752. tt_info = virt_dev->tt_info;
  1753. /* If this TT already had active endpoints, the bandwidth for this TT
  1754. * has already been added. Removing all periodic endpoints (and thus
  1755. * making the TT enactive) will only decrease the bandwidth used.
  1756. */
  1757. if (old_active_eps)
  1758. return 0;
  1759. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1760. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1761. return -ENOMEM;
  1762. return 0;
  1763. }
  1764. /* Not sure why we would have no new active endpoints...
  1765. *
  1766. * Maybe because of an Evaluate Context change for a hub update or a
  1767. * control endpoint 0 max packet size change?
  1768. * FIXME: skip the bandwidth calculation in that case.
  1769. */
  1770. return 0;
  1771. }
  1772. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1773. struct xhci_virt_device *virt_dev)
  1774. {
  1775. unsigned int bw_reserved;
  1776. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1777. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1778. return -ENOMEM;
  1779. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1780. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1781. return -ENOMEM;
  1782. return 0;
  1783. }
  1784. /*
  1785. * This algorithm is a very conservative estimate of the worst-case scheduling
  1786. * scenario for any one interval. The hardware dynamically schedules the
  1787. * packets, so we can't tell which microframe could be the limiting factor in
  1788. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1789. *
  1790. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1791. * case scenario. Instead, we come up with an estimate that is no less than
  1792. * the worst case bandwidth used for any one microframe, but may be an
  1793. * over-estimate.
  1794. *
  1795. * We walk the requirements for each endpoint by interval, starting with the
  1796. * smallest interval, and place packets in the schedule where there is only one
  1797. * possible way to schedule packets for that interval. In order to simplify
  1798. * this algorithm, we record the largest max packet size for each interval, and
  1799. * assume all packets will be that size.
  1800. *
  1801. * For interval 0, we obviously must schedule all packets for each interval.
  1802. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1803. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1804. * the number of packets).
  1805. *
  1806. * For interval 1, we have two possible microframes to schedule those packets
  1807. * in. For this algorithm, if we can schedule the same number of packets for
  1808. * each possible scheduling opportunity (each microframe), we will do so. The
  1809. * remaining number of packets will be saved to be transmitted in the gaps in
  1810. * the next interval's scheduling sequence.
  1811. *
  1812. * As we move those remaining packets to be scheduled with interval 2 packets,
  1813. * we have to double the number of remaining packets to transmit. This is
  1814. * because the intervals are actually powers of 2, and we would be transmitting
  1815. * the previous interval's packets twice in this interval. We also have to be
  1816. * sure that when we look at the largest max packet size for this interval, we
  1817. * also look at the largest max packet size for the remaining packets and take
  1818. * the greater of the two.
  1819. *
  1820. * The algorithm continues to evenly distribute packets in each scheduling
  1821. * opportunity, and push the remaining packets out, until we get to the last
  1822. * interval. Then those packets and their associated overhead are just added
  1823. * to the bandwidth used.
  1824. */
  1825. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1826. struct xhci_virt_device *virt_dev,
  1827. int old_active_eps)
  1828. {
  1829. unsigned int bw_reserved;
  1830. unsigned int max_bandwidth;
  1831. unsigned int bw_used;
  1832. unsigned int block_size;
  1833. struct xhci_interval_bw_table *bw_table;
  1834. unsigned int packet_size = 0;
  1835. unsigned int overhead = 0;
  1836. unsigned int packets_transmitted = 0;
  1837. unsigned int packets_remaining = 0;
  1838. unsigned int i;
  1839. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1840. return xhci_check_ss_bw(xhci, virt_dev);
  1841. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1842. max_bandwidth = HS_BW_LIMIT;
  1843. /* Convert percent of bus BW reserved to blocks reserved */
  1844. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1845. } else {
  1846. max_bandwidth = FS_BW_LIMIT;
  1847. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1848. }
  1849. bw_table = virt_dev->bw_table;
  1850. /* We need to translate the max packet size and max ESIT payloads into
  1851. * the units the hardware uses.
  1852. */
  1853. block_size = xhci_get_block_size(virt_dev->udev);
  1854. /* If we are manipulating a LS/FS device under a HS hub, double check
  1855. * that the HS bus has enough bandwidth if we are activing a new TT.
  1856. */
  1857. if (virt_dev->tt_info) {
  1858. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1859. virt_dev->real_port);
  1860. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1861. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1862. "newly activated TT.\n");
  1863. return -ENOMEM;
  1864. }
  1865. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1866. virt_dev->tt_info->slot_id,
  1867. virt_dev->tt_info->ttport);
  1868. } else {
  1869. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1870. virt_dev->real_port);
  1871. }
  1872. /* Add in how much bandwidth will be used for interval zero, or the
  1873. * rounded max ESIT payload + number of packets * largest overhead.
  1874. */
  1875. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1876. bw_table->interval_bw[0].num_packets *
  1877. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1878. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1879. unsigned int bw_added;
  1880. unsigned int largest_mps;
  1881. unsigned int interval_overhead;
  1882. /*
  1883. * How many packets could we transmit in this interval?
  1884. * If packets didn't fit in the previous interval, we will need
  1885. * to transmit that many packets twice within this interval.
  1886. */
  1887. packets_remaining = 2 * packets_remaining +
  1888. bw_table->interval_bw[i].num_packets;
  1889. /* Find the largest max packet size of this or the previous
  1890. * interval.
  1891. */
  1892. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1893. largest_mps = 0;
  1894. else {
  1895. struct xhci_virt_ep *virt_ep;
  1896. struct list_head *ep_entry;
  1897. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1898. virt_ep = list_entry(ep_entry,
  1899. struct xhci_virt_ep, bw_endpoint_list);
  1900. /* Convert to blocks, rounding up */
  1901. largest_mps = DIV_ROUND_UP(
  1902. virt_ep->bw_info.max_packet_size,
  1903. block_size);
  1904. }
  1905. if (largest_mps > packet_size)
  1906. packet_size = largest_mps;
  1907. /* Use the larger overhead of this or the previous interval. */
  1908. interval_overhead = xhci_get_largest_overhead(
  1909. &bw_table->interval_bw[i]);
  1910. if (interval_overhead > overhead)
  1911. overhead = interval_overhead;
  1912. /* How many packets can we evenly distribute across
  1913. * (1 << (i + 1)) possible scheduling opportunities?
  1914. */
  1915. packets_transmitted = packets_remaining >> (i + 1);
  1916. /* Add in the bandwidth used for those scheduled packets */
  1917. bw_added = packets_transmitted * (overhead + packet_size);
  1918. /* How many packets do we have remaining to transmit? */
  1919. packets_remaining = packets_remaining % (1 << (i + 1));
  1920. /* What largest max packet size should those packets have? */
  1921. /* If we've transmitted all packets, don't carry over the
  1922. * largest packet size.
  1923. */
  1924. if (packets_remaining == 0) {
  1925. packet_size = 0;
  1926. overhead = 0;
  1927. } else if (packets_transmitted > 0) {
  1928. /* Otherwise if we do have remaining packets, and we've
  1929. * scheduled some packets in this interval, take the
  1930. * largest max packet size from endpoints with this
  1931. * interval.
  1932. */
  1933. packet_size = largest_mps;
  1934. overhead = interval_overhead;
  1935. }
  1936. /* Otherwise carry over packet_size and overhead from the last
  1937. * time we had a remainder.
  1938. */
  1939. bw_used += bw_added;
  1940. if (bw_used > max_bandwidth) {
  1941. xhci_warn(xhci, "Not enough bandwidth. "
  1942. "Proposed: %u, Max: %u\n",
  1943. bw_used, max_bandwidth);
  1944. return -ENOMEM;
  1945. }
  1946. }
  1947. /*
  1948. * Ok, we know we have some packets left over after even-handedly
  1949. * scheduling interval 15. We don't know which microframes they will
  1950. * fit into, so we over-schedule and say they will be scheduled every
  1951. * microframe.
  1952. */
  1953. if (packets_remaining > 0)
  1954. bw_used += overhead + packet_size;
  1955. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1956. unsigned int port_index = virt_dev->real_port - 1;
  1957. /* OK, we're manipulating a HS device attached to a
  1958. * root port bandwidth domain. Include the number of active TTs
  1959. * in the bandwidth used.
  1960. */
  1961. bw_used += TT_HS_OVERHEAD *
  1962. xhci->rh_bw[port_index].num_active_tts;
  1963. }
  1964. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1965. "Available: %u " "percent\n",
  1966. bw_used, max_bandwidth, bw_reserved,
  1967. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1968. max_bandwidth);
  1969. bw_used += bw_reserved;
  1970. if (bw_used > max_bandwidth) {
  1971. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  1972. bw_used, max_bandwidth);
  1973. return -ENOMEM;
  1974. }
  1975. bw_table->bw_used = bw_used;
  1976. return 0;
  1977. }
  1978. static bool xhci_is_async_ep(unsigned int ep_type)
  1979. {
  1980. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1981. ep_type != ISOC_IN_EP &&
  1982. ep_type != INT_IN_EP);
  1983. }
  1984. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  1985. {
  1986. return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
  1987. }
  1988. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  1989. {
  1990. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  1991. if (ep_bw->ep_interval == 0)
  1992. return SS_OVERHEAD_BURST +
  1993. (ep_bw->mult * ep_bw->num_packets *
  1994. (SS_OVERHEAD + mps));
  1995. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  1996. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  1997. 1 << ep_bw->ep_interval);
  1998. }
  1999. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  2000. struct xhci_bw_info *ep_bw,
  2001. struct xhci_interval_bw_table *bw_table,
  2002. struct usb_device *udev,
  2003. struct xhci_virt_ep *virt_ep,
  2004. struct xhci_tt_bw_info *tt_info)
  2005. {
  2006. struct xhci_interval_bw *interval_bw;
  2007. int normalized_interval;
  2008. if (xhci_is_async_ep(ep_bw->type))
  2009. return;
  2010. if (udev->speed == USB_SPEED_SUPER) {
  2011. if (xhci_is_sync_in_ep(ep_bw->type))
  2012. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2013. xhci_get_ss_bw_consumed(ep_bw);
  2014. else
  2015. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2016. xhci_get_ss_bw_consumed(ep_bw);
  2017. return;
  2018. }
  2019. /* SuperSpeed endpoints never get added to intervals in the table, so
  2020. * this check is only valid for HS/FS/LS devices.
  2021. */
  2022. if (list_empty(&virt_ep->bw_endpoint_list))
  2023. return;
  2024. /* For LS/FS devices, we need to translate the interval expressed in
  2025. * microframes to frames.
