i915_gem.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment, bool mappable);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  63. int nr_to_scan,
  64. gfp_t gfp_mask);
  65. /* some bookkeeping */
  66. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count++;
  70. dev_priv->mm.object_memory += size;
  71. }
  72. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  73. size_t size)
  74. {
  75. dev_priv->mm.object_count--;
  76. dev_priv->mm.object_memory -= size;
  77. }
  78. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  79. struct drm_gem_object *obj)
  80. {
  81. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  82. dev_priv->mm.gtt_count++;
  83. dev_priv->mm.gtt_memory += obj->size;
  84. if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  85. dev_priv->mm.mappable_gtt_used +=
  86. min_t(size_t, obj->size,
  87. dev_priv->mm.gtt_mappable_end
  88. - obj_priv->gtt_offset);
  89. }
  90. }
  91. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  92. struct drm_gem_object *obj)
  93. {
  94. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  95. dev_priv->mm.gtt_count--;
  96. dev_priv->mm.gtt_memory -= obj->size;
  97. if (obj_priv->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  98. dev_priv->mm.mappable_gtt_used -=
  99. min_t(size_t, obj->size,
  100. dev_priv->mm.gtt_mappable_end
  101. - obj_priv->gtt_offset);
  102. }
  103. }
  104. /**
  105. * Update the mappable working set counters. Call _only_ when there is a change
  106. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  107. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  108. */
  109. static void
  110. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  111. struct drm_gem_object *obj,
  112. bool mappable)
  113. {
  114. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  115. if (mappable) {
  116. if (obj_priv->pin_mappable && obj_priv->fault_mappable)
  117. /* Combined state was already mappable. */
  118. return;
  119. dev_priv->mm.gtt_mappable_count++;
  120. dev_priv->mm.gtt_mappable_memory += obj->size;
  121. } else {
  122. if (obj_priv->pin_mappable || obj_priv->fault_mappable)
  123. /* Combined state still mappable. */
  124. return;
  125. dev_priv->mm.gtt_mappable_count--;
  126. dev_priv->mm.gtt_mappable_memory -= obj->size;
  127. }
  128. }
  129. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  130. struct drm_gem_object *obj,
  131. bool mappable)
  132. {
  133. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  134. dev_priv->mm.pin_count++;
  135. dev_priv->mm.pin_memory += obj->size;
  136. if (mappable) {
  137. obj_priv->pin_mappable = true;
  138. i915_gem_info_update_mappable(dev_priv, obj, true);
  139. }
  140. }
  141. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  142. struct drm_gem_object *obj)
  143. {
  144. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  145. dev_priv->mm.pin_count--;
  146. dev_priv->mm.pin_memory -= obj->size;
  147. if (obj_priv->pin_mappable) {
  148. obj_priv->pin_mappable = false;
  149. i915_gem_info_update_mappable(dev_priv, obj, false);
  150. }
  151. }
  152. int
  153. i915_gem_check_is_wedged(struct drm_device *dev)
  154. {
  155. struct drm_i915_private *dev_priv = dev->dev_private;
  156. struct completion *x = &dev_priv->error_completion;
  157. unsigned long flags;
  158. int ret;
  159. if (!atomic_read(&dev_priv->mm.wedged))
  160. return 0;
  161. ret = wait_for_completion_interruptible(x);
  162. if (ret)
  163. return ret;
  164. /* Success, we reset the GPU! */
  165. if (!atomic_read(&dev_priv->mm.wedged))
  166. return 0;
  167. /* GPU is hung, bump the completion count to account for
  168. * the token we just consumed so that we never hit zero and
  169. * end up waiting upon a subsequent completion event that
  170. * will never happen.
  171. */
  172. spin_lock_irqsave(&x->wait.lock, flags);
  173. x->done++;
  174. spin_unlock_irqrestore(&x->wait.lock, flags);
  175. return -EIO;
  176. }
  177. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  178. {
  179. struct drm_i915_private *dev_priv = dev->dev_private;
  180. int ret;
  181. ret = i915_gem_check_is_wedged(dev);
  182. if (ret)
  183. return ret;
  184. ret = mutex_lock_interruptible(&dev->struct_mutex);
  185. if (ret)
  186. return ret;
  187. if (atomic_read(&dev_priv->mm.wedged)) {
  188. mutex_unlock(&dev->struct_mutex);
  189. return -EAGAIN;
  190. }
  191. WARN_ON(i915_verify_lists(dev));
  192. return 0;
  193. }
  194. static inline bool
  195. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  196. {
  197. return obj_priv->gtt_space &&
  198. !obj_priv->active &&
  199. obj_priv->pin_count == 0;
  200. }
  201. int i915_gem_do_init(struct drm_device *dev,
  202. unsigned long start,
  203. unsigned long mappable_end,
  204. unsigned long end)
  205. {
  206. drm_i915_private_t *dev_priv = dev->dev_private;
  207. if (start >= end ||
  208. (start & (PAGE_SIZE - 1)) != 0 ||
  209. (end & (PAGE_SIZE - 1)) != 0) {
  210. return -EINVAL;
  211. }
  212. drm_mm_init(&dev_priv->mm.gtt_space, start,
  213. end - start);
  214. dev_priv->mm.gtt_total = end - start;
  215. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  216. dev_priv->mm.gtt_mappable_end = mappable_end;
  217. return 0;
  218. }
  219. int
  220. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  221. struct drm_file *file_priv)
  222. {
  223. struct drm_i915_gem_init *args = data;
  224. int ret;
  225. mutex_lock(&dev->struct_mutex);
  226. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  227. mutex_unlock(&dev->struct_mutex);
  228. return ret;
  229. }
  230. int
  231. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  232. struct drm_file *file_priv)
  233. {
  234. struct drm_i915_private *dev_priv = dev->dev_private;
  235. struct drm_i915_gem_get_aperture *args = data;
  236. if (!(dev->driver->driver_features & DRIVER_GEM))
  237. return -ENODEV;
  238. mutex_lock(&dev->struct_mutex);
  239. args->aper_size = dev_priv->mm.gtt_total;
  240. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  241. mutex_unlock(&dev->struct_mutex);
  242. return 0;
  243. }
  244. /**
  245. * Creates a new mm object and returns a handle to it.
  246. */
  247. int
  248. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  249. struct drm_file *file_priv)
  250. {
  251. struct drm_i915_gem_create *args = data;
  252. struct drm_gem_object *obj;
  253. int ret;
  254. u32 handle;
  255. args->size = roundup(args->size, PAGE_SIZE);
  256. /* Allocate the new object */
  257. obj = i915_gem_alloc_object(dev, args->size);
  258. if (obj == NULL)
  259. return -ENOMEM;
  260. ret = drm_gem_handle_create(file_priv, obj, &handle);
  261. if (ret) {
  262. drm_gem_object_release(obj);
  263. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  264. kfree(obj);
  265. return ret;
  266. }
  267. /* drop reference from allocate - handle holds it now */
  268. drm_gem_object_unreference(obj);
  269. trace_i915_gem_object_create(obj);
  270. args->handle = handle;
  271. return 0;
  272. }
  273. static bool
  274. i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
  275. {
  276. struct drm_device *dev = obj->base.dev;
  277. drm_i915_private_t *dev_priv = dev->dev_private;
  278. return obj->gtt_space == NULL ||
  279. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  280. }
  281. static inline int
  282. fast_shmem_read(struct page **pages,
  283. loff_t page_base, int page_offset,
  284. char __user *data,
  285. int length)
  286. {
  287. char *vaddr;
  288. int ret;
  289. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  290. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  291. kunmap_atomic(vaddr);
  292. return ret;
  293. }
  294. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  295. {
  296. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  297. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  298. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  299. obj_priv->tiling_mode != I915_TILING_NONE;
  300. }
  301. static inline void
  302. slow_shmem_copy(struct page *dst_page,
  303. int dst_offset,
  304. struct page *src_page,
  305. int src_offset,
  306. int length)
  307. {
  308. char *dst_vaddr, *src_vaddr;
  309. dst_vaddr = kmap(dst_page);
  310. src_vaddr = kmap(src_page);
  311. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  312. kunmap(src_page);
  313. kunmap(dst_page);
  314. }
  315. static inline void
  316. slow_shmem_bit17_copy(struct page *gpu_page,
  317. int gpu_offset,
  318. struct page *cpu_page,
  319. int cpu_offset,
  320. int length,
  321. int is_read)
  322. {
  323. char *gpu_vaddr, *cpu_vaddr;
  324. /* Use the unswizzled path if this page isn't affected. */
  325. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  326. if (is_read)
  327. return slow_shmem_copy(cpu_page, cpu_offset,
  328. gpu_page, gpu_offset, length);
  329. else
  330. return slow_shmem_copy(gpu_page, gpu_offset,
  331. cpu_page, cpu_offset, length);
  332. }
  333. gpu_vaddr = kmap(gpu_page);
  334. cpu_vaddr = kmap(cpu_page);
  335. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  336. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  337. */
  338. while (length > 0) {
  339. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  340. int this_length = min(cacheline_end - gpu_offset, length);
  341. int swizzled_gpu_offset = gpu_offset ^ 64;
  342. if (is_read) {
  343. memcpy(cpu_vaddr + cpu_offset,
  344. gpu_vaddr + swizzled_gpu_offset,
  345. this_length);
  346. } else {
  347. memcpy(gpu_vaddr + swizzled_gpu_offset,
  348. cpu_vaddr + cpu_offset,
  349. this_length);
  350. }
  351. cpu_offset += this_length;
  352. gpu_offset += this_length;
  353. length -= this_length;
  354. }
  355. kunmap(cpu_page);
  356. kunmap(gpu_page);
  357. }
  358. /**
  359. * This is the fast shmem pread path, which attempts to copy_from_user directly
  360. * from the backing pages of the object to the user's address space. On a
  361. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  362. */
  363. static int
  364. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  365. struct drm_i915_gem_pread *args,
  366. struct drm_file *file_priv)
  367. {
  368. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  369. ssize_t remain;
  370. loff_t offset, page_base;
  371. char __user *user_data;
  372. int page_offset, page_length;
  373. user_data = (char __user *) (uintptr_t) args->data_ptr;
  374. remain = args->size;
  375. obj_priv = to_intel_bo(obj);
  376. offset = args->offset;
  377. while (remain > 0) {
  378. /* Operation in this page
  379. *
  380. * page_base = page offset within aperture
  381. * page_offset = offset within page
  382. * page_length = bytes to copy for this page
  383. */
  384. page_base = (offset & ~(PAGE_SIZE-1));
  385. page_offset = offset & (PAGE_SIZE-1);
  386. page_length = remain;
  387. if ((page_offset + remain) > PAGE_SIZE)
  388. page_length = PAGE_SIZE - page_offset;
  389. if (fast_shmem_read(obj_priv->pages,
  390. page_base, page_offset,
  391. user_data, page_length))
  392. return -EFAULT;
  393. remain -= page_length;
  394. user_data += page_length;
  395. offset += page_length;
  396. }
  397. return 0;
  398. }
  399. static int
  400. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  401. {
  402. int ret;
  403. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  404. /* If we've insufficient memory to map in the pages, attempt
  405. * to make some space by throwing out some old buffers.
  406. */
  407. if (ret == -ENOMEM) {
  408. struct drm_device *dev = obj->dev;
  409. ret = i915_gem_evict_something(dev, obj->size,
  410. i915_gem_get_gtt_alignment(obj),
  411. false);
  412. if (ret)
  413. return ret;
  414. ret = i915_gem_object_get_pages(obj, 0);
  415. }
  416. return ret;
  417. }
  418. /**
  419. * This is the fallback shmem pread path, which allocates temporary storage
  420. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  421. * can copy out of the object's backing pages while holding the struct mutex
  422. * and not take page faults.
  423. */
  424. static int
  425. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  426. struct drm_i915_gem_pread *args,
  427. struct drm_file *file_priv)
  428. {
  429. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  430. struct mm_struct *mm = current->mm;
  431. struct page **user_pages;
  432. ssize_t remain;
  433. loff_t offset, pinned_pages, i;
  434. loff_t first_data_page, last_data_page, num_pages;
  435. int shmem_page_index, shmem_page_offset;
  436. int data_page_index, data_page_offset;
  437. int page_length;
  438. int ret;
  439. uint64_t data_ptr = args->data_ptr;
  440. int do_bit17_swizzling;
  441. remain = args->size;
  442. /* Pin the user pages containing the data. We can't fault while
  443. * holding the struct mutex, yet we want to hold it while
  444. * dereferencing the user data.
  445. */
  446. first_data_page = data_ptr / PAGE_SIZE;
  447. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  448. num_pages = last_data_page - first_data_page + 1;
  449. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  450. if (user_pages == NULL)
  451. return -ENOMEM;
  452. mutex_unlock(&dev->struct_mutex);
  453. down_read(&mm->mmap_sem);
  454. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  455. num_pages, 1, 0, user_pages, NULL);
  456. up_read(&mm->mmap_sem);
  457. mutex_lock(&dev->struct_mutex);
  458. if (pinned_pages < num_pages) {
  459. ret = -EFAULT;
  460. goto out;
  461. }
  462. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  463. args->offset,
  464. args->size);
  465. if (ret)
  466. goto out;
  467. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  468. obj_priv = to_intel_bo(obj);
  469. offset = args->offset;
  470. while (remain > 0) {
  471. /* Operation in this page
  472. *
  473. * shmem_page_index = page number within shmem file
  474. * shmem_page_offset = offset within page in shmem file
  475. * data_page_index = page number in get_user_pages return
  476. * data_page_offset = offset with data_page_index page.
  477. * page_length = bytes to copy for this page
  478. */
  479. shmem_page_index = offset / PAGE_SIZE;
  480. shmem_page_offset = offset & ~PAGE_MASK;
  481. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  482. data_page_offset = data_ptr & ~PAGE_MASK;
  483. page_length = remain;
  484. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  485. page_length = PAGE_SIZE - shmem_page_offset;
  486. if ((data_page_offset + page_length) > PAGE_SIZE)
  487. page_length = PAGE_SIZE - data_page_offset;
  488. if (do_bit17_swizzling) {
  489. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  490. shmem_page_offset,
  491. user_pages[data_page_index],
  492. data_page_offset,
  493. page_length,
  494. 1);
  495. } else {
  496. slow_shmem_copy(user_pages[data_page_index],
  497. data_page_offset,
  498. obj_priv->pages[shmem_page_index],
  499. shmem_page_offset,
  500. page_length);
  501. }
  502. remain -= page_length;
  503. data_ptr += page_length;
  504. offset += page_length;
  505. }
  506. out:
  507. for (i = 0; i < pinned_pages; i++) {
  508. SetPageDirty(user_pages[i]);
  509. page_cache_release(user_pages[i]);
  510. }
  511. drm_free_large(user_pages);
  512. return ret;
  513. }
  514. /**
  515. * Reads data from the object referenced by handle.
  516. *
  517. * On error, the contents of *data are undefined.
  518. */
  519. int
  520. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  521. struct drm_file *file_priv)
  522. {
  523. struct drm_i915_gem_pread *args = data;
  524. struct drm_gem_object *obj;
  525. struct drm_i915_gem_object *obj_priv;
  526. int ret = 0;
  527. ret = i915_mutex_lock_interruptible(dev);
  528. if (ret)
  529. return ret;
  530. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  531. if (obj == NULL) {
  532. ret = -ENOENT;
  533. goto unlock;
  534. }
  535. obj_priv = to_intel_bo(obj);
  536. /* Bounds check source. */
  537. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  538. ret = -EINVAL;
  539. goto out;
  540. }
  541. if (args->size == 0)
  542. goto out;
  543. if (!access_ok(VERIFY_WRITE,
  544. (char __user *)(uintptr_t)args->data_ptr,
  545. args->size)) {
  546. ret = -EFAULT;
  547. goto out;
  548. }
  549. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  550. args->size);
  551. if (ret) {
  552. ret = -EFAULT;
  553. goto out;
  554. }
  555. ret = i915_gem_object_get_pages_or_evict(obj);
  556. if (ret)
  557. goto out;
  558. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  559. args->offset,
  560. args->size);
  561. if (ret)
  562. goto out_put;
  563. ret = -EFAULT;
  564. if (!i915_gem_object_needs_bit17_swizzle(obj))
  565. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  566. if (ret == -EFAULT)
  567. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  568. out_put:
  569. i915_gem_object_put_pages(obj);
  570. out:
  571. drm_gem_object_unreference(obj);
  572. unlock:
  573. mutex_unlock(&dev->struct_mutex);
  574. return ret;
  575. }
  576. /* This is the fast write path which cannot handle
  577. * page faults in the source data
  578. */
  579. static inline int
  580. fast_user_write(struct io_mapping *mapping,
  581. loff_t page_base, int page_offset,
  582. char __user *user_data,
  583. int length)
  584. {
  585. char *vaddr_atomic;
  586. unsigned long unwritten;
  587. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  588. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  589. user_data, length);
  590. io_mapping_unmap_atomic(vaddr_atomic);
  591. return unwritten;
  592. }
  593. /* Here's the write path which can sleep for
  594. * page faults
  595. */
  596. static inline void
  597. slow_kernel_write(struct io_mapping *mapping,
  598. loff_t gtt_base, int gtt_offset,
  599. struct page *user_page, int user_offset,
  600. int length)
  601. {
  602. char __iomem *dst_vaddr;
  603. char *src_vaddr;
  604. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  605. src_vaddr = kmap(user_page);
  606. memcpy_toio(dst_vaddr + gtt_offset,
  607. src_vaddr + user_offset,
  608. length);
  609. kunmap(user_page);
  610. io_mapping_unmap(dst_vaddr);
  611. }
  612. static inline int
  613. fast_shmem_write(struct page **pages,
  614. loff_t page_base, int page_offset,
  615. char __user *data,
  616. int length)
  617. {
  618. char *vaddr;
  619. int ret;
  620. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  621. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  622. kunmap_atomic(vaddr);
  623. return ret;
  624. }
  625. /**
  626. * This is the fast pwrite path, where we copy the data directly from the
  627. * user into the GTT, uncached.
