common.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. /*
  2. * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * Common Codes for EXYNOS
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/irq.h>
  14. #include <linux/io.h>
  15. #include <linux/device.h>
  16. #include <linux/gpio.h>
  17. #include <linux/sched.h>
  18. #include <linux/serial_core.h>
  19. #include <linux/of.h>
  20. #include <linux/of_irq.h>
  21. #include <asm/proc-fns.h>
  22. #include <asm/exception.h>
  23. #include <asm/hardware/cache-l2x0.h>
  24. #include <asm/hardware/gic.h>
  25. #include <asm/mach/map.h>
  26. #include <asm/mach/irq.h>
  27. #include <mach/regs-irq.h>
  28. #include <mach/regs-pmu.h>
  29. #include <mach/regs-gpio.h>
  30. #include <plat/cpu.h>
  31. #include <plat/clock.h>
  32. #include <plat/devs.h>
  33. #include <plat/pm.h>
  34. #include <plat/sdhci.h>
  35. #include <plat/gpio-cfg.h>
  36. #include <plat/adc-core.h>
  37. #include <plat/fb-core.h>
  38. #include <plat/fimc-core.h>
  39. #include <plat/iic-core.h>
  40. #include <plat/tv-core.h>
  41. #include <plat/regs-serial.h>
  42. #include "common.h"
  43. static const char name_exynos4210[] = "EXYNOS4210";
  44. static const char name_exynos4212[] = "EXYNOS4212";
  45. static const char name_exynos4412[] = "EXYNOS4412";
  46. static void exynos4_map_io(void);
  47. static void exynos4_init_clocks(int xtal);
  48. static void exynos_init_uarts(struct s3c2410_uartcfg *cfg, int no);
  49. static int exynos_init(void);
  50. static struct cpu_table cpu_ids[] __initdata = {
  51. {
  52. .idcode = EXYNOS4210_CPU_ID,
  53. .idmask = EXYNOS4_CPU_MASK,
  54. .map_io = exynos4_map_io,
  55. .init_clocks = exynos4_init_clocks,
  56. .init_uarts = exynos_init_uarts,
  57. .init = exynos_init,
  58. .name = name_exynos4210,
  59. }, {
  60. .idcode = EXYNOS4212_CPU_ID,
  61. .idmask = EXYNOS4_CPU_MASK,
  62. .map_io = exynos4_map_io,
  63. .init_clocks = exynos4_init_clocks,
  64. .init_uarts = exynos_init_uarts,
  65. .init = exynos_init,
  66. .name = name_exynos4212,
  67. }, {
  68. .idcode = EXYNOS4412_CPU_ID,
  69. .idmask = EXYNOS4_CPU_MASK,
  70. .map_io = exynos4_map_io,
  71. .init_clocks = exynos4_init_clocks,
  72. .init_uarts = exynos_init_uarts,
  73. .init = exynos_init,
  74. .name = name_exynos4412,
  75. },
  76. };
  77. /* Initial IO mappings */
  78. static struct map_desc exynos_iodesc[] __initdata = {
  79. {
  80. .virtual = (unsigned long)S5P_VA_CHIPID,
  81. .pfn = __phys_to_pfn(EXYNOS4_PA_CHIPID),
  82. .length = SZ_4K,
  83. .type = MT_DEVICE,
  84. }, {
  85. .virtual = (unsigned long)S3C_VA_SYS,
  86. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSCON),
  87. .length = SZ_64K,
  88. .type = MT_DEVICE,
  89. }, {
  90. .virtual = (unsigned long)S3C_VA_TIMER,
  91. .pfn = __phys_to_pfn(EXYNOS4_PA_TIMER),
  92. .length = SZ_16K,
  93. .type = MT_DEVICE,
  94. }, {
  95. .virtual = (unsigned long)S3C_VA_WATCHDOG,
  96. .pfn = __phys_to_pfn(EXYNOS4_PA_WATCHDOG),
  97. .length = SZ_4K,
  98. .type = MT_DEVICE,