  2026. */
  2027. if (udev->speed == USB_SPEED_HIGH)
  2028. normalized_interval = ep_bw->ep_interval;
  2029. else
  2030. normalized_interval = ep_bw->ep_interval - 3;
  2031. if (normalized_interval == 0)
  2032. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2033. interval_bw = &bw_table->interval_bw[normalized_interval];
  2034. interval_bw->num_packets -= ep_bw->num_packets;
  2035. switch (udev->speed) {
  2036. case USB_SPEED_LOW:
  2037. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2038. break;
  2039. case USB_SPEED_FULL:
  2040. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2041. break;
  2042. case USB_SPEED_HIGH:
  2043. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2044. break;
  2045. case USB_SPEED_SUPER:
  2046. case USB_SPEED_UNKNOWN:
  2047. case USB_SPEED_WIRELESS:
  2048. /* Should never happen because only LS/FS/HS endpoints will get
  2049. * added to the endpoint list.
  2050. */
  2051. return;
  2052. }
  2053. if (tt_info)
  2054. tt_info->active_eps -= 1;
  2055. list_del_init(&virt_ep->bw_endpoint_list);
  2056. }
  2057. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2058. struct xhci_bw_info *ep_bw,
  2059. struct xhci_interval_bw_table *bw_table,
  2060. struct usb_device *udev,
  2061. struct xhci_virt_ep *virt_ep,
  2062. struct xhci_tt_bw_info *tt_info)
  2063. {
  2064. struct xhci_interval_bw *interval_bw;
  2065. struct xhci_virt_ep *smaller_ep;
  2066. int normalized_interval;
  2067. if (xhci_is_async_ep(ep_bw->type))
  2068. return;
  2069. if (udev->speed == USB_SPEED_SUPER) {
  2070. if (xhci_is_sync_in_ep(ep_bw->type))
  2071. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2072. xhci_get_ss_bw_consumed(ep_bw);
  2073. else
  2074. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2075. xhci_get_ss_bw_consumed(ep_bw);
  2076. return;
  2077. }
  2078. /* For LS/FS devices, we need to translate the interval expressed in
  2079. * microframes to frames.
  2080. */
  2081. if (udev->speed == USB_SPEED_HIGH)
  2082. normalized_interval = ep_bw->ep_interval;
  2083. else
  2084. normalized_interval = ep_bw->ep_interval - 3;
  2085. if (normalized_interval == 0)
  2086. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2087. interval_bw = &bw_table->interval_bw[normalized_interval];
  2088. interval_bw->num_packets += ep_bw->num_packets;
  2089. switch (udev->speed) {
  2090. case USB_SPEED_LOW:
  2091. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2092. break;
  2093. case USB_SPEED_FULL:
  2094. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2095. break;
  2096. case USB_SPEED_HIGH:
  2097. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2098. break;
  2099. case USB_SPEED_SUPER:
  2100. case USB_SPEED_UNKNOWN:
  2101. case USB_SPEED_WIRELESS:
  2102. /* Should never happen because only LS/FS/HS endpoints will get
  2103. * added to the endpoint list.
  2104. */
  2105. return;
  2106. }
  2107. if (tt_info)
  2108. tt_info->active_eps += 1;
  2109. /* Insert the endpoint into the list, largest max packet size first. */
  2110. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2111. bw_endpoint_list) {
  2112. if (ep_bw->max_packet_size >=
  2113. smaller_ep->bw_info.max_packet_size) {
  2114. /* Add the new ep before the smaller endpoint */
  2115. list_add_tail(&virt_ep->bw_endpoint_list,
  2116. &smaller_ep->bw_endpoint_list);
  2117. return;
  2118. }
  2119. }
  2120. /* Add the new endpoint at the end of the list. */
  2121. list_add_tail(&virt_ep->bw_endpoint_list,
  2122. &interval_bw->endpoints);
  2123. }
  2124. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2125. struct xhci_virt_device *virt_dev,
  2126. int old_active_eps)
  2127. {
  2128. struct xhci_root_port_bw_info *rh_bw_info;
  2129. if (!virt_dev->tt_info)
  2130. return;
  2131. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2132. if (old_active_eps == 0 &&
  2133. virt_dev->tt_info->active_eps != 0) {
  2134. rh_bw_info->num_active_tts += 1;
  2135. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2136. } else if (old_active_eps != 0 &&
  2137. virt_dev->tt_info->active_eps == 0) {
  2138. rh_bw_info->num_active_tts -= 1;
  2139. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2140. }
  2141. }
  2142. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2143. struct xhci_virt_device *virt_dev,
  2144. struct xhci_container_ctx *in_ctx)
  2145. {
  2146. struct xhci_bw_info ep_bw_info[31];
  2147. int i;
  2148. struct xhci_input_control_ctx *ctrl_ctx;
  2149. int old_active_eps = 0;
  2150. if (virt_dev->tt_info)
  2151. old_active_eps = virt_dev->tt_info->active_eps;
  2152. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2153. for (i = 0; i < 31; i++) {
  2154. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2155. continue;
  2156. /* Make a copy of the BW info in case we need to revert this */
  2157. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2158. sizeof(ep_bw_info[i]));
  2159. /* Drop the endpoint from the interval table if the endpoint is
  2160. * being dropped or changed.
  2161. */
  2162. if (EP_IS_DROPPED(ctrl_ctx, i))
  2163. xhci_drop_ep_from_interval_table(xhci,
  2164. &virt_dev->eps[i].bw_info,
  2165. virt_dev->bw_table,
  2166. virt_dev->udev,
  2167. &virt_dev->eps[i],
  2168. virt_dev->tt_info);
  2169. }
  2170. /* Overwrite the information stored in the endpoints' bw_info */
  2171. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2172. for (i = 0; i < 31; i++) {
  2173. /* Add any changed or added endpoints to the interval table */
  2174. if (EP_IS_ADDED(ctrl_ctx, i))
  2175. xhci_add_ep_to_interval_table(xhci,
  2176. &virt_dev->eps[i].bw_info,
  2177. virt_dev->bw_table,
  2178. virt_dev->udev,
  2179. &virt_dev->eps[i],
  2180. virt_dev->tt_info);
  2181. }
  2182. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2183. /* Ok, this fits in the bandwidth we have.
  2184. * Update the number of active TTs.
  2185. */
  2186. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2187. return 0;
  2188. }
  2189. /* We don't have enough bandwidth for this, revert the stored info. */
  2190. for (i = 0; i < 31; i++) {
  2191. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2192. continue;
  2193. /* Drop the new copies of any added or changed endpoints from
  2194. * the interval table.
  2195. */
  2196. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2197. xhci_drop_ep_from_interval_table(xhci,
  2198. &virt_dev->eps[i].bw_info,
  2199. virt_dev->bw_table,
  2200. virt_dev->udev,
  2201. &virt_dev->eps[i],
  2202. virt_dev->tt_info);
  2203. }
  2204. /* Revert the endpoint back to its old information */
  2205. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2206. sizeof(ep_bw_info[i]));
  2207. /* Add any changed or dropped endpoints back into the table */
  2208. if (EP_IS_DROPPED(ctrl_ctx, i))
  2209. xhci_add_ep_to_interval_table(xhci,
  2210. &virt_dev->eps[i].bw_info,
  2211. virt_dev->bw_table,
  2212. virt_dev->udev,
  2213. &virt_dev->eps[i],
  2214. virt_dev->tt_info);
  2215. }
  2216. return -ENOMEM;
  2217. }
  2218. /* Issue a configure endpoint command or evaluate context command
  2219. * and wait for it to finish.
  2220. */
  2221. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2222. struct usb_device *udev,
  2223. struct xhci_command *command,
  2224. bool ctx_change, bool must_succeed)
  2225. {
  2226. int ret;
  2227. int timeleft;
  2228. unsigned long flags;
  2229. struct xhci_container_ctx *in_ctx;
  2230. struct completion *cmd_completion;
  2231. u32 *cmd_status;
  2232. struct xhci_virt_device *virt_dev;
  2233. spin_lock_irqsave(&xhci->lock, flags);
  2234. virt_dev = xhci->devs[udev->slot_id];
  2235. if (command)
  2236. in_ctx = command->in_ctx;
  2237. else
  2238. in_ctx = virt_dev->in_ctx;
  2239. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2240. xhci_reserve_host_resources(xhci, in_ctx)) {
  2241. spin_unlock_irqrestore(&xhci->lock, flags);
  2242. xhci_warn(xhci, "Not enough host resources, "
  2243. "active endpoint contexts = %u\n",
  2244. xhci->num_active_eps);
  2245. return -ENOMEM;
  2246. }
  2247. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2248. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2249. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2250. xhci_free_host_resources(xhci, in_ctx);
  2251. spin_unlock_irqrestore(&xhci->lock, flags);
  2252. xhci_warn(xhci, "Not enough bandwidth\n");
  2253. return -ENOMEM;
  2254. }
  2255. if (command) {
  2256. cmd_completion = command->completion;
  2257. cmd_status = &command->status;
  2258. command->command_trb = xhci->cmd_ring->enqueue;
  2259. /* Enqueue pointer can be left pointing to the link TRB,
  2260. * we must handle that
  2261. */
  2262. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2263. command->command_trb =
  2264. xhci->cmd_ring->enq_seg->next->trbs;
  2265. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2266. } else {
  2267. cmd_completion = &virt_dev->cmd_completion;
  2268. cmd_status = &virt_dev->cmd_status;
  2269. }
  2270. init_completion(cmd_completion);
  2271. if (!ctx_change)
  2272. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2273. udev->slot_id, must_succeed);
  2274. else
  2275. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2276. udev->slot_id, must_succeed);
  2277. if (ret < 0) {
  2278. if (command)
  2279. list_del(&command->cmd_list);
  2280. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2281. xhci_free_host_resources(xhci, in_ctx);
  2282. spin_unlock_irqrestore(&xhci->lock, flags);
  2283. xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
  2284. return -ENOMEM;
  2285. }
  2286. xhci_ring_cmd_db(xhci);
  2287. spin_unlock_irqrestore(&xhci->lock, flags);
  2288. /* Wait for the configure endpoint command to complete */
  2289. timeleft = wait_for_completion_interruptible_timeout(
  2290. cmd_completion,
  2291. USB_CTRL_SET_TIMEOUT);
  2292. if (timeleft <= 0) {
  2293. xhci_warn(xhci, "%s while waiting for %s command\n",
  2294. timeleft == 0 ? "Timeout" : "Signal",
  2295. ctx_change == 0 ?
  2296. "configure endpoint" :
  2297. "evaluate context");
  2298. /* FIXME cancel the configure endpoint command */
  2299. return -ETIME;
  2300. }
  2301. if (!ctx_change)
  2302. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2303. else
  2304. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2305. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2306. spin_lock_irqsave(&xhci->lock, flags);
  2307. /* If the command failed, remove the reserved resources.
