process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/clockchips.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/i387.h>
  27. #include <asm/fpu-internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. /*
  31. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  32. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  33. * so they are allowed to end up in the .data..cacheline_aligned
  34. * section. Since TSS's are completely CPU-local, we want them
  35. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  36. */
  37. DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
  38. #ifdef CONFIG_X86_64
  39. static DEFINE_PER_CPU(unsigned char, is_idle);
  40. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  41. void idle_notifier_register(struct notifier_block *n)
  42. {
  43. atomic_notifier_chain_register(&idle_notifier, n);
  44. }
  45. EXPORT_SYMBOL_GPL(idle_notifier_register);
  46. void idle_notifier_unregister(struct notifier_block *n)
  47. {
  48. atomic_notifier_chain_unregister(&idle_notifier, n);
  49. }
  50. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  51. #endif
  52. struct kmem_cache *task_xstate_cachep;
  53. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  54. /*
  55. * this gets called so that we can store lazy state into memory and copy the
  56. * current task into the new thread.
  57. */
  58. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  59. {
  60. int ret;
  61. unlazy_fpu(src);
  62. *dst = *src;
  63. if (fpu_allocated(&src->thread.fpu)) {
  64. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  65. ret = fpu_alloc(&dst->thread.fpu);
  66. if (ret)
  67. return ret;
  68. fpu_copy(&dst->thread.fpu, &src->thread.fpu);
  69. }
  70. return 0;
  71. }
  72. void free_thread_xstate(struct task_struct *tsk)
  73. {
  74. fpu_free(&tsk->thread.fpu);
  75. }
  76. void arch_release_task_struct(struct task_struct *tsk)
  77. {
  78. free_thread_xstate(tsk);
  79. }
  80. void arch_task_cache_init(void)
  81. {
  82. task_xstate_cachep =
  83. kmem_cache_create("task_xstate", xstate_size,
  84. __alignof__(union thread_xstate),
  85. SLAB_PANIC | SLAB_NOTRACK, NULL);
  86. }
  87. static inline void drop_fpu(struct task_struct *tsk)
  88. {
  89. /*
  90. * Forget coprocessor state..
  91. */
  92. tsk->fpu_counter = 0;
  93. clear_fpu(tsk);
  94. clear_used_math();
  95. }
  96. /*
  97. * Free current thread data structures etc..
  98. */
  99. void exit_thread(void)
  100. {
  101. struct task_struct *me = current;
  102. struct thread_struct *t = &me->thread;
  103. unsigned long *bp = t->io_bitmap_ptr;
  104. if (bp) {
  105. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  106. t->io_bitmap_ptr = NULL;
  107. clear_thread_flag(TIF_IO_BITMAP);
  108. /*
  109. * Careful, clear this in the TSS too:
  110. */
  111. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  112. t->io_bitmap_max = 0;
  113. put_cpu();
  114. kfree(bp);
  115. }
  116. drop_fpu(me);
  117. }
  118. void show_regs_common(void)
  119. {
  120. const char *vendor, *product, *board;
  121. vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  122. if (!vendor)
  123. vendor = "";
  124. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  125. if (!product)
  126. product = "";
  127. /* Board Name is optional */
  128. board = dmi_get_system_info(DMI_BOARD_NAME);
  129. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
  130. current->pid, current->comm, print_tainted(),
  131. init_utsname()->release,
  132. (int)strcspn(init_utsname()->version, " "),
  133. init_utsname()->version,
  134. vendor, product,
  135. board ? "/" : "",
  136. board ? board : "");
  137. }
  138. void flush_thread(void)
  139. {
  140. struct task_struct *tsk = current;
  141. flush_ptrace_hw_breakpoint(tsk);
  142. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  143. drop_fpu(tsk);
  144. }
  145. static void hard_disable_TSC(void)
  146. {
  147. write_cr4(read_cr4() | X86_CR4_TSD);
  148. }
  149. void disable_TSC(void)
  150. {
  151. preempt_disable();
  152. if (!test_and_set_thread_flag(TIF_NOTSC))
  153. /*
  154. * Must flip the CPU state synchronously with
  155. * TIF_NOTSC in the current running context.
