ipmi_si_intf.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573
  1. /*
  2. * ipmi_si.c
  3. *
  4. * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5. * BT).
  6. *
  7. * Author: MontaVista Software, Inc.
  8. * Corey Minyard <minyard@mvista.com>
  9. * source@mvista.com
  10. *
  11. * Copyright 2002 MontaVista Software Inc.
  12. * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify it
  15. * under the terms of the GNU General Public License as published by the
  16. * Free Software Foundation; either version 2 of the License, or (at your
  17. * option) any later version.
  18. *
  19. *
  20. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26. * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28. * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. *
  31. * You should have received a copy of the GNU General Public License along
  32. * with this program; if not, write to the Free Software Foundation, Inc.,
  33. * 675 Mass Ave, Cambridge, MA 02139, USA.
  34. */
  35. /*
  36. * This file holds the "policy" for the interface to the SMI state
  37. * machine. It does the configuration, handles timers and interrupts,
  38. * and drives the real SMI state machine.
  39. */
  40. #include <linux/module.h>
  41. #include <linux/moduleparam.h>
  42. #include <asm/system.h>
  43. #include <linux/sched.h>
  44. #include <linux/timer.h>
  45. #include <linux/errno.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/slab.h>
  48. #include <linux/delay.h>
  49. #include <linux/list.h>
  50. #include <linux/pci.h>
  51. #include <linux/ioport.h>
  52. #include <linux/notifier.h>
  53. #include <linux/mutex.h>
  54. #include <linux/kthread.h>
  55. #include <asm/irq.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/rcupdate.h>
  58. #include <linux/ipmi.h>
  59. #include <linux/ipmi_smi.h>
  60. #include <asm/io.h>
  61. #include "ipmi_si_sm.h"
  62. #include <linux/init.h>
  63. #include <linux/dmi.h>
  64. #include <linux/string.h>
  65. #include <linux/ctype.h>
  66. #include <linux/pnp.h>
  67. #ifdef CONFIG_PPC_OF
  68. #include <linux/of_device.h>
  69. #include <linux/of_platform.h>
  70. #endif
  71. #define PFX "ipmi_si: "
  72. /* Measure times between events in the driver. */
  73. #undef DEBUG_TIMING
  74. /* Call every 10 ms. */
  75. #define SI_TIMEOUT_TIME_USEC 10000
  76. #define SI_USEC_PER_JIFFY (1000000/HZ)
  77. #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  78. #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
  79. short timeout */
  80. enum si_intf_state {
  81. SI_NORMAL,
  82. SI_GETTING_FLAGS,
  83. SI_GETTING_EVENTS,
  84. SI_CLEARING_FLAGS,
  85. SI_CLEARING_FLAGS_THEN_SET_IRQ,
  86. SI_GETTING_MESSAGES,
  87. SI_ENABLE_INTERRUPTS1,
  88. SI_ENABLE_INTERRUPTS2,
  89. SI_DISABLE_INTERRUPTS1,
  90. SI_DISABLE_INTERRUPTS2
  91. /* FIXME - add watchdog stuff. */
  92. };
  93. /* Some BT-specific defines we need here. */
  94. #define IPMI_BT_INTMASK_REG 2
  95. #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
  96. #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
  97. enum si_type {
  98. SI_KCS, SI_SMIC, SI_BT
  99. };
  100. static char *si_to_str[] = { "kcs", "smic", "bt" };
  101. static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
  102. "ACPI", "SMBIOS", "PCI",
  103. "device-tree", "default" };
  104. #define DEVICE_NAME "ipmi_si"
  105. static struct platform_driver ipmi_driver = {
  106. .driver = {
  107. .name = DEVICE_NAME,
  108. .bus = &platform_bus_type
  109. }
  110. };
  111. /*
  112. * Indexes into stats[] in smi_info below.
  113. */
  114. enum si_stat_indexes {
  115. /*
  116. * Number of times the driver requested a timer while an operation
  117. * was in progress.
  118. */
  119. SI_STAT_short_timeouts = 0,
  120. /*
  121. * Number of times the driver requested a timer while nothing was in
  122. * progress.
  123. */
  124. SI_STAT_long_timeouts,
  125. /* Number of times the interface was idle while being polled. */
  126. SI_STAT_idles,
  127. /* Number of interrupts the driver handled. */
  128. SI_STAT_interrupts,
  129. /* Number of time the driver got an ATTN from the hardware. */
  130. SI_STAT_attentions,
  131. /* Number of times the driver requested flags from the hardware. */
  132. SI_STAT_flag_fetches,
  133. /* Number of times the hardware didn't follow the state machine. */
  134. SI_STAT_hosed_count,
  135. /* Number of completed messages. */
  136. SI_STAT_complete_transactions,
  137. /* Number of IPMI events received from the hardware. */
  138. SI_STAT_events,
  139. /* Number of watchdog pretimeouts. */
  140. SI_STAT_watchdog_pretimeouts,
  141. /* Number of asyncronous messages received. */
  142. SI_STAT_incoming_messages,
  143. /* This *must* remain last, add new values above this. */
  144. SI_NUM_STATS
  145. };
  146. struct smi_info {
  147. int intf_num;
  148. ipmi_smi_t intf;
  149. struct si_sm_data *si_sm;
  150. struct si_sm_handlers *handlers;
  151. enum si_type si_type;
  152. spinlock_t si_lock;
  153. spinlock_t msg_lock;
  154. struct list_head xmit_msgs;
  155. struct list_head hp_xmit_msgs;
  156. struct ipmi_smi_msg *curr_msg;
  157. enum si_intf_state si_state;
  158. /*
  159. * Used to handle the various types of I/O that can occur with
  160. * IPMI
  161. */
  162. struct si_sm_io io;
  163. int (*io_setup)(struct smi_info *info);
  164. void (*io_cleanup)(struct smi_info *info);
  165. int (*irq_setup)(struct smi_info *info);
  166. void (*irq_cleanup)(struct smi_info *info);
  167. unsigned int io_size;
  168. enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
  169. void (*addr_source_cleanup)(struct smi_info *info);
  170. void *addr_source_data;
  171. /*
  172. * Per-OEM handler, called from handle_flags(). Returns 1
  173. * when handle_flags() needs to be re-run or 0 indicating it
  174. * set si_state itself.