  628. */
  629. static int
  630. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  631. struct drm_i915_gem_pwrite *args,
  632. struct drm_file *file_priv)
  633. {
  634. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  635. drm_i915_private_t *dev_priv = dev->dev_private;
  636. ssize_t remain;
  637. loff_t offset, page_base;
  638. char __user *user_data;
  639. int page_offset, page_length;
  640. user_data = (char __user *) (uintptr_t) args->data_ptr;
  641. remain = args->size;
  642. obj_priv = to_intel_bo(obj);
  643. offset = obj_priv->gtt_offset + args->offset;
  644. while (remain > 0) {
  645. /* Operation in this page
  646. *
  647. * page_base = page offset within aperture
  648. * page_offset = offset within page
  649. * page_length = bytes to copy for this page
  650. */
  651. page_base = (offset & ~(PAGE_SIZE-1));
  652. page_offset = offset & (PAGE_SIZE-1);
  653. page_length = remain;
  654. if ((page_offset + remain) > PAGE_SIZE)
  655. page_length = PAGE_SIZE - page_offset;
  656. /* If we get a fault while copying data, then (presumably) our
  657. * source page isn't available. Return the error and we'll
  658. * retry in the slow path.
  659. */
  660. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  661. page_offset, user_data, page_length))
  662. return -EFAULT;
  663. remain -= page_length;
  664. user_data += page_length;
  665. offset += page_length;
  666. }
  667. return 0;
  668. }
  669. /**
  670. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  674. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  675. */
  676. static int
  677. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  682. drm_i915_private_t *dev_priv = dev->dev_private;
  683. ssize_t remain;
  684. loff_t gtt_page_base, offset;
  685. loff_t first_data_page, last_data_page, num_pages;
  686. loff_t pinned_pages, i;
  687. struct page **user_pages;
  688. struct mm_struct *mm = current->mm;
  689. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. remain = args->size;
  693. /* Pin the user pages containing the data. We can't fault while
  694. * holding the struct mutex, and all of the pwrite implementations
  695. * want to hold it while dereferencing the user data.
  696. */
  697. first_data_page = data_ptr / PAGE_SIZE;
  698. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  699. num_pages = last_data_page - first_data_page + 1;
  700. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  701. if (user_pages == NULL)
  702. return -ENOMEM;
  703. mutex_unlock(&dev->struct_mutex);
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. mutex_lock(&dev->struct_mutex);
  709. if (pinned_pages < num_pages) {
  710. ret = -EFAULT;
  711. goto out_unpin_pages;
  712. }
  713. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  714. if (ret)
  715. goto out_unpin_pages;
  716. obj_priv = to_intel_bo(obj);
  717. offset = obj_priv->gtt_offset + args->offset;
  718. while (remain > 0) {
  719. /* Operation in this page
  720. *
  721. * gtt_page_base = page offset within aperture
  722. * gtt_page_offset = offset within page in aperture
  723. * data_page_index = page number in get_user_pages return
  724. * data_page_offset = offset with data_page_index page.
  725. * page_length = bytes to copy for this page
  726. */
  727. gtt_page_base = offset & PAGE_MASK;
  728. gtt_page_offset = offset & ~PAGE_MASK;
  729. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  730. data_page_offset = data_ptr & ~PAGE_MASK;
  731. page_length = remain;
  732. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  733. page_length = PAGE_SIZE - gtt_page_offset;
  734. if ((data_page_offset + page_length) > PAGE_SIZE)
  735. page_length = PAGE_SIZE - data_page_offset;
  736. slow_kernel_write(dev_priv->mm.gtt_mapping,
  737. gtt_page_base, gtt_page_offset,
  738. user_pages[data_page_index],
  739. data_page_offset,
  740. page_length);
  741. remain -= page_length;
  742. offset += page_length;
  743. data_ptr += page_length;
  744. }
  745. out_unpin_pages:
  746. for (i = 0; i < pinned_pages; i++)
  747. page_cache_release(user_pages[i]);
  748. drm_free_large(user_pages);
  749. return ret;
  750. }
  751. /**
  752. * This is the fast shmem pwrite path, which attempts to directly
  753. * copy_from_user into the kmapped pages backing the object.
  754. */
  755. static int
  756. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  757. struct drm_i915_gem_pwrite *args,
  758. struct drm_file *file_priv)
  759. {
  760. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  761. ssize_t remain;
  762. loff_t offset, page_base;
  763. char __user *user_data;
  764. int page_offset, page_length;
  765. user_data = (char __user *) (uintptr_t) args->data_ptr;
  766. remain = args->size;
  767. obj_priv = to_intel_bo(obj);
  768. offset = args->offset;
  769. obj_priv->dirty = 1;
  770. while (remain > 0) {
  771. /* Operation in this page
  772. *
  773. * page_base = page offset within aperture
  774. * page_offset = offset within page
  775. * page_length = bytes to copy for this page
  776. */
  777. page_base = (offset & ~(PAGE_SIZE-1));
  778. page_offset = offset & (PAGE_SIZE-1);
  779. page_length = remain;
  780. if ((page_offset + remain) > PAGE_SIZE)
  781. page_length = PAGE_SIZE - page_offset;
  782. if (fast_shmem_write(obj_priv->pages,
  783. page_base, page_offset,
  784. user_data, page_length))
  785. return -EFAULT;
  786. remain -= page_length;
  787. user_data += page_length;
  788. offset += page_length;
  789. }
  790. return 0;
  791. }
  792. /**
  793. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  794. * the memory and maps it using kmap_atomic for copying.
  795. *
  796. * This avoids taking mmap_sem for faulting on the user's address while the
  797. * struct_mutex is held.
  798. */
  799. static int
  800. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  801. struct drm_i915_gem_pwrite *args,
  802. struct drm_file *file_priv)
  803. {
  804. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  805. struct mm_struct *mm = current->mm;
  806. struct page **user_pages;
  807. ssize_t remain;
  808. loff_t offset, pinned_pages, i;
  809. loff_t first_data_page, last_data_page, num_pages;
  810. int shmem_page_index, shmem_page_offset;
  811. int data_page_index, data_page_offset;
  812. int page_length;
  813. int ret;
  814. uint64_t data_ptr = args->data_ptr;
  815. int do_bit17_swizzling;
  816. remain = args->size;
  817. /* Pin the user pages containing the data. We can't fault while
  818. * holding the struct mutex, and all of the pwrite implementations
  819. * want to hold it while dereferencing the user data.
  820. */
  821. first_data_page = data_ptr / PAGE_SIZE;
  822. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  823. num_pages = last_data_page - first_data_page + 1;
  824. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  825. if (user_pages == NULL)
  826. return -ENOMEM;
  827. mutex_unlock(&dev->struct_mutex);
  828. down_read(&mm->mmap_sem);
  829. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  830. num_pages, 0, 0, user_pages, NULL);
  831. up_read(&mm->mmap_sem);
  832. mutex_lock(&dev->struct_mutex);
  833. if (pinned_pages < num_pages) {
  834. ret = -EFAULT;
  835. goto out;
  836. }
  837. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  838. if (ret)
  839. goto out;
  840. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  841. obj_priv = to_intel_bo(obj);
  842. offset = args->offset;
  843. obj_priv->dirty = 1;
  844. while (remain > 0) {
  845. /* Operation in this page
  846. *
  847. * shmem_page_index = page number within shmem file
  848. * shmem_page_offset = offset within page in shmem file
  849. * data_page_index = page number in get_user_pages return
  850. * data_page_offset = offset with data_page_index page.
  851. * page_length = bytes to copy for this page
  852. */
  853. shmem_page_index = offset / PAGE_SIZE;
  854. shmem_page_offset = offset & ~PAGE_MASK;
  855. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  856. data_page_offset = data_ptr & ~PAGE_MASK;
  857. page_length = remain;
  858. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  859. page_length = PAGE_SIZE - shmem_page_offset;
  860. if ((data_page_offset + page_length) > PAGE_SIZE)
  861. page_length = PAGE_SIZE - data_page_offset;
  862. if (do_bit17_swizzling) {
  863. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  864. shmem_page_offset,
  865. user_pages[data_page_index],
  866. data_page_offset,
  867. page_length,
  868. 0);
  869. } else {
  870. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  871. shmem_page_offset,
  872. user_pages[data_page_index],
  873. data_page_offset,
  874. page_length);
  875. }
  876. remain -= page_length;
  877. data_ptr += page_length;
  878. offset += page_length;
  879. }
  880. out:
  881. for (i = 0; i < pinned_pages; i++)
  882. page_cache_release(user_pages[i]);
  883. drm_free_large(user_pages);
  884. return ret;
  885. }
  886. /**
  887. * Writes data to the object referenced by handle.
  888. *
  889. * On error, the contents of the buffer that were to be modified are undefined.
  890. */
  891. int
  892. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  893. struct drm_file *file)
  894. {
  895. struct drm_i915_gem_pwrite *args = data;
  896. struct drm_gem_object *obj;
  897. struct drm_i915_gem_object *obj_priv;
  898. int ret = 0;
  899. ret = i915_mutex_lock_interruptible(dev);
  900. if (ret)
  901. return ret;
  902. obj = drm_gem_object_lookup(dev, file, args->handle);
  903. if (obj == NULL) {
  904. ret = -ENOENT;
  905. goto unlock;
  906. }
  907. obj_priv = to_intel_bo(obj);
  908. /* Bounds check destination. */
  909. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  910. ret = -EINVAL;
  911. goto out;
  912. }
  913. if (args->size == 0)
  914. goto out;
  915. if (!access_ok(VERIFY_READ,
  916. (char __user *)(uintptr_t)args->data_ptr,
  917. args->size)) {
  918. ret = -EFAULT;
  919. goto out;
  920. }
  921. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  922. args->size);
  923. if (ret) {
  924. ret = -EFAULT;
  925. goto out;
  926. }
  927. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  928. * it would end up going through the fenced access, and we'll get
  929. * different detiling behavior between reading and writing.
  930. * pread/pwrite currently are reading and writing from the CPU
  931. * perspective, requiring manual detiling by the client.
  932. */
  933. if (obj_priv->phys_obj)
  934. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  935. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  936. obj_priv->gtt_space &&
  937. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  938. ret = i915_gem_object_pin(obj, 0, true);
  939. if (ret)
  940. goto out;
  941. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  942. if (ret)
  943. goto out_unpin;
  944. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  945. if (ret == -EFAULT)
  946. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  947. out_unpin:
  948. i915_gem_object_unpin(obj);
  949. } else {
  950. ret = i915_gem_object_get_pages_or_evict(obj);
  951. if (ret)
  952. goto out;
  953. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  954. if (ret)
  955. goto out_put;
  956. ret = -EFAULT;
  957. if (!i915_gem_object_needs_bit17_swizzle(obj))
  958. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  959. if (ret == -EFAULT)
  960. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  961. out_put:
  962. i915_gem_object_put_pages(obj);
  963. }
  964. out:
  965. drm_gem_object_unreference(obj);
  966. unlock:
  967. mutex_unlock(&dev->struct_mutex);
  968. return ret;
  969. }
  970. /**
  971. * Called when user space prepares to use an object with the CPU, either
  972. * through the mmap ioctl's mapping or a GTT mapping.
  973. */
  974. int
  975. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  976. struct drm_file *file_priv)
  977. {
  978. struct drm_i915_private *dev_priv = dev->dev_private;
  979. struct drm_i915_gem_set_domain *args = data;
  980. struct drm_gem_object *obj;
  981. struct drm_i915_gem_object *obj_priv;
  982. uint32_t read_domains = args->read_domains;
  983. uint32_t write_domain = args->write_domain;
  984. int ret;
  985. if (!(dev->driver->driver_features & DRIVER_GEM))
  986. return -ENODEV;
  987. /* Only handle setting domains to types used by the CPU. */
  988. if (write_domain & I915_GEM_GPU_DOMAINS)
  989. return -EINVAL;
  990. if (read_domains & I915_GEM_GPU_DOMAINS)
  991. return -EINVAL;
  992. /* Having something in the write domain implies it's in the read
  993. * domain, and only that read domain. Enforce that in the request.
  994. */
  995. if (write_domain != 0 && read_domains != write_domain)
  996. return -EINVAL;
  997. ret = i915_mutex_lock_interruptible(dev);
  998. if (ret)
  999. return ret;
  1000. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1001. if (obj == NULL) {
  1002. ret = -ENOENT;
  1003. goto unlock;
  1004. }
  1005. obj_priv = to_intel_bo(obj);
  1006. intel_mark_busy(dev, obj);
  1007. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1008. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1009. /* Update the LRU on the fence for the CPU access that's
  1010. * about to occur.
  1011. */
  1012. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1013. struct drm_i915_fence_reg *reg =
  1014. &dev_priv->fence_regs[obj_priv->fence_reg];
  1015. list_move_tail(&reg->lru_list,
  1016. &dev_priv->mm.fence_list);
  1017. }
  1018. /* Silently promote "you're not bound, there was nothing to do"
  1019. * to success, since the client was just asking us to
  1020. * make sure everything was done.
  1021. */
  1022. if (ret == -EINVAL)
  1023. ret = 0;
  1024. } else {
  1025. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1026. }
  1027. /* Maintain LRU order of "inactive" objects */
  1028. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1029. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1030. drm_gem_object_unreference(obj);
  1031. unlock:
  1032. mutex_unlock(&dev->struct_mutex);
  1033. return ret;
  1034. }
  1035. /**
  1036. * Called when user space has done writes to this buffer
  1037. */
  1038. int
  1039. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1040. struct drm_file *file_priv)
  1041. {
  1042. struct drm_i915_gem_sw_finish *args = data;
  1043. struct drm_gem_object *obj;
  1044. int ret = 0;
  1045. if (!(dev->driver->driver_features & DRIVER_GEM))
  1046. return -ENODEV;
  1047. ret = i915_mutex_lock_interruptible(dev);
  1048. if (ret)
  1049. return ret;
  1050. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1051. if (obj == NULL) {
  1052. ret = -ENOENT;
  1053. goto unlock;
  1054. }
  1055. /* Pinned buffers may be scanout, so flush the cache */
  1056. if (to_intel_bo(obj)->pin_count)
  1057. i915_gem_object_flush_cpu_write_domain(obj);
  1058. drm_gem_object_unreference(obj);
  1059. unlock:
  1060. mutex_unlock(&dev->struct_mutex);
  1061. return ret;
  1062. }
  1063. /**
  1064. * Maps the contents of an object, returning the address it is mapped
  1065. * into.
  1066. *
  1067. * While the mapping holds a reference on the contents of the object, it doesn't
  1068. * imply a ref on the object itself.
  1069. */
  1070. int
  1071. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1072. struct drm_file *file_priv)
  1073. {
  1074. struct drm_i915_private *dev_priv = dev->dev_private;
  1075. struct drm_i915_gem_mmap *args = data;
  1076. struct drm_gem_object *obj;
  1077. loff_t offset;
  1078. unsigned long addr;
  1079. if (!(dev->driver->driver_features & DRIVER_GEM))
  1080. return -ENODEV;
  1081. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1082. if (obj == NULL)
  1083. return -ENOENT;
  1084. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1085. drm_gem_object_unreference_unlocked(obj);
  1086. return -E2BIG;
  1087. }
  1088. offset = args->offset;
  1089. down_write(&current->mm->mmap_sem);
  1090. addr = do_mmap(obj->filp, 0, args->size,
  1091. PROT_READ | PROT_WRITE, MAP_SHARED,
  1092. args->offset);
  1093. up_write(&current->mm->mmap_sem);
  1094. drm_gem_object_unreference_unlocked(obj);
  1095. if (IS_ERR((void *)addr))
  1096. return addr;
  1097. args->addr_ptr = (uint64_t) addr;
  1098. return 0;
  1099. }
  1100. /**
  1101. * i915_gem_fault - fault a page into the GTT
  1102. * vma: VMA in question
  1103. * vmf: fault info
  1104. *
  1105. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1106. * from userspace. The fault handler takes care of binding the object to
  1107. * the GTT (if needed), allocating and programming a fence register (again,
  1108. * only if needed based on whether the old reg is still valid or the object
  1109. * is tiled) and inserting a new PTE into the faulting process.
  1110. *
  1111. * Note that the faulting process may involve evicting existing objects
  1112. * from the GTT and/or fence registers to make room. So performance may
  1113. * suffer if the GTT working set is large or there are few fence registers
  1114. * left.
  1115. */
  1116. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1117. {
  1118. struct drm_gem_object *obj = vma->vm_private_data;
  1119. struct drm_device *dev = obj->dev;
  1120. drm_i915_private_t *dev_priv = dev->dev_private;
  1121. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1122. pgoff_t page_offset;
  1123. unsigned long pfn;
  1124. int ret = 0;
  1125. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1126. /* We don't use vmf->pgoff since that has the fake offset */
  1127. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1128. PAGE_SHIFT;
  1129. /* Now bind it into the GTT if needed */
  1130. mutex_lock(&dev->struct_mutex);
  1131. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1132. if (!i915_gem_object_cpu_accessible(obj_priv))
  1133. i915_gem_object_unbind(obj);
  1134. if (!obj_priv->gtt_space) {
  1135. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1136. if (ret)
  1137. goto unlock;
  1138. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1139. if (ret)
  1140. goto unlock;
  1141. }
  1142. if (!obj_priv->fault_mappable) {
  1143. obj_priv->fault_mappable = true;
  1144. i915_gem_info_update_mappable(dev_priv, obj, true);
  1145. }
  1146. /* Need a new fence register? */
  1147. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1148. ret = i915_gem_object_get_fence_reg(obj, true);
  1149. if (ret)
  1150. goto unlock;
  1151. }
  1152. if (i915_gem_object_is_inactive(obj_priv))
  1153. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1154. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1155. page_offset;
  1156. /* Finally, remap it using the new GTT offset */
  1157. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1158. unlock:
  1159. mutex_unlock(&dev->struct_mutex);
  1160. switch (ret) {
  1161. case 0:
  1162. case -ERESTARTSYS:
  1163. return VM_FAULT_NOPAGE;
  1164. case -ENOMEM:
  1165. case -EAGAIN:
  1166. return VM_FAULT_OOM;
  1167. default:
  1168. return VM_FAULT_SIGBUS;
  1169. }
  1170. }
  1171. /**
  1172. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1173. * @obj: obj in question
  1174. *
  1175. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1176. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1177. * up the object based on the offset and sets up the various memory mapping
  1178. * structures.
  1179. *
  1180. * This routine allocates and attaches a fake offset for @obj.