  2308. * Otherwise, clean up the estimate to include dropped eps.
  2309. */
  2310. if (ret)
  2311. xhci_free_host_resources(xhci, in_ctx);
  2312. else
  2313. xhci_finish_resource_reservation(xhci, in_ctx);
  2314. spin_unlock_irqrestore(&xhci->lock, flags);
  2315. }
  2316. return ret;
  2317. }
  2318. /* Called after one or more calls to xhci_add_endpoint() or
  2319. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2320. * to call xhci_reset_bandwidth().
  2321. *
  2322. * Since we are in the middle of changing either configuration or
  2323. * installing a new alt setting, the USB core won't allow URBs to be
  2324. * enqueued for any endpoint on the old config or interface. Nothing
  2325. * else should be touching the xhci->devs[slot_id] structure, so we
  2326. * don't need to take the xhci->lock for manipulating that.
  2327. */
  2328. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2329. {
  2330. int i;
  2331. int ret = 0;
  2332. struct xhci_hcd *xhci;
  2333. struct xhci_virt_device *virt_dev;
  2334. struct xhci_input_control_ctx *ctrl_ctx;
  2335. struct xhci_slot_ctx *slot_ctx;
  2336. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2337. if (ret <= 0)
  2338. return ret;
  2339. xhci = hcd_to_xhci(hcd);
  2340. if (xhci->xhc_state & XHCI_STATE_DYING)
  2341. return -ENODEV;
  2342. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2343. virt_dev = xhci->devs[udev->slot_id];
  2344. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2345. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2346. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2347. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2348. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2349. /* Don't issue the command if there's no endpoints to update. */
  2350. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2351. ctrl_ctx->drop_flags == 0)
  2352. return 0;
  2353. xhci_dbg(xhci, "New Input Control Context:\n");
  2354. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2355. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2356. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2357. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2358. false, false);
  2359. if (ret) {
  2360. /* Callee should call reset_bandwidth() */
  2361. return ret;
  2362. }
  2363. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2364. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2365. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2366. /* Free any rings that were dropped, but not changed. */
  2367. for (i = 1; i < 31; ++i) {
  2368. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2369. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2370. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2371. }
  2372. xhci_zero_in_ctx(xhci, virt_dev);
  2373. /*
  2374. * Install any rings for completely new endpoints or changed endpoints,
  2375. * and free or cache any old rings from changed endpoints.
  2376. */
  2377. for (i = 1; i < 31; ++i) {
  2378. if (!virt_dev->eps[i].new_ring)
  2379. continue;
  2380. /* Only cache or free the old ring if it exists.
  2381. * It may not if this is the first add of an endpoint.
  2382. */
  2383. if (virt_dev->eps[i].ring) {
  2384. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2385. }
  2386. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2387. virt_dev->eps[i].new_ring = NULL;
  2388. }
  2389. return ret;
  2390. }
  2391. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2392. {
  2393. struct xhci_hcd *xhci;
  2394. struct xhci_virt_device *virt_dev;
  2395. int i, ret;
  2396. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2397. if (ret <= 0)
  2398. return;
  2399. xhci = hcd_to_xhci(hcd);
  2400. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2401. virt_dev = xhci->devs[udev->slot_id];
  2402. /* Free any rings allocated for added endpoints */
  2403. for (i = 0; i < 31; ++i) {
  2404. if (virt_dev->eps[i].new_ring) {
  2405. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2406. virt_dev->eps[i].new_ring = NULL;
  2407. }
  2408. }
  2409. xhci_zero_in_ctx(xhci, virt_dev);
  2410. }
  2411. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2412. struct xhci_container_ctx *in_ctx,
  2413. struct xhci_container_ctx *out_ctx,
  2414. u32 add_flags, u32 drop_flags)
  2415. {
  2416. struct xhci_input_control_ctx *ctrl_ctx;
  2417. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2418. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2419. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2420. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2421. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2422. xhci_dbg(xhci, "Input Context:\n");
  2423. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2424. }
  2425. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2426. unsigned int slot_id, unsigned int ep_index,
  2427. struct xhci_dequeue_state *deq_state)
  2428. {
  2429. struct xhci_container_ctx *in_ctx;
  2430. struct xhci_ep_ctx *ep_ctx;
  2431. u32 added_ctxs;
  2432. dma_addr_t addr;
  2433. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2434. xhci->devs[slot_id]->out_ctx, ep_index);
  2435. in_ctx = xhci->devs[slot_id]->in_ctx;
  2436. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2437. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2438. deq_state->new_deq_ptr);
  2439. if (addr == 0) {
  2440. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2441. "reset ep command\n");
  2442. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2443. deq_state->new_deq_seg,
  2444. deq_state->new_deq_ptr);
  2445. return;
  2446. }
  2447. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2448. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2449. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2450. xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
  2451. }
  2452. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2453. struct usb_device *udev, unsigned int ep_index)
  2454. {
  2455. struct xhci_dequeue_state deq_state;
  2456. struct xhci_virt_ep *ep;
  2457. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2458. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2459. /* We need to move the HW's dequeue pointer past this TD,
  2460. * or it will attempt to resend it on the next doorbell ring.
  2461. */
  2462. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2463. ep_index, ep->stopped_stream, ep->stopped_td,
  2464. &deq_state);
  2465. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2466. * issue a configure endpoint command later.
  2467. */
  2468. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2469. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2470. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2471. ep_index, ep->stopped_stream, &deq_state);
  2472. } else {
  2473. /* Better hope no one uses the input context between now and the
  2474. * reset endpoint completion!
  2475. * XXX: No idea how this hardware will react when stream rings
  2476. * are enabled.
  2477. */
  2478. xhci_dbg(xhci, "Setting up input context for "
  2479. "configure endpoint command\n");
  2480. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2481. ep_index, &deq_state);
  2482. }
  2483. }
  2484. /* Deal with stalled endpoints. The core should have sent the control message
  2485. * to clear the halt condition. However, we need to make the xHCI hardware
  2486. * reset its sequence number, since a device will expect a sequence number of
  2487. * zero after the halt condition is cleared.
  2488. * Context: in_interrupt
  2489. */
  2490. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2491. struct usb_host_endpoint *ep)
  2492. {
  2493. struct xhci_hcd *xhci;
  2494. struct usb_device *udev;
  2495. unsigned int ep_index;
  2496. unsigned long flags;
  2497. int ret;
  2498. struct xhci_virt_ep *virt_ep;
  2499. xhci = hcd_to_xhci(hcd);
  2500. udev = (struct usb_device *) ep->hcpriv;
  2501. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2502. * with xhci_add_endpoint()
  2503. */
  2504. if (!ep->hcpriv)
  2505. return;
  2506. ep_index = xhci_get_endpoint_index(&ep->desc);
  2507. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2508. if (!virt_ep->stopped_td) {
  2509. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2510. ep->desc.bEndpointAddress);
  2511. return;
  2512. }
  2513. if (usb_endpoint_xfer_control(&ep->desc)) {
  2514. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2515. return;
  2516. }
  2517. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2518. spin_lock_irqsave(&xhci->lock, flags);
  2519. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2520. /*
  2521. * Can't change the ring dequeue pointer until it's transitioned to the
  2522. * stopped state, which is only upon a successful reset endpoint
  2523. * command. Better hope that last command worked!
  2524. */
  2525. if (!ret) {
  2526. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2527. kfree(virt_ep->stopped_td);
  2528. xhci_ring_cmd_db(xhci);
  2529. }
  2530. virt_ep->stopped_td = NULL;
  2531. virt_ep->stopped_trb = NULL;
  2532. virt_ep->stopped_stream = 0;
  2533. spin_unlock_irqrestore(&xhci->lock, flags);
  2534. if (ret)
  2535. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2536. }
  2537. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2538. struct usb_device *udev, struct usb_host_endpoint *ep,
  2539. unsigned int slot_id)
  2540. {
  2541. int ret;
  2542. unsigned int ep_index;
  2543. unsigned int ep_state;
  2544. if (!ep)
  2545. return -EINVAL;
  2546. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2547. if (ret <= 0)
  2548. return -EINVAL;
  2549. if (ep->ss_ep_comp.bmAttributes == 0) {
  2550. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2551. " descriptor for ep 0x%x does not support streams\n",
  2552. ep->desc.bEndpointAddress);
  2553. return -EINVAL;
  2554. }
  2555. ep_index = xhci_get_endpoint_index(&ep->desc);
  2556. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2557. if (ep_state & EP_HAS_STREAMS ||
  2558. ep_state & EP_GETTING_STREAMS) {
  2559. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2560. "already has streams set up.\n",
  2561. ep->desc.bEndpointAddress);
  2562. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2563. "dynamic stream context array reallocation.\n");
  2564. return -EINVAL;
  2565. }
  2566. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2567. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2568. "endpoint 0x%x; URBs are pending.\n",
  2569. ep->desc.bEndpointAddress);
  2570. return -EINVAL;
  2571. }
  2572. return 0;
  2573. }
  2574. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2575. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2576. {
  2577. unsigned int max_streams;
  2578. /* The stream context array size must be a power of two */
  2579. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2580. /*
  2581. * Find out how many primary stream array entries the host controller
  2582. * supports. Later we may use secondary stream arrays (similar to 2nd
  2583. * level page entries), but that's an optional feature for xHCI host
  2584. * controllers. xHCs must support at least 4 stream IDs.
  2585. */
  2586. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2587. if (*num_stream_ctxs > max_streams) {
  2588. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2589. max_streams);
  2590. *num_stream_ctxs = max_streams;
  2591. *num_streams = max_streams;
  2592. }
  2593. }
  2594. /* Returns an error code if one of the endpoint already has streams.
  2595. * This does not change any data structures, it only checks and gathers
  2596. * information.