  175. */
  176. int (*oem_data_avail_handler)(struct smi_info *smi_info);
  177. /*
  178. * Flags from the last GET_MSG_FLAGS command, used when an ATTN
  179. * is set to hold the flags until we are done handling everything
  180. * from the flags.
  181. */
  182. #define RECEIVE_MSG_AVAIL 0x01
  183. #define EVENT_MSG_BUFFER_FULL 0x02
  184. #define WDT_PRE_TIMEOUT_INT 0x08
  185. #define OEM0_DATA_AVAIL 0x20
  186. #define OEM1_DATA_AVAIL 0x40
  187. #define OEM2_DATA_AVAIL 0x80
  188. #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
  189. OEM1_DATA_AVAIL | \
  190. OEM2_DATA_AVAIL)
  191. unsigned char msg_flags;
  192. /* Does the BMC have an event buffer? */
  193. char has_event_buffer;
  194. /*
  195. * If set to true, this will request events the next time the
  196. * state machine is idle.
  197. */
  198. atomic_t req_events;
  199. /*
  200. * If true, run the state machine to completion on every send
  201. * call. Generally used after a panic to make sure stuff goes
  202. * out.
  203. */
  204. int run_to_completion;
  205. /* The I/O port of an SI interface. */
  206. int port;
  207. /*
  208. * The space between start addresses of the two ports. For
  209. * instance, if the first port is 0xca2 and the spacing is 4, then
  210. * the second port is 0xca6.
  211. */
  212. unsigned int spacing;
  213. /* zero if no irq; */
  214. int irq;
  215. /* The timer for this si. */
  216. struct timer_list si_timer;
  217. /* The time (in jiffies) the last timeout occurred at. */
  218. unsigned long last_timeout_jiffies;
  219. /* Used to gracefully stop the timer without race conditions. */
  220. atomic_t stop_operation;
  221. /*
  222. * The driver will disable interrupts when it gets into a
  223. * situation where it cannot handle messages due to lack of
  224. * memory. Once that situation clears up, it will re-enable
  225. * interrupts.
  226. */
  227. int interrupt_disabled;
  228. /* From the get device id response... */
  229. struct ipmi_device_id device_id;
  230. /* Driver model stuff. */
  231. struct device *dev;
  232. struct platform_device *pdev;
  233. /*
  234. * True if we allocated the device, false if it came from
  235. * someplace else (like PCI).
  236. */
  237. int dev_registered;
  238. /* Slave address, could be reported from DMI. */
  239. unsigned char slave_addr;
  240. /* Counters and things for the proc filesystem. */
  241. atomic_t stats[SI_NUM_STATS];
  242. struct task_struct *thread;
  243. struct list_head link;
  244. union ipmi_smi_info_union addr_info;
  245. };
  246. #define smi_inc_stat(smi, stat) \
  247. atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
  248. #define smi_get_stat(smi, stat) \
  249. ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
  250. #define SI_MAX_PARMS 4
  251. static int force_kipmid[SI_MAX_PARMS];
  252. static int num_force_kipmid;
  253. #ifdef CONFIG_PCI
  254. static int pci_registered;
  255. #endif
  256. #ifdef CONFIG_ACPI
  257. static int pnp_registered;
  258. #endif
  259. #ifdef CONFIG_PPC_OF
  260. static int of_registered;
  261. #endif
  262. static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
  263. static int num_max_busy_us;
  264. static int unload_when_empty = 1;
  265. static int add_smi(struct smi_info *smi);
  266. static int try_smi_init(struct smi_info *smi);
  267. static void cleanup_one_si(struct smi_info *to_clean);
  268. static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
  269. static int register_xaction_notifier(struct notifier_block *nb)
  270. {
  271. return atomic_notifier_chain_register(&xaction_notifier_list, nb);
  272. }
  273. static void deliver_recv_msg(struct smi_info *smi_info,
  274. struct ipmi_smi_msg *msg)
  275. {
  276. /* Deliver the message to the upper layer with the lock
  277. released. */
  278. if (smi_info->run_to_completion) {
  279. ipmi_smi_msg_received(smi_info->intf, msg);
  280. } else {
  281. spin_unlock(&(smi_info->si_lock));
  282. ipmi_smi_msg_received(smi_info->intf, msg);
  283. spin_lock(&(smi_info->si_lock));
  284. }
  285. }
  286. static void return_hosed_msg(struct smi_info *smi_info, int cCode)
  287. {
  288. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  289. if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
  290. cCode = IPMI_ERR_UNSPECIFIED;
  291. /* else use it as is */
  292. /* Make it a reponse */
  293. msg->rsp[0] = msg->data[0] | 4;
  294. msg->rsp[1] = msg->data[1];
  295. msg->rsp[2] = cCode;
  296. msg->rsp_size = 3;
  297. smi_info->curr_msg = NULL;
  298. deliver_recv_msg(smi_info, msg);
  299. }
  300. static enum si_sm_result start_next_msg(struct smi_info *smi_info)
  301. {
  302. int rv;
  303. struct list_head *entry = NULL;
  304. #ifdef DEBUG_TIMING
  305. struct timeval t;
  306. #endif
  307. /*
  308. * No need to save flags, we aleady have interrupts off and we
  309. * already hold the SMI lock.