  1181. */
  1182. static int
  1183. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1184. {
  1185. struct drm_device *dev = obj->dev;
  1186. struct drm_gem_mm *mm = dev->mm_private;
  1187. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1188. struct drm_map_list *list;
  1189. struct drm_local_map *map;
  1190. int ret = 0;
  1191. /* Set the object up for mmap'ing */
  1192. list = &obj->map_list;
  1193. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1194. if (!list->map)
  1195. return -ENOMEM;
  1196. map = list->map;
  1197. map->type = _DRM_GEM;
  1198. map->size = obj->size;
  1199. map->handle = obj;
  1200. /* Get a DRM GEM mmap offset allocated... */
  1201. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1202. obj->size / PAGE_SIZE, 0, 0);
  1203. if (!list->file_offset_node) {
  1204. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1205. ret = -ENOSPC;
  1206. goto out_free_list;
  1207. }
  1208. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1209. obj->size / PAGE_SIZE, 0);
  1210. if (!list->file_offset_node) {
  1211. ret = -ENOMEM;
  1212. goto out_free_list;
  1213. }
  1214. list->hash.key = list->file_offset_node->start;
  1215. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1216. if (ret) {
  1217. DRM_ERROR("failed to add to map hash\n");
  1218. goto out_free_mm;
  1219. }
  1220. /* By now we should be all set, any drm_mmap request on the offset
  1221. * below will get to our mmap & fault handler */
  1222. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1223. return 0;
  1224. out_free_mm:
  1225. drm_mm_put_block(list->file_offset_node);
  1226. out_free_list:
  1227. kfree(list->map);
  1228. return ret;
  1229. }
  1230. /**
  1231. * i915_gem_release_mmap - remove physical page mappings
  1232. * @obj: obj in question
  1233. *
  1234. * Preserve the reservation of the mmapping with the DRM core code, but
  1235. * relinquish ownership of the pages back to the system.
  1236. *
  1237. * It is vital that we remove the page mapping if we have mapped a tiled
  1238. * object through the GTT and then lose the fence register due to
  1239. * resource pressure. Similarly if the object has been moved out of the
  1240. * aperture, than pages mapped into userspace must be revoked. Removing the
  1241. * mapping will then trigger a page fault on the next user access, allowing
  1242. * fixup by i915_gem_fault().
  1243. */
  1244. void
  1245. i915_gem_release_mmap(struct drm_gem_object *obj)
  1246. {
  1247. struct drm_device *dev = obj->dev;
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1250. if (dev->dev_mapping)
  1251. unmap_mapping_range(dev->dev_mapping,
  1252. obj_priv->mmap_offset, obj->size, 1);
  1253. if (obj_priv->fault_mappable) {
  1254. obj_priv->fault_mappable = false;
  1255. i915_gem_info_update_mappable(dev_priv, obj, false);
  1256. }
  1257. }
  1258. static void
  1259. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1260. {
  1261. struct drm_device *dev = obj->dev;
  1262. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1263. struct drm_gem_mm *mm = dev->mm_private;
  1264. struct drm_map_list *list;
  1265. list = &obj->map_list;
  1266. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1267. if (list->file_offset_node) {
  1268. drm_mm_put_block(list->file_offset_node);
  1269. list->file_offset_node = NULL;
  1270. }
  1271. if (list->map) {
  1272. kfree(list->map);
  1273. list->map = NULL;
  1274. }
  1275. obj_priv->mmap_offset = 0;
  1276. }
  1277. /**
  1278. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1279. * @obj: object to check
  1280. *
  1281. * Return the required GTT alignment for an object, taking into account
  1282. * potential fence register mapping if needed.
  1283. */
  1284. static uint32_t
  1285. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1286. {
  1287. struct drm_device *dev = obj->dev;
  1288. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1289. int start, i;
  1290. /*
  1291. * Minimum alignment is 4k (GTT page size), but might be greater
  1292. * if a fence register is needed for the object.
  1293. */
  1294. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1295. return 4096;
  1296. /*
  1297. * Previous chips need to be aligned to the size of the smallest
  1298. * fence register that can contain the object.
  1299. */
  1300. if (INTEL_INFO(dev)->gen == 3)
  1301. start = 1024*1024;
  1302. else
  1303. start = 512*1024;
  1304. for (i = start; i < obj->size; i <<= 1)
  1305. ;
  1306. return i;
  1307. }
  1308. /**
  1309. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1310. * @dev: DRM device
  1311. * @data: GTT mapping ioctl data
  1312. * @file_priv: GEM object info
  1313. *
  1314. * Simply returns the fake offset to userspace so it can mmap it.
  1315. * The mmap call will end up in drm_gem_mmap(), which will set things
  1316. * up so we can get faults in the handler above.
  1317. *
  1318. * The fault handler will take care of binding the object into the GTT
  1319. * (since it may have been evicted to make room for something), allocating
  1320. * a fence register, and mapping the appropriate aperture address into
  1321. * userspace.
  1322. */
  1323. int
  1324. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1325. struct drm_file *file_priv)
  1326. {
  1327. struct drm_i915_private *dev_priv = dev->dev_private;
  1328. struct drm_i915_gem_mmap_gtt *args = data;
  1329. struct drm_gem_object *obj;
  1330. struct drm_i915_gem_object *obj_priv;
  1331. int ret;
  1332. if (!(dev->driver->driver_features & DRIVER_GEM))
  1333. return -ENODEV;
  1334. ret = i915_mutex_lock_interruptible(dev);
  1335. if (ret)
  1336. return ret;
  1337. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1338. if (obj == NULL) {
  1339. ret = -ENOENT;
  1340. goto unlock;
  1341. }
  1342. obj_priv = to_intel_bo(obj);
  1343. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1344. ret = -E2BIG;
  1345. goto unlock;
  1346. }
  1347. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1348. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1349. ret = -EINVAL;
  1350. goto out;
  1351. }
  1352. if (!obj_priv->mmap_offset) {
  1353. ret = i915_gem_create_mmap_offset(obj);
  1354. if (ret)
  1355. goto out;
  1356. }
  1357. args->offset = obj_priv->mmap_offset;
  1358. /*
  1359. * Pull it into the GTT so that we have a page list (makes the
  1360. * initial fault faster and any subsequent flushing possible).
  1361. */
  1362. if (!obj_priv->agp_mem) {
  1363. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1364. if (ret)
  1365. goto out;
  1366. }
  1367. out:
  1368. drm_gem_object_unreference(obj);
  1369. unlock:
  1370. mutex_unlock(&dev->struct_mutex);
  1371. return ret;
  1372. }
  1373. static void
  1374. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1375. {
  1376. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1377. int page_count = obj->size / PAGE_SIZE;
  1378. int i;
  1379. BUG_ON(obj_priv->pages_refcount == 0);
  1380. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1381. if (--obj_priv->pages_refcount != 0)
  1382. return;
  1383. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1384. i915_gem_object_save_bit_17_swizzle(obj);
  1385. if (obj_priv->madv == I915_MADV_DONTNEED)
  1386. obj_priv->dirty = 0;
  1387. for (i = 0; i < page_count; i++) {
  1388. if (obj_priv->dirty)
  1389. set_page_dirty(obj_priv->pages[i]);
  1390. if (obj_priv->madv == I915_MADV_WILLNEED)
  1391. mark_page_accessed(obj_priv->pages[i]);
  1392. page_cache_release(obj_priv->pages[i]);
  1393. }
  1394. obj_priv->dirty = 0;
  1395. drm_free_large(obj_priv->pages);
  1396. obj_priv->pages = NULL;
  1397. }
  1398. static uint32_t
  1399. i915_gem_next_request_seqno(struct drm_device *dev,
  1400. struct intel_ring_buffer *ring)
  1401. {
  1402. drm_i915_private_t *dev_priv = dev->dev_private;
  1403. ring->outstanding_lazy_request = true;
  1404. return dev_priv->next_seqno;
  1405. }
  1406. static void
  1407. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1408. struct intel_ring_buffer *ring)
  1409. {
  1410. struct drm_device *dev = obj->dev;
  1411. struct drm_i915_private *dev_priv = dev->dev_private;
  1412. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1413. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1414. BUG_ON(ring == NULL);
  1415. obj_priv->ring = ring;
  1416. /* Add a reference if we're newly entering the active list. */
  1417. if (!obj_priv->active) {
  1418. drm_gem_object_reference(obj);
  1419. obj_priv->active = 1;
  1420. }
  1421. /* Move from whatever list we were on to the tail of execution. */
  1422. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1423. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1424. obj_priv->last_rendering_seqno = seqno;
  1425. }
  1426. static void
  1427. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1428. {
  1429. struct drm_device *dev = obj->dev;
  1430. drm_i915_private_t *dev_priv = dev->dev_private;
  1431. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1432. BUG_ON(!obj_priv->active);
  1433. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1434. list_del_init(&obj_priv->ring_list);
  1435. obj_priv->last_rendering_seqno = 0;
  1436. }
  1437. /* Immediately discard the backing storage */
  1438. static void
  1439. i915_gem_object_truncate(struct drm_gem_object *obj)
  1440. {
  1441. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1442. struct inode *inode;
  1443. /* Our goal here is to return as much of the memory as
  1444. * is possible back to the system as we are called from OOM.
  1445. * To do this we must instruct the shmfs to drop all of its
  1446. * backing pages, *now*. Here we mirror the actions taken
  1447. * when by shmem_delete_inode() to release the backing store.
  1448. */
  1449. inode = obj->filp->f_path.dentry->d_inode;
  1450. truncate_inode_pages(inode->i_mapping, 0);
  1451. if (inode->i_op->truncate_range)
  1452. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1453. obj_priv->madv = __I915_MADV_PURGED;
  1454. }
  1455. static inline int
  1456. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1457. {
  1458. return obj_priv->madv == I915_MADV_DONTNEED;
  1459. }
  1460. static void
  1461. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1462. {
  1463. struct drm_device *dev = obj->dev;
  1464. drm_i915_private_t *dev_priv = dev->dev_private;
  1465. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1466. if (obj_priv->pin_count != 0)
  1467. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1468. else
  1469. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1470. list_del_init(&obj_priv->ring_list);
  1471. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1472. obj_priv->last_rendering_seqno = 0;
  1473. obj_priv->ring = NULL;
  1474. if (obj_priv->active) {
  1475. obj_priv->active = 0;
  1476. drm_gem_object_unreference(obj);
  1477. }
  1478. WARN_ON(i915_verify_lists(dev));
  1479. }
  1480. static void
  1481. i915_gem_process_flushing_list(struct drm_device *dev,
  1482. uint32_t flush_domains,
  1483. struct intel_ring_buffer *ring)
  1484. {
  1485. drm_i915_private_t *dev_priv = dev->dev_private;
  1486. struct drm_i915_gem_object *obj_priv, *next;
  1487. list_for_each_entry_safe(obj_priv, next,
  1488. &ring->gpu_write_list,
  1489. gpu_write_list) {
  1490. struct drm_gem_object *obj = &obj_priv->base;
  1491. if (obj->write_domain & flush_domains) {
  1492. uint32_t old_write_domain = obj->write_domain;
  1493. obj->write_domain = 0;
  1494. list_del_init(&obj_priv->gpu_write_list);
  1495. i915_gem_object_move_to_active(obj, ring);
  1496. /* update the fence lru list */
  1497. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1498. struct drm_i915_fence_reg *reg =
  1499. &dev_priv->fence_regs[obj_priv->fence_reg];
  1500. list_move_tail(&reg->lru_list,
  1501. &dev_priv->mm.fence_list);
  1502. }
  1503. trace_i915_gem_object_change_domain(obj,
  1504. obj->read_domains,
  1505. old_write_domain);
  1506. }
  1507. }
  1508. }
  1509. int
  1510. i915_add_request(struct drm_device *dev,
  1511. struct drm_file *file,
  1512. struct drm_i915_gem_request *request,
  1513. struct intel_ring_buffer *ring)
  1514. {
  1515. drm_i915_private_t *dev_priv = dev->dev_private;
  1516. struct drm_i915_file_private *file_priv = NULL;
  1517. uint32_t seqno;
  1518. int was_empty;
  1519. int ret;
  1520. BUG_ON(request == NULL);
  1521. if (file != NULL)
  1522. file_priv = file->driver_priv;
  1523. ret = ring->add_request(ring, &seqno);
  1524. if (ret)
  1525. return ret;
  1526. ring->outstanding_lazy_request = false;
  1527. request->seqno = seqno;
  1528. request->ring = ring;
  1529. request->emitted_jiffies = jiffies;
  1530. was_empty = list_empty(&ring->request_list);
  1531. list_add_tail(&request->list, &ring->request_list);
  1532. if (file_priv) {
  1533. spin_lock(&file_priv->mm.lock);
  1534. request->file_priv = file_priv;
  1535. list_add_tail(&request->client_list,
  1536. &file_priv->mm.request_list);
  1537. spin_unlock(&file_priv->mm.lock);
  1538. }
  1539. if (!dev_priv->mm.suspended) {
  1540. mod_timer(&dev_priv->hangcheck_timer,
  1541. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1542. if (was_empty)
  1543. queue_delayed_work(dev_priv->wq,
  1544. &dev_priv->mm.retire_work, HZ);
  1545. }
  1546. return 0;
  1547. }
  1548. /**
  1549. * Command execution barrier
  1550. *
  1551. * Ensures that all commands in the ring are finished
  1552. * before signalling the CPU
  1553. */
  1554. static void
  1555. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1556. {
  1557. uint32_t flush_domains = 0;
  1558. /* The sampler always gets flushed on i965 (sigh) */
  1559. if (INTEL_INFO(dev)->gen >= 4)
  1560. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1561. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1562. }
  1563. static inline void
  1564. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1565. {
  1566. struct drm_i915_file_private *file_priv = request->file_priv;
  1567. if (!file_priv)
  1568. return;
  1569. spin_lock(&file_priv->mm.lock);
  1570. list_del(&request->client_list);
  1571. request->file_priv = NULL;
  1572. spin_unlock(&file_priv->mm.lock);
  1573. }
  1574. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1575. struct intel_ring_buffer *ring)
  1576. {
  1577. while (!list_empty(&ring->request_list)) {
  1578. struct drm_i915_gem_request *request;
  1579. request = list_first_entry(&ring->request_list,
  1580. struct drm_i915_gem_request,
  1581. list);
  1582. list_del(&request->list);
  1583. i915_gem_request_remove_from_client(request);
  1584. kfree(request);
  1585. }
  1586. while (!list_empty(&ring->active_list)) {
  1587. struct drm_i915_gem_object *obj_priv;
  1588. obj_priv = list_first_entry(&ring->active_list,
  1589. struct drm_i915_gem_object,
  1590. ring_list);
  1591. obj_priv->base.write_domain = 0;
  1592. list_del_init(&obj_priv->gpu_write_list);
  1593. i915_gem_object_move_to_inactive(&obj_priv->base);
  1594. }
  1595. }
  1596. void i915_gem_reset(struct drm_device *dev)
  1597. {
  1598. struct drm_i915_private *dev_priv = dev->dev_private;
  1599. struct drm_i915_gem_object *obj_priv;
  1600. int i;
  1601. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1602. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1603. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1604. /* Remove anything from the flushing lists. The GPU cache is likely
  1605. * to be lost on reset along with the data, so simply move the
  1606. * lost bo to the inactive list.
  1607. */
  1608. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1609. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1610. struct drm_i915_gem_object,
  1611. mm_list);
  1612. obj_priv->base.write_domain = 0;
  1613. list_del_init(&obj_priv->gpu_write_list);
  1614. i915_gem_object_move_to_inactive(&obj_priv->base);
  1615. }
  1616. /* Move everything out of the GPU domains to ensure we do any
  1617. * necessary invalidation upon reuse.
  1618. */
  1619. list_for_each_entry(obj_priv,
  1620. &dev_priv->mm.inactive_list,
  1621. mm_list)
  1622. {
  1623. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1624. }
  1625. /* The fence registers are invalidated so clear them out */
  1626. for (i = 0; i < 16; i++) {
  1627. struct drm_i915_fence_reg *reg;
  1628. reg = &dev_priv->fence_regs[i];
  1629. if (!reg->obj)
  1630. continue;
  1631. i915_gem_clear_fence_reg(reg->obj);
  1632. }
  1633. }
  1634. /**
  1635. * This function clears the request list as sequence numbers are passed.
  1636. */
  1637. static void
  1638. i915_gem_retire_requests_ring(struct drm_device *dev,
  1639. struct intel_ring_buffer *ring)
  1640. {
  1641. drm_i915_private_t *dev_priv = dev->dev_private;
  1642. uint32_t seqno;
  1643. if (!ring->status_page.page_addr ||
  1644. list_empty(&ring->request_list))
  1645. return;
  1646. WARN_ON(i915_verify_lists(dev));
  1647. seqno = ring->get_seqno(ring);
  1648. while (!list_empty(&ring->request_list)) {
  1649. struct drm_i915_gem_request *request;
  1650. request = list_first_entry(&ring->request_list,
  1651. struct drm_i915_gem_request,
  1652. list);
  1653. if (!i915_seqno_passed(seqno, request->seqno))
  1654. break;
  1655. trace_i915_gem_request_retire(dev, request->seqno);
  1656. list_del(&request->list);
  1657. i915_gem_request_remove_from_client(request);
  1658. kfree(request);
  1659. }
  1660. /* Move any buffers on the active list that are no longer referenced
  1661. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1662. */
  1663. while (!list_empty(&ring->active_list)) {
  1664. struct drm_gem_object *obj;
  1665. struct drm_i915_gem_object *obj_priv;
  1666. obj_priv = list_first_entry(&ring->active_list,
  1667. struct drm_i915_gem_object,
  1668. ring_list);
  1669. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1670. break;
  1671. obj = &obj_priv->base;
  1672. if (obj->write_domain != 0)
  1673. i915_gem_object_move_to_flushing(obj);
  1674. else
  1675. i915_gem_object_move_to_inactive(obj);
  1676. }
  1677. if (unlikely (dev_priv->trace_irq_seqno &&
  1678. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1679. ring->user_irq_put(ring);
  1680. dev_priv->trace_irq_seqno = 0;
  1681. }
  1682. WARN_ON(i915_verify_lists(dev));
  1683. }
  1684. void
  1685. i915_gem_retire_requests(struct drm_device *dev)
  1686. {
  1687. drm_i915_private_t *dev_priv = dev->dev_private;
  1688. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1689. struct drm_i915_gem_object *obj_priv, *tmp;
  1690. /* We must be careful that during unbind() we do not
  1691. * accidentally infinitely recurse into retire requests.