  99. }, {
  100. .virtual = (unsigned long)S5P_VA_SROMC,
  101. .pfn = __phys_to_pfn(EXYNOS4_PA_SROMC),
  102. .length = SZ_4K,
  103. .type = MT_DEVICE,
  104. }, {
  105. .virtual = (unsigned long)S5P_VA_SYSTIMER,
  106. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSTIMER),
  107. .length = SZ_4K,
  108. .type = MT_DEVICE,
  109. }, {
  110. .virtual = (unsigned long)S5P_VA_PMU,
  111. .pfn = __phys_to_pfn(EXYNOS4_PA_PMU),
  112. .length = SZ_64K,
  113. .type = MT_DEVICE,
  114. }, {
  115. .virtual = (unsigned long)S5P_VA_COMBINER_BASE,
  116. .pfn = __phys_to_pfn(EXYNOS4_PA_COMBINER),
  117. .length = SZ_4K,
  118. .type = MT_DEVICE,
  119. }, {
  120. .virtual = (unsigned long)S5P_VA_GIC_CPU,
  121. .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_CPU),
  122. .length = SZ_64K,
  123. .type = MT_DEVICE,
  124. }, {
  125. .virtual = (unsigned long)S5P_VA_GIC_DIST,
  126. .pfn = __phys_to_pfn(EXYNOS4_PA_GIC_DIST),
  127. .length = SZ_64K,
  128. .type = MT_DEVICE,
  129. }, {
  130. .virtual = (unsigned long)S3C_VA_UART,
  131. .pfn = __phys_to_pfn(EXYNOS4_PA_UART),
  132. .length = SZ_512K,
  133. .type = MT_DEVICE,
  134. },
  135. };
  136. static struct map_desc exynos4_iodesc[] __initdata = {
  137. {
  138. .virtual = (unsigned long)S5P_VA_CMU,
  139. .pfn = __phys_to_pfn(EXYNOS4_PA_CMU),
  140. .length = SZ_128K,
  141. .type = MT_DEVICE,
  142. }, {
  143. .virtual = (unsigned long)S5P_VA_COREPERI_BASE,
  144. .pfn = __phys_to_pfn(EXYNOS4_PA_COREPERI),
  145. .length = SZ_8K,
  146. .type = MT_DEVICE,
  147. }, {
  148. .virtual = (unsigned long)S5P_VA_L2CC,
  149. .pfn = __phys_to_pfn(EXYNOS4_PA_L2CC),
  150. .length = SZ_4K,
  151. .type = MT_DEVICE,
  152. }, {
  153. .virtual = (unsigned long)S5P_VA_GPIO1,
  154. .pfn = __phys_to_pfn(EXYNOS4_PA_GPIO1),
  155. .length = SZ_4K,
  156. .type = MT_DEVICE,
  157. }, {
  158. .virtual = (unsigned long)S5P_VA_GPIO2,
  159. .pfn = __phys_to_pfn(EXYNOS4_PA_GPIO2),
  160. .length = SZ_4K,
  161. .type = MT_DEVICE,
  162. }, {
  163. .virtual = (unsigned long)S5P_VA_GPIO3,
  164. .pfn = __phys_to_pfn(EXYNOS4_PA_GPIO3),
  165. .length = SZ_256,
  166. .type = MT_DEVICE,
  167. }, {
  168. .virtual = (unsigned long)S5P_VA_DMC0,
  169. .pfn = __phys_to_pfn(EXYNOS4_PA_DMC0),
  170. .length = SZ_4K,
  171. .type = MT_DEVICE,
  172. }, {
  173. .virtual = (unsigned long)S3C_VA_USB_HSPHY,
  174. .pfn = __phys_to_pfn(EXYNOS4_PA_HSPHY),
  175. .length = SZ_4K,
  176. .type = MT_DEVICE,
  177. },
  178. };
  179. static struct map_desc exynos4_iodesc0[] __initdata = {
  180. {
  181. .virtual = (unsigned long)S5P_VA_SYSRAM,
  182. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM0),
  183. .length = SZ_4K,
  184. .type = MT_DEVICE,
  185. },
  186. };
  187. static struct map_desc exynos4_iodesc1[] __initdata = {
  188. {
  189. .virtual = (unsigned long)S5P_VA_SYSRAM,
  190. .pfn = __phys_to_pfn(EXYNOS4_PA_SYSRAM1),
  191. .length = SZ_4K,
  192. .type = MT_DEVICE,
  193. },
  194. };
  195. void exynos4_restart(char mode, const char *cmd)