  310. */
  311. if (!smi_info->run_to_completion)
  312. spin_lock(&(smi_info->msg_lock));
  313. /* Pick the high priority queue first. */
  314. if (!list_empty(&(smi_info->hp_xmit_msgs))) {
  315. entry = smi_info->hp_xmit_msgs.next;
  316. } else if (!list_empty(&(smi_info->xmit_msgs))) {
  317. entry = smi_info->xmit_msgs.next;
  318. }
  319. if (!entry) {
  320. smi_info->curr_msg = NULL;
  321. rv = SI_SM_IDLE;
  322. } else {
  323. int err;
  324. list_del(entry);
  325. smi_info->curr_msg = list_entry(entry,
  326. struct ipmi_smi_msg,
  327. link);
  328. #ifdef DEBUG_TIMING
  329. do_gettimeofday(&t);
  330. printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  331. #endif
  332. err = atomic_notifier_call_chain(&xaction_notifier_list,
  333. 0, smi_info);
  334. if (err & NOTIFY_STOP_MASK) {
  335. rv = SI_SM_CALL_WITHOUT_DELAY;
  336. goto out;
  337. }
  338. err = smi_info->handlers->start_transaction(
  339. smi_info->si_sm,
  340. smi_info->curr_msg->data,
  341. smi_info->curr_msg->data_size);
  342. if (err)
  343. return_hosed_msg(smi_info, err);
  344. rv = SI_SM_CALL_WITHOUT_DELAY;
  345. }
  346. out:
  347. if (!smi_info->run_to_completion)
  348. spin_unlock(&(smi_info->msg_lock));
  349. return rv;
  350. }
  351. static void start_enable_irq(struct smi_info *smi_info)
  352. {
  353. unsigned char msg[2];
  354. /*
  355. * If we are enabling interrupts, we have to tell the
  356. * BMC to use them.
  357. */
  358. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  359. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  360. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  361. smi_info->si_state = SI_ENABLE_INTERRUPTS1;
  362. }
  363. static void start_disable_irq(struct smi_info *smi_info)
  364. {
  365. unsigned char msg[2];
  366. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  367. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  368. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  369. smi_info->si_state = SI_DISABLE_INTERRUPTS1;
  370. }
  371. static void start_clear_flags(struct smi_info *smi_info)
  372. {
  373. unsigned char msg[3];
  374. /* Make sure the watchdog pre-timeout flag is not set at startup. */
  375. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  376. msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
  377. msg[2] = WDT_PRE_TIMEOUT_INT;
  378. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  379. smi_info->si_state = SI_CLEARING_FLAGS;
  380. }
  381. /*
  382. * When we have a situtaion where we run out of memory and cannot
  383. * allocate messages, we just leave them in the BMC and run the system
  384. * polled until we can allocate some memory. Once we have some
  385. * memory, we will re-enable the interrupt.