  1692. * Currently:
  1693. * retire -> free -> unbind -> wait -> retire_ring
  1694. */
  1695. list_for_each_entry_safe(obj_priv, tmp,
  1696. &dev_priv->mm.deferred_free_list,
  1697. mm_list)
  1698. i915_gem_free_object_tail(&obj_priv->base);
  1699. }
  1700. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1701. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1702. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1703. }
  1704. static void
  1705. i915_gem_retire_work_handler(struct work_struct *work)
  1706. {
  1707. drm_i915_private_t *dev_priv;
  1708. struct drm_device *dev;
  1709. dev_priv = container_of(work, drm_i915_private_t,
  1710. mm.retire_work.work);
  1711. dev = dev_priv->dev;
  1712. /* Come back later if the device is busy... */
  1713. if (!mutex_trylock(&dev->struct_mutex)) {
  1714. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1715. return;
  1716. }
  1717. i915_gem_retire_requests(dev);
  1718. if (!dev_priv->mm.suspended &&
  1719. (!list_empty(&dev_priv->render_ring.request_list) ||
  1720. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1721. !list_empty(&dev_priv->blt_ring.request_list)))
  1722. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1723. mutex_unlock(&dev->struct_mutex);
  1724. }
  1725. int
  1726. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1727. bool interruptible, struct intel_ring_buffer *ring)
  1728. {
  1729. drm_i915_private_t *dev_priv = dev->dev_private;
  1730. u32 ier;
  1731. int ret = 0;
  1732. BUG_ON(seqno == 0);
  1733. if (atomic_read(&dev_priv->mm.wedged))
  1734. return -EAGAIN;
  1735. if (ring->outstanding_lazy_request) {
  1736. struct drm_i915_gem_request *request;
  1737. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1738. if (request == NULL)
  1739. return -ENOMEM;
  1740. ret = i915_add_request(dev, NULL, request, ring);
  1741. if (ret) {
  1742. kfree(request);
  1743. return ret;
  1744. }
  1745. seqno = request->seqno;
  1746. }
  1747. BUG_ON(seqno == dev_priv->next_seqno);
  1748. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1749. if (HAS_PCH_SPLIT(dev))
  1750. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1751. else
  1752. ier = I915_READ(IER);
  1753. if (!ier) {
  1754. DRM_ERROR("something (likely vbetool) disabled "
  1755. "interrupts, re-enabling\n");
  1756. i915_driver_irq_preinstall(dev);
  1757. i915_driver_irq_postinstall(dev);
  1758. }
  1759. trace_i915_gem_request_wait_begin(dev, seqno);
  1760. ring->waiting_seqno = seqno;
  1761. ring->user_irq_get(ring);
  1762. if (interruptible)
  1763. ret = wait_event_interruptible(ring->irq_queue,
  1764. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1765. || atomic_read(&dev_priv->mm.wedged));
  1766. else
  1767. wait_event(ring->irq_queue,
  1768. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1769. || atomic_read(&dev_priv->mm.wedged));
  1770. ring->user_irq_put(ring);
  1771. ring->waiting_seqno = 0;
  1772. trace_i915_gem_request_wait_end(dev, seqno);
  1773. }
  1774. if (atomic_read(&dev_priv->mm.wedged))
  1775. ret = -EAGAIN;
  1776. if (ret && ret != -ERESTARTSYS)
  1777. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1778. __func__, ret, seqno, ring->get_seqno(ring),
  1779. dev_priv->next_seqno);
  1780. /* Directly dispatch request retiring. While we have the work queue
  1781. * to handle this, the waiter on a request often wants an associated
  1782. * buffer to have made it to the inactive list, and we would need
  1783. * a separate wait queue to handle that.
  1784. */
  1785. if (ret == 0)
  1786. i915_gem_retire_requests_ring(dev, ring);
  1787. return ret;
  1788. }
  1789. /**
  1790. * Waits for a sequence number to be signaled, and cleans up the
  1791. * request and object lists appropriately for that event.
  1792. */
  1793. static int
  1794. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1795. struct intel_ring_buffer *ring)
  1796. {
  1797. return i915_do_wait_request(dev, seqno, 1, ring);
  1798. }
  1799. static void
  1800. i915_gem_flush_ring(struct drm_device *dev,
  1801. struct drm_file *file_priv,
  1802. struct intel_ring_buffer *ring,
  1803. uint32_t invalidate_domains,
  1804. uint32_t flush_domains)
  1805. {
  1806. ring->flush(ring, invalidate_domains, flush_domains);
  1807. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1808. }
  1809. static void
  1810. i915_gem_flush(struct drm_device *dev,
  1811. struct drm_file *file_priv,
  1812. uint32_t invalidate_domains,
  1813. uint32_t flush_domains,
  1814. uint32_t flush_rings)
  1815. {
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1818. drm_agp_chipset_flush(dev);
  1819. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1820. if (flush_rings & RING_RENDER)
  1821. i915_gem_flush_ring(dev, file_priv,
  1822. &dev_priv->render_ring,
  1823. invalidate_domains, flush_domains);
  1824. if (flush_rings & RING_BSD)
  1825. i915_gem_flush_ring(dev, file_priv,
  1826. &dev_priv->bsd_ring,
  1827. invalidate_domains, flush_domains);
  1828. if (flush_rings & RING_BLT)
  1829. i915_gem_flush_ring(dev, file_priv,
  1830. &dev_priv->blt_ring,
  1831. invalidate_domains, flush_domains);
  1832. }
  1833. }
  1834. /**
  1835. * Ensures that all rendering to the object has completed and the object is
  1836. * safe to unbind from the GTT or access from the CPU.
  1837. */
  1838. static int
  1839. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1840. bool interruptible)
  1841. {
  1842. struct drm_device *dev = obj->dev;
  1843. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1844. int ret;
  1845. /* This function only exists to support waiting for existing rendering,
  1846. * not for emitting required flushes.
  1847. */
  1848. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1849. /* If there is rendering queued on the buffer being evicted, wait for
  1850. * it.
  1851. */
  1852. if (obj_priv->active) {
  1853. ret = i915_do_wait_request(dev,
  1854. obj_priv->last_rendering_seqno,
  1855. interruptible,
  1856. obj_priv->ring);
  1857. if (ret)
  1858. return ret;
  1859. }
  1860. return 0;
  1861. }
  1862. /**
  1863. * Unbinds an object from the GTT aperture.
  1864. */
  1865. int
  1866. i915_gem_object_unbind(struct drm_gem_object *obj)
  1867. {
  1868. struct drm_device *dev = obj->dev;
  1869. struct drm_i915_private *dev_priv = dev->dev_private;
  1870. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1871. int ret = 0;
  1872. if (obj_priv->gtt_space == NULL)
  1873. return 0;
  1874. if (obj_priv->pin_count != 0) {
  1875. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1876. return -EINVAL;
  1877. }
  1878. /* blow away mappings if mapped through GTT */
  1879. i915_gem_release_mmap(obj);
  1880. /* Move the object to the CPU domain to ensure that
  1881. * any possible CPU writes while it's not in the GTT
  1882. * are flushed when we go to remap it. This will
  1883. * also ensure that all pending GPU writes are finished
  1884. * before we unbind.
  1885. */
  1886. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1887. if (ret == -ERESTARTSYS)
  1888. return ret;
  1889. /* Continue on if we fail due to EIO, the GPU is hung so we
  1890. * should be safe and we need to cleanup or else we might
  1891. * cause memory corruption through use-after-free.
  1892. */
  1893. if (ret) {
  1894. i915_gem_clflush_object(obj);
  1895. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1896. }
  1897. /* release the fence reg _after_ flushing */
  1898. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1899. i915_gem_clear_fence_reg(obj);
  1900. drm_unbind_agp(obj_priv->agp_mem);
  1901. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1902. i915_gem_object_put_pages(obj);
  1903. BUG_ON(obj_priv->pages_refcount);
  1904. i915_gem_info_remove_gtt(dev_priv, obj);
  1905. list_del_init(&obj_priv->mm_list);
  1906. drm_mm_put_block(obj_priv->gtt_space);
  1907. obj_priv->gtt_space = NULL;
  1908. obj_priv->gtt_offset = 0;
  1909. if (i915_gem_object_is_purgeable(obj_priv))
  1910. i915_gem_object_truncate(obj);
  1911. trace_i915_gem_object_unbind(obj);
  1912. return ret;
  1913. }
  1914. static int i915_ring_idle(struct drm_device *dev,
  1915. struct intel_ring_buffer *ring)
  1916. {
  1917. if (list_empty(&ring->gpu_write_list))
  1918. return 0;
  1919. i915_gem_flush_ring(dev, NULL, ring,
  1920. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1921. return i915_wait_request(dev,
  1922. i915_gem_next_request_seqno(dev, ring),
  1923. ring);
  1924. }
  1925. int
  1926. i915_gpu_idle(struct drm_device *dev)
  1927. {
  1928. drm_i915_private_t *dev_priv = dev->dev_private;
  1929. bool lists_empty;
  1930. int ret;
  1931. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1932. list_empty(&dev_priv->render_ring.active_list) &&
  1933. list_empty(&dev_priv->bsd_ring.active_list) &&
  1934. list_empty(&dev_priv->blt_ring.active_list));
  1935. if (lists_empty)
  1936. return 0;
  1937. /* Flush everything onto the inactive list. */
  1938. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1939. if (ret)
  1940. return ret;
  1941. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1942. if (ret)
  1943. return ret;
  1944. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1945. if (ret)
  1946. return ret;
  1947. return 0;
  1948. }
  1949. static int
  1950. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1951. gfp_t gfpmask)
  1952. {
  1953. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1954. int page_count, i;
  1955. struct address_space *mapping;
  1956. struct inode *inode;
  1957. struct page *page;
  1958. BUG_ON(obj_priv->pages_refcount
  1959. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1960. if (obj_priv->pages_refcount++ != 0)
  1961. return 0;
  1962. /* Get the list of pages out of our struct file. They'll be pinned
  1963. * at this point until we release them.
  1964. */
  1965. page_count = obj->size / PAGE_SIZE;
  1966. BUG_ON(obj_priv->pages != NULL);
  1967. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1968. if (obj_priv->pages == NULL) {
  1969. obj_priv->pages_refcount--;
  1970. return -ENOMEM;
  1971. }
  1972. inode = obj->filp->f_path.dentry->d_inode;
  1973. mapping = inode->i_mapping;
  1974. for (i = 0; i < page_count; i++) {
  1975. page = read_cache_page_gfp(mapping, i,
  1976. GFP_HIGHUSER |
  1977. __GFP_COLD |
  1978. __GFP_RECLAIMABLE |
  1979. gfpmask);
  1980. if (IS_ERR(page))
  1981. goto err_pages;
  1982. obj_priv->pages[i] = page;
  1983. }
  1984. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1985. i915_gem_object_do_bit_17_swizzle(obj);
  1986. return 0;
  1987. err_pages:
  1988. while (i--)
  1989. page_cache_release(obj_priv->pages[i]);
  1990. drm_free_large(obj_priv->pages);
  1991. obj_priv->pages = NULL;
  1992. obj_priv->pages_refcount--;
  1993. return PTR_ERR(page);
  1994. }
  1995. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1996. {
  1997. struct drm_gem_object *obj = reg->obj;
  1998. struct drm_device *dev = obj->dev;
  1999. drm_i915_private_t *dev_priv = dev->dev_private;
  2000. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2001. int regnum = obj_priv->fence_reg;
  2002. uint64_t val;
  2003. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  2004. 0xfffff000) << 32;
  2005. val |= obj_priv->gtt_offset & 0xfffff000;
  2006. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  2007. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2008. if (obj_priv->tiling_mode == I915_TILING_Y)
  2009. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2010. val |= I965_FENCE_REG_VALID;
  2011. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  2012. }
  2013. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  2014. {
  2015. struct drm_gem_object *obj = reg->obj;
  2016. struct drm_device *dev = obj->dev;
  2017. drm_i915_private_t *dev_priv = dev->dev_private;
  2018. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2019. int regnum = obj_priv->fence_reg;
  2020. uint64_t val;
  2021. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  2022. 0xfffff000) << 32;
  2023. val |= obj_priv->gtt_offset & 0xfffff000;
  2024. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2025. if (obj_priv->tiling_mode == I915_TILING_Y)
  2026. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2027. val |= I965_FENCE_REG_VALID;
  2028. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  2029. }
  2030. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  2031. {
  2032. struct drm_gem_object *obj = reg->obj;
  2033. struct drm_device *dev = obj->dev;
  2034. drm_i915_private_t *dev_priv = dev->dev_private;
  2035. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2036. int regnum = obj_priv->fence_reg;
  2037. int tile_width;
  2038. uint32_t fence_reg, val;
  2039. uint32_t pitch_val;
  2040. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2041. (obj_priv->gtt_offset & (obj->size - 1))) {
  2042. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  2043. __func__, obj_priv->gtt_offset, obj->size);
  2044. return;
  2045. }
  2046. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2047. HAS_128_BYTE_Y_TILING(dev))
  2048. tile_width = 128;
  2049. else
  2050. tile_width = 512;
  2051. /* Note: pitch better be a power of two tile widths */
  2052. pitch_val = obj_priv->stride / tile_width;
  2053. pitch_val = ffs(pitch_val) - 1;
  2054. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2055. HAS_128_BYTE_Y_TILING(dev))
  2056. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2057. else
  2058. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2059. val = obj_priv->gtt_offset;
  2060. if (obj_priv->tiling_mode == I915_TILING_Y)
  2061. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2062. val |= I915_FENCE_SIZE_BITS(obj->size);
  2063. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2064. val |= I830_FENCE_REG_VALID;
  2065. if (regnum < 8)
  2066. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  2067. else
  2068. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  2069. I915_WRITE(fence_reg, val);
  2070. }
  2071. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  2072. {
  2073. struct drm_gem_object *obj = reg->obj;
  2074. struct drm_device *dev = obj->dev;
  2075. drm_i915_private_t *dev_priv = dev->dev_private;
  2076. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2077. int regnum = obj_priv->fence_reg;
  2078. uint32_t val;
  2079. uint32_t pitch_val;
  2080. uint32_t fence_size_bits;
  2081. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2082. (obj_priv->gtt_offset & (obj->size - 1))) {
  2083. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2084. __func__, obj_priv->gtt_offset);
  2085. return;
  2086. }
  2087. pitch_val = obj_priv->stride / 128;
  2088. pitch_val = ffs(pitch_val) - 1;
  2089. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2090. val = obj_priv->gtt_offset;
  2091. if (obj_priv->tiling_mode == I915_TILING_Y)
  2092. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2093. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2094. WARN_ON(fence_size_bits & ~0x00000f00);
  2095. val |= fence_size_bits;
  2096. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2097. val |= I830_FENCE_REG_VALID;
  2098. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2099. }
  2100. static int i915_find_fence_reg(struct drm_device *dev,
  2101. bool interruptible)
  2102. {
  2103. struct drm_i915_fence_reg *reg = NULL;
  2104. struct drm_i915_gem_object *obj_priv = NULL;
  2105. struct drm_i915_private *dev_priv = dev->dev_private;
  2106. struct drm_gem_object *obj = NULL;
  2107. int i, avail, ret;
  2108. /* First try to find a free reg */
  2109. avail = 0;
  2110. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2111. reg = &dev_priv->fence_regs[i];
  2112. if (!reg->obj)
  2113. return i;
  2114. obj_priv = to_intel_bo(reg->obj);
  2115. if (!obj_priv->pin_count)
  2116. avail++;
  2117. }
  2118. if (avail == 0)
  2119. return -ENOSPC;
  2120. /* None available, try to steal one or wait for a user to finish */
  2121. i = I915_FENCE_REG_NONE;
  2122. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2123. lru_list) {
  2124. obj = reg->obj;
  2125. obj_priv = to_intel_bo(obj);
  2126. if (obj_priv->pin_count)
  2127. continue;
  2128. /* found one! */
  2129. i = obj_priv->fence_reg;
  2130. break;
  2131. }
  2132. BUG_ON(i == I915_FENCE_REG_NONE);
  2133. /* We only have a reference on obj from the active list. put_fence_reg
  2134. * might drop that one, causing a use-after-free in it. So hold a
  2135. * private reference to obj like the other callers of put_fence_reg
  2136. * (set_tiling ioctl) do. */
  2137. drm_gem_object_reference(obj);
  2138. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2139. drm_gem_object_unreference(obj);
  2140. if (ret != 0)
  2141. return ret;
  2142. return i;
  2143. }
  2144. /**
  2145. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2146. * @obj: object to map through a fence reg
  2147. *
  2148. * When mapping objects through the GTT, userspace wants to be able to write
  2149. * to them without having to worry about swizzling if the object is tiled.
  2150. *
  2151. * This function walks the fence regs looking for a free one for @obj,
  2152. * stealing one if it can't find any.
  2153. *
  2154. * It then sets up the reg based on the object's properties: address, pitch
  2155. * and tiling format.
  2156. */
  2157. int
  2158. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2159. bool interruptible)
  2160. {
  2161. struct drm_device *dev = obj->dev;
  2162. struct drm_i915_private *dev_priv = dev->dev_private;
  2163. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2164. struct drm_i915_fence_reg *reg = NULL;
  2165. int ret;
  2166. /* Just update our place in the LRU if our fence is getting used. */
  2167. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2168. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2169. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2170. return 0;
  2171. }
  2172. switch (obj_priv->tiling_mode) {
  2173. case I915_TILING_NONE:
  2174. WARN(1, "allocating a fence for non-tiled object?\n");
  2175. break;
  2176. case I915_TILING_X:
  2177. if (!obj_priv->stride)
  2178. return -EINVAL;
  2179. WARN((obj_priv->stride & (512 - 1)),
  2180. "object 0x%08x is X tiled but has non-512B pitch\n",
  2181. obj_priv->gtt_offset);
  2182. break;
  2183. case I915_TILING_Y:
  2184. if (!obj_priv->stride)
  2185. return -EINVAL;
  2186. WARN((obj_priv->stride & (128 - 1)),
  2187. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2188. obj_priv->gtt_offset);
  2189. break;
  2190. }
  2191. ret = i915_find_fence_reg(dev, interruptible);
  2192. if (ret < 0)
  2193. return ret;
  2194. obj_priv->fence_reg = ret;
  2195. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2196. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2197. reg->obj = obj;
  2198. switch (INTEL_INFO(dev)->gen) {
  2199. case 6:
  2200. sandybridge_write_fence_reg(reg);
  2201. break;
  2202. case 5:
  2203. case 4:
  2204. i965_write_fence_reg(reg);
  2205. break;
  2206. case 3:
  2207. i915_write_fence_reg(reg);
  2208. break;
  2209. case 2:
  2210. i830_write_fence_reg(reg);
  2211. break;
  2212. }
  2213. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2214. obj_priv->tiling_mode);
  2215. return 0;
  2216. }
  2217. /**
  2218. * i915_gem_clear_fence_reg - clear out fence register info
  2219. * @obj: object to clear
  2220. *
  2221. * Zeroes out the fence register itself and clears out the associated
  2222. * data structures in dev_priv and obj_priv.