  196. {
  197. __raw_writel(0x1, S5P_SWRESET);
  198. }
  199. /*
  200. * exynos_map_io
  201. *
  202. * register the standard cpu IO areas
  203. */
  204. void __init exynos_init_io(struct map_desc *mach_desc, int size)
  205. {
  206. /* initialize the io descriptors we need for initialization */
  207. iotable_init(exynos_iodesc, ARRAY_SIZE(exynos_iodesc));
  208. if (mach_desc)
  209. iotable_init(mach_desc, size);
  210. /* detect cpu id and rev. */
  211. s5p_init_cpu(S5P_VA_CHIPID);
  212. s3c_init_cpu(samsung_cpu_id, cpu_ids, ARRAY_SIZE(cpu_ids));
  213. }
  214. static void __init exynos4_map_io(void)
  215. {
  216. iotable_init(exynos4_iodesc, ARRAY_SIZE(exynos4_iodesc));
  217. if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_0)
  218. iotable_init(exynos4_iodesc0, ARRAY_SIZE(exynos4_iodesc0));
  219. else
  220. iotable_init(exynos4_iodesc1, ARRAY_SIZE(exynos4_iodesc1));
  221. /* initialize device information early */
  222. exynos4_default_sdhci0();
  223. exynos4_default_sdhci1();
  224. exynos4_default_sdhci2();
  225. exynos4_default_sdhci3();
  226. s3c_adc_setname("samsung-adc-v3");
  227. s3c_fimc_setname(0, "exynos4-fimc");
  228. s3c_fimc_setname(1, "exynos4-fimc");
  229. s3c_fimc_setname(2, "exynos4-fimc");
  230. s3c_fimc_setname(3, "exynos4-fimc");
  231. /* The I2C bus controllers are directly compatible with s3c2440 */
  232. s3c_i2c0_setname("s3c2440-i2c");
  233. s3c_i2c1_setname("s3c2440-i2c");
  234. s3c_i2c2_setname("s3c2440-i2c");
  235. s5p_fb_setname(0, "exynos4-fb");
  236. s5p_hdmi_setname("exynos4-hdmi");
  237. }
  238. static void __init exynos4_init_clocks(int xtal)
  239. {
  240. printk(KERN_DEBUG "%s: initializing clocks\n", __func__);
  241. s3c24xx_register_baseclocks(xtal);
  242. s5p_register_clocks(xtal);
  243. if (soc_is_exynos4210())
  244. exynos4210_register_clocks();
  245. else if (soc_is_exynos4212() || soc_is_exynos4412())
  246. exynos4212_register_clocks();
  247. exynos4_register_clocks();
  248. exynos4_setup_clocks();
  249. }
  250. #define COMBINER_ENABLE_SET 0x0
  251. #define COMBINER_ENABLE_CLEAR 0x4
  252. #define COMBINER_INT_STATUS 0xC
  253. static DEFINE_SPINLOCK(irq_controller_lock);
  254. struct combiner_chip_data {
  255. unsigned int irq_offset;
  256. unsigned int irq_mask;
  257. void __iomem *base;
  258. };
  259. static struct combiner_chip_data combiner_data[MAX_COMBINER_NR];
  260. static inline void __iomem *combiner_base(struct irq_data *data)
  261. {
  262. struct combiner_chip_data *combiner_data =
  263. irq_data_get_irq_chip_data(data);
  264. return combiner_data->base;
  265. }
  266. static void combiner_mask_irq(struct irq_data *data)
  267. {
  268. u32 mask = 1 << (data->irq % 32);
  269. __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_CLEAR);
  270. }
  271. static void combiner_unmask_irq(struct irq_data *data)
  272. {
  273. u32 mask = 1 << (data->irq % 32);
  274. __raw_writel(mask, combiner_base(data) + COMBINER_ENABLE_SET);
  275. }