  386. */
  387. static inline void disable_si_irq(struct smi_info *smi_info)
  388. {
  389. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  390. start_disable_irq(smi_info);
  391. smi_info->interrupt_disabled = 1;
  392. if (!atomic_read(&smi_info->stop_operation))
  393. mod_timer(&smi_info->si_timer,
  394. jiffies + SI_TIMEOUT_JIFFIES);
  395. }
  396. }
  397. static inline void enable_si_irq(struct smi_info *smi_info)
  398. {
  399. if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
  400. start_enable_irq(smi_info);
  401. smi_info->interrupt_disabled = 0;
  402. }
  403. }
  404. static void handle_flags(struct smi_info *smi_info)
  405. {
  406. retry:
  407. if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
  408. /* Watchdog pre-timeout */
  409. smi_inc_stat(smi_info, watchdog_pretimeouts);
  410. start_clear_flags(smi_info);
  411. smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
  412. spin_unlock(&(smi_info->si_lock));
  413. ipmi_smi_watchdog_pretimeout(smi_info->intf);
  414. spin_lock(&(smi_info->si_lock));
  415. } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
  416. /* Messages available. */
  417. smi_info->curr_msg = ipmi_alloc_smi_msg();
  418. if (!smi_info->curr_msg) {
  419. disable_si_irq(smi_info);
  420. smi_info->si_state = SI_NORMAL;
  421. return;
  422. }
  423. enable_si_irq(smi_info);
  424. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  425. smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
  426. smi_info->curr_msg->data_size = 2;
  427. smi_info->handlers->start_transaction(
  428. smi_info->si_sm,
  429. smi_info->curr_msg->data,
  430. smi_info->curr_msg->data_size);
  431. smi_info->si_state = SI_GETTING_MESSAGES;
  432. } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
  433. /* Events available. */
  434. smi_info->curr_msg = ipmi_alloc_smi_msg();
  435. if (!smi_info->curr_msg) {
  436. disable_si_irq(smi_info);
  437. smi_info->si_state = SI_NORMAL;
  438. return;
  439. }
  440. enable_si_irq(smi_info);
  441. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  442. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  443. smi_info->curr_msg->data_size = 2;
  444. smi_info->handlers->start_transaction(
  445. smi_info->si_sm,
  446. smi_info->curr_msg->data,
  447. smi_info->curr_msg->data_size);
  448. smi_info->si_state = SI_GETTING_EVENTS;
  449. } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
  450. smi_info->oem_data_avail_handler) {
  451. if (smi_info->oem_data_avail_handler(smi_info))
  452. goto retry;
  453. } else
  454. smi_info->si_state = SI_NORMAL;
  455. }
  456. static void handle_transaction_done(struct smi_info *smi_info)
  457. {
  458. struct ipmi_smi_msg *msg;
  459. #ifdef DEBUG_TIMING
  460. struct timeval t;
  461. do_gettimeofday(&t);
  462. printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  463. #endif
  464. switch (smi_info->si_state) {
  465. case SI_NORMAL:
  466. if (!smi_info->curr_msg)
  467. break;
  468. smi_info->curr_msg->rsp_size
  469. = smi_info->handlers->get_result(
  470. smi_info->si_sm,
  471. smi_info->curr_msg->rsp,
  472. IPMI_MAX_MSG_LENGTH);
  473. /*
  474. * Do this here becase deliver_recv_msg() releases the
  475. * lock, and a new message can be put in during the
  476. * time the lock is released.
  477. */
  478. msg = smi_info->curr_msg;
  479. smi_info->curr_msg = NULL;
  480. deliver_recv_msg(smi_info, msg);
  481. break;
  482. case SI_GETTING_FLAGS:
  483. {
  484. unsigned char msg[4];
  485. unsigned int len;
  486. /* We got the flags from the SMI, now handle them. */
  487. len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  488. if (msg[2] != 0) {
  489. /* Error fetching flags, just give up for now. */
  490. smi_info->si_state = SI_NORMAL;
  491. } else if (len < 4) {
  492. /*
  493. * Hmm, no flags. That's technically illegal, but
  494. * don't use uninitialized data.
  495. */
  496. smi_info->si_state = SI_NORMAL;
  497. } else {
  498. smi_info->msg_flags = msg[3];
  499. handle_flags(smi_info);
  500. }
  501. break;
  502. }
  503. case SI_CLEARING_FLAGS:
  504. case SI_CLEARING_FLAGS_THEN_SET_IRQ:
  505. {
  506. unsigned char msg[3];
  507. /* We cleared the flags. */
  508. smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
  509. if (msg[2] != 0) {
  510. /* Error clearing flags */
  511. dev_warn(smi_info->dev,
  512. "Error clearing flags: %2.2x\n", msg[2]);
  513. }
  514. if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
  515. start_enable_irq(smi_info);
  516. else
  517. smi_info->si_state = SI_NORMAL;
  518. break;
  519. }
  520. case SI_GETTING_EVENTS:
  521. {
  522. smi_info->curr_msg->rsp_size
  523. = smi_info->handlers->get_result(
  524. smi_info->si_sm,
  525. smi_info->curr_msg->rsp,
  526. IPMI_MAX_MSG_LENGTH);
  527. /*
  528. * Do this here becase deliver_recv_msg() releases the
  529. * lock, and a new message can be put in during the
  530. * time the lock is released.
  531. */
  532. msg = smi_info->curr_msg;
  533. smi_info->curr_msg = NULL;
  534. if (msg->rsp[2] != 0) {
  535. /* Error getting event, probably done. */
  536. msg->done(msg);
  537. /* Take off the event flag. */
  538. smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
  539. handle_flags(smi_info);
  540. } else {
  541. smi_inc_stat(smi_info, events);
  542. /*
  543. * Do this before we deliver the message
  544. * because delivering the message releases the
  545. * lock and something else can mess with the
  546. * state.
  547. */
  548. handle_flags(smi_info);
  549. deliver_recv_msg(smi_info, msg);
  550. }
  551. break;
  552. }
  553. case SI_GETTING_MESSAGES:
  554. {
  555. smi_info->curr_msg->rsp_size
  556. = smi_info->handlers->get_result(
  557. smi_info->si_sm,
  558. smi_info->curr_msg->rsp,
  559. IPMI_MAX_MSG_LENGTH);
  560. /*
  561. * Do this here becase deliver_recv_msg() releases the
  562. * lock, and a new message can be put in during the
  563. * time the lock is released.
  564. */
  565. msg = smi_info->curr_msg;
  566. smi_info->curr_msg = NULL;
  567. if (msg->rsp[2] != 0) {
  568. /* Error getting event, probably done. */
  569. msg->done(msg);
  570. /* Take off the msg flag. */
  571. smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
  572. handle_flags(smi_info);
  573. } else {
  574. smi_inc_stat(smi_info, incoming_messages);
  575. /*
  576. * Do this before we deliver the message
  577. * because delivering the message releases the
  578. * lock and something else can mess with the
  579. * state.