  156. */
  157. hard_disable_TSC();
  158. preempt_enable();
  159. }
  160. static void hard_enable_TSC(void)
  161. {
  162. write_cr4(read_cr4() & ~X86_CR4_TSD);
  163. }
  164. static void enable_TSC(void)
  165. {
  166. preempt_disable();
  167. if (test_and_clear_thread_flag(TIF_NOTSC))
  168. /*
  169. * Must flip the CPU state synchronously with
  170. * TIF_NOTSC in the current running context.
  171. */
  172. hard_enable_TSC();
  173. preempt_enable();
  174. }
  175. int get_tsc_mode(unsigned long adr)
  176. {
  177. unsigned int val;
  178. if (test_thread_flag(TIF_NOTSC))
  179. val = PR_TSC_SIGSEGV;
  180. else
  181. val = PR_TSC_ENABLE;
  182. return put_user(val, (unsigned int __user *)adr);
  183. }
  184. int set_tsc_mode(unsigned int val)
  185. {
  186. if (val == PR_TSC_SIGSEGV)
  187. disable_TSC();
  188. else if (val == PR_TSC_ENABLE)
  189. enable_TSC();
  190. else
  191. return -EINVAL;
  192. return 0;
  193. }
  194. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  195. struct tss_struct *tss)
  196. {
  197. struct thread_struct *prev, *next;
  198. prev = &prev_p->thread;
  199. next = &next_p->thread;
  200. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  201. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  202. unsigned long debugctl = get_debugctlmsr();
  203. debugctl &= ~DEBUGCTLMSR_BTF;
  204. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  205. debugctl |= DEBUGCTLMSR_BTF;
  206. update_debugctlmsr(debugctl);
  207. }
  208. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  209. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  210. /* prev and next are different */
  211. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  212. hard_disable_TSC();
  213. else
  214. hard_enable_TSC();
  215. }
  216. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  217. /*
  218. * Copy the relevant range of the IO bitmap.
  219. * Normally this is 128 bytes or less:
  220. */
  221. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  222. max(prev->io_bitmap_max, next->io_bitmap_max));
  223. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  224. /*
  225. * Clear any possible leftover bits:
  226. */
  227. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  228. }
  229. propagate_user_return_notify(prev_p, next_p);
  230. }
  231. int sys_fork(struct pt_regs *regs)
  232. {
  233. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  234. }
  235. /*
  236. * This is trivial, and on the face of it looks like it
  237. * could equally well be done in user mode.
  238. *
  239. * Not so, for quite unobvious reasons - register pressure.
  240. * In user mode vfork() cannot have a stack frame, and if
  241. * done by calling the "clone()" system call directly, you
  242. * do not have enough call-clobbered registers to hold all
  243. * the information you need.
  244. */
  245. int sys_vfork(struct pt_regs *regs)
  246. {
  247. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  248. NULL, NULL);
  249. }
  250. long
  251. sys_clone(unsigned long clone_flags, unsigned long newsp,
  252. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  253. {
  254. if (!newsp)
  255. newsp = regs->sp;
  256. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  257. }
  258. /*
  259. * This gets run with %si containing the
  260. * function to call, and %di containing
  261. * the "args".
  262. */
  263. extern void kernel_thread_helper(void);
  264. /*
  265. * Create a kernel thread
  266. */
  267. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  268. {
  269. struct pt_regs regs;
  270. memset(&regs, 0, sizeof(regs));
  271. regs.si = (unsigned long) fn;
  272. regs.di = (unsigned long) arg;
  273. #ifdef CONFIG_X86_32
  274. regs.ds = __USER_DS;
  275. regs.es = __USER_DS;
  276. regs.fs = __KERNEL_PERCPU;
  277. regs.gs = __KERNEL_STACK_CANARY;
  278. #else
  279. regs.ss = __KERNEL_DS;
  280. #endif
  281. regs.orig_ax = -1;
  282. regs.ip = (unsigned long) kernel_thread_helper;
  283. regs.cs = __KERNEL_CS | get_kernel_rpl();
  284. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
  285. /* Ok, create the new process.. */
  286. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  287. }
  288. EXPORT_SYMBOL(kernel_thread);
  289. /*
  290. * sys_execve() executes a new program.