  276. static void combiner_handle_cascade_irq(unsigned int irq, struct irq_desc *desc)
  277. {
  278. struct combiner_chip_data *chip_data = irq_get_handler_data(irq);
  279. struct irq_chip *chip = irq_get_chip(irq);
  280. unsigned int cascade_irq, combiner_irq;
  281. unsigned long status;
  282. chained_irq_enter(chip, desc);
  283. spin_lock(&irq_controller_lock);
  284. status = __raw_readl(chip_data->base + COMBINER_INT_STATUS);
  285. spin_unlock(&irq_controller_lock);
  286. status &= chip_data->irq_mask;
  287. if (status == 0)
  288. goto out;
  289. combiner_irq = __ffs(status);
  290. cascade_irq = combiner_irq + (chip_data->irq_offset & ~31);
  291. if (unlikely(cascade_irq >= NR_IRQS))
  292. do_bad_IRQ(cascade_irq, desc);
  293. else
  294. generic_handle_irq(cascade_irq);
  295. out:
  296. chained_irq_exit(chip, desc);
  297. }
  298. static struct irq_chip combiner_chip = {
  299. .name = "COMBINER",
  300. .irq_mask = combiner_mask_irq,
  301. .irq_unmask = combiner_unmask_irq,
  302. };
  303. static void __init combiner_cascade_irq(unsigned int combiner_nr, unsigned int irq)
  304. {
  305. if (combiner_nr >= MAX_COMBINER_NR)
  306. BUG();
  307. if (irq_set_handler_data(irq, &combiner_data[combiner_nr]) != 0)
  308. BUG();
  309. irq_set_chained_handler(irq, combiner_handle_cascade_irq);
  310. }
  311. static void __init combiner_init(unsigned int combiner_nr, void __iomem *base,
  312. unsigned int irq_start)
  313. {
  314. unsigned int i;
  315. if (combiner_nr >= MAX_COMBINER_NR)
  316. BUG();
  317. combiner_data[combiner_nr].base = base;
  318. combiner_data[combiner_nr].irq_offset = irq_start;
  319. combiner_data[combiner_nr].irq_mask = 0xff << ((combiner_nr % 4) << 3);
  320. /* Disable all interrupts */
  321. __raw_writel(combiner_data[combiner_nr].irq_mask,
  322. base + COMBINER_ENABLE_CLEAR);
  323. /* Setup the Linux IRQ subsystem */
  324. for (i = irq_start; i < combiner_data[combiner_nr].irq_offset
  325. + MAX_IRQ_IN_COMBINER; i++) {
  326. irq_set_chip_and_handler(i, &combiner_chip, handle_level_irq);
  327. irq_set_chip_data(i, &combiner_data[combiner_nr]);
  328. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  329. }
  330. }
  331. #ifdef CONFIG_OF
  332. static const struct of_device_id exynos4_dt_irq_match[] = {
  333. { .compatible = "arm,cortex-a9-gic", .data = gic_of_init, },
  334. {},
  335. };
  336. #endif
  337. void __init exynos4_init_irq(void)
  338. {
  339. int irq;
  340. unsigned int gic_bank_offset;
  341. gic_bank_offset = soc_is_exynos4412() ? 0x4000 : 0x8000;
  342. if (!of_have_populated_dt())
  343. gic_init_bases(0, IRQ_PPI(0), S5P_VA_GIC_DIST, S5P_VA_GIC_CPU, gic_bank_offset);
  344. #ifdef CONFIG_OF
  345. else
  346. of_irq_init(exynos4_dt_irq_match);
  347. #endif
  348. for (irq = 0; irq < MAX_COMBINER_NR; irq++) {
  349. combiner_init(irq, (void __iomem *)S5P_VA_COMBINER(irq),
  350. COMBINER_IRQ(irq, 0));
  351. combiner_cascade_irq(irq, IRQ_SPI(irq));
  352. }
  353. /*
  354. * The parameters of s5p_init_irq() are for VIC init.