  580. */
  581. handle_flags(smi_info);
  582. deliver_recv_msg(smi_info, msg);
  583. }
  584. break;
  585. }
  586. case SI_ENABLE_INTERRUPTS1:
  587. {
  588. unsigned char msg[4];
  589. /* We got the flags from the SMI, now handle them. */
  590. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  591. if (msg[2] != 0) {
  592. dev_warn(smi_info->dev, "Could not enable interrupts"
  593. ", failed get, using polled mode.\n");
  594. smi_info->si_state = SI_NORMAL;
  595. } else {
  596. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  597. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  598. msg[2] = (msg[3] |
  599. IPMI_BMC_RCV_MSG_INTR |
  600. IPMI_BMC_EVT_MSG_INTR);
  601. smi_info->handlers->start_transaction(
  602. smi_info->si_sm, msg, 3);
  603. smi_info->si_state = SI_ENABLE_INTERRUPTS2;
  604. }
  605. break;
  606. }
  607. case SI_ENABLE_INTERRUPTS2:
  608. {
  609. unsigned char msg[4];
  610. /* We got the flags from the SMI, now handle them. */
  611. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  612. if (msg[2] != 0)
  613. dev_warn(smi_info->dev, "Could not enable interrupts"
  614. ", failed set, using polled mode.\n");
  615. else
  616. smi_info->interrupt_disabled = 0;
  617. smi_info->si_state = SI_NORMAL;
  618. break;
  619. }
  620. case SI_DISABLE_INTERRUPTS1:
  621. {
  622. unsigned char msg[4];
  623. /* We got the flags from the SMI, now handle them. */
  624. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  625. if (msg[2] != 0) {
  626. dev_warn(smi_info->dev, "Could not disable interrupts"
  627. ", failed get.\n");
  628. smi_info->si_state = SI_NORMAL;
  629. } else {
  630. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  631. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  632. msg[2] = (msg[3] &
  633. ~(IPMI_BMC_RCV_MSG_INTR |
  634. IPMI_BMC_EVT_MSG_INTR));
  635. smi_info->handlers->start_transaction(
  636. smi_info->si_sm, msg, 3);
  637. smi_info->si_state = SI_DISABLE_INTERRUPTS2;
  638. }
  639. break;
  640. }
  641. case SI_DISABLE_INTERRUPTS2:
  642. {
  643. unsigned char msg[4];
  644. /* We got the flags from the SMI, now handle them. */
  645. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  646. if (msg[2] != 0) {
  647. dev_warn(smi_info->dev, "Could not disable interrupts"
  648. ", failed set.\n");
  649. }
  650. smi_info->si_state = SI_NORMAL;
  651. break;
  652. }
  653. }
  654. }
  655. /*
  656. * Called on timeouts and events. Timeouts should pass the elapsed
  657. * time, interrupts should pass in zero. Must be called with
  658. * si_lock held and interrupts disabled.
  659. */
  660. static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
  661. int time)
  662. {
  663. enum si_sm_result si_sm_result;
  664. restart:
  665. /*
  666. * There used to be a loop here that waited a little while
  667. * (around 25us) before giving up. That turned out to be
  668. * pointless, the minimum delays I was seeing were in the 300us
  669. * range, which is far too long to wait in an interrupt. So
  670. * we just run until the state machine tells us something
  671. * happened or it needs a delay.
  672. */
  673. si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
  674. time = 0;
  675. while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
  676. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  677. if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
  678. smi_inc_stat(smi_info, complete_transactions);
  679. handle_transaction_done(smi_info);
  680. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  681. } else if (si_sm_result == SI_SM_HOSED) {
  682. smi_inc_stat(smi_info, hosed_count);
  683. /*
  684. * Do the before return_hosed_msg, because that
  685. * releases the lock.
  686. */
  687. smi_info->si_state = SI_NORMAL;
  688. if (smi_info->curr_msg != NULL) {
  689. /*
  690. * If we were handling a user message, format
  691. * a response to send to the upper layer to
  692. * tell it about the error.
  693. */
  694. return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
  695. }
  696. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  697. }
  698. /*
  699. * We prefer handling attn over new messages. But don't do
  700. * this if there is not yet an upper layer to handle anything.
  701. */
  702. if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
  703. unsigned char msg[2];
  704. smi_inc_stat(smi_info, attentions);
  705. /*
  706. * Got a attn, send down a get message flags to see
  707. * what's causing it. It would be better to handle
  708. * this in the upper layer, but due to the way
  709. * interrupts work with the SMI, that's not really
  710. * possible.
  711. */
  712. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  713. msg[1] = IPMI_GET_MSG_FLAGS_CMD;
  714. smi_info->handlers->start_transaction(
  715. smi_info->si_sm, msg, 2);
  716. smi_info->si_state = SI_GETTING_FLAGS;
  717. goto restart;
  718. }
  719. /* If we are currently idle, try to start the next message. */
  720. if (si_sm_result == SI_SM_IDLE) {
  721. smi_inc_stat(smi_info, idles);
  722. si_sm_result = start_next_msg(smi_info);
  723. if (si_sm_result != SI_SM_IDLE)
  724. goto restart;
  725. }
  726. if ((si_sm_result == SI_SM_IDLE)
  727. && (atomic_read(&smi_info->req_events))) {
  728. /*
  729. * We are idle and the upper layer requested that I fetch
  730. * events, so do so.