  2597. */
  2598. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2599. struct usb_device *udev,
  2600. struct usb_host_endpoint **eps, unsigned int num_eps,
  2601. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2602. {
  2603. unsigned int max_streams;
  2604. unsigned int endpoint_flag;
  2605. int i;
  2606. int ret;
  2607. for (i = 0; i < num_eps; i++) {
  2608. ret = xhci_check_streams_endpoint(xhci, udev,
  2609. eps[i], udev->slot_id);
  2610. if (ret < 0)
  2611. return ret;
  2612. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2613. if (max_streams < (*num_streams - 1)) {
  2614. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2615. eps[i]->desc.bEndpointAddress,
  2616. max_streams);
  2617. *num_streams = max_streams+1;
  2618. }
  2619. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2620. if (*changed_ep_bitmask & endpoint_flag)
  2621. return -EINVAL;
  2622. *changed_ep_bitmask |= endpoint_flag;
  2623. }
  2624. return 0;
  2625. }
  2626. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2627. struct usb_device *udev,
  2628. struct usb_host_endpoint **eps, unsigned int num_eps)
  2629. {
  2630. u32 changed_ep_bitmask = 0;
  2631. unsigned int slot_id;
  2632. unsigned int ep_index;
  2633. unsigned int ep_state;
  2634. int i;
  2635. slot_id = udev->slot_id;
  2636. if (!xhci->devs[slot_id])
  2637. return 0;
  2638. for (i = 0; i < num_eps; i++) {
  2639. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2640. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2641. /* Are streams already being freed for the endpoint? */
  2642. if (ep_state & EP_GETTING_NO_STREAMS) {
  2643. xhci_warn(xhci, "WARN Can't disable streams for "
  2644. "endpoint 0x%x\n, "
  2645. "streams are being disabled already.",
  2646. eps[i]->desc.bEndpointAddress);
  2647. return 0;
  2648. }
  2649. /* Are there actually any streams to free? */
  2650. if (!(ep_state & EP_HAS_STREAMS) &&
  2651. !(ep_state & EP_GETTING_STREAMS)) {
  2652. xhci_warn(xhci, "WARN Can't disable streams for "
  2653. "endpoint 0x%x\n, "
  2654. "streams are already disabled!",
  2655. eps[i]->desc.bEndpointAddress);
  2656. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2657. "with non-streams endpoint\n");
  2658. return 0;
  2659. }
  2660. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2661. }
  2662. return changed_ep_bitmask;
  2663. }
  2664. /*
  2665. * The USB device drivers use this function (though the HCD interface in USB
  2666. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2667. * coordinate mass storage command queueing across multiple endpoints (basically
  2668. * a stream ID == a task ID).
  2669. *
  2670. * Setting up streams involves allocating the same size stream context array
  2671. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2672. *
  2673. * Don't allow the call to succeed if one endpoint only supports one stream
  2674. * (which means it doesn't support streams at all).
  2675. *
  2676. * Drivers may get less stream IDs than they asked for, if the host controller
  2677. * hardware or endpoints claim they can't support the number of requested
  2678. * stream IDs.
  2679. */
  2680. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2681. struct usb_host_endpoint **eps, unsigned int num_eps,
  2682. unsigned int num_streams, gfp_t mem_flags)
  2683. {
  2684. int i, ret;
  2685. struct xhci_hcd *xhci;
  2686. struct xhci_virt_device *vdev;
  2687. struct xhci_command *config_cmd;
  2688. unsigned int ep_index;
  2689. unsigned int num_stream_ctxs;
  2690. unsigned long flags;
  2691. u32 changed_ep_bitmask = 0;
  2692. if (!eps)
  2693. return -EINVAL;
  2694. /* Add one to the number of streams requested to account for
  2695. * stream 0 that is reserved for xHCI usage.
  2696. */
  2697. num_streams += 1;
  2698. xhci = hcd_to_xhci(hcd);
  2699. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2700. num_streams);
  2701. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2702. if (!config_cmd) {
  2703. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2704. return -ENOMEM;
  2705. }
  2706. /* Check to make sure all endpoints are not already configured for
  2707. * streams. While we're at it, find the maximum number of streams that
  2708. * all the endpoints will support and check for duplicate endpoints.
  2709. */
  2710. spin_lock_irqsave(&xhci->lock, flags);
  2711. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2712. num_eps, &num_streams, &changed_ep_bitmask);
  2713. if (ret < 0) {
  2714. xhci_free_command(xhci, config_cmd);
  2715. spin_unlock_irqrestore(&xhci->lock, flags);
  2716. return ret;
  2717. }
  2718. if (num_streams <= 1) {
  2719. xhci_warn(xhci, "WARN: endpoints can't handle "
  2720. "more than one stream.\n");
  2721. xhci_free_command(xhci, config_cmd);
  2722. spin_unlock_irqrestore(&xhci->lock, flags);
  2723. return -EINVAL;
  2724. }
  2725. vdev = xhci->devs[udev->slot_id];
  2726. /* Mark each endpoint as being in transition, so
  2727. * xhci_urb_enqueue() will reject all URBs.
  2728. */
  2729. for (i = 0; i < num_eps; i++) {
  2730. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2731. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2732. }
  2733. spin_unlock_irqrestore(&xhci->lock, flags);
  2734. /* Setup internal data structures and allocate HW data structures for
  2735. * streams (but don't install the HW structures in the input context
  2736. * until we're sure all memory allocation succeeded).
  2737. */
  2738. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2739. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2740. num_stream_ctxs, num_streams);
  2741. for (i = 0; i < num_eps; i++) {
  2742. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2743. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2744. num_stream_ctxs,
  2745. num_streams, mem_flags);
  2746. if (!vdev->eps[ep_index].stream_info)
  2747. goto cleanup;
  2748. /* Set maxPstreams in endpoint context and update deq ptr to
  2749. * point to stream context array. FIXME
  2750. */
  2751. }
  2752. /* Set up the input context for a configure endpoint command. */
  2753. for (i = 0; i < num_eps; i++) {
  2754. struct xhci_ep_ctx *ep_ctx;
  2755. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2756. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2757. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2758. vdev->out_ctx, ep_index);
  2759. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2760. vdev->eps[ep_index].stream_info);
  2761. }
  2762. /* Tell the HW to drop its old copy of the endpoint context info
  2763. * and add the updated copy from the input context.
  2764. */
  2765. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2766. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2767. /* Issue and wait for the configure endpoint command */
  2768. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2769. false, false);
  2770. /* xHC rejected the configure endpoint command for some reason, so we
  2771. * leave the old ring intact and free our internal streams data
  2772. * structure.
  2773. */
  2774. if (ret < 0)
  2775. goto cleanup;
  2776. spin_lock_irqsave(&xhci->lock, flags);
  2777. for (i = 0; i < num_eps; i++) {
  2778. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2779. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2780. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2781. udev->slot_id, ep_index);
  2782. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2783. }
  2784. xhci_free_command(xhci, config_cmd);
  2785. spin_unlock_irqrestore(&xhci->lock, flags);
  2786. /* Subtract 1 for stream 0, which drivers can't use */
  2787. return num_streams - 1;
  2788. cleanup:
  2789. /* If it didn't work, free the streams! */
  2790. for (i = 0; i < num_eps; i++) {
  2791. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2792. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2793. vdev->eps[ep_index].stream_info = NULL;
  2794. /* FIXME Unset maxPstreams in endpoint context and
  2795. * update deq ptr to point to normal string ring.
  2796. */
  2797. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2798. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2799. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2800. }
  2801. xhci_free_command(xhci, config_cmd);
  2802. return -ENOMEM;
  2803. }
  2804. /* Transition the endpoint from using streams to being a "normal" endpoint
  2805. * without streams.
  2806. *
  2807. * Modify the endpoint context state, submit a configure endpoint command,
  2808. * and free all endpoint rings for streams if that completes successfully.
  2809. */
  2810. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2811. struct usb_host_endpoint **eps, unsigned int num_eps,
  2812. gfp_t mem_flags)
  2813. {
  2814. int i, ret;
  2815. struct xhci_hcd *xhci;
  2816. struct xhci_virt_device *vdev;
  2817. struct xhci_command *command;
  2818. unsigned int ep_index;
  2819. unsigned long flags;
  2820. u32 changed_ep_bitmask;
  2821. xhci = hcd_to_xhci(hcd);
  2822. vdev = xhci->devs[udev->slot_id];
  2823. /* Set up a configure endpoint command to remove the streams rings */
  2824. spin_lock_irqsave(&xhci->lock, flags);
  2825. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2826. udev, eps, num_eps);
  2827. if (changed_ep_bitmask == 0) {
  2828. spin_unlock_irqrestore(&xhci->lock, flags);
  2829. return -EINVAL;
  2830. }
  2831. /* Use the xhci_command structure from the first endpoint. We may have
  2832. * allocated too many, but the driver may call xhci_free_streams() for
  2833. * each endpoint it grouped into one call to xhci_alloc_streams().
  2834. */
  2835. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2836. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2837. for (i = 0; i < num_eps; i++) {
  2838. struct xhci_ep_ctx *ep_ctx;
  2839. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2840. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2841. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2842. EP_GETTING_NO_STREAMS;
  2843. xhci_endpoint_copy(xhci, command->in_ctx,
  2844. vdev->out_ctx, ep_index);
  2845. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2846. &vdev->eps[ep_index]);
  2847. }
  2848. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2849. vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
  2850. spin_unlock_irqrestore(&xhci->lock, flags);
  2851. /* Issue and wait for the configure endpoint command,
  2852. * which must succeed.
  2853. */
  2854. ret = xhci_configure_endpoint(xhci, udev, command,
  2855. false, true);
  2856. /* xHC rejected the configure endpoint command for some reason, so we
  2857. * leave the streams rings intact.
  2858. */
  2859. if (ret < 0)
  2860. return ret;
  2861. spin_lock_irqsave(&xhci->lock, flags);
  2862. for (i = 0; i < num_eps; i++) {
  2863. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2864. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2865. vdev->eps[ep_index].stream_info = NULL;
  2866. /* FIXME Unset maxPstreams in endpoint context and
  2867. * update deq ptr to point to normal string ring.
  2868. */
  2869. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2870. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2871. }
  2872. spin_unlock_irqrestore(&xhci->lock, flags);
  2873. return 0;
  2874. }
  2875. /*
  2876. * Deletes endpoint resources for endpoints that were active before a Reset
  2877. * Device command, or a Disable Slot command. The Reset Device command leaves
  2878. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2879. *
  2880. * Must be called with xhci->lock held.
  2881. */
  2882. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2883. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2884. {
  2885. int i;
  2886. unsigned int num_dropped_eps = 0;
  2887. unsigned int drop_flags = 0;
  2888. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2889. if (virt_dev->eps[i].ring) {
  2890. drop_flags |= 1 << i;
  2891. num_dropped_eps++;
  2892. }
  2893. }
  2894. xhci->num_active_eps -= num_dropped_eps;
  2895. if (num_dropped_eps)
  2896. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2897. "%u now active.\n",
  2898. num_dropped_eps, drop_flags,
  2899. xhci->num_active_eps);
  2900. }
  2901. /*
  2902. * This submits a Reset Device Command, which will set the device state to 0,
  2903. * set the device address to 0, and disable all the endpoints except the default
  2904. * control endpoint. The USB core should come back and call
  2905. * xhci_address_device(), and then re-set up the configuration. If this is
  2906. * called because of a usb_reset_and_verify_device(), then the old alternate
  2907. * settings will be re-installed through the normal bandwidth allocation
  2908. * functions.
  2909. *
  2910. * Wait for the Reset Device command to finish. Remove all structures
  2911. * associated with the endpoints that were disabled. Clear the input device
  2912. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2913. *
  2914. * If the virt_dev to be reset does not exist or does not match the udev,
  2915. * it means the device is lost, possibly due to the xHC restore error and
  2916. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2917. * re-allocate the device.