  2223. */
  2224. static void
  2225. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2226. {
  2227. struct drm_device *dev = obj->dev;
  2228. drm_i915_private_t *dev_priv = dev->dev_private;
  2229. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2230. struct drm_i915_fence_reg *reg =
  2231. &dev_priv->fence_regs[obj_priv->fence_reg];
  2232. uint32_t fence_reg;
  2233. switch (INTEL_INFO(dev)->gen) {
  2234. case 6:
  2235. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2236. (obj_priv->fence_reg * 8), 0);
  2237. break;
  2238. case 5:
  2239. case 4:
  2240. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2241. break;
  2242. case 3:
  2243. if (obj_priv->fence_reg >= 8)
  2244. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2245. else
  2246. case 2:
  2247. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2248. I915_WRITE(fence_reg, 0);
  2249. break;
  2250. }
  2251. reg->obj = NULL;
  2252. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2253. list_del_init(&reg->lru_list);
  2254. }
  2255. /**
  2256. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2257. * to the buffer to finish, and then resets the fence register.
  2258. * @obj: tiled object holding a fence register.
  2259. * @bool: whether the wait upon the fence is interruptible
  2260. *
  2261. * Zeroes out the fence register itself and clears out the associated
  2262. * data structures in dev_priv and obj_priv.
  2263. */
  2264. int
  2265. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2266. bool interruptible)
  2267. {
  2268. struct drm_device *dev = obj->dev;
  2269. struct drm_i915_private *dev_priv = dev->dev_private;
  2270. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2271. struct drm_i915_fence_reg *reg;
  2272. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2273. return 0;
  2274. /* If we've changed tiling, GTT-mappings of the object
  2275. * need to re-fault to ensure that the correct fence register
  2276. * setup is in place.
  2277. */
  2278. i915_gem_release_mmap(obj);
  2279. /* On the i915, GPU access to tiled buffers is via a fence,
  2280. * therefore we must wait for any outstanding access to complete
  2281. * before clearing the fence.
  2282. */
  2283. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2284. if (reg->gpu) {
  2285. int ret;
  2286. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2287. if (ret)
  2288. return ret;
  2289. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2290. if (ret)
  2291. return ret;
  2292. reg->gpu = false;
  2293. }
  2294. i915_gem_object_flush_gtt_write_domain(obj);
  2295. i915_gem_clear_fence_reg(obj);
  2296. return 0;
  2297. }
  2298. /**
  2299. * Finds free space in the GTT aperture and binds the object there.
  2300. */
  2301. static int
  2302. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2303. unsigned alignment,
  2304. bool mappable)
  2305. {
  2306. struct drm_device *dev = obj->dev;
  2307. drm_i915_private_t *dev_priv = dev->dev_private;
  2308. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2309. struct drm_mm_node *free_space;
  2310. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2311. int ret;
  2312. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2313. DRM_ERROR("Attempting to bind a purgeable object\n");
  2314. return -EINVAL;
  2315. }
  2316. if (alignment == 0)
  2317. alignment = i915_gem_get_gtt_alignment(obj);
  2318. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2319. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2320. return -EINVAL;
  2321. }
  2322. /* If the object is bigger than the entire aperture, reject it early
  2323. * before evicting everything in a vain attempt to find space.
  2324. */
  2325. if (obj->size >
  2326. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2327. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2328. return -E2BIG;
  2329. }
  2330. search_free:
  2331. if (mappable)
  2332. free_space =
  2333. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2334. obj->size, alignment, 0,
  2335. dev_priv->mm.gtt_mappable_end,
  2336. 0);
  2337. else
  2338. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2339. obj->size, alignment, 0);
  2340. if (free_space != NULL) {
  2341. if (mappable)
  2342. obj_priv->gtt_space =
  2343. drm_mm_get_block_range_generic(free_space,
  2344. obj->size,
  2345. alignment, 0,
  2346. dev_priv->mm.gtt_mappable_end,
  2347. 0);
  2348. else
  2349. obj_priv->gtt_space =
  2350. drm_mm_get_block(free_space, obj->size,
  2351. alignment);
  2352. }
  2353. if (obj_priv->gtt_space == NULL) {
  2354. /* If the gtt is empty and we're still having trouble
  2355. * fitting our object in, we're out of memory.
  2356. */
  2357. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2358. mappable);
  2359. if (ret)
  2360. return ret;
  2361. goto search_free;
  2362. }
  2363. ret = i915_gem_object_get_pages(obj, gfpmask);
  2364. if (ret) {
  2365. drm_mm_put_block(obj_priv->gtt_space);
  2366. obj_priv->gtt_space = NULL;
  2367. if (ret == -ENOMEM) {
  2368. /* first try to clear up some space from the GTT */
  2369. ret = i915_gem_evict_something(dev, obj->size,
  2370. alignment, mappable);
  2371. if (ret) {
  2372. /* now try to shrink everyone else */
  2373. if (gfpmask) {
  2374. gfpmask = 0;
  2375. goto search_free;
  2376. }
  2377. return ret;
  2378. }
  2379. goto search_free;
  2380. }
  2381. return ret;
  2382. }
  2383. /* Create an AGP memory structure pointing at our pages, and bind it
  2384. * into the GTT.
  2385. */
  2386. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2387. obj_priv->pages,
  2388. obj->size >> PAGE_SHIFT,
  2389. obj_priv->gtt_space->start,
  2390. obj_priv->agp_type);
  2391. if (obj_priv->agp_mem == NULL) {
  2392. i915_gem_object_put_pages(obj);
  2393. drm_mm_put_block(obj_priv->gtt_space);
  2394. obj_priv->gtt_space = NULL;
  2395. ret = i915_gem_evict_something(dev, obj->size, alignment,
  2396. mappable);
  2397. if (ret)
  2398. return ret;
  2399. goto search_free;
  2400. }
  2401. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2402. /* keep track of bounds object by adding it to the inactive list */
  2403. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2404. i915_gem_info_add_gtt(dev_priv, obj);
  2405. /* Assert that the object is not currently in any GPU domain. As it
  2406. * wasn't in the GTT, there shouldn't be any way it could have been in
  2407. * a GPU cache
  2408. */
  2409. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2410. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2411. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
  2412. return 0;
  2413. }
  2414. void
  2415. i915_gem_clflush_object(struct drm_gem_object *obj)
  2416. {
  2417. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2418. /* If we don't have a page list set up, then we're not pinned
  2419. * to GPU, and we can ignore the cache flush because it'll happen
  2420. * again at bind time.
  2421. */
  2422. if (obj_priv->pages == NULL)
  2423. return;
  2424. trace_i915_gem_object_clflush(obj);
  2425. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2426. }
  2427. /** Flushes any GPU write domain for the object if it's dirty. */
  2428. static int
  2429. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2430. bool pipelined)
  2431. {
  2432. struct drm_device *dev = obj->dev;
  2433. uint32_t old_write_domain;
  2434. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2435. return 0;
  2436. /* Queue the GPU write cache flushing we need. */
  2437. old_write_domain = obj->write_domain;
  2438. i915_gem_flush_ring(dev, NULL,
  2439. to_intel_bo(obj)->ring,
  2440. 0, obj->write_domain);
  2441. BUG_ON(obj->write_domain);
  2442. trace_i915_gem_object_change_domain(obj,
  2443. obj->read_domains,
  2444. old_write_domain);
  2445. if (pipelined)
  2446. return 0;
  2447. return i915_gem_object_wait_rendering(obj, true);
  2448. }
  2449. /** Flushes the GTT write domain for the object if it's dirty. */
  2450. static void
  2451. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2452. {
  2453. uint32_t old_write_domain;
  2454. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2455. return;
  2456. /* No actual flushing is required for the GTT write domain. Writes
  2457. * to it immediately go to main memory as far as we know, so there's
  2458. * no chipset flush. It also doesn't land in render cache.
  2459. */
  2460. old_write_domain = obj->write_domain;
  2461. obj->write_domain = 0;
  2462. trace_i915_gem_object_change_domain(obj,
  2463. obj->read_domains,
  2464. old_write_domain);
  2465. }
  2466. /** Flushes the CPU write domain for the object if it's dirty. */
  2467. static void
  2468. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2469. {
  2470. struct drm_device *dev = obj->dev;
  2471. uint32_t old_write_domain;
  2472. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2473. return;
  2474. i915_gem_clflush_object(obj);
  2475. drm_agp_chipset_flush(dev);
  2476. old_write_domain = obj->write_domain;
  2477. obj->write_domain = 0;
  2478. trace_i915_gem_object_change_domain(obj,
  2479. obj->read_domains,
  2480. old_write_domain);
  2481. }
  2482. /**
  2483. * Moves a single object to the GTT read, and possibly write domain.
  2484. *
  2485. * This function returns when the move is complete, including waiting on
  2486. * flushes to occur.
  2487. */
  2488. int
  2489. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2490. {
  2491. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2492. uint32_t old_write_domain, old_read_domains;
  2493. int ret;
  2494. /* Not valid to be called on unbound objects. */
  2495. if (obj_priv->gtt_space == NULL)
  2496. return -EINVAL;
  2497. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2498. if (ret != 0)
  2499. return ret;
  2500. i915_gem_object_flush_cpu_write_domain(obj);
  2501. if (write) {
  2502. ret = i915_gem_object_wait_rendering(obj, true);
  2503. if (ret)
  2504. return ret;
  2505. }
  2506. old_write_domain = obj->write_domain;
  2507. old_read_domains = obj->read_domains;
  2508. /* It should now be out of any other write domains, and we can update
  2509. * the domain values for our changes.
  2510. */
  2511. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2512. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2513. if (write) {
  2514. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2515. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2516. obj_priv->dirty = 1;
  2517. }
  2518. trace_i915_gem_object_change_domain(obj,
  2519. old_read_domains,
  2520. old_write_domain);
  2521. return 0;
  2522. }
  2523. /*
  2524. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2525. * wait, as in modesetting process we're not supposed to be interrupted.
  2526. */
  2527. int
  2528. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2529. bool pipelined)
  2530. {
  2531. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2532. uint32_t old_read_domains;
  2533. int ret;
  2534. /* Not valid to be called on unbound objects. */
  2535. if (obj_priv->gtt_space == NULL)
  2536. return -EINVAL;
  2537. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2538. if (ret)
  2539. return ret;
  2540. /* Currently, we are always called from an non-interruptible context. */
  2541. if (!pipelined) {
  2542. ret = i915_gem_object_wait_rendering(obj, false);
  2543. if (ret)
  2544. return ret;
  2545. }
  2546. i915_gem_object_flush_cpu_write_domain(obj);
  2547. old_read_domains = obj->read_domains;
  2548. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2549. trace_i915_gem_object_change_domain(obj,
  2550. old_read_domains,
  2551. obj->write_domain);
  2552. return 0;
  2553. }
  2554. /**
  2555. * Moves a single object to the CPU read, and possibly write domain.
  2556. *
  2557. * This function returns when the move is complete, including waiting on
  2558. * flushes to occur.
  2559. */
  2560. static int
  2561. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2562. {
  2563. uint32_t old_write_domain, old_read_domains;
  2564. int ret;
  2565. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2566. if (ret != 0)
  2567. return ret;
  2568. i915_gem_object_flush_gtt_write_domain(obj);
  2569. /* If we have a partially-valid cache of the object in the CPU,
  2570. * finish invalidating it and free the per-page flags.
  2571. */
  2572. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2573. if (write) {
  2574. ret = i915_gem_object_wait_rendering(obj, true);
  2575. if (ret)
  2576. return ret;
  2577. }
  2578. old_write_domain = obj->write_domain;
  2579. old_read_domains = obj->read_domains;
  2580. /* Flush the CPU cache if it's still invalid. */
  2581. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2582. i915_gem_clflush_object(obj);
  2583. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2584. }
  2585. /* It should now be out of any other write domains, and we can update
  2586. * the domain values for our changes.
  2587. */
  2588. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2589. /* If we're writing through the CPU, then the GPU read domains will
  2590. * need to be invalidated at next use.
  2591. */
  2592. if (write) {
  2593. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2594. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2595. }
  2596. trace_i915_gem_object_change_domain(obj,
  2597. old_read_domains,
  2598. old_write_domain);
  2599. return 0;
  2600. }
  2601. /*
  2602. * Set the next domain for the specified object. This
  2603. * may not actually perform the necessary flushing/invaliding though,
  2604. * as that may want to be batched with other set_domain operations
  2605. *
  2606. * This is (we hope) the only really tricky part of gem. The goal
  2607. * is fairly simple -- track which caches hold bits of the object
  2608. * and make sure they remain coherent. A few concrete examples may
  2609. * help to explain how it works. For shorthand, we use the notation
  2610. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2611. * a pair of read and write domain masks.
  2612. *
  2613. * Case 1: the batch buffer
  2614. *
  2615. * 1. Allocated
  2616. * 2. Written by CPU
  2617. * 3. Mapped to GTT
  2618. * 4. Read by GPU
  2619. * 5. Unmapped from GTT
  2620. * 6. Freed
  2621. *
  2622. * Let's take these a step at a time
  2623. *
  2624. * 1. Allocated
  2625. * Pages allocated from the kernel may still have
  2626. * cache contents, so we set them to (CPU, CPU) always.
  2627. * 2. Written by CPU (using pwrite)
  2628. * The pwrite function calls set_domain (CPU, CPU) and
  2629. * this function does nothing (as nothing changes)
  2630. * 3. Mapped by GTT
  2631. * This function asserts that the object is not
  2632. * currently in any GPU-based read or write domains
  2633. * 4. Read by GPU
  2634. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2635. * As write_domain is zero, this function adds in the
  2636. * current read domains (CPU+COMMAND, 0).
  2637. * flush_domains is set to CPU.
  2638. * invalidate_domains is set to COMMAND
  2639. * clflush is run to get data out of the CPU caches
  2640. * then i915_dev_set_domain calls i915_gem_flush to
  2641. * emit an MI_FLUSH and drm_agp_chipset_flush
  2642. * 5. Unmapped from GTT
  2643. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2644. * flush_domains and invalidate_domains end up both zero
  2645. * so no flushing/invalidating happens
  2646. * 6. Freed
  2647. * yay, done
  2648. *
  2649. * Case 2: The shared render buffer
  2650. *
  2651. * 1. Allocated
  2652. * 2. Mapped to GTT
  2653. * 3. Read/written by GPU
  2654. * 4. set_domain to (CPU,CPU)
  2655. * 5. Read/written by CPU
  2656. * 6. Read/written by GPU
  2657. *
  2658. * 1. Allocated
  2659. * Same as last example, (CPU, CPU)
  2660. * 2. Mapped to GTT
  2661. * Nothing changes (assertions find that it is not in the GPU)
  2662. * 3. Read/written by GPU
  2663. * execbuffer calls set_domain (RENDER, RENDER)
  2664. * flush_domains gets CPU
  2665. * invalidate_domains gets GPU
  2666. * clflush (obj)
  2667. * MI_FLUSH and drm_agp_chipset_flush
  2668. * 4. set_domain (CPU, CPU)
  2669. * flush_domains gets GPU
  2670. * invalidate_domains gets CPU
  2671. * wait_rendering (obj) to make sure all drawing is complete.
  2672. * This will include an MI_FLUSH to get the data from GPU
  2673. * to memory
  2674. * clflush (obj) to invalidate the CPU cache
  2675. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2676. * 5. Read/written by CPU
  2677. * cache lines are loaded and dirtied
  2678. * 6. Read written by GPU
  2679. * Same as last GPU access
  2680. *
  2681. * Case 3: The constant buffer
  2682. *
  2683. * 1. Allocated
  2684. * 2. Written by CPU
  2685. * 3. Read by GPU
  2686. * 4. Updated (written) by CPU again
  2687. * 5. Read by GPU
  2688. *
  2689. * 1. Allocated
  2690. * (CPU, CPU)
  2691. * 2. Written by CPU
  2692. * (CPU, CPU)
  2693. * 3. Read by GPU
  2694. * (CPU+RENDER, 0)
  2695. * flush_domains = CPU
  2696. * invalidate_domains = RENDER
  2697. * clflush (obj)
  2698. * MI_FLUSH
  2699. * drm_agp_chipset_flush
  2700. * 4. Updated (written) by CPU again
  2701. * (CPU, CPU)
  2702. * flush_domains = 0 (no previous write domain)
  2703. * invalidate_domains = 0 (no new read domains)
  2704. * 5. Read by GPU
  2705. * (CPU+RENDER, 0)
  2706. * flush_domains = CPU
  2707. * invalidate_domains = RENDER
  2708. * clflush (obj)
  2709. * MI_FLUSH
  2710. * drm_agp_chipset_flush
  2711. */
  2712. static void
  2713. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2714. struct intel_ring_buffer *ring)
  2715. {
  2716. struct drm_device *dev = obj->dev;
  2717. struct drm_i915_private *dev_priv = dev->dev_private;
  2718. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2719. uint32_t invalidate_domains = 0;
  2720. uint32_t flush_domains = 0;
  2721. /*
  2722. * If the object isn't moving to a new write domain,
  2723. * let the object stay in multiple read domains
  2724. */
  2725. if (obj->pending_write_domain == 0)
  2726. obj->pending_read_domains |= obj->read_domains;
  2727. /*
  2728. * Flush the current write domain if
  2729. * the new read domains don't match. Invalidate
  2730. * any read domains which differ from the old
  2731. * write domain
  2732. */
  2733. if (obj->write_domain &&
  2734. obj->write_domain != obj->pending_read_domains) {
  2735. flush_domains |= obj->write_domain;
  2736. invalidate_domains |=
  2737. obj->pending_read_domains & ~obj->write_domain;
  2738. }
  2739. /*
  2740. * Invalidate any read caches which may have
  2741. * stale data. That is, any new read domains.
  2742. */
  2743. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2744. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2745. i915_gem_clflush_object(obj);
  2746. /* The actual obj->write_domain will be updated with
  2747. * pending_write_domain after we emit the accumulated flush for all
  2748. * of our domain changes in execbuffers (which clears objects'
  2749. * write_domains). So if we have a current write domain that we
  2750. * aren't changing, set pending_write_domain to that.