  355. * Theses parameters should be NULL and 0 because EXYNOS4
  356. * uses GIC instead of VIC.
  357. */
  358. s5p_init_irq(NULL, 0);
  359. }
  360. struct bus_type exynos4_subsys = {
  361. .name = "exynos4-core",
  362. .dev_name = "exynos4-core",
  363. };
  364. static struct device exynos4_dev = {
  365. .bus = &exynos4_subsys,
  366. };
  367. static int __init exynos4_core_init(void)
  368. {
  369. return subsys_system_register(&exynos4_subsys, NULL);
  370. }
  371. core_initcall(exynos4_core_init);
  372. #ifdef CONFIG_CACHE_L2X0
  373. static int __init exynos4_l2x0_cache_init(void)
  374. {
  375. /* TAG, Data Latency Control: 2cycle */
  376. __raw_writel(0x110, S5P_VA_L2CC + L2X0_TAG_LATENCY_CTRL);
  377. if (soc_is_exynos4210())
  378. __raw_writel(0x110, S5P_VA_L2CC + L2X0_DATA_LATENCY_CTRL);
  379. else if (soc_is_exynos4212() || soc_is_exynos4412())
  380. __raw_writel(0x120, S5P_VA_L2CC + L2X0_DATA_LATENCY_CTRL);
  381. /* L2X0 Prefetch Control */
  382. __raw_writel(0x30000007, S5P_VA_L2CC + L2X0_PREFETCH_CTRL);
  383. /* L2X0 Power Control */
  384. __raw_writel(L2X0_DYNAMIC_CLK_GATING_EN | L2X0_STNDBY_MODE_EN,
  385. S5P_VA_L2CC + L2X0_POWER_CTRL);
  386. l2x0_init(S5P_VA_L2CC, 0x7C470001, 0xC200ffff);
  387. return 0;
  388. }
  389. early_initcall(exynos4_l2x0_cache_init);
  390. #endif
  391. static int __init exynos_init(void)
  392. {
  393. printk(KERN_INFO "EXYNOS: Initializing architecture\n");
  394. return device_register(&exynos4_dev);
  395. }
  396. /* uart registration process */
  397. static void __init exynos_init_uarts(struct s3c2410_uartcfg *cfg, int no)
  398. {
  399. struct s3c2410_uartcfg *tcfg = cfg;
  400. u32 ucnt;
  401. for (ucnt = 0; ucnt < no; ucnt++, tcfg++)
  402. tcfg->has_fracval = 1;
  403. if (soc_is_exynos5250())
  404. s3c24xx_init_uartdevs("exynos4210-uart", exynos5_uart_resources, cfg, no);
  405. else
  406. s3c24xx_init_uartdevs("exynos4210-uart", exynos4_uart_resources, cfg, no);
  407. }
  408. static DEFINE_SPINLOCK(eint_lock);
  409. static unsigned int eint0_15_data[16];
  410. static unsigned int exynos4_get_irq_nr(unsigned int number)
  411. {
  412. u32 ret = 0;
  413. switch (number) {
  414. case 0 ... 3:
  415. ret = (number + IRQ_EINT0);
  416. break;
  417. case 4 ... 7:
  418. ret = (number + (IRQ_EINT4 - 4));
  419. break;
  420. case 8 ... 15:
  421. ret = (number + (IRQ_EINT8 - 8));
  422. break;
  423. default:
  424. printk(KERN_ERR "number available : %d\n", number);
  425. }
  426. return ret;
  427. }
  428. static inline void exynos4_irq_eint_mask(struct irq_data *data)
  429. {
  430. u32 mask;
  431. spin_lock(&eint_lock);
  432. mask = __raw_readl(S5P_EINT_MASK(EINT_REG_NR(data->irq)));
  433. mask |= eint_irq_to_bit(data->irq);
  434. __raw_writel(mask, S5P_EINT_MASK(EINT_REG_NR(data->irq)));