  2918. */
  2919. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2920. {
  2921. int ret, i;
  2922. unsigned long flags;
  2923. struct xhci_hcd *xhci;
  2924. unsigned int slot_id;
  2925. struct xhci_virt_device *virt_dev;
  2926. struct xhci_command *reset_device_cmd;
  2927. int timeleft;
  2928. int last_freed_endpoint;
  2929. struct xhci_slot_ctx *slot_ctx;
  2930. int old_active_eps = 0;
  2931. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2932. if (ret <= 0)
  2933. return ret;
  2934. xhci = hcd_to_xhci(hcd);
  2935. slot_id = udev->slot_id;
  2936. virt_dev = xhci->devs[slot_id];
  2937. if (!virt_dev) {
  2938. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2939. "not exist. Re-allocate the device\n", slot_id);
  2940. ret = xhci_alloc_dev(hcd, udev);
  2941. if (ret == 1)
  2942. return 0;
  2943. else
  2944. return -EINVAL;
  2945. }
  2946. if (virt_dev->udev != udev) {
  2947. /* If the virt_dev and the udev does not match, this virt_dev
  2948. * may belong to another udev.
  2949. * Re-allocate the device.
  2950. */
  2951. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2952. "not match the udev. Re-allocate the device\n",
  2953. slot_id);
  2954. ret = xhci_alloc_dev(hcd, udev);
  2955. if (ret == 1)
  2956. return 0;
  2957. else
  2958. return -EINVAL;
  2959. }
  2960. /* If device is not setup, there is no point in resetting it */
  2961. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  2962. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  2963. SLOT_STATE_DISABLED)
  2964. return 0;
  2965. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  2966. /* Allocate the command structure that holds the struct completion.
  2967. * Assume we're in process context, since the normal device reset
  2968. * process has to wait for the device anyway. Storage devices are
  2969. * reset as part of error handling, so use GFP_NOIO instead of
  2970. * GFP_KERNEL.
  2971. */
  2972. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  2973. if (!reset_device_cmd) {
  2974. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  2975. return -ENOMEM;
  2976. }
  2977. /* Attempt to submit the Reset Device command to the command ring */
  2978. spin_lock_irqsave(&xhci->lock, flags);
  2979. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  2980. /* Enqueue pointer can be left pointing to the link TRB,
  2981. * we must handle that
  2982. */
  2983. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  2984. reset_device_cmd->command_trb =
  2985. xhci->cmd_ring->enq_seg->next->trbs;
  2986. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  2987. ret = xhci_queue_reset_device(xhci, slot_id);
  2988. if (ret) {
  2989. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  2990. list_del(&reset_device_cmd->cmd_list);
  2991. spin_unlock_irqrestore(&xhci->lock, flags);
  2992. goto command_cleanup;
  2993. }
  2994. xhci_ring_cmd_db(xhci);
  2995. spin_unlock_irqrestore(&xhci->lock, flags);
  2996. /* Wait for the Reset Device command to finish */
  2997. timeleft = wait_for_completion_interruptible_timeout(
  2998. reset_device_cmd->completion,
  2999. USB_CTRL_SET_TIMEOUT);
  3000. if (timeleft <= 0) {
  3001. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3002. timeleft == 0 ? "Timeout" : "Signal");
  3003. spin_lock_irqsave(&xhci->lock, flags);
  3004. /* The timeout might have raced with the event ring handler, so
  3005. * only delete from the list if the item isn't poisoned.
  3006. */
  3007. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3008. list_del(&reset_device_cmd->cmd_list);
  3009. spin_unlock_irqrestore(&xhci->lock, flags);
  3010. ret = -ETIME;
  3011. goto command_cleanup;
  3012. }
  3013. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3014. * unless we tried to reset a slot ID that wasn't enabled,
  3015. * or the device wasn't in the addressed or configured state.
  3016. */
  3017. ret = reset_device_cmd->status;
  3018. switch (ret) {
  3019. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3020. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3021. xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3022. slot_id,
  3023. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3024. xhci_info(xhci, "Not freeing device rings.\n");
  3025. /* Don't treat this as an error. May change my mind later. */
  3026. ret = 0;
  3027. goto command_cleanup;
  3028. case COMP_SUCCESS:
  3029. xhci_dbg(xhci, "Successful reset device command.\n");
  3030. break;
  3031. default:
  3032. if (xhci_is_vendor_info_code(xhci, ret))
  3033. break;
  3034. xhci_warn(xhci, "Unknown completion code %u for "
  3035. "reset device command.\n", ret);
  3036. ret = -EINVAL;
  3037. goto command_cleanup;
  3038. }
  3039. /* Free up host controller endpoint resources */
  3040. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3041. spin_lock_irqsave(&xhci->lock, flags);
  3042. /* Don't delete the default control endpoint resources */
  3043. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3044. spin_unlock_irqrestore(&xhci->lock, flags);
  3045. }
  3046. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3047. last_freed_endpoint = 1;
  3048. for (i = 1; i < 31; ++i) {
  3049. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3050. if (ep->ep_state & EP_HAS_STREAMS) {
  3051. xhci_free_stream_info(xhci, ep->stream_info);
  3052. ep->stream_info = NULL;
  3053. ep->ep_state &= ~EP_HAS_STREAMS;
  3054. }
  3055. if (ep->ring) {
  3056. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3057. last_freed_endpoint = i;
  3058. }
  3059. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3060. xhci_drop_ep_from_interval_table(xhci,
  3061. &virt_dev->eps[i].bw_info,
  3062. virt_dev->bw_table,
  3063. udev,
  3064. &virt_dev->eps[i],
  3065. virt_dev->tt_info);
  3066. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3067. }
  3068. /* If necessary, update the number of active TTs on this root port */
  3069. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3070. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3071. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3072. ret = 0;
  3073. command_cleanup:
  3074. xhci_free_command(xhci, reset_device_cmd);
  3075. return ret;
  3076. }
  3077. /*
  3078. * At this point, the struct usb_device is about to go away, the device has
  3079. * disconnected, and all traffic has been stopped and the endpoints have been
  3080. * disabled. Free any HC data structures associated with that device.
  3081. */
  3082. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3083. {
  3084. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3085. struct xhci_virt_device *virt_dev;
  3086. unsigned long flags;
  3087. u32 state;
  3088. int i, ret;
  3089. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3090. /* If the host is halted due to driver unload, we still need to free the
  3091. * device.
  3092. */
  3093. if (ret <= 0 && ret != -ENODEV)
  3094. return;
  3095. virt_dev = xhci->devs[udev->slot_id];
  3096. /* Stop any wayward timer functions (which may grab the lock) */
  3097. for (i = 0; i < 31; ++i) {
  3098. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3099. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3100. }
  3101. if (udev->usb2_hw_lpm_enabled) {
  3102. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3103. udev->usb2_hw_lpm_enabled = 0;
  3104. }
  3105. spin_lock_irqsave(&xhci->lock, flags);
  3106. /* Don't disable the slot if the host controller is dead. */
  3107. state = xhci_readl(xhci, &xhci->op_regs->status);
  3108. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3109. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3110. xhci_free_virt_device(xhci, udev->slot_id);
  3111. spin_unlock_irqrestore(&xhci->lock, flags);
  3112. return;
  3113. }
  3114. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3115. spin_unlock_irqrestore(&xhci->lock, flags);
  3116. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3117. return;
  3118. }
  3119. xhci_ring_cmd_db(xhci);
  3120. spin_unlock_irqrestore(&xhci->lock, flags);
  3121. /*
  3122. * Event command completion handler will free any data structures
  3123. * associated with the slot. XXX Can free sleep?
  3124. */
  3125. }
  3126. /*
  3127. * Checks if we have enough host controller resources for the default control
  3128. * endpoint.
  3129. *
  3130. * Must be called with xhci->lock held.
  3131. */
  3132. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3133. {
  3134. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3135. xhci_dbg(xhci, "Not enough ep ctxs: "
  3136. "%u active, need to add 1, limit is %u.\n",
  3137. xhci->num_active_eps, xhci->limit_active_eps);
  3138. return -ENOMEM;
  3139. }
  3140. xhci->num_active_eps += 1;
  3141. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3142. xhci->num_active_eps);
  3143. return 0;
  3144. }
  3145. /*
  3146. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3147. * timed out, or allocating memory failed. Returns 1 on success.
  3148. */
  3149. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3150. {
  3151. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3152. unsigned long flags;
  3153. int timeleft;
  3154. int ret;
  3155. spin_lock_irqsave(&xhci->lock, flags);
  3156. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3157. if (ret) {
  3158. spin_unlock_irqrestore(&xhci->lock, flags);
  3159. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3160. return 0;
  3161. }
  3162. xhci_ring_cmd_db(xhci);
  3163. spin_unlock_irqrestore(&xhci->lock, flags);
  3164. /* XXX: how much time for xHC slot assignment? */
  3165. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3166. USB_CTRL_SET_TIMEOUT);
  3167. if (timeleft <= 0) {
  3168. xhci_warn(xhci, "%s while waiting for a slot\n",
  3169. timeleft == 0 ? "Timeout" : "Signal");
  3170. /* FIXME cancel the enable slot request */
  3171. return 0;
  3172. }
  3173. if (!xhci->slot_id) {
  3174. xhci_err(xhci, "Error while assigning device slot ID\n");
  3175. return 0;
  3176. }
  3177. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3178. spin_lock_irqsave(&xhci->lock, flags);
  3179. ret = xhci_reserve_host_control_ep_resources(xhci);
  3180. if (ret) {
  3181. spin_unlock_irqrestore(&xhci->lock, flags);
  3182. xhci_warn(xhci, "Not enough host resources, "
  3183. "active endpoint contexts = %u\n",
  3184. xhci->num_active_eps);
  3185. goto disable_slot;
  3186. }
  3187. spin_unlock_irqrestore(&xhci->lock, flags);
  3188. }
  3189. /* Use GFP_NOIO, since this function can be called from
  3190. * xhci_discover_or_reset_device(), which may be called as part of
  3191. * mass storage driver error handling.
  3192. */
  3193. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3194. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3195. goto disable_slot;
  3196. }
  3197. udev->slot_id = xhci->slot_id;
  3198. /* Is this a LS or FS device under a HS hub? */
  3199. /* Hub or peripherial? */
  3200. return 1;
  3201. disable_slot:
  3202. /* Disable slot, if we can do it without mem alloc */
  3203. spin_lock_irqsave(&xhci->lock, flags);
  3204. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3205. xhci_ring_cmd_db(xhci);
  3206. spin_unlock_irqrestore(&xhci->lock, flags);
  3207. return 0;
  3208. }
  3209. /*
  3210. * Issue an Address Device command (which will issue a SetAddress request to
  3211. * the device).