  731. */
  732. atomic_set(&smi_info->req_events, 0);
  733. smi_info->curr_msg = ipmi_alloc_smi_msg();
  734. if (!smi_info->curr_msg)
  735. goto out;
  736. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  737. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  738. smi_info->curr_msg->data_size = 2;
  739. smi_info->handlers->start_transaction(
  740. smi_info->si_sm,
  741. smi_info->curr_msg->data,
  742. smi_info->curr_msg->data_size);
  743. smi_info->si_state = SI_GETTING_EVENTS;
  744. goto restart;
  745. }
  746. out:
  747. return si_sm_result;
  748. }
  749. static void sender(void *send_info,
  750. struct ipmi_smi_msg *msg,
  751. int priority)
  752. {
  753. struct smi_info *smi_info = send_info;
  754. enum si_sm_result result;
  755. unsigned long flags;
  756. #ifdef DEBUG_TIMING
  757. struct timeval t;
  758. #endif
  759. if (atomic_read(&smi_info->stop_operation)) {
  760. msg->rsp[0] = msg->data[0] | 4;
  761. msg->rsp[1] = msg->data[1];
  762. msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
  763. msg->rsp_size = 3;
  764. deliver_recv_msg(smi_info, msg);
  765. return;
  766. }
  767. #ifdef DEBUG_TIMING
  768. do_gettimeofday(&t);
  769. printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  770. #endif
  771. mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  772. if (smi_info->thread)
  773. wake_up_process(smi_info->thread);
  774. if (smi_info->run_to_completion) {
  775. /*
  776. * If we are running to completion, then throw it in
  777. * the list and run transactions until everything is
  778. * clear. Priority doesn't matter here.
  779. */
  780. /*
  781. * Run to completion means we are single-threaded, no
  782. * need for locks.
  783. */
  784. list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
  785. result = smi_event_handler(smi_info, 0);
  786. while (result != SI_SM_IDLE) {
  787. udelay(SI_SHORT_TIMEOUT_USEC);
  788. result = smi_event_handler(smi_info,
  789. SI_SHORT_TIMEOUT_USEC);
  790. }
  791. return;
  792. }
  793. spin_lock_irqsave(&smi_info->msg_lock, flags);
  794. if (priority > 0)
  795. list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
  796. else
  797. list_add_tail(&msg->link, &smi_info->xmit_msgs);
  798. spin_unlock_irqrestore(&smi_info->msg_lock, flags);
  799. spin_lock_irqsave(&smi_info->si_lock, flags);
  800. if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
  801. start_next_msg(smi_info);
  802. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  803. }
  804. static void set_run_to_completion(void *send_info, int i_run_to_completion)
  805. {
  806. struct smi_info *smi_info = send_info;
  807. enum si_sm_result result;
  808. smi_info->run_to_completion = i_run_to_completion;
  809. if (i_run_to_completion) {
  810. result = smi_event_handler(smi_info, 0);
  811. while (result != SI_SM_IDLE) {
  812. udelay(SI_SHORT_TIMEOUT_USEC);
  813. result = smi_event_handler(smi_info,
  814. SI_SHORT_TIMEOUT_USEC);
  815. }
  816. }
  817. }
  818. /*
  819. * Use -1 in the nsec value of the busy waiting timespec to tell that
  820. * we are spinning in kipmid looking for something and not delaying
  821. * between checks
  822. */
  823. static inline void ipmi_si_set_not_busy(struct timespec *ts)
  824. {
  825. ts->tv_nsec = -1;
  826. }
  827. static inline int ipmi_si_is_busy(struct timespec *ts)
  828. {
  829. return ts->tv_nsec != -1;
  830. }
  831. static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
  832. const struct smi_info *smi_info,
  833. struct timespec *busy_until)
  834. {
  835. unsigned int max_busy_us = 0;
  836. if (smi_info->intf_num < num_max_busy_us)
  837. max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
  838. if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
  839. ipmi_si_set_not_busy(busy_until);
  840. else if (!ipmi_si_is_busy(busy_until)) {
  841. getnstimeofday(busy_until);
  842. timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
  843. } else {
  844. struct timespec now;
  845. getnstimeofday(&now);
  846. if (unlikely(timespec_compare(&now, busy_until) > 0)) {
  847. ipmi_si_set_not_busy(busy_until);
  848. return 0;
  849. }
  850. }
  851. return 1;
  852. }
  853. /*
  854. * A busy-waiting loop for speeding up IPMI operation.
  855. *
  856. * Lousy hardware makes this hard. This is only enabled for systems
  857. * that are not BT and do not have interrupts. It starts spinning
  858. * when an operation is complete or until max_busy tells it to stop
  859. * (if that is enabled). See the paragraph on kimid_max_busy_us in
  860. * Documentation/IPMI.txt for details.