  435. spin_unlock(&eint_lock);
  436. }
  437. static void exynos4_irq_eint_unmask(struct irq_data *data)
  438. {
  439. u32 mask;
  440. spin_lock(&eint_lock);
  441. mask = __raw_readl(S5P_EINT_MASK(EINT_REG_NR(data->irq)));
  442. mask &= ~(eint_irq_to_bit(data->irq));
  443. __raw_writel(mask, S5P_EINT_MASK(EINT_REG_NR(data->irq)));
  444. spin_unlock(&eint_lock);
  445. }
  446. static inline void exynos4_irq_eint_ack(struct irq_data *data)
  447. {
  448. __raw_writel(eint_irq_to_bit(data->irq),
  449. S5P_EINT_PEND(EINT_REG_NR(data->irq)));
  450. }
  451. static void exynos4_irq_eint_maskack(struct irq_data *data)
  452. {
  453. exynos4_irq_eint_mask(data);
  454. exynos4_irq_eint_ack(data);
  455. }
  456. static int exynos4_irq_eint_set_type(struct irq_data *data, unsigned int type)
  457. {
  458. int offs = EINT_OFFSET(data->irq);
  459. int shift;
  460. u32 ctrl, mask;
  461. u32 newvalue = 0;
  462. switch (type) {
  463. case IRQ_TYPE_EDGE_RISING:
  464. newvalue = S5P_IRQ_TYPE_EDGE_RISING;
  465. break;
  466. case IRQ_TYPE_EDGE_FALLING:
  467. newvalue = S5P_IRQ_TYPE_EDGE_FALLING;
  468. break;
  469. case IRQ_TYPE_EDGE_BOTH:
  470. newvalue = S5P_IRQ_TYPE_EDGE_BOTH;
  471. break;
  472. case IRQ_TYPE_LEVEL_LOW:
  473. newvalue = S5P_IRQ_TYPE_LEVEL_LOW;
  474. break;
  475. case IRQ_TYPE_LEVEL_HIGH:
  476. newvalue = S5P_IRQ_TYPE_LEVEL_HIGH;
  477. break;
  478. default:
  479. printk(KERN_ERR "No such irq type %d", type);
  480. return -EINVAL;
  481. }
  482. shift = (offs & 0x7) * 4;
  483. mask = 0x7 << shift;
  484. spin_lock(&eint_lock);
  485. ctrl = __raw_readl(S5P_EINT_CON(EINT_REG_NR(data->irq)));
  486. ctrl &= ~mask;
  487. ctrl |= newvalue << shift;
  488. __raw_writel(ctrl, S5P_EINT_CON(EINT_REG_NR(data->irq)));
  489. spin_unlock(&eint_lock);
  490. switch (offs) {
  491. case 0 ... 7:
  492. s3c_gpio_cfgpin(EINT_GPIO_0(offs & 0x7), EINT_MODE);
  493. break;
  494. case 8 ... 15:
  495. s3c_gpio_cfgpin(EINT_GPIO_1(offs & 0x7), EINT_MODE);
  496. break;
  497. case 16 ... 23:
  498. s3c_gpio_cfgpin(EINT_GPIO_2(offs & 0x7), EINT_MODE);
  499. break;
  500. case 24 ... 31:
  501. s3c_gpio_cfgpin(EINT_GPIO_3(offs & 0x7), EINT_MODE);
  502. break;
  503. default:
  504. printk(KERN_ERR "No such irq number %d", offs);
  505. }
  506. return 0;
  507. }
  508. static struct irq_chip exynos4_irq_eint = {
  509. .name = "exynos4-eint",
  510. .irq_mask = exynos4_irq_eint_mask,
  511. .irq_unmask = exynos4_irq_eint_unmask,
  512. .irq_mask_ack = exynos4_irq_eint_maskack,
  513. .irq_ack = exynos4_irq_eint_ack,
  514. .irq_set_type = exynos4_irq_eint_set_type,
  515. #ifdef CONFIG_PM
  516. .irq_set_wake = s3c_irqext_wake,
  517. #endif
  518. };
  519. /*
  520. * exynos4_irq_demux_eint
  521. *
  522. * This function demuxes the IRQ from from EINTs 16 to 31.