  3212. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3213. * we should only issue and wait on one address command at the same time.
  3214. *
  3215. * We add one to the device address issued by the hardware because the USB core
  3216. * uses address 1 for the root hubs (even though they're not really devices).
  3217. */
  3218. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3219. {
  3220. unsigned long flags;
  3221. int timeleft;
  3222. struct xhci_virt_device *virt_dev;
  3223. int ret = 0;
  3224. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3225. struct xhci_slot_ctx *slot_ctx;
  3226. struct xhci_input_control_ctx *ctrl_ctx;
  3227. u64 temp_64;
  3228. if (!udev->slot_id) {
  3229. xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
  3230. return -EINVAL;
  3231. }
  3232. virt_dev = xhci->devs[udev->slot_id];
  3233. if (WARN_ON(!virt_dev)) {
  3234. /*
  3235. * In plug/unplug torture test with an NEC controller,
  3236. * a zero-dereference was observed once due to virt_dev = 0.
  3237. * Print useful debug rather than crash if it is observed again!
  3238. */
  3239. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3240. udev->slot_id);
  3241. return -EINVAL;
  3242. }
  3243. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3244. /*
  3245. * If this is the first Set Address since device plug-in or
  3246. * virt_device realloaction after a resume with an xHCI power loss,
  3247. * then set up the slot context.
  3248. */
  3249. if (!slot_ctx->dev_info)
  3250. xhci_setup_addressable_virt_dev(xhci, udev);
  3251. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3252. else
  3253. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3254. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3255. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3256. ctrl_ctx->drop_flags = 0;
  3257. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3258. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3259. spin_lock_irqsave(&xhci->lock, flags);
  3260. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3261. udev->slot_id);
  3262. if (ret) {
  3263. spin_unlock_irqrestore(&xhci->lock, flags);
  3264. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3265. return ret;
  3266. }
  3267. xhci_ring_cmd_db(xhci);
  3268. spin_unlock_irqrestore(&xhci->lock, flags);
  3269. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3270. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3271. USB_CTRL_SET_TIMEOUT);
  3272. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3273. * the SetAddress() "recovery interval" required by USB and aborting the
  3274. * command on a timeout.
  3275. */
  3276. if (timeleft <= 0) {
  3277. xhci_warn(xhci, "%s while waiting for address device command\n",
  3278. timeleft == 0 ? "Timeout" : "Signal");
  3279. /* FIXME cancel the address device command */
  3280. return -ETIME;
  3281. }
  3282. switch (virt_dev->cmd_status) {
  3283. case COMP_CTX_STATE:
  3284. case COMP_EBADSLT:
  3285. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3286. udev->slot_id);
  3287. ret = -EINVAL;
  3288. break;
  3289. case COMP_TX_ERR:
  3290. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3291. ret = -EPROTO;
  3292. break;
  3293. case COMP_DEV_ERR:
  3294. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3295. "device command.\n");
  3296. ret = -ENODEV;
  3297. break;
  3298. case COMP_SUCCESS:
  3299. xhci_dbg(xhci, "Successful Address Device command\n");
  3300. break;
  3301. default:
  3302. xhci_err(xhci, "ERROR: unexpected command completion "
  3303. "code 0x%x.\n", virt_dev->cmd_status);
  3304. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3305. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3306. ret = -EINVAL;
  3307. break;
  3308. }
  3309. if (ret) {
  3310. return ret;
  3311. }
  3312. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3313. xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
  3314. xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
  3315. udev->slot_id,
  3316. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3317. (unsigned long long)
  3318. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3319. xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
  3320. (unsigned long long)virt_dev->out_ctx->dma);
  3321. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3322. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3323. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3324. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3325. /*
  3326. * USB core uses address 1 for the roothubs, so we add one to the
  3327. * address given back to us by the HC.
  3328. */
  3329. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3330. /* Use kernel assigned address for devices; store xHC assigned
  3331. * address locally. */
  3332. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3333. + 1;
  3334. /* Zero the input context control for later use */
  3335. ctrl_ctx->add_flags = 0;
  3336. ctrl_ctx->drop_flags = 0;
  3337. xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
  3338. return 0;
  3339. }
  3340. #ifdef CONFIG_USB_SUSPEND
  3341. /* BESL to HIRD Encoding array for USB2 LPM */
  3342. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3343. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3344. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3345. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3346. struct usb_device *udev)
  3347. {
  3348. int u2del, besl, besl_host;
  3349. int besl_device = 0;
  3350. u32 field;
  3351. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3352. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3353. if (field & USB_BESL_SUPPORT) {
  3354. for (besl_host = 0; besl_host < 16; besl_host++) {
  3355. if (xhci_besl_encoding[besl_host] >= u2del)
  3356. break;
  3357. }
  3358. /* Use baseline BESL value as default */
  3359. if (field & USB_BESL_BASELINE_VALID)
  3360. besl_device = USB_GET_BESL_BASELINE(field);
  3361. else if (field & USB_BESL_DEEP_VALID)
  3362. besl_device = USB_GET_BESL_DEEP(field);
  3363. } else {
  3364. if (u2del <= 50)
  3365. besl_host = 0;
  3366. else
  3367. besl_host = (u2del - 51) / 75 + 1;
  3368. }
  3369. besl = besl_host + besl_device;
  3370. if (besl > 15)
  3371. besl = 15;
  3372. return besl;
  3373. }
  3374. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3375. struct usb_device *udev)
  3376. {
  3377. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3378. struct dev_info *dev_info;
  3379. __le32 __iomem **port_array;
  3380. __le32 __iomem *addr, *pm_addr;
  3381. u32 temp, dev_id;
  3382. unsigned int port_num;
  3383. unsigned long flags;
  3384. int hird;
  3385. int ret;
  3386. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3387. !udev->lpm_capable)
  3388. return -EINVAL;
  3389. /* we only support lpm for non-hub device connected to root hub yet */
  3390. if (!udev->parent || udev->parent->parent ||
  3391. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3392. return -EINVAL;
  3393. spin_lock_irqsave(&xhci->lock, flags);
  3394. /* Look for devices in lpm_failed_devs list */
  3395. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3396. le16_to_cpu(udev->descriptor.idProduct);
  3397. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3398. if (dev_info->dev_id == dev_id) {
  3399. ret = -EINVAL;
  3400. goto finish;
  3401. }
  3402. }
  3403. port_array = xhci->usb2_ports;
  3404. port_num = udev->portnum - 1;
  3405. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3406. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3407. ret = -EINVAL;
  3408. goto finish;
  3409. }
  3410. /*
  3411. * Test USB 2.0 software LPM.
  3412. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3413. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3414. * in the June 2011 errata release.
  3415. */
  3416. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3417. /*
  3418. * Set L1 Device Slot and HIRD/BESL.
  3419. * Check device's USB 2.0 extension descriptor to determine whether
  3420. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3421. */
  3422. pm_addr = port_array[port_num] + 1;
  3423. hird = xhci_calculate_hird_besl(xhci, udev);
  3424. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3425. xhci_writel(xhci, temp, pm_addr);
  3426. /* Set port link state to U2(L1) */
  3427. addr = port_array[port_num];
  3428. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3429. /* wait for ACK */
  3430. spin_unlock_irqrestore(&xhci->lock, flags);
  3431. msleep(10);
  3432. spin_lock_irqsave(&xhci->lock, flags);
  3433. /* Check L1 Status */
  3434. ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3435. if (ret != -ETIMEDOUT) {
  3436. /* enter L1 successfully */
  3437. temp = xhci_readl(xhci, addr);
  3438. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3439. port_num, temp);
  3440. ret = 0;
  3441. } else {
  3442. temp = xhci_readl(xhci, pm_addr);
  3443. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3444. port_num, temp & PORT_L1S_MASK);
  3445. ret = -EINVAL;
  3446. }
  3447. /* Resume the port */
  3448. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3449. spin_unlock_irqrestore(&xhci->lock, flags);
  3450. msleep(10);
  3451. spin_lock_irqsave(&xhci->lock, flags);
  3452. /* Clear PLC */
  3453. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3454. /* Check PORTSC to make sure the device is in the right state */
  3455. if (!ret) {
  3456. temp = xhci_readl(xhci, addr);
  3457. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3458. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3459. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3460. xhci_dbg(xhci, "port L1 resume fail\n");
  3461. ret = -EINVAL;
  3462. }
  3463. }
  3464. if (ret) {
  3465. /* Insert dev to lpm_failed_devs list */
  3466. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3467. "re-enumerate\n");
  3468. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3469. if (!dev_info) {
  3470. ret = -ENOMEM;
  3471. goto finish;
  3472. }
  3473. dev_info->dev_id = dev_id;
  3474. INIT_LIST_HEAD(&dev_info->list);
  3475. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3476. } else {
  3477. xhci_ring_device(xhci, udev->slot_id);
  3478. }
  3479. finish:
  3480. spin_unlock_irqrestore(&xhci->lock, flags);
  3481. return ret;
  3482. }
  3483. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3484. struct usb_device *udev, int enable)
  3485. {
  3486. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3487. __le32 __iomem **port_array;
  3488. __le32 __iomem *pm_addr;
  3489. u32 temp;
  3490. unsigned int port_num;
  3491. unsigned long flags;
  3492. int hird;
  3493. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3494. !udev->lpm_capable)
  3495. return -EPERM;
  3496. if (!udev->parent || udev->parent->parent ||
  3497. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3498. return -EPERM;
  3499. if (udev->usb2_hw_lpm_capable != 1)
  3500. return -EPERM;
  3501. spin_lock_irqsave(&xhci->lock, flags);
  3502. port_array = xhci->usb2_ports;
  3503. port_num = udev->portnum - 1;
  3504. pm_addr = port_array[port_num] + 1;
  3505. temp = xhci_readl(xhci, pm_addr);
  3506. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3507. enable ? "enable" : "disable", port_num);
  3508. hird = xhci_calculate_hird_besl(xhci, udev);
  3509. if (enable) {
  3510. temp &= ~PORT_HIRD_MASK;
  3511. temp |= PORT_HIRD(hird) | PORT_RWE;
  3512. xhci_writel(xhci, temp, pm_addr);
  3513. temp = xhci_readl(xhci, pm_addr);
  3514. temp |= PORT_HLE;
  3515. xhci_writel(xhci, temp, pm_addr);
  3516. } else {
  3517. temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3518. xhci_writel(xhci, temp, pm_addr);
  3519. }
  3520. spin_unlock_irqrestore(&xhci->lock, flags);
  3521. return 0;
  3522. }
  3523. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3524. {
  3525. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3526. int ret;
  3527. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3528. if (!ret) {
  3529. xhci_dbg(xhci, "software LPM test succeed\n");
  3530. if (xhci->hw_lpm_support == 1) {
  3531. udev->usb2_hw_lpm_capable = 1;
  3532. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3533. if (!ret)
  3534. udev->usb2_hw_lpm_enabled = 1;
  3535. }
  3536. }
  3537. return 0;
  3538. }
  3539. #else
  3540. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3541. struct usb_device *udev, int enable)
  3542. {
  3543. return 0;
  3544. }
  3545. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3546. {
  3547. return 0;
  3548. }
  3549. #endif /* CONFIG_USB_SUSPEND */
  3550. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3551. #ifdef CONFIG_PM
  3552. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3553. static unsigned long long xhci_service_interval_to_ns(
  3554. struct usb_endpoint_descriptor *desc)
  3555. {
  3556. return (1 << (desc->bInterval - 1)) * 125 * 1000;
  3557. }
  3558. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3559. enum usb3_link_state state)
  3560. {
  3561. unsigned long long sel;
  3562. unsigned long long pel;
  3563. unsigned int max_sel_pel;
  3564. char *state_name;
  3565. switch (state) {
  3566. case USB3_LPM_U1:
  3567. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3568. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3569. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3570. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3571. state_name = "U1";
  3572. break;
  3573. case USB3_LPM_U2:
  3574. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3575. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3576. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3577. state_name = "U2";
  3578. break;
  3579. default:
  3580. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3581. __func__);
  3582. return USB3_LPM_DISABLED;
  3583. }
  3584. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3585. return USB3_LPM_DEVICE_INITIATED;
  3586. if (sel > max_sel_pel)
  3587. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3588. "due to long SEL %llu ms\n",
  3589. state_name, sel);
  3590. else
  3591. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3592. "due to long PEL %llu\n ms",
  3593. state_name, pel);
  3594. return USB3_LPM_DISABLED;
  3595. }
  3596. /* Returns the hub-encoded U1 timeout value.