  861. */
  862. static int ipmi_thread(void *data)
  863. {
  864. struct smi_info *smi_info = data;
  865. unsigned long flags;
  866. enum si_sm_result smi_result;
  867. struct timespec busy_until;
  868. ipmi_si_set_not_busy(&busy_until);
  869. set_user_nice(current, 19);
  870. while (!kthread_should_stop()) {
  871. int busy_wait;
  872. spin_lock_irqsave(&(smi_info->si_lock), flags);
  873. smi_result = smi_event_handler(smi_info, 0);
  874. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  875. busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
  876. &busy_until);
  877. if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
  878. ; /* do nothing */
  879. else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
  880. schedule();
  881. else if (smi_result == SI_SM_IDLE)
  882. schedule_timeout_interruptible(100);
  883. else
  884. schedule_timeout_interruptible(1);
  885. }
  886. return 0;
  887. }
  888. static void poll(void *send_info)
  889. {
  890. struct smi_info *smi_info = send_info;
  891. unsigned long flags;
  892. /*
  893. * Make sure there is some delay in the poll loop so we can
  894. * drive time forward and timeout things.
  895. */
  896. udelay(10);
  897. spin_lock_irqsave(&smi_info->si_lock, flags);
  898. smi_event_handler(smi_info, 10);
  899. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  900. }
  901. static void request_events(void *send_info)
  902. {
  903. struct smi_info *smi_info = send_info;
  904. if (atomic_read(&smi_info->stop_operation) ||
  905. !smi_info->has_event_buffer)
  906. return;
  907. atomic_set(&smi_info->req_events, 1);
  908. }
  909. static int initialized;
  910. static void smi_timeout(unsigned long data)
  911. {
  912. struct smi_info *smi_info = (struct smi_info *) data;
  913. enum si_sm_result smi_result;
  914. unsigned long flags;
  915. unsigned long jiffies_now;
  916. long time_diff;
  917. long timeout;
  918. #ifdef DEBUG_TIMING
  919. struct timeval t;
  920. #endif
  921. spin_lock_irqsave(&(smi_info->si_lock), flags);
  922. #ifdef DEBUG_TIMING
  923. do_gettimeofday(&t);
  924. printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  925. #endif
  926. jiffies_now = jiffies;
  927. time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
  928. * SI_USEC_PER_JIFFY);
  929. smi_result = smi_event_handler(smi_info, time_diff);
  930. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  931. smi_info->last_timeout_jiffies = jiffies_now;
  932. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  933. /* Running with interrupts, only do long timeouts. */
  934. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  935. smi_inc_stat(smi_info, long_timeouts);
  936. goto do_mod_timer;
  937. }
  938. /*
  939. * If the state machine asks for a short delay, then shorten
  940. * the timer timeout.
  941. */
  942. if (smi_result == SI_SM_CALL_WITH_DELAY) {
  943. smi_inc_stat(smi_info, short_timeouts);
  944. timeout = jiffies + 1;
  945. } else {
  946. smi_inc_stat(smi_info, long_timeouts);
  947. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  948. }
  949. do_mod_timer:
  950. if (smi_result != SI_SM_IDLE)
  951. mod_timer(&(smi_info->si_timer), timeout);
  952. }
  953. static irqreturn_t si_irq_handler(int irq, void *data)
  954. {
  955. struct smi_info *smi_info = data;
  956. unsigned long flags;
  957. #ifdef DEBUG_TIMING
  958. struct timeval t;
  959. #endif
  960. spin_lock_irqsave(&(smi_info->si_lock), flags);
  961. smi_inc_stat(smi_info, interrupts);
  962. #ifdef DEBUG_TIMING
  963. do_gettimeofday(&t);
  964. printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  965. #endif
  966. smi_event_handler(smi_info, 0);
  967. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  968. return IRQ_HANDLED;
  969. }
  970. static irqreturn_t si_bt_irq_handler(int irq, void *data)
  971. {
  972. struct smi_info *smi_info = data;
  973. /* We need to clear the IRQ flag for the BT interface. */
  974. smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
  975. IPMI_BT_INTMASK_CLEAR_IRQ_BIT
  976. | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  977. return si_irq_handler(irq, data);
  978. }
  979. static int smi_start_processing(void *send_info,
  980. ipmi_smi_t intf)
  981. {
  982. struct smi_info *new_smi = send_info;
  983. int enable = 0;
  984. new_smi->intf = intf;
  985. /* Try to claim any interrupts. */
  986. if (new_smi->irq_setup)
  987. new_smi->irq_setup(new_smi);
  988. /* Set up the timer that drives the interface. */
  989. setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
  990. new_smi->last_timeout_jiffies = jiffies;
  991. mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  992. /*
  993. * Check if the user forcefully enabled the daemon.
  994. */
  995. if (new_smi->intf_num < num_force_kipmid)
  996. enable = force_kipmid[new_smi->intf_num];
  997. /*
  998. * The BT interface is efficient enough to not need a thread,
  999. * and there is no need for a thread if we have interrupts.