  2751. */
  2752. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2753. obj->pending_write_domain = obj->write_domain;
  2754. dev->invalidate_domains |= invalidate_domains;
  2755. dev->flush_domains |= flush_domains;
  2756. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2757. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2758. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2759. dev_priv->mm.flush_rings |= ring->id;
  2760. }
  2761. /**
  2762. * Moves the object from a partially CPU read to a full one.
  2763. *
  2764. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2765. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2766. */
  2767. static void
  2768. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2769. {
  2770. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2771. if (!obj_priv->page_cpu_valid)
  2772. return;
  2773. /* If we're partially in the CPU read domain, finish moving it in.
  2774. */
  2775. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2776. int i;
  2777. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2778. if (obj_priv->page_cpu_valid[i])
  2779. continue;
  2780. drm_clflush_pages(obj_priv->pages + i, 1);
  2781. }
  2782. }
  2783. /* Free the page_cpu_valid mappings which are now stale, whether
  2784. * or not we've got I915_GEM_DOMAIN_CPU.
  2785. */
  2786. kfree(obj_priv->page_cpu_valid);
  2787. obj_priv->page_cpu_valid = NULL;
  2788. }
  2789. /**
  2790. * Set the CPU read domain on a range of the object.
  2791. *
  2792. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2793. * not entirely valid. The page_cpu_valid member of the object flags which
  2794. * pages have been flushed, and will be respected by
  2795. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2796. * of the whole object.
  2797. *
  2798. * This function returns when the move is complete, including waiting on
  2799. * flushes to occur.
  2800. */
  2801. static int
  2802. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2803. uint64_t offset, uint64_t size)
  2804. {
  2805. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2806. uint32_t old_read_domains;
  2807. int i, ret;
  2808. if (offset == 0 && size == obj->size)
  2809. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2810. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2811. if (ret != 0)
  2812. return ret;
  2813. i915_gem_object_flush_gtt_write_domain(obj);
  2814. /* If we're already fully in the CPU read domain, we're done. */
  2815. if (obj_priv->page_cpu_valid == NULL &&
  2816. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2817. return 0;
  2818. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2819. * newly adding I915_GEM_DOMAIN_CPU
  2820. */
  2821. if (obj_priv->page_cpu_valid == NULL) {
  2822. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2823. GFP_KERNEL);
  2824. if (obj_priv->page_cpu_valid == NULL)
  2825. return -ENOMEM;
  2826. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2827. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2828. /* Flush the cache on any pages that are still invalid from the CPU's
  2829. * perspective.
  2830. */
  2831. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2832. i++) {
  2833. if (obj_priv->page_cpu_valid[i])
  2834. continue;
  2835. drm_clflush_pages(obj_priv->pages + i, 1);
  2836. obj_priv->page_cpu_valid[i] = 1;
  2837. }
  2838. /* It should now be out of any other write domains, and we can update
  2839. * the domain values for our changes.
  2840. */
  2841. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2842. old_read_domains = obj->read_domains;
  2843. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2844. trace_i915_gem_object_change_domain(obj,
  2845. old_read_domains,
  2846. obj->write_domain);
  2847. return 0;
  2848. }
  2849. /**
  2850. * Pin an object to the GTT and evaluate the relocations landing in it.
  2851. */
  2852. static int
  2853. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2854. struct drm_file *file_priv,
  2855. struct drm_i915_gem_exec_object2 *entry)
  2856. {
  2857. struct drm_device *dev = obj->base.dev;
  2858. drm_i915_private_t *dev_priv = dev->dev_private;
  2859. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2860. struct drm_gem_object *target_obj = NULL;
  2861. uint32_t target_handle = 0;
  2862. int i, ret = 0;
  2863. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2864. for (i = 0; i < entry->relocation_count; i++) {
  2865. struct drm_i915_gem_relocation_entry reloc;
  2866. uint32_t target_offset;
  2867. if (__copy_from_user_inatomic(&reloc,
  2868. user_relocs+i,
  2869. sizeof(reloc))) {
  2870. ret = -EFAULT;
  2871. break;
  2872. }
  2873. if (reloc.target_handle != target_handle) {
  2874. drm_gem_object_unreference(target_obj);
  2875. target_obj = drm_gem_object_lookup(dev, file_priv,
  2876. reloc.target_handle);
  2877. if (target_obj == NULL) {
  2878. ret = -ENOENT;
  2879. break;
  2880. }
  2881. target_handle = reloc.target_handle;
  2882. }
  2883. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2884. #if WATCH_RELOC
  2885. DRM_INFO("%s: obj %p offset %08x target %d "
  2886. "read %08x write %08x gtt %08x "
  2887. "presumed %08x delta %08x\n",
  2888. __func__,
  2889. obj,
  2890. (int) reloc.offset,
  2891. (int) reloc.target_handle,
  2892. (int) reloc.read_domains,
  2893. (int) reloc.write_domain,
  2894. (int) target_offset,
  2895. (int) reloc.presumed_offset,
  2896. reloc.delta);
  2897. #endif
  2898. /* The target buffer should have appeared before us in the
  2899. * exec_object list, so it should have a GTT space bound by now.
  2900. */
  2901. if (target_offset == 0) {
  2902. DRM_ERROR("No GTT space found for object %d\n",
  2903. reloc.target_handle);
  2904. ret = -EINVAL;
  2905. break;
  2906. }
  2907. /* Validate that the target is in a valid r/w GPU domain */
  2908. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2909. DRM_ERROR("reloc with multiple write domains: "
  2910. "obj %p target %d offset %d "
  2911. "read %08x write %08x",
  2912. obj, reloc.target_handle,
  2913. (int) reloc.offset,
  2914. reloc.read_domains,
  2915. reloc.write_domain);
  2916. ret = -EINVAL;
  2917. break;
  2918. }
  2919. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2920. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2921. DRM_ERROR("reloc with read/write CPU domains: "
  2922. "obj %p target %d offset %d "
  2923. "read %08x write %08x",
  2924. obj, reloc.target_handle,
  2925. (int) reloc.offset,
  2926. reloc.read_domains,
  2927. reloc.write_domain);
  2928. ret = -EINVAL;
  2929. break;
  2930. }
  2931. if (reloc.write_domain && target_obj->pending_write_domain &&
  2932. reloc.write_domain != target_obj->pending_write_domain) {
  2933. DRM_ERROR("Write domain conflict: "
  2934. "obj %p target %d offset %d "
  2935. "new %08x old %08x\n",
  2936. obj, reloc.target_handle,
  2937. (int) reloc.offset,
  2938. reloc.write_domain,
  2939. target_obj->pending_write_domain);
  2940. ret = -EINVAL;
  2941. break;
  2942. }
  2943. target_obj->pending_read_domains |= reloc.read_domains;
  2944. target_obj->pending_write_domain |= reloc.write_domain;
  2945. /* If the relocation already has the right value in it, no
  2946. * more work needs to be done.
  2947. */
  2948. if (target_offset == reloc.presumed_offset)
  2949. continue;
  2950. /* Check that the relocation address is valid... */
  2951. if (reloc.offset > obj->base.size - 4) {
  2952. DRM_ERROR("Relocation beyond object bounds: "
  2953. "obj %p target %d offset %d size %d.\n",
  2954. obj, reloc.target_handle,
  2955. (int) reloc.offset, (int) obj->base.size);
  2956. ret = -EINVAL;
  2957. break;
  2958. }
  2959. if (reloc.offset & 3) {
  2960. DRM_ERROR("Relocation not 4-byte aligned: "
  2961. "obj %p target %d offset %d.\n",
  2962. obj, reloc.target_handle,
  2963. (int) reloc.offset);
  2964. ret = -EINVAL;
  2965. break;
  2966. }
  2967. /* and points to somewhere within the target object. */
  2968. if (reloc.delta >= target_obj->size) {
  2969. DRM_ERROR("Relocation beyond target object bounds: "
  2970. "obj %p target %d delta %d size %d.\n",
  2971. obj, reloc.target_handle,
  2972. (int) reloc.delta, (int) target_obj->size);
  2973. ret = -EINVAL;
  2974. break;
  2975. }
  2976. reloc.delta += target_offset;
  2977. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2978. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2979. char *vaddr;
  2980. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2981. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2982. kunmap_atomic(vaddr);
  2983. } else {
  2984. uint32_t __iomem *reloc_entry;
  2985. void __iomem *reloc_page;
  2986. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2987. if (ret)
  2988. break;
  2989. /* Map the page containing the relocation we're going to perform. */
  2990. reloc.offset += obj->gtt_offset;
  2991. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2992. reloc.offset & PAGE_MASK);
  2993. reloc_entry = (uint32_t __iomem *)
  2994. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2995. iowrite32(reloc.delta, reloc_entry);
  2996. io_mapping_unmap_atomic(reloc_page);
  2997. }
  2998. /* and update the user's relocation entry */
  2999. reloc.presumed_offset = target_offset;
  3000. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  3001. &reloc.presumed_offset,
  3002. sizeof(reloc.presumed_offset))) {
  3003. ret = -EFAULT;
  3004. break;
  3005. }
  3006. }
  3007. drm_gem_object_unreference(target_obj);
  3008. return ret;
  3009. }
  3010. static int
  3011. i915_gem_execbuffer_pin(struct drm_device *dev,
  3012. struct drm_file *file,
  3013. struct drm_gem_object **object_list,
  3014. struct drm_i915_gem_exec_object2 *exec_list,
  3015. int count)
  3016. {
  3017. struct drm_i915_private *dev_priv = dev->dev_private;
  3018. int ret, i, retry;
  3019. /* attempt to pin all of the buffers into the GTT */
  3020. for (retry = 0; retry < 2; retry++) {
  3021. ret = 0;
  3022. for (i = 0; i < count; i++) {
  3023. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3024. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3025. bool need_fence =
  3026. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3027. obj->tiling_mode != I915_TILING_NONE;
  3028. /* g33/pnv can't fence buffers in the unmappable part */
  3029. bool need_mappable =
  3030. entry->relocation_count ? true : need_fence;
  3031. /* Check fence reg constraints and rebind if necessary */
  3032. if (need_fence &&
  3033. !i915_gem_object_fence_offset_ok(&obj->base,
  3034. obj->tiling_mode)) {
  3035. ret = i915_gem_object_unbind(&obj->base);
  3036. if (ret)
  3037. break;
  3038. }
  3039. ret = i915_gem_object_pin(&obj->base,
  3040. entry->alignment,
  3041. need_mappable);
  3042. if (ret)
  3043. break;
  3044. /*
  3045. * Pre-965 chips need a fence register set up in order
  3046. * to properly handle blits to/from tiled surfaces.
  3047. */
  3048. if (need_fence) {
  3049. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3050. if (ret) {
  3051. i915_gem_object_unpin(&obj->base);
  3052. break;
  3053. }
  3054. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3055. }
  3056. entry->offset = obj->gtt_offset;
  3057. }
  3058. while (i--)
  3059. i915_gem_object_unpin(object_list[i]);
  3060. if (ret == 0)
  3061. break;
  3062. if (ret != -ENOSPC || retry)
  3063. return ret;
  3064. ret = i915_gem_evict_everything(dev);
  3065. if (ret)
  3066. return ret;
  3067. }
  3068. return 0;
  3069. }
  3070. /* Throttle our rendering by waiting until the ring has completed our requests
  3071. * emitted over 20 msec ago.
  3072. *
  3073. * Note that if we were to use the current jiffies each time around the loop,
  3074. * we wouldn't escape the function with any frames outstanding if the time to
  3075. * render a frame was over 20ms.
  3076. *
  3077. * This should get us reasonable parallelism between CPU and GPU but also
  3078. * relatively low latency when blocking on a particular request to finish.
  3079. */
  3080. static int
  3081. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3082. {
  3083. struct drm_i915_private *dev_priv = dev->dev_private;
  3084. struct drm_i915_file_private *file_priv = file->driver_priv;
  3085. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3086. struct drm_i915_gem_request *request;
  3087. struct intel_ring_buffer *ring = NULL;
  3088. u32 seqno = 0;
  3089. int ret;
  3090. spin_lock(&file_priv->mm.lock);
  3091. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3092. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3093. break;
  3094. ring = request->ring;
  3095. seqno = request->seqno;
  3096. }
  3097. spin_unlock(&file_priv->mm.lock);
  3098. if (seqno == 0)
  3099. return 0;
  3100. ret = 0;
  3101. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3102. /* And wait for the seqno passing without holding any locks and
  3103. * causing extra latency for others. This is safe as the irq
  3104. * generation is designed to be run atomically and so is
  3105. * lockless.
  3106. */
  3107. ring->user_irq_get(ring);
  3108. ret = wait_event_interruptible(ring->irq_queue,
  3109. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3110. || atomic_read(&dev_priv->mm.wedged));
  3111. ring->user_irq_put(ring);
  3112. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3113. ret = -EIO;
  3114. }
  3115. if (ret == 0)
  3116. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3117. return ret;
  3118. }
  3119. static int
  3120. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3121. uint64_t exec_offset)
  3122. {
  3123. uint32_t exec_start, exec_len;
  3124. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3125. exec_len = (uint32_t) exec->batch_len;
  3126. if ((exec_start | exec_len) & 0x7)
  3127. return -EINVAL;
  3128. if (!exec_start)
  3129. return -EINVAL;
  3130. return 0;
  3131. }
  3132. static int
  3133. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3134. int count)
  3135. {
  3136. int i;
  3137. for (i = 0; i < count; i++) {
  3138. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3139. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3140. if (!access_ok(VERIFY_READ, ptr, length))
  3141. return -EFAULT;
  3142. /* we may also need to update the presumed offsets */
  3143. if (!access_ok(VERIFY_WRITE, ptr, length))
  3144. return -EFAULT;
  3145. if (fault_in_pages_readable(ptr, length))
  3146. return -EFAULT;
  3147. }
  3148. return 0;
  3149. }
  3150. static int
  3151. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3152. struct drm_file *file,
  3153. struct drm_i915_gem_execbuffer2 *args,
  3154. struct drm_i915_gem_exec_object2 *exec_list)
  3155. {
  3156. drm_i915_private_t *dev_priv = dev->dev_private;
  3157. struct drm_gem_object **object_list = NULL;
  3158. struct drm_gem_object *batch_obj;
  3159. struct drm_clip_rect *cliprects = NULL;
  3160. struct drm_i915_gem_request *request = NULL;
  3161. int ret, i, flips;
  3162. uint64_t exec_offset;
  3163. struct intel_ring_buffer *ring = NULL;
  3164. ret = i915_gem_check_is_wedged(dev);
  3165. if (ret)
  3166. return ret;
  3167. ret = validate_exec_list(exec_list, args->buffer_count);
  3168. if (ret)
  3169. return ret;
  3170. #if WATCH_EXEC
  3171. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3172. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3173. #endif
  3174. switch (args->flags & I915_EXEC_RING_MASK) {
  3175. case I915_EXEC_DEFAULT:
  3176. case I915_EXEC_RENDER:
  3177. ring = &dev_priv->render_ring;
  3178. break;
  3179. case I915_EXEC_BSD:
  3180. if (!HAS_BSD(dev)) {
  3181. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3182. return -EINVAL;
  3183. }
  3184. ring = &dev_priv->bsd_ring;
  3185. break;
  3186. case I915_EXEC_BLT:
  3187. if (!HAS_BLT(dev)) {
  3188. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3189. return -EINVAL;
  3190. }
  3191. ring = &dev_priv->blt_ring;
  3192. break;
  3193. default:
  3194. DRM_ERROR("execbuf with unknown ring: %d\n",
  3195. (int)(args->flags & I915_EXEC_RING_MASK));
  3196. return -EINVAL;
  3197. }
  3198. if (args->buffer_count < 1) {
  3199. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3200. return -EINVAL;
  3201. }
  3202. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3203. if (object_list == NULL) {
  3204. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3205. args->buffer_count);
  3206. ret = -ENOMEM;
  3207. goto pre_mutex_err;
  3208. }
  3209. if (args->num_cliprects != 0) {
  3210. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3211. GFP_KERNEL);
  3212. if (cliprects == NULL) {
  3213. ret = -ENOMEM;
  3214. goto pre_mutex_err;
  3215. }
  3216. ret = copy_from_user(cliprects,
  3217. (struct drm_clip_rect __user *)
  3218. (uintptr_t) args->cliprects_ptr,
  3219. sizeof(*cliprects) * args->num_cliprects);
  3220. if (ret != 0) {
  3221. DRM_ERROR("copy %d cliprects failed: %d\n",
  3222. args->num_cliprects, ret);
  3223. ret = -EFAULT;
  3224. goto pre_mutex_err;
  3225. }
  3226. }
  3227. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3228. if (request == NULL) {
  3229. ret = -ENOMEM;
  3230. goto pre_mutex_err;
  3231. }
  3232. ret = i915_mutex_lock_interruptible(dev);
  3233. if (ret)
  3234. goto pre_mutex_err;
  3235. if (dev_priv->mm.suspended) {
  3236. mutex_unlock(&dev->struct_mutex);
  3237. ret = -EBUSY;
  3238. goto pre_mutex_err;
  3239. }
  3240. /* Look up object handles */
  3241. for (i = 0; i < args->buffer_count; i++) {
  3242. struct drm_i915_gem_object *obj_priv;
  3243. object_list[i] = drm_gem_object_lookup(dev, file,
  3244. exec_list[i].handle);
  3245. if (object_list[i] == NULL) {
  3246. DRM_ERROR("Invalid object handle %d at index %d\n",
  3247. exec_list[i].handle, i);
  3248. /* prevent error path from reading uninitialized data */
  3249. args->buffer_count = i + 1;
  3250. ret = -ENOENT;
  3251. goto err;
  3252. }
  3253. obj_priv = to_intel_bo(object_list[i]);
  3254. if (obj_priv->in_execbuffer) {
  3255. DRM_ERROR("Object %p appears more than once in object list\n",
  3256. object_list[i]);
  3257. /* prevent error path from reading uninitialized data */
  3258. args->buffer_count = i + 1;
  3259. ret = -EINVAL;
  3260. goto err;
  3261. }
  3262. obj_priv->in_execbuffer = true;
  3263. }
  3264. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3265. ret = i915_gem_execbuffer_pin(dev, file,
  3266. object_list, exec_list,
  3267. args->buffer_count);
  3268. if (ret)
  3269. goto err;
  3270. /* The objects are in their final locations, apply the relocations. */
  3271. for (i = 0; i < args->buffer_count; i++) {
  3272. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3273. obj->base.pending_read_domains = 0;
  3274. obj->base.pending_write_domain = 0;
  3275. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3276. if (ret)
  3277. goto err;
  3278. }
  3279. /* Set the pending read domains for the batch buffer to COMMAND */
  3280. batch_obj = object_list[args->buffer_count-1];
  3281. if (batch_obj->pending_write_domain) {
  3282. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3283. ret = -EINVAL;
  3284. goto err;
  3285. }
  3286. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3287. /* Sanity check the batch buffer */
  3288. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3289. ret = i915_gem_check_execbuffer(args, exec_offset);
  3290. if (ret != 0) {
  3291. DRM_ERROR("execbuf with invalid offset/length\n");
  3292. goto err;
  3293. }
  3294. /* Zero the global flush/invalidate flags. These
  3295. * will be modified as new domains are computed
  3296. * for each object
  3297. */
  3298. dev->invalidate_domains = 0;
  3299. dev->flush_domains = 0;
  3300. dev_priv->mm.flush_rings = 0;
  3301. for (i = 0; i < args->buffer_count; i++)
  3302. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3303. if (dev->invalidate_domains | dev->flush_domains) {
  3304. #if WATCH_EXEC
  3305. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3306. __func__,
  3307. dev->invalidate_domains,
  3308. dev->flush_domains);
  3309. #endif
  3310. i915_gem_flush(dev, file,
  3311. dev->invalidate_domains,
  3312. dev->flush_domains,
  3313. dev_priv->mm.flush_rings);
  3314. }
  3315. #if WATCH_COHERENCY
  3316. for (i = 0; i < args->buffer_count; i++) {
  3317. i915_gem_object_check_coherency(object_list[i],
  3318. exec_list[i].handle);
  3319. }
  3320. #endif
  3321. #if WATCH_EXEC
  3322. i915_gem_dump_object(batch_obj,
  3323. args->batch_len,
  3324. __func__,
  3325. ~0);
  3326. #endif
  3327. /* Check for any pending flips. As we only maintain a flip queue depth
  3328. * of 1, we can simply insert a WAIT for the next display flip prior
  3329. * to executing the batch and avoid stalling the CPU.