  3597. * The U1 timeout should be the maximum of the following values:
  3598. * - For control endpoints, U1 system exit latency (SEL) * 3
  3599. * - For bulk endpoints, U1 SEL * 5
  3600. * - For interrupt endpoints:
  3601. * - Notification EPs, U1 SEL * 3
  3602. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3603. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3604. */
  3605. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3606. struct usb_endpoint_descriptor *desc)
  3607. {
  3608. unsigned long long timeout_ns;
  3609. int ep_type;
  3610. int intr_type;
  3611. ep_type = usb_endpoint_type(desc);
  3612. switch (ep_type) {
  3613. case USB_ENDPOINT_XFER_CONTROL:
  3614. timeout_ns = udev->u1_params.sel * 3;
  3615. break;
  3616. case USB_ENDPOINT_XFER_BULK:
  3617. timeout_ns = udev->u1_params.sel * 5;
  3618. break;
  3619. case USB_ENDPOINT_XFER_INT:
  3620. intr_type = usb_endpoint_interrupt_type(desc);
  3621. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3622. timeout_ns = udev->u1_params.sel * 3;
  3623. break;
  3624. }
  3625. /* Otherwise the calculation is the same as isoc eps */
  3626. case USB_ENDPOINT_XFER_ISOC:
  3627. timeout_ns = xhci_service_interval_to_ns(desc);
  3628. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3629. if (timeout_ns < udev->u1_params.sel * 2)
  3630. timeout_ns = udev->u1_params.sel * 2;
  3631. break;
  3632. default:
  3633. return 0;
  3634. }
  3635. /* The U1 timeout is encoded in 1us intervals. */
  3636. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3637. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3638. if (timeout_ns == USB3_LPM_DISABLED)
  3639. timeout_ns++;
  3640. /* If the necessary timeout value is bigger than what we can set in the
  3641. * USB 3.0 hub, we have to disable hub-initiated U1.
  3642. */
  3643. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3644. return timeout_ns;
  3645. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3646. "due to long timeout %llu ms\n", timeout_ns);
  3647. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3648. }
  3649. /* Returns the hub-encoded U2 timeout value.
  3650. * The U2 timeout should be the maximum of:
  3651. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3652. * - largest bInterval of any active periodic endpoint (to avoid going
  3653. * into lower power link states between intervals).
  3654. * - the U2 Exit Latency of the device
  3655. */
  3656. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3657. struct usb_endpoint_descriptor *desc)
  3658. {
  3659. unsigned long long timeout_ns;
  3660. unsigned long long u2_del_ns;
  3661. timeout_ns = 10 * 1000 * 1000;
  3662. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3663. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3664. timeout_ns = xhci_service_interval_to_ns(desc);
  3665. u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
  3666. if (u2_del_ns > timeout_ns)
  3667. timeout_ns = u2_del_ns;
  3668. /* The U2 timeout is encoded in 256us intervals */
  3669. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3670. /* If the necessary timeout value is bigger than what we can set in the
  3671. * USB 3.0 hub, we have to disable hub-initiated U2.
  3672. */
  3673. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3674. return timeout_ns;
  3675. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3676. "due to long timeout %llu ms\n", timeout_ns);
  3677. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3678. }
  3679. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3680. struct usb_device *udev,
  3681. struct usb_endpoint_descriptor *desc,
  3682. enum usb3_link_state state,
  3683. u16 *timeout)
  3684. {
  3685. if (state == USB3_LPM_U1) {
  3686. if (xhci->quirks & XHCI_INTEL_HOST)
  3687. return xhci_calculate_intel_u1_timeout(udev, desc);
  3688. } else {
  3689. if (xhci->quirks & XHCI_INTEL_HOST)
  3690. return xhci_calculate_intel_u2_timeout(udev, desc);
  3691. }
  3692. return USB3_LPM_DISABLED;
  3693. }
  3694. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3695. struct usb_device *udev,
  3696. struct usb_endpoint_descriptor *desc,
  3697. enum usb3_link_state state,
  3698. u16 *timeout)
  3699. {
  3700. u16 alt_timeout;
  3701. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3702. desc, state, timeout);
  3703. /* If we found we can't enable hub-initiated LPM, or
  3704. * the U1 or U2 exit latency was too high to allow
  3705. * device-initiated LPM as well, just stop searching.
  3706. */
  3707. if (alt_timeout == USB3_LPM_DISABLED ||
  3708. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3709. *timeout = alt_timeout;
  3710. return -E2BIG;
  3711. }
  3712. if (alt_timeout > *timeout)
  3713. *timeout = alt_timeout;
  3714. return 0;
  3715. }
  3716. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3717. struct usb_device *udev,
  3718. struct usb_host_interface *alt,
  3719. enum usb3_link_state state,
  3720. u16 *timeout)
  3721. {
  3722. int j;
  3723. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3724. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3725. &alt->endpoint[j].desc, state, timeout))
  3726. return -E2BIG;
  3727. continue;
  3728. }
  3729. return 0;
  3730. }
  3731. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3732. enum usb3_link_state state)
  3733. {
  3734. struct usb_device *parent;
  3735. unsigned int num_hubs;
  3736. if (state == USB3_LPM_U2)
  3737. return 0;
  3738. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3739. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3740. parent = parent->parent)
  3741. num_hubs++;
  3742. if (num_hubs < 2)
  3743. return 0;
  3744. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3745. " below second-tier hub.\n");
  3746. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3747. "to decrease power consumption.\n");
  3748. return -E2BIG;
  3749. }
  3750. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3751. struct usb_device *udev,
  3752. enum usb3_link_state state)
  3753. {
  3754. if (xhci->quirks & XHCI_INTEL_HOST)
  3755. return xhci_check_intel_tier_policy(udev, state);
  3756. return -EINVAL;
  3757. }
  3758. /* Returns the U1 or U2 timeout that should be enabled.
  3759. * If the tier check or timeout setting functions return with a non-zero exit
  3760. * code, that means the timeout value has been finalized and we shouldn't look
  3761. * at any more endpoints.
  3762. */
  3763. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3764. struct usb_device *udev, enum usb3_link_state state)
  3765. {
  3766. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3767. struct usb_host_config *config;
  3768. char *state_name;
  3769. int i;
  3770. u16 timeout = USB3_LPM_DISABLED;
  3771. if (state == USB3_LPM_U1)
  3772. state_name = "U1";
  3773. else if (state == USB3_LPM_U2)
  3774. state_name = "U2";
  3775. else {
  3776. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  3777. state);
  3778. return timeout;
  3779. }
  3780. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  3781. return timeout;
  3782. /* Gather some information about the currently installed configuration
  3783. * and alternate interface settings.
  3784. */
  3785. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  3786. state, &timeout))
  3787. return timeout;
  3788. config = udev->actconfig;
  3789. if (!config)
  3790. return timeout;
  3791. for (i = 0; i < USB_MAXINTERFACES; i++) {
  3792. struct usb_driver *driver;
  3793. struct usb_interface *intf = config->interface[i];
  3794. if (!intf)
  3795. continue;
  3796. /* Check if any currently bound drivers want hub-initiated LPM
  3797. * disabled.
  3798. */
  3799. if (intf->dev.driver) {
  3800. driver = to_usb_driver(intf->dev.driver);
  3801. if (driver && driver->disable_hub_initiated_lpm) {
  3802. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  3803. "at request of driver %s\n",
  3804. state_name, driver->name);
  3805. return xhci_get_timeout_no_hub_lpm(udev, state);
  3806. }
  3807. }
  3808. /* Not sure how this could happen... */
  3809. if (!intf->cur_altsetting)
  3810. continue;
  3811. if (xhci_update_timeout_for_interface(xhci, udev,
  3812. intf->cur_altsetting,
  3813. state, &timeout))
  3814. return timeout;
  3815. }
  3816. return timeout;
  3817. }
  3818. /*
  3819. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3820. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3821. */
  3822. static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3823. struct usb_device *udev, u16 max_exit_latency)
  3824. {
  3825. struct xhci_virt_device *virt_dev;
  3826. struct xhci_command *command;
  3827. struct xhci_input_control_ctx *ctrl_ctx;
  3828. struct xhci_slot_ctx *slot_ctx;
  3829. unsigned long flags;
  3830. int ret;
  3831. spin_lock_irqsave(&xhci->lock, flags);
  3832. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3833. spin_unlock_irqrestore(&xhci->lock, flags);
  3834. return 0;
  3835. }
  3836. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3837. virt_dev = xhci->devs[udev->slot_id];
  3838. command = xhci->lpm_command;
  3839. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3840. spin_unlock_irqrestore(&xhci->lock, flags);
  3841. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3842. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3843. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3844. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3845. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3846. xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
  3847. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3848. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3849. /* Issue and wait for the evaluate context command. */
  3850. ret = xhci_configure_endpoint(xhci, udev, command,
  3851. true, true);
  3852. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3853. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3854. if (!ret) {
  3855. spin_lock_irqsave(&xhci->lock, flags);
  3856. virt_dev->current_mel = max_exit_latency;
  3857. spin_unlock_irqrestore(&xhci->lock, flags);
  3858. }
  3859. return ret;
  3860. }
  3861. static int calculate_max_exit_latency(struct usb_device *udev,
  3862. enum usb3_link_state state_changed,
  3863. u16 hub_encoded_timeout)
  3864. {
  3865. unsigned long long u1_mel_us = 0;
  3866. unsigned long long u2_mel_us = 0;
  3867. unsigned long long mel_us = 0;
  3868. bool disabling_u1;
  3869. bool disabling_u2;
  3870. bool enabling_u1;
  3871. bool enabling_u2;
  3872. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  3873. hub_encoded_timeout == USB3_LPM_DISABLED);
  3874. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  3875. hub_encoded_timeout == USB3_LPM_DISABLED);
  3876. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  3877. hub_encoded_timeout != USB3_LPM_DISABLED);
  3878. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  3879. hub_encoded_timeout != USB3_LPM_DISABLED);
  3880. /* If U1 was already enabled and we're not disabling it,
  3881. * or we're going to enable U1, account for the U1 max exit latency.