  291. */
  292. long sys_execve(const char __user *name,
  293. const char __user *const __user *argv,
  294. const char __user *const __user *envp, struct pt_regs *regs)
  295. {
  296. long error;
  297. char *filename;
  298. filename = getname(name);
  299. error = PTR_ERR(filename);
  300. if (IS_ERR(filename))
  301. return error;
  302. error = do_execve(filename, argv, envp, regs);
  303. #ifdef CONFIG_X86_32
  304. if (error == 0) {
  305. /* Make sure we don't return using sysenter.. */
  306. set_thread_flag(TIF_IRET);
  307. }
  308. #endif
  309. putname(filename);
  310. return error;
  311. }
  312. /*
  313. * Idle related variables and functions
  314. */
  315. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  316. EXPORT_SYMBOL(boot_option_idle_override);
  317. /*
  318. * Powermanagement idle function, if any..
  319. */
  320. void (*pm_idle)(void);
  321. #ifdef CONFIG_APM_MODULE
  322. EXPORT_SYMBOL(pm_idle);
  323. #endif
  324. static inline int hlt_use_halt(void)
  325. {
  326. return 1;
  327. }
  328. #ifndef CONFIG_SMP
  329. static inline void play_dead(void)
  330. {
  331. BUG();
  332. }
  333. #endif
  334. #ifdef CONFIG_X86_64
  335. void enter_idle(void)
  336. {
  337. this_cpu_write(is_idle, 1);
  338. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  339. }
  340. static void __exit_idle(void)
  341. {
  342. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  343. return;
  344. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  345. }
  346. /* Called from interrupts to signify idle end */
  347. void exit_idle(void)
  348. {
  349. /* idle loop has pid 0 */
  350. if (current->pid)
  351. return;
  352. __exit_idle();
  353. }
  354. #endif
  355. /*
  356. * The idle thread. There's no useful work to be
  357. * done, so just try to conserve power and have a
  358. * low exit latency (ie sit in a loop waiting for
  359. * somebody to say that they'd like to reschedule)
  360. */
  361. void cpu_idle(void)
  362. {
  363. /*
  364. * If we're the non-boot CPU, nothing set the stack canary up
  365. * for us. CPU0 already has it initialized but no harm in
  366. * doing it again. This is a good place for updating it, as
  367. * we wont ever return from this function (so the invalid
  368. * canaries already on the stack wont ever trigger).
  369. */
  370. boot_init_stack_canary();
  371. current_thread_info()->status |= TS_POLLING;
  372. while (1) {
  373. tick_nohz_idle_enter();
  374. while (!need_resched()) {
  375. rmb();
  376. if (cpu_is_offline(smp_processor_id()))
  377. play_dead();
  378. /*
  379. * Idle routines should keep interrupts disabled
  380. * from here on, until they go to idle.
  381. * Otherwise, idle callbacks can misfire.
  382. */
  383. local_touch_nmi();
  384. local_irq_disable();
  385. enter_idle();
  386. /* Don't trace irqs off for idle */
  387. stop_critical_timings();
  388. /* enter_idle() needs rcu for notifiers */
  389. rcu_idle_enter();
  390. if (cpuidle_idle_call())
  391. pm_idle();
  392. rcu_idle_exit();
  393. start_critical_timings();
  394. /* In many cases the interrupt that ended idle
  395. has already called exit_idle. But some idle
  396. loops can be woken up without interrupt. */
  397. __exit_idle();
  398. }
  399. tick_nohz_idle_exit();
  400. preempt_enable_no_resched();
  401. schedule();
  402. preempt_disable();
  403. }
  404. }
  405. /*
  406. * We use this if we don't have any better
  407. * idle routine..