  523. * It is designed to be inlined into the specific handler
  524. * s5p_irq_demux_eintX_Y.
  525. *
  526. * Each EINT pend/mask registers handle eight of them.
  527. */
  528. static inline void exynos4_irq_demux_eint(unsigned int start)
  529. {
  530. unsigned int irq;
  531. u32 status = __raw_readl(S5P_EINT_PEND(EINT_REG_NR(start)));
  532. u32 mask = __raw_readl(S5P_EINT_MASK(EINT_REG_NR(start)));
  533. status &= ~mask;
  534. status &= 0xff;
  535. while (status) {
  536. irq = fls(status) - 1;
  537. generic_handle_irq(irq + start);
  538. status &= ~(1 << irq);
  539. }
  540. }
  541. static void exynos4_irq_demux_eint16_31(unsigned int irq, struct irq_desc *desc)
  542. {
  543. struct irq_chip *chip = irq_get_chip(irq);
  544. chained_irq_enter(chip, desc);
  545. exynos4_irq_demux_eint(IRQ_EINT(16));
  546. exynos4_irq_demux_eint(IRQ_EINT(24));
  547. chained_irq_exit(chip, desc);
  548. }
  549. static void exynos4_irq_eint0_15(unsigned int irq, struct irq_desc *desc)
  550. {
  551. u32 *irq_data = irq_get_handler_data(irq);
  552. struct irq_chip *chip = irq_get_chip(irq);
  553. chained_irq_enter(chip, desc);
  554. chip->irq_mask(&desc->irq_data);
  555. if (chip->irq_ack)
  556. chip->irq_ack(&desc->irq_data);
  557. generic_handle_irq(*irq_data);
  558. chip->irq_unmask(&desc->irq_data);
  559. chained_irq_exit(chip, desc);
  560. }
  561. static int __init exynos4_init_irq_eint(void)
  562. {
  563. int irq;
  564. for (irq = 0 ; irq <= 31 ; irq++) {
  565. irq_set_chip_and_handler(IRQ_EINT(irq), &exynos4_irq_eint,
  566. handle_level_irq);
  567. set_irq_flags(IRQ_EINT(irq), IRQF_VALID);
  568. }
  569. irq_set_chained_handler(IRQ_EINT16_31, exynos4_irq_demux_eint16_31);
  570. for (irq = 0 ; irq <= 15 ; irq++) {
  571. eint0_15_data[irq] = IRQ_EINT(irq);
  572. irq_set_handler_data(exynos4_get_irq_nr(irq),
  573. &eint0_15_data[irq]);
  574. irq_set_chained_handler(exynos4_get_irq_nr(irq),
  575. exynos4_irq_eint0_15);
  576. }
  577. return 0;
  578. }
  579. arch_initcall(exynos4_init_irq_eint);