  3882. */
  3883. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  3884. enabling_u1)
  3885. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  3886. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  3887. enabling_u2)
  3888. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  3889. if (u1_mel_us > u2_mel_us)
  3890. mel_us = u1_mel_us;
  3891. else
  3892. mel_us = u2_mel_us;
  3893. /* xHCI host controller max exit latency field is only 16 bits wide. */
  3894. if (mel_us > MAX_EXIT) {
  3895. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  3896. "is too big.\n", mel_us);
  3897. return -E2BIG;
  3898. }
  3899. return mel_us;
  3900. }
  3901. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  3902. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3903. struct usb_device *udev, enum usb3_link_state state)
  3904. {
  3905. struct xhci_hcd *xhci;
  3906. u16 hub_encoded_timeout;
  3907. int mel;
  3908. int ret;
  3909. xhci = hcd_to_xhci(hcd);
  3910. /* The LPM timeout values are pretty host-controller specific, so don't
  3911. * enable hub-initiated timeouts unless the vendor has provided
  3912. * information about their timeout algorithm.
  3913. */
  3914. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3915. !xhci->devs[udev->slot_id])
  3916. return USB3_LPM_DISABLED;
  3917. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  3918. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  3919. if (mel < 0) {
  3920. /* Max Exit Latency is too big, disable LPM. */
  3921. hub_encoded_timeout = USB3_LPM_DISABLED;
  3922. mel = 0;
  3923. }
  3924. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3925. if (ret)
  3926. return ret;
  3927. return hub_encoded_timeout;
  3928. }
  3929. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3930. struct usb_device *udev, enum usb3_link_state state)
  3931. {
  3932. struct xhci_hcd *xhci;
  3933. u16 mel;
  3934. int ret;
  3935. xhci = hcd_to_xhci(hcd);
  3936. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  3937. !xhci->devs[udev->slot_id])
  3938. return 0;
  3939. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  3940. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  3941. if (ret)
  3942. return ret;
  3943. return 0;
  3944. }
  3945. #else /* CONFIG_PM */
  3946. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3947. struct usb_device *udev, enum usb3_link_state state)
  3948. {
  3949. return USB3_LPM_DISABLED;
  3950. }
  3951. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  3952. struct usb_device *udev, enum usb3_link_state state)
  3953. {
  3954. return 0;
  3955. }
  3956. #endif /* CONFIG_PM */
  3957. /*-------------------------------------------------------------------------*/
  3958. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  3959. * internal data structures for the device.
  3960. */
  3961. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  3962. struct usb_tt *tt, gfp_t mem_flags)
  3963. {
  3964. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3965. struct xhci_virt_device *vdev;
  3966. struct xhci_command *config_cmd;
  3967. struct xhci_input_control_ctx *ctrl_ctx;
  3968. struct xhci_slot_ctx *slot_ctx;
  3969. unsigned long flags;
  3970. unsigned think_time;
  3971. int ret;
  3972. /* Ignore root hubs */
  3973. if (!hdev->parent)
  3974. return 0;
  3975. vdev = xhci->devs[hdev->slot_id];
  3976. if (!vdev) {
  3977. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  3978. return -EINVAL;
  3979. }
  3980. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  3981. if (!config_cmd) {
  3982. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  3983. return -ENOMEM;
  3984. }
  3985. spin_lock_irqsave(&xhci->lock, flags);
  3986. if (hdev->speed == USB_SPEED_HIGH &&
  3987. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  3988. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  3989. xhci_free_command(xhci, config_cmd);
  3990. spin_unlock_irqrestore(&xhci->lock, flags);
  3991. return -ENOMEM;
  3992. }
  3993. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  3994. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  3995. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3996. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  3997. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  3998. if (tt->multi)
  3999. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4000. if (xhci->hci_version > 0x95) {
  4001. xhci_dbg(xhci, "xHCI version %x needs hub "
  4002. "TT think time and number of ports\n",
  4003. (unsigned int) xhci->hci_version);
  4004. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4005. /* Set TT think time - convert from ns to FS bit times.
  4006. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4007. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4008. *
  4009. * xHCI 1.0: this field shall be 0 if the device is not a
  4010. * High-spped hub.
  4011. */
  4012. think_time = tt->think_time;
  4013. if (think_time != 0)
  4014. think_time = (think_time / 666) - 1;
  4015. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4016. slot_ctx->tt_info |=
  4017. cpu_to_le32(TT_THINK_TIME(think_time));
  4018. } else {
  4019. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4020. "TT think time or number of ports\n",
  4021. (unsigned int) xhci->hci_version);
  4022. }
  4023. slot_ctx->dev_state = 0;
  4024. spin_unlock_irqrestore(&xhci->lock, flags);
  4025. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4026. (xhci->hci_version > 0x95) ?
  4027. "configure endpoint" : "evaluate context");
  4028. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4029. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4030. /* Issue and wait for the configure endpoint or
  4031. * evaluate context command.
  4032. */
  4033. if (xhci->hci_version > 0x95)
  4034. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4035. false, false);
  4036. else
  4037. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4038. true, false);
  4039. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4040. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4041. xhci_free_command(xhci, config_cmd);
  4042. return ret;
  4043. }
  4044. int xhci_get_frame(struct usb_hcd *hcd)
  4045. {
  4046. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4047. /* EHCI mods by the periodic size. Why? */
  4048. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4049. }
  4050. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4051. {
  4052. struct xhci_hcd *xhci;
  4053. struct device *dev = hcd->self.controller;
  4054. int retval;
  4055. u32 temp;
  4056. /* Accept arbitrarily long scatter-gather lists */
  4057. hcd->self.sg_tablesize = ~0;
  4058. /* XHCI controllers don't stop the ep queue on short packets :| */
  4059. hcd->self.no_stop_on_short = 1;
  4060. if (usb_hcd_is_primary_hcd(hcd)) {
  4061. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4062. if (!xhci)
  4063. return -ENOMEM;
  4064. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4065. xhci->main_hcd = hcd;
  4066. /* Mark the first roothub as being USB 2.0.
  4067. * The xHCI driver will register the USB 3.0 roothub.
  4068. */
  4069. hcd->speed = HCD_USB2;
  4070. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4071. /*
  4072. * USB 2.0 roothub under xHCI has an integrated TT,
  4073. * (rate matching hub) as opposed to having an OHCI/UHCI
  4074. * companion controller.
  4075. */
  4076. hcd->has_tt = 1;
  4077. } else {
  4078. /* xHCI private pointer was set in xhci_pci_probe for the second
  4079. * registered roothub.
  4080. */
  4081. xhci = hcd_to_xhci(hcd);
  4082. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4083. if (HCC_64BIT_ADDR(temp)) {
  4084. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4085. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4086. } else {
  4087. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4088. }
  4089. return 0;
  4090. }
  4091. xhci->cap_regs = hcd->regs;
  4092. xhci->op_regs = hcd->regs +
  4093. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4094. xhci->run_regs = hcd->regs +
  4095. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4096. /* Cache read-only capability registers */
  4097. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4098. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4099. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4100. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4101. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4102. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4103. xhci_print_registers(xhci);
  4104. get_quirks(dev, xhci);
  4105. /* Make sure the HC is halted. */
  4106. retval = xhci_halt(xhci);
  4107. if (retval)
  4108. goto error;
  4109. xhci_dbg(xhci, "Resetting HCD\n");
  4110. /* Reset the internal HC memory state and registers. */
  4111. retval = xhci_reset(xhci);
  4112. if (retval)
  4113. goto error;
  4114. xhci_dbg(xhci, "Reset complete\n");
  4115. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4116. if (HCC_64BIT_ADDR(temp)) {
  4117. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4118. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4119. } else {
  4120. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4121. }
  4122. xhci_dbg(xhci, "Calling HCD init\n");
  4123. /* Initialize HCD and host controller data structures. */
  4124. retval = xhci_init(hcd);
  4125. if (retval)
  4126. goto error;
  4127. xhci_dbg(xhci, "Called HCD init\n");
  4128. return 0;
  4129. error:
  4130. kfree(xhci);
  4131. return retval;
  4132. }
  4133. MODULE_DESCRIPTION(DRIVER_DESC);
  4134. MODULE_AUTHOR(DRIVER_AUTHOR);
  4135. MODULE_LICENSE("GPL");
  4136. static int __init xhci_hcd_init(void)
  4137. {
  4138. int retval;
  4139. retval = xhci_register_pci();
  4140. if (retval < 0) {
  4141. printk(KERN_DEBUG "Problem registering PCI driver.");
  4142. return retval;
  4143. }
  4144. retval = xhci_register_plat();
  4145. if (retval < 0) {
  4146. printk(KERN_DEBUG "Problem registering platform driver.");
  4147. goto unreg_pci;
  4148. }
  4149. /*
  4150. * Check the compiler generated sizes of structures that must be laid
  4151. * out in specific ways for hardware access.
  4152. */
  4153. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4154. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4155. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4156. /* xhci_device_control has eight fields, and also
  4157. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4158. */
  4159. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4160. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4161. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4162. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4163. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4164. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4165. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4166. return 0;
  4167. unreg_pci:
  4168. xhci_unregister_pci();
  4169. return retval;
  4170. }
  4171. module_init(xhci_hcd_init);
  4172. static void __exit xhci_hcd_cleanup(void)
  4173. {
  4174. xhci_unregister_pci();
  4175. xhci_unregister_plat();
  4176. }
  4177. module_exit(xhci_hcd_cleanup);