  408. */
  409. void default_idle(void)
  410. {
  411. if (hlt_use_halt()) {
  412. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  413. trace_cpu_idle_rcuidle(1, smp_processor_id());
  414. current_thread_info()->status &= ~TS_POLLING;
  415. /*
  416. * TS_POLLING-cleared state must be visible before we
  417. * test NEED_RESCHED:
  418. */
  419. smp_mb();
  420. if (!need_resched())
  421. safe_halt(); /* enables interrupts racelessly */
  422. else
  423. local_irq_enable();
  424. current_thread_info()->status |= TS_POLLING;
  425. trace_power_end_rcuidle(smp_processor_id());
  426. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  427. } else {
  428. local_irq_enable();
  429. /* loop is done by the caller */
  430. cpu_relax();
  431. }
  432. }
  433. #ifdef CONFIG_APM_MODULE
  434. EXPORT_SYMBOL(default_idle);
  435. #endif
  436. bool set_pm_idle_to_default(void)
  437. {
  438. bool ret = !!pm_idle;
  439. pm_idle = default_idle;
  440. return ret;
  441. }
  442. void stop_this_cpu(void *dummy)
  443. {
  444. local_irq_disable();
  445. /*
  446. * Remove this CPU:
  447. */
  448. set_cpu_online(smp_processor_id(), false);
  449. disable_local_APIC();
  450. for (;;) {
  451. if (hlt_works(smp_processor_id()))
  452. halt();
  453. }
  454. }
  455. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  456. static void mwait_idle(void)
  457. {
  458. if (!need_resched()) {
  459. trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
  460. trace_cpu_idle_rcuidle(1, smp_processor_id());
  461. if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
  462. clflush((void *)&current_thread_info()->flags);
  463. __monitor((void *)&current_thread_info()->flags, 0, 0);
  464. smp_mb();
  465. if (!need_resched())
  466. __sti_mwait(0, 0);
  467. else
  468. local_irq_enable();
  469. trace_power_end_rcuidle(smp_processor_id());
  470. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  471. } else
  472. local_irq_enable();
  473. }
  474. /*
  475. * On SMP it's slightly faster (but much more power-consuming!)
  476. * to poll the ->work.need_resched flag instead of waiting for the
  477. * cross-CPU IPI to arrive. Use this option with caution.
  478. */
  479. static void poll_idle(void)
  480. {
  481. trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
  482. trace_cpu_idle_rcuidle(0, smp_processor_id());
  483. local_irq_enable();
  484. while (!need_resched())
  485. cpu_relax();
  486. trace_power_end_rcuidle(smp_processor_id());
  487. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  488. }
  489. /*
  490. * mwait selection logic:
  491. *
  492. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  493. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  494. * then depend on a clock divisor and current Pstate of the core. If
  495. * all cores of a processor are in halt state (C1) the processor can
  496. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  497. * happen.
  498. *
  499. * idle=mwait overrides this decision and forces the usage of mwait.