  3330. */
  3331. flips = 0;
  3332. for (i = 0; i < args->buffer_count; i++) {
  3333. if (object_list[i]->write_domain)
  3334. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3335. }
  3336. if (flips) {
  3337. int plane, flip_mask;
  3338. for (plane = 0; flips >> plane; plane++) {
  3339. if (((flips >> plane) & 1) == 0)
  3340. continue;
  3341. if (plane)
  3342. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3343. else
  3344. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3345. ret = intel_ring_begin(ring, 2);
  3346. if (ret)
  3347. goto err;
  3348. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3349. intel_ring_emit(ring, MI_NOOP);
  3350. intel_ring_advance(ring);
  3351. }
  3352. }
  3353. /* Exec the batchbuffer */
  3354. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3355. if (ret) {
  3356. DRM_ERROR("dispatch failed %d\n", ret);
  3357. goto err;
  3358. }
  3359. for (i = 0; i < args->buffer_count; i++) {
  3360. struct drm_gem_object *obj = object_list[i];
  3361. obj->read_domains = obj->pending_read_domains;
  3362. obj->write_domain = obj->pending_write_domain;
  3363. i915_gem_object_move_to_active(obj, ring);
  3364. if (obj->write_domain) {
  3365. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3366. obj_priv->dirty = 1;
  3367. list_move_tail(&obj_priv->gpu_write_list,
  3368. &ring->gpu_write_list);
  3369. intel_mark_busy(dev, obj);
  3370. }
  3371. trace_i915_gem_object_change_domain(obj,
  3372. obj->read_domains,
  3373. obj->write_domain);
  3374. }
  3375. /*
  3376. * Ensure that the commands in the batch buffer are
  3377. * finished before the interrupt fires
  3378. */
  3379. i915_retire_commands(dev, ring);
  3380. if (i915_add_request(dev, file, request, ring))
  3381. ring->outstanding_lazy_request = true;
  3382. else
  3383. request = NULL;
  3384. err:
  3385. for (i = 0; i < args->buffer_count; i++) {
  3386. if (object_list[i] == NULL)
  3387. break;
  3388. to_intel_bo(object_list[i])->in_execbuffer = false;
  3389. drm_gem_object_unreference(object_list[i]);
  3390. }
  3391. mutex_unlock(&dev->struct_mutex);
  3392. pre_mutex_err:
  3393. drm_free_large(object_list);
  3394. kfree(cliprects);
  3395. kfree(request);
  3396. return ret;
  3397. }
  3398. /*
  3399. * Legacy execbuffer just creates an exec2 list from the original exec object
  3400. * list array and passes it to the real function.
  3401. */
  3402. int
  3403. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3404. struct drm_file *file_priv)
  3405. {
  3406. struct drm_i915_gem_execbuffer *args = data;
  3407. struct drm_i915_gem_execbuffer2 exec2;
  3408. struct drm_i915_gem_exec_object *exec_list = NULL;
  3409. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3410. int ret, i;
  3411. #if WATCH_EXEC
  3412. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3413. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3414. #endif
  3415. if (args->buffer_count < 1) {
  3416. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3417. return -EINVAL;
  3418. }
  3419. /* Copy in the exec list from userland */
  3420. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3421. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3422. if (exec_list == NULL || exec2_list == NULL) {
  3423. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3424. args->buffer_count);
  3425. drm_free_large(exec_list);
  3426. drm_free_large(exec2_list);
  3427. return -ENOMEM;
  3428. }
  3429. ret = copy_from_user(exec_list,
  3430. (struct drm_i915_relocation_entry __user *)
  3431. (uintptr_t) args->buffers_ptr,
  3432. sizeof(*exec_list) * args->buffer_count);
  3433. if (ret != 0) {
  3434. DRM_ERROR("copy %d exec entries failed %d\n",
  3435. args->buffer_count, ret);
  3436. drm_free_large(exec_list);
  3437. drm_free_large(exec2_list);
  3438. return -EFAULT;
  3439. }
  3440. for (i = 0; i < args->buffer_count; i++) {
  3441. exec2_list[i].handle = exec_list[i].handle;
  3442. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3443. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3444. exec2_list[i].alignment = exec_list[i].alignment;
  3445. exec2_list[i].offset = exec_list[i].offset;
  3446. if (INTEL_INFO(dev)->gen < 4)
  3447. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3448. else
  3449. exec2_list[i].flags = 0;
  3450. }
  3451. exec2.buffers_ptr = args->buffers_ptr;
  3452. exec2.buffer_count = args->buffer_count;
  3453. exec2.batch_start_offset = args->batch_start_offset;
  3454. exec2.batch_len = args->batch_len;
  3455. exec2.DR1 = args->DR1;
  3456. exec2.DR4 = args->DR4;
  3457. exec2.num_cliprects = args->num_cliprects;
  3458. exec2.cliprects_ptr = args->cliprects_ptr;
  3459. exec2.flags = I915_EXEC_RENDER;
  3460. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3461. if (!ret) {
  3462. /* Copy the new buffer offsets back to the user's exec list. */
  3463. for (i = 0; i < args->buffer_count; i++)
  3464. exec_list[i].offset = exec2_list[i].offset;
  3465. /* ... and back out to userspace */
  3466. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3467. (uintptr_t) args->buffers_ptr,
  3468. exec_list,
  3469. sizeof(*exec_list) * args->buffer_count);
  3470. if (ret) {
  3471. ret = -EFAULT;
  3472. DRM_ERROR("failed to copy %d exec entries "
  3473. "back to user (%d)\n",
  3474. args->buffer_count, ret);
  3475. }
  3476. }
  3477. drm_free_large(exec_list);
  3478. drm_free_large(exec2_list);
  3479. return ret;
  3480. }
  3481. int
  3482. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3483. struct drm_file *file_priv)
  3484. {
  3485. struct drm_i915_gem_execbuffer2 *args = data;
  3486. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3487. int ret;
  3488. #if WATCH_EXEC
  3489. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3490. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3491. #endif
  3492. if (args->buffer_count < 1) {
  3493. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3494. return -EINVAL;
  3495. }
  3496. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3497. if (exec2_list == NULL) {
  3498. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3499. args->buffer_count);
  3500. return -ENOMEM;
  3501. }
  3502. ret = copy_from_user(exec2_list,
  3503. (struct drm_i915_relocation_entry __user *)
  3504. (uintptr_t) args->buffers_ptr,
  3505. sizeof(*exec2_list) * args->buffer_count);
  3506. if (ret != 0) {
  3507. DRM_ERROR("copy %d exec entries failed %d\n",
  3508. args->buffer_count, ret);
  3509. drm_free_large(exec2_list);
  3510. return -EFAULT;
  3511. }
  3512. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3513. if (!ret) {
  3514. /* Copy the new buffer offsets back to the user's exec list. */
  3515. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3516. (uintptr_t) args->buffers_ptr,
  3517. exec2_list,
  3518. sizeof(*exec2_list) * args->buffer_count);
  3519. if (ret) {
  3520. ret = -EFAULT;
  3521. DRM_ERROR("failed to copy %d exec entries "
  3522. "back to user (%d)\n",
  3523. args->buffer_count, ret);
  3524. }
  3525. }
  3526. drm_free_large(exec2_list);
  3527. return ret;
  3528. }
  3529. int
  3530. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3531. bool mappable)
  3532. {
  3533. struct drm_device *dev = obj->dev;
  3534. struct drm_i915_private *dev_priv = dev->dev_private;
  3535. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3536. int ret;
  3537. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3538. WARN_ON(i915_verify_lists(dev));
  3539. if (obj_priv->gtt_space != NULL) {
  3540. if (alignment == 0)
  3541. alignment = i915_gem_get_gtt_alignment(obj);
  3542. if (obj_priv->gtt_offset & (alignment - 1) ||
  3543. (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
  3544. WARN(obj_priv->pin_count,
  3545. "bo is already pinned with incorrect alignment:"
  3546. " offset=%x, req.alignment=%x\n",
  3547. obj_priv->gtt_offset, alignment);
  3548. ret = i915_gem_object_unbind(obj);
  3549. if (ret)
  3550. return ret;
  3551. }
  3552. }
  3553. if (obj_priv->gtt_space == NULL) {
  3554. ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
  3555. if (ret)
  3556. return ret;
  3557. }
  3558. obj_priv->pin_count++;
  3559. /* If the object is not active and not pending a flush,
  3560. * remove it from the inactive list
  3561. */
  3562. if (obj_priv->pin_count == 1) {
  3563. i915_gem_info_add_pin(dev_priv, obj, mappable);
  3564. if (!obj_priv->active)
  3565. list_move_tail(&obj_priv->mm_list,
  3566. &dev_priv->mm.pinned_list);
  3567. }
  3568. BUG_ON(!obj_priv->pin_mappable && mappable);
  3569. WARN_ON(i915_verify_lists(dev));
  3570. return 0;
  3571. }
  3572. void
  3573. i915_gem_object_unpin(struct drm_gem_object *obj)
  3574. {
  3575. struct drm_device *dev = obj->dev;
  3576. drm_i915_private_t *dev_priv = dev->dev_private;
  3577. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3578. WARN_ON(i915_verify_lists(dev));
  3579. obj_priv->pin_count--;
  3580. BUG_ON(obj_priv->pin_count < 0);
  3581. BUG_ON(obj_priv->gtt_space == NULL);
  3582. /* If the object is no longer pinned, and is
  3583. * neither active nor being flushed, then stick it on
  3584. * the inactive list
  3585. */
  3586. if (obj_priv->pin_count == 0) {
  3587. if (!obj_priv->active)
  3588. list_move_tail(&obj_priv->mm_list,
  3589. &dev_priv->mm.inactive_list);
  3590. i915_gem_info_remove_pin(dev_priv, obj);
  3591. }
  3592. WARN_ON(i915_verify_lists(dev));
  3593. }
  3594. int
  3595. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3596. struct drm_file *file_priv)
  3597. {
  3598. struct drm_i915_gem_pin *args = data;
  3599. struct drm_gem_object *obj;
  3600. struct drm_i915_gem_object *obj_priv;
  3601. int ret;
  3602. ret = i915_mutex_lock_interruptible(dev);
  3603. if (ret)
  3604. return ret;
  3605. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3606. if (obj == NULL) {
  3607. ret = -ENOENT;
  3608. goto unlock;
  3609. }
  3610. obj_priv = to_intel_bo(obj);
  3611. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3612. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3613. ret = -EINVAL;
  3614. goto out;
  3615. }
  3616. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3617. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3618. args->handle);
  3619. ret = -EINVAL;
  3620. goto out;
  3621. }
  3622. obj_priv->user_pin_count++;
  3623. obj_priv->pin_filp = file_priv;
  3624. if (obj_priv->user_pin_count == 1) {
  3625. ret = i915_gem_object_pin(obj, args->alignment, true);
  3626. if (ret)
  3627. goto out;
  3628. }
  3629. /* XXX - flush the CPU caches for pinned objects
  3630. * as the X server doesn't manage domains yet
  3631. */
  3632. i915_gem_object_flush_cpu_write_domain(obj);
  3633. args->offset = obj_priv->gtt_offset;
  3634. out:
  3635. drm_gem_object_unreference(obj);
  3636. unlock:
  3637. mutex_unlock(&dev->struct_mutex);
  3638. return ret;
  3639. }
  3640. int
  3641. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3642. struct drm_file *file_priv)
  3643. {
  3644. struct drm_i915_gem_pin *args = data;
  3645. struct drm_gem_object *obj;
  3646. struct drm_i915_gem_object *obj_priv;
  3647. int ret;
  3648. ret = i915_mutex_lock_interruptible(dev);
  3649. if (ret)
  3650. return ret;
  3651. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3652. if (obj == NULL) {
  3653. ret = -ENOENT;
  3654. goto unlock;
  3655. }
  3656. obj_priv = to_intel_bo(obj);
  3657. if (obj_priv->pin_filp != file_priv) {
  3658. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3659. args->handle);
  3660. ret = -EINVAL;
  3661. goto out;
  3662. }
  3663. obj_priv->user_pin_count--;
  3664. if (obj_priv->user_pin_count == 0) {
  3665. obj_priv->pin_filp = NULL;
  3666. i915_gem_object_unpin(obj);
  3667. }
  3668. out:
  3669. drm_gem_object_unreference(obj);
  3670. unlock:
  3671. mutex_unlock(&dev->struct_mutex);
  3672. return ret;
  3673. }
  3674. int
  3675. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3676. struct drm_file *file_priv)
  3677. {
  3678. struct drm_i915_gem_busy *args = data;
  3679. struct drm_gem_object *obj;
  3680. struct drm_i915_gem_object *obj_priv;
  3681. int ret;
  3682. ret = i915_mutex_lock_interruptible(dev);
  3683. if (ret)
  3684. return ret;
  3685. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3686. if (obj == NULL) {
  3687. ret = -ENOENT;
  3688. goto unlock;
  3689. }
  3690. obj_priv = to_intel_bo(obj);
  3691. /* Count all active objects as busy, even if they are currently not used
  3692. * by the gpu. Users of this interface expect objects to eventually
  3693. * become non-busy without any further actions, therefore emit any
  3694. * necessary flushes here.
  3695. */
  3696. args->busy = obj_priv->active;
  3697. if (args->busy) {
  3698. /* Unconditionally flush objects, even when the gpu still uses this
  3699. * object. Userspace calling this function indicates that it wants to
  3700. * use this buffer rather sooner than later, so issuing the required
  3701. * flush earlier is beneficial.
  3702. */
  3703. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3704. i915_gem_flush_ring(dev, file_priv,
  3705. obj_priv->ring,
  3706. 0, obj->write_domain);
  3707. /* Update the active list for the hardware's current position.
  3708. * Otherwise this only updates on a delayed timer or when irqs
  3709. * are actually unmasked, and our working set ends up being
  3710. * larger than required.