  1000. */
  1001. else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
  1002. enable = 1;
  1003. if (enable) {
  1004. new_smi->thread = kthread_run(ipmi_thread, new_smi,
  1005. "kipmi%d", new_smi->intf_num);
  1006. if (IS_ERR(new_smi->thread)) {
  1007. dev_notice(new_smi->dev, "Could not start"
  1008. " kernel thread due to error %ld, only using"
  1009. " timers to drive the interface\n",
  1010. PTR_ERR(new_smi->thread));
  1011. new_smi->thread = NULL;
  1012. }
  1013. }
  1014. return 0;
  1015. }
  1016. static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
  1017. {
  1018. struct smi_info *smi = send_info;
  1019. data->addr_src = smi->addr_source;
  1020. data->dev = smi->dev;
  1021. data->addr_info = smi->addr_info;
  1022. get_device(smi->dev);
  1023. return 0;
  1024. }
  1025. static void set_maintenance_mode(void *send_info, int enable)
  1026. {
  1027. struct smi_info *smi_info = send_info;
  1028. if (!enable)
  1029. atomic_set(&smi_info->req_events, 0);
  1030. }
  1031. static struct ipmi_smi_handlers handlers = {
  1032. .owner = THIS_MODULE,
  1033. .start_processing = smi_start_processing,
  1034. .get_smi_info = get_smi_info,
  1035. .sender = sender,
  1036. .request_events = request_events,
  1037. .set_maintenance_mode = set_maintenance_mode,
  1038. .set_run_to_completion = set_run_to_completion,
  1039. .poll = poll,
  1040. };
  1041. /*
  1042. * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
  1043. * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
  1044. */
  1045. static LIST_HEAD(smi_infos);
  1046. static DEFINE_MUTEX(smi_infos_lock);
  1047. static int smi_num; /* Used to sequence the SMIs */
  1048. #define DEFAULT_REGSPACING 1
  1049. #define DEFAULT_REGSIZE 1
  1050. static int si_trydefaults = 1;
  1051. static char *si_type[SI_MAX_PARMS];
  1052. #define MAX_SI_TYPE_STR 30
  1053. static char si_type_str[MAX_SI_TYPE_STR];
  1054. static unsigned long addrs[SI_MAX_PARMS];
  1055. static unsigned int num_addrs;
  1056. static unsigned int ports[SI_MAX_PARMS];
  1057. static unsigned int num_ports;
  1058. static int irqs[SI_MAX_PARMS];
  1059. static unsigned int num_irqs;
  1060. static int regspacings[SI_MAX_PARMS];
  1061. static unsigned int num_regspacings;
  1062. static int regsizes[SI_MAX_PARMS];
  1063. static unsigned int num_regsizes;
  1064. static int regshifts[SI_MAX_PARMS];
  1065. static unsigned int num_regshifts;
  1066. static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
  1067. static unsigned int num_slave_addrs;
  1068. #define IPMI_IO_ADDR_SPACE 0
  1069. #define IPMI_MEM_ADDR_SPACE 1
  1070. static char *addr_space_to_str[] = { "i/o", "mem" };
  1071. static int hotmod_handler(const char *val, struct kernel_param *kp);
  1072. module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
  1073. MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
  1074. " Documentation/IPMI.txt in the kernel sources for the"
  1075. " gory details.");
  1076. module_param_named(trydefaults, si_trydefaults, bool, 0);
  1077. MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
  1078. " default scan of the KCS and SMIC interface at the standard"
  1079. " address");
  1080. module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
  1081. MODULE_PARM_DESC(type, "Defines the type of each interface, each"
  1082. " interface separated by commas. The types are 'kcs',"
  1083. " 'smic', and 'bt'. For example si_type=kcs,bt will set"
  1084. " the first interface to kcs and the second to bt");
  1085. module_param_array(addrs, ulong, &num_addrs, 0);
  1086. MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
  1087. " addresses separated by commas. Only use if an interface"
  1088. " is in memory. Otherwise, set it to zero or leave"
  1089. " it blank.");
  1090. module_param_array(ports, uint, &num_ports, 0);
  1091. MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
  1092. " addresses separated by commas. Only use if an interface"
  1093. " is a port. Otherwise, set it to zero or leave"
  1094. " it blank.");
  1095. module_param_array(irqs, int, &num_irqs, 0);
  1096. MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
  1097. " addresses separated by commas. Only use if an interface"
  1098. " has an interrupt. Otherwise, set it to zero or leave"
  1099. " it blank.");
  1100. module_param_array(regspacings, int, &num_regspacings, 0);
  1101. MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
  1102. " and each successive register used by the interface. For"
  1103. " instance, if the start address is 0xca2 and the spacing"
  1104. " is 2, then the second address is at 0xca4. Defaults"
  1105. " to 1.");
  1106. module_param_array(regsizes, int, &num_regsizes, 0);
  1107. MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
  1108. " This should generally be 1, 2, 4, or 8 for an 8-bit,"
  1109. " 16-bit, 32-bit, or 64-bit register. Use this if you"
  1110. " the 8-bit IPMI register has to be read from a larger"
  1111. " register.");
  1112. module_param_array(regshifts, int, &num_regshifts, 0);
  1113. MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
  1114. " IPMI register, in bits. For instance, if the data"
  1115. " is read from a 32-bit word and the IPMI data is in"
  1116. " bit 8-15, then the shift would be 8");
  1117. module_param_array(slave_addrs, int, &num_slave_addrs, 0);
  1118. MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
  1119. " the controller. Normally this is 0x20, but can be"
  1120. " overridden by this parm. This is an array indexed"
  1121. " by interface number.");
  1122. module_param_array(force_kipmid, int, &num_force_kipmid, 0);
  1123. MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
  1124. " disabled(0). Normally the IPMI driver auto-detects"
  1125. " this, but the value may be overridden by this parm.");
  1126. module_param(unload_when_empty, int, 0);
  1127. MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
  1128. " specified or found, default is 1. Setting to 