  500. */
  501. #define MWAIT_INFO 0x05
  502. #define MWAIT_ECX_EXTENDED_INFO 0x01
  503. #define MWAIT_EDX_C1 0xf0
  504. int mwait_usable(const struct cpuinfo_x86 *c)
  505. {
  506. u32 eax, ebx, ecx, edx;
  507. /* Use mwait if idle=mwait boot option is given */
  508. if (boot_option_idle_override == IDLE_FORCE_MWAIT)
  509. return 1;
  510. /*
  511. * Any idle= boot option other than idle=mwait means that we must not
  512. * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
  513. */
  514. if (boot_option_idle_override != IDLE_NO_OVERRIDE)
  515. return 0;
  516. if (c->cpuid_level < MWAIT_INFO)
  517. return 0;
  518. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  519. /* Check, whether EDX has extended info about MWAIT */
  520. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  521. return 1;
  522. /*
  523. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  524. * C1 supports MWAIT
  525. */
  526. return (edx & MWAIT_EDX_C1);
  527. }
  528. bool amd_e400_c1e_detected;
  529. EXPORT_SYMBOL(amd_e400_c1e_detected);
  530. static cpumask_var_t amd_e400_c1e_mask;
  531. void amd_e400_remove_cpu(int cpu)
  532. {
  533. if (amd_e400_c1e_mask != NULL)
  534. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  535. }
  536. /*
  537. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  538. * pending message MSR. If we detect C1E, then we handle it the same
  539. * way as C3 power states (local apic timer and TSC stop)
  540. */
  541. static void amd_e400_idle(void)
  542. {
  543. if (need_resched())
  544. return;
  545. if (!amd_e400_c1e_detected) {
  546. u32 lo, hi;
  547. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  548. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  549. amd_e400_c1e_detected = true;
  550. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  551. mark_tsc_unstable("TSC halt in AMD C1E");
  552. pr_info("System has AMD C1E enabled\n");
  553. }
  554. }
  555. if (amd_e400_c1e_detected) {
  556. int cpu = smp_processor_id();
  557. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  558. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  559. /*
  560. * Force broadcast so ACPI can not interfere.
  561. */
  562. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  563. &cpu);
  564. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  565. }
  566. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  567. default_idle();
  568. /*
  569. * The switch back from broadcast mode needs to be
  570. * called with interrupts disabled.
  571. */
  572. local_irq_disable();
  573. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  574. local_irq_enable();
  575. } else
  576. default_idle();
  577. }
  578. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  579. {
  580. #ifdef CONFIG_SMP
  581. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  582. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  583. }
  584. #endif
  585. if (pm_idle)
  586. return;
  587. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  588. /*
  589. * One CPU supports mwait => All CPUs supports mwait
  590. */
  591. pr_info("using mwait in idle threads\n");
  592. pm_idle = mwait_idle;
  593. } else if (cpu_has_amd_erratum(amd_erratum_400)) {
  594. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  595. pr_info("using AMD E400 aware idle routine\n");
  596. pm_idle = amd_e400_idle;
  597. } else
  598. pm_idle = default_idle;
  599. }
  600. void __init init_amd_e400_c1e_mask(void)
  601. {
  602. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  603. if (pm_idle == amd_e400_idle)
  604. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  605. }
  606. static int __init idle_setup(char *str)
  607. {
  608. if (!str)
  609. return -EINVAL;
  610. if (!strcmp(str, "poll")) {
  611. pr_info("using polling idle threads\n");
  612. pm_idle = poll_idle;
  613. boot_option_idle_override = IDLE_POLL;
  614. } else if (!strcmp(str, "mwait")) {
  615. boot_option_idle_override = IDLE_FORCE_MWAIT;
  616. WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
  617. } else if (!strcmp(str, "halt")) {
  618. /*
  619. * When the boot option of idle=halt is added, halt is
  620. * forced to be used for CPU idle. In such case CPU C2/C3
  621. * won't be used again.
  622. * To continue to load the CPU idle driver, don't touch
  623. * the boot_option_idle_override.
  624. */
  625. pm_idle = default_idle;
  626. boot_option_idle_override = IDLE_HALT;
  627. } else if (!strcmp(str, "nomwait")) {
  628. /*
  629. * If the boot option of "idle=nomwait" is added,
  630. * it means that mwait will be disabled for CPU C2/C3
  631. * states. In such case it won't touch the variable
  632. * of boot_option_idle_override.
  633. */
  634. boot_option_idle_override = IDLE_NOMWAIT;
  635. } else
  636. return -1;
  637. return 0;
  638. }
  639. early_param("idle", idle_setup);
  640. unsigned long arch_align_stack(unsigned long sp)
  641. {
  642. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  643. sp -= get_random_int() % 8192;
  644. return sp & ~0xf;
  645. }
  646. unsigned long arch_randomize_brk(struct mm_struct *mm)
  647. {
  648. unsigned long range_end = mm->brk + 0x02000000;
  649. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  650. }