  3711. */
  3712. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3713. args->busy = obj_priv->active;
  3714. }
  3715. drm_gem_object_unreference(obj);
  3716. unlock:
  3717. mutex_unlock(&dev->struct_mutex);
  3718. return ret;
  3719. }
  3720. int
  3721. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3722. struct drm_file *file_priv)
  3723. {
  3724. return i915_gem_ring_throttle(dev, file_priv);
  3725. }
  3726. int
  3727. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3728. struct drm_file *file_priv)
  3729. {
  3730. struct drm_i915_gem_madvise *args = data;
  3731. struct drm_gem_object *obj;
  3732. struct drm_i915_gem_object *obj_priv;
  3733. int ret;
  3734. switch (args->madv) {
  3735. case I915_MADV_DONTNEED:
  3736. case I915_MADV_WILLNEED:
  3737. break;
  3738. default:
  3739. return -EINVAL;
  3740. }
  3741. ret = i915_mutex_lock_interruptible(dev);
  3742. if (ret)
  3743. return ret;
  3744. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3745. if (obj == NULL) {
  3746. ret = -ENOENT;
  3747. goto unlock;
  3748. }
  3749. obj_priv = to_intel_bo(obj);
  3750. if (obj_priv->pin_count) {
  3751. ret = -EINVAL;
  3752. goto out;
  3753. }
  3754. if (obj_priv->madv != __I915_MADV_PURGED)
  3755. obj_priv->madv = args->madv;
  3756. /* if the object is no longer bound, discard its backing storage */
  3757. if (i915_gem_object_is_purgeable(obj_priv) &&
  3758. obj_priv->gtt_space == NULL)
  3759. i915_gem_object_truncate(obj);
  3760. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3761. out:
  3762. drm_gem_object_unreference(obj);
  3763. unlock:
  3764. mutex_unlock(&dev->struct_mutex);
  3765. return ret;
  3766. }
  3767. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3768. size_t size)
  3769. {
  3770. struct drm_i915_private *dev_priv = dev->dev_private;
  3771. struct drm_i915_gem_object *obj;
  3772. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3773. if (obj == NULL)
  3774. return NULL;
  3775. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3776. kfree(obj);
  3777. return NULL;
  3778. }
  3779. i915_gem_info_add_obj(dev_priv, size);
  3780. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3781. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3782. obj->agp_type = AGP_USER_MEMORY;
  3783. obj->base.driver_private = NULL;
  3784. obj->fence_reg = I915_FENCE_REG_NONE;
  3785. INIT_LIST_HEAD(&obj->mm_list);
  3786. INIT_LIST_HEAD(&obj->ring_list);
  3787. INIT_LIST_HEAD(&obj->gpu_write_list);
  3788. obj->madv = I915_MADV_WILLNEED;
  3789. return &obj->base;
  3790. }
  3791. int i915_gem_init_object(struct drm_gem_object *obj)
  3792. {
  3793. BUG();
  3794. return 0;
  3795. }
  3796. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3797. {
  3798. struct drm_device *dev = obj->dev;
  3799. drm_i915_private_t *dev_priv = dev->dev_private;
  3800. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3801. int ret;
  3802. ret = i915_gem_object_unbind(obj);
  3803. if (ret == -ERESTARTSYS) {
  3804. list_move(&obj_priv->mm_list,
  3805. &dev_priv->mm.deferred_free_list);
  3806. return;
  3807. }
  3808. if (obj_priv->mmap_offset)
  3809. i915_gem_free_mmap_offset(obj);
  3810. drm_gem_object_release(obj);
  3811. i915_gem_info_remove_obj(dev_priv, obj->size);
  3812. kfree(obj_priv->page_cpu_valid);
  3813. kfree(obj_priv->bit_17);
  3814. kfree(obj_priv);
  3815. }
  3816. void i915_gem_free_object(struct drm_gem_object *obj)
  3817. {
  3818. struct drm_device *dev = obj->dev;
  3819. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3820. trace_i915_gem_object_destroy(obj);
  3821. while (obj_priv->pin_count > 0)
  3822. i915_gem_object_unpin(obj);
  3823. if (obj_priv->phys_obj)
  3824. i915_gem_detach_phys_object(dev, obj);
  3825. i915_gem_free_object_tail(obj);
  3826. }
  3827. int
  3828. i915_gem_idle(struct drm_device *dev)
  3829. {
  3830. drm_i915_private_t *dev_priv = dev->dev_private;
  3831. int ret;
  3832. mutex_lock(&dev->struct_mutex);
  3833. if (dev_priv->mm.suspended) {
  3834. mutex_unlock(&dev->struct_mutex);
  3835. return 0;
  3836. }
  3837. ret = i915_gpu_idle(dev);
  3838. if (ret) {
  3839. mutex_unlock(&dev->struct_mutex);
  3840. return ret;
  3841. }
  3842. /* Under UMS, be paranoid and evict. */
  3843. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3844. ret = i915_gem_evict_inactive(dev);
  3845. if (ret) {
  3846. mutex_unlock(&dev->struct_mutex);
  3847. return ret;
  3848. }
  3849. }
  3850. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3851. * We need to replace this with a semaphore, or something.
  3852. * And not confound mm.suspended!
  3853. */
  3854. dev_priv->mm.suspended = 1;
  3855. del_timer_sync(&dev_priv->hangcheck_timer);
  3856. i915_kernel_lost_context(dev);
  3857. i915_gem_cleanup_ringbuffer(dev);
  3858. mutex_unlock(&dev->struct_mutex);
  3859. /* Cancel the retire work handler, which should be idle now. */
  3860. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3861. return 0;
  3862. }
  3863. /*
  3864. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3865. * over cache flushing.
  3866. */
  3867. static int
  3868. i915_gem_init_pipe_control(struct drm_device *dev)
  3869. {
  3870. drm_i915_private_t *dev_priv = dev->dev_private;
  3871. struct drm_gem_object *obj;
  3872. struct drm_i915_gem_object *obj_priv;
  3873. int ret;
  3874. obj = i915_gem_alloc_object(dev, 4096);
  3875. if (obj == NULL) {
  3876. DRM_ERROR("Failed to allocate seqno page\n");
  3877. ret = -ENOMEM;
  3878. goto err;
  3879. }
  3880. obj_priv = to_intel_bo(obj);
  3881. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3882. ret = i915_gem_object_pin(obj, 4096, true);
  3883. if (ret)
  3884. goto err_unref;
  3885. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3886. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3887. if (dev_priv->seqno_page == NULL)
  3888. goto err_unpin;
  3889. dev_priv->seqno_obj = obj;
  3890. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3891. return 0;
  3892. err_unpin:
  3893. i915_gem_object_unpin(obj);
  3894. err_unref:
  3895. drm_gem_object_unreference(obj);
  3896. err:
  3897. return ret;
  3898. }
  3899. static void
  3900. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3901. {
  3902. drm_i915_private_t *dev_priv = dev->dev_private;
  3903. struct drm_gem_object *obj;
  3904. struct drm_i915_gem_object *obj_priv;
  3905. obj = dev_priv->seqno_obj;
  3906. obj_priv = to_intel_bo(obj);
  3907. kunmap(obj_priv->pages[0]);
  3908. i915_gem_object_unpin(obj);
  3909. drm_gem_object_unreference(obj);
  3910. dev_priv->seqno_obj = NULL;
  3911. dev_priv->seqno_page = NULL;
  3912. }
  3913. int
  3914. i915_gem_init_ringbuffer(struct drm_device *dev)
  3915. {
  3916. drm_i915_private_t *dev_priv = dev->dev_private;
  3917. int ret;
  3918. if (HAS_PIPE_CONTROL(dev)) {
  3919. ret = i915_gem_init_pipe_control(dev);
  3920. if (ret)
  3921. return ret;
  3922. }
  3923. ret = intel_init_render_ring_buffer(dev);
  3924. if (ret)
  3925. goto cleanup_pipe_control;
  3926. if (HAS_BSD(dev)) {
  3927. ret = intel_init_bsd_ring_buffer(dev);
  3928. if (ret)
  3929. goto cleanup_render_ring;
  3930. }
  3931. if (HAS_BLT(dev)) {
  3932. ret = intel_init_blt_ring_buffer(dev);
  3933. if (ret)
  3934. goto cleanup_bsd_ring;
  3935. }
  3936. dev_priv->next_seqno = 1;
  3937. return 0;
  3938. cleanup_bsd_ring:
  3939. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3940. cleanup_render_ring:
  3941. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3942. cleanup_pipe_control:
  3943. if (HAS_PIPE_CONTROL(dev))
  3944. i915_gem_cleanup_pipe_control(dev);
  3945. return ret;
  3946. }
  3947. void
  3948. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3949. {
  3950. drm_i915_private_t *dev_priv = dev->dev_private;
  3951. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3952. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3953. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3954. if (HAS_PIPE_CONTROL(dev))
  3955. i915_gem_cleanup_pipe_control(dev);
  3956. }
  3957. int
  3958. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3959. struct drm_file *file_priv)
  3960. {
  3961. drm_i915_private_t *dev_priv = dev->dev_private;
  3962. int ret;
  3963. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3964. return 0;
  3965. if (atomic_read(&dev_priv->mm.wedged)) {
  3966. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3967. atomic_set(&dev_priv->mm.wedged, 0);
  3968. }
  3969. mutex_lock(&dev->struct_mutex);
  3970. dev_priv->mm.suspended = 0;
  3971. ret = i915_gem_init_ringbuffer(dev);
  3972. if (ret != 0) {
  3973. mutex_unlock(&dev->struct_mutex);
  3974. return ret;
  3975. }
  3976. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3977. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3978. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3979. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3980. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3981. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3982. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3983. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3984. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3985. mutex_unlock(&dev->struct_mutex);
  3986. ret = drm_irq_install(dev);
  3987. if (ret)
  3988. goto cleanup_ringbuffer;
  3989. return 0;
  3990. cleanup_ringbuffer:
  3991. mutex_lock(&dev->struct_mutex);
  3992. i915_gem_cleanup_ringbuffer(dev);
  3993. dev_priv->mm.suspended = 1;
  3994. mutex_unlock(&dev->struct_mutex);
  3995. return ret;
  3996. }
  3997. int
  3998. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3999. struct drm_file *file_priv)
  4000. {
  4001. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4002. return 0;
  4003. drm_irq_uninstall(dev);
  4004. return i915_gem_idle(dev);
  4005. }
  4006. void
  4007. i915_gem_lastclose(struct drm_device *dev)
  4008. {
  4009. int ret;
  4010. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4011. return;
  4012. ret = i915_gem_idle(dev);
  4013. if (ret)
  4014. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4015. }
  4016. static void
  4017. init_ring_lists(struct intel_ring_buffer *ring)
  4018. {
  4019. INIT_LIST_HEAD(&ring->active_list);
  4020. INIT_LIST_HEAD(&ring->request_list);
  4021. INIT_LIST_HEAD(&ring->gpu_write_list);
  4022. }
  4023. void
  4024. i915_gem_load(struct drm_device *dev)
  4025. {
  4026. int i;
  4027. drm_i915_private_t *dev_priv = dev->dev_private;
  4028. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4029. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4030. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4031. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4032. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4033. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4034. init_ring_lists(&dev_priv->render_ring);
  4035. init_ring_lists(&dev_priv->bsd_ring);
  4036. init_ring_lists(&dev_priv->blt_ring);
  4037. for (i = 0; i < 16; i++)
  4038. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4039. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4040. i915_gem_retire_work_handler);
  4041. init_completion(&dev_priv->error_completion);
  4042. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4043. if (IS_GEN3(dev)) {
  4044. u32 tmp = I915_READ(MI_ARB_STATE);
  4045. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4046. /* arb state is a masked write, so set bit + bit in mask */
  4047. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4048. I915_WRITE(MI_ARB_STATE, tmp);
  4049. }
  4050. }
  4051. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4052. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4053. dev_priv->fence_reg_start = 3;
  4054. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4055. dev_priv->num_fence_regs = 16;
  4056. else
  4057. dev_priv->num_fence_regs = 8;
  4058. /* Initialize fence registers to zero */
  4059. switch (INTEL_INFO(dev)->gen) {
  4060. case 6:
  4061. for (i = 0; i < 16; i++)
  4062. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4063. break;
  4064. case 5:
  4065. case 4:
  4066. for (i = 0; i < 16; i++)
  4067. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4068. break;
  4069. case 3:
  4070. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4071. for (i = 0; i < 8; i++)
  4072. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4073. case 2:
  4074. for (i = 0; i < 8; i++)
  4075. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4076. break;
  4077. }
  4078. i915_gem_detect_bit_6_swizzle(dev);
  4079. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4080. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4081. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4082. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4083. }
  4084. /*
  4085. * Create a physically contiguous memory object for this object
  4086. * e.g. for cursor + overlay regs
  4087. */
  4088. static int i915_gem_init_phys_object(struct drm_device *dev,
  4089. int id, int size, int align)
  4090. {
  4091. drm_i915_private_t *dev_priv = dev->dev_private;
  4092. struct drm_i915_gem_phys_object *phys_obj;
  4093. int ret;
  4094. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4095. return 0;
  4096. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4097. if (!phys_obj)
  4098. return -ENOMEM;
  4099. phys_obj->id = id;
  4100. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4101. if (!phys_obj->handle) {
  4102. ret = -ENOMEM;
  4103. goto kfree_obj;
  4104. }
  4105. #ifdef CONFIG_X86
  4106. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4107. #endif
  4108. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4109. return 0;
  4110. kfree_obj:
  4111. kfree(phys_obj);
  4112. return ret;
  4113. }
  4114. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4115. {
  4116. drm_i915_private_t *dev_priv = dev->dev_private;
  4117. struct drm_i915_gem_phys_object *phys_obj;
  4118. if (!dev_priv->mm.phys_objs[id - 1])
  4119. return;
  4120. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4121. if (phys_obj->cur_obj) {
  4122. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4123. }
  4124. #ifdef CONFIG_X86
  4125. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4126. #endif
  4127. drm_pci_free(dev, phys_obj->handle);
  4128. kfree(phys_obj);
  4129. dev_priv->mm.phys_objs[id - 1] = NULL;
  4130. }
  4131. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4132. {
  4133. int i;
  4134. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4135. i915_gem_free_phys_object(dev, i);
  4136. }
  4137. void i915_gem_detach_phys_object(struct drm_device *dev,
  4138. struct drm_gem_object *obj)
  4139. {
  4140. struct drm_i915_gem_object *obj_priv;
  4141. int i;
  4142. int ret;
  4143. int page_count;
  4144. obj_priv = to_intel_bo(obj);
  4145. if (!obj_priv->phys_obj)
  4146. return;
  4147. ret = i915_gem_object_get_pages(obj, 0);
  4148. if (ret)
  4149. goto out;
  4150. page_count = obj->size / PAGE_SIZE;
  4151. for (i = 0; i < page_count; i++) {
  4152. char *dst = kmap_atomic(obj_priv->pages[i]);
  4153. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4154. memcpy(dst, src, PAGE_SIZE);
  4155. kunmap_atomic(dst);
  4156. }
  4157. drm_clflush_pages(obj_priv->pages, page_count);
  4158. drm_agp_chipset_flush(dev);
  4159. i915_gem_object_put_pages(obj);
  4160. out:
  4161. obj_priv->phys_obj->cur_obj = NULL;
  4162. obj_priv->phys_obj = NULL;
  4163. }
  4164. int
  4165. i915_gem_attach_phys_object(struct drm_device *dev,
  4166. struct drm_gem_object *obj,
  4167. int id,
  4168. int align)
  4169. {
  4170. drm_i915_private_t *dev_priv = dev->dev_private;
  4171. struct drm_i915_gem_object *obj_priv;
  4172. int ret = 0;
  4173. int page_count;
  4174. int i;
  4175. if (id > I915_MAX_PHYS_OBJECT)
  4176. return -EINVAL;
  4177. obj_priv = to_intel_bo(obj);
  4178. if (obj_priv->phys_obj) {
  4179. if (obj_priv->phys_obj->id == id)
  4180. return 0;
  4181. i915_gem_detach_phys_object(dev, obj);
  4182. }
  4183. /* create a new object */
  4184. if (!dev_priv->mm.phys_objs[id - 1]) {
  4185. ret = i915_gem_init_phys_object(dev, id,
  4186. obj->size, align);
  4187. if (ret) {
  4188. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4189. goto out;
  4190. }
  4191. }
  4192. /* bind to the object */
  4193. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4194. obj_priv->phys_obj->cur_obj = obj;
  4195. ret = i915_gem_object_get_pages(obj, 0);
  4196. if (ret) {
  4197. DRM_ERROR("failed to get page list\n");
  4198. goto out;
  4199. }
  4200. page_count = obj->size / PAGE_SIZE;
  4201. for (i = 0; i < page_count; i++) {
  4202. char *src = kmap_atomic(obj_priv->pages[i]);
  4203. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4204. memcpy(dst, src, PAGE_SIZE);
  4205. kunmap_atomic(src);
  4206. }
  4207. i915_gem_object_put_pages(obj);
  4208. return 0;
  4209. out:
  4210. return ret;
  4211. }
  4212. static int
  4213. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4214. struct drm_i915_gem_pwrite *args,
  4215. struct drm_file *file_priv)
  4216. {
  4217. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4218. void *obj_addr;
  4219. int ret;
  4220. char __user *user_data;
  4221. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4222. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4223. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4224. ret = copy_from_user(obj_addr, user_data, args->size);
  4225. if (ret)
  4226. return -EFAULT;
  4227. drm_agp_chipset_flush(dev);
  4228. return 0;
  4229. }
  4230. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4231. {
  4232. struct drm_i915_file_private *file_priv = file->driver_priv;
  4233. /* Clean up our request list when the client is going away, so that
  4234. * later retire_requests won't dereference our soon-to-be-gone
  4235. * file_priv.
  4236. */
  4237. spin_lock(&file_priv->mm.lock);
  4238. while (!list_empty(&file_priv->mm.request_list)) {
  4239. struct drm_i915_gem_request *request;
  4240. request = list_first_entry(&file_priv->mm.request_list,
  4241. struct drm_i915_gem_request,
  4242. client_list);
  4243. list_del(&request->client_list);
  4244. request->file_priv = NULL;
  4245. }
  4246. spin_unlock(&file_priv->mm.lock);
  4247. }
  4248. static int
  4249. i915_gpu_is_active(struct drm_device *dev)
  4250. {
  4251. drm_i915_private_t *dev_priv = dev->dev_private;
  4252. int lists_empty;
  4253. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4254. list_empty(&dev_priv->mm.active_list);
  4255. return !lists_empty;
  4256. }
  4257. static int
  4258. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4259. int nr_to_scan,
  4260. gfp_t gfp_mask)
  4261. {
  4262. struct drm_i915_private *dev_priv =
  4263. container_of(shrinker,
  4264. struct drm_i915_private,
  4265. mm.inactive_shrinker);
  4266. struct drm_device *dev = dev_priv->dev;
  4267. struct drm_i915_gem_object *obj, *next;
  4268. int cnt;
  4269. if (!mutex_trylock(&dev->struct_mutex))
  4270. return nr_to_scan ? 0 : -1;
  4271. /* "fast-path" to count number of available objects */
  4272. if (nr_to_scan == 0) {
  4273. cnt = 0;
  4274. list_for_each_entry(obj,
  4275. &dev_priv->mm.inactive_list,
  4276. mm_list)
  4277. cnt++;
  4278. mutex_unlock(&dev->struct_mutex);
  4279. return cnt / 100 * sysctl_vfs_cache_pressure;
  4280. }
  4281. rescan:
  4282. /* first scan for clean buffers */
  4283. i915_gem_retire_requests(dev);
  4284. list_for_each_entry_safe(obj, next,
  4285. &dev_priv->mm.inactive_list,
  4286. mm_list) {
  4287. if (i915_gem_object_is_purgeable(obj)) {
  4288. i915_gem_object_unbind(&obj->base);
  4289. if (--nr_to_scan == 0)
  4290. break;
  4291. }
  4292. }
  4293. /* second pass, evict/count anything still on the inactive list */
  4294. cnt = 0;
  4295. list_for_each_entry_safe(obj, next,
  4296. &dev_priv->mm.inactive_list,
  4297. mm_list) {
  4298. if (nr_to_scan) {
  4299. i915_gem_object_unbind(&obj->base);
  4300. nr_to_scan--;
  4301. } else
  4302. cnt++;
  4303. }
  4304. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4305. /*
  4306. * We are desperate for pages, so as a last resort, wait
  4307. * for the GPU to finish and discard whatever we can.
  4308. * This has a dramatic impact to reduce the number of
  4309. * OOM-killer events whilst running the GPU aggressively.
  4310. */
  4311. if (i915_gpu_idle(dev) == 0)
  4312. goto rescan;
  4313. }
  4314. mutex_unlock(&dev->struct_mutex);
  4315. return cnt / 100 * sysctl_vfs_cache_pressure;
  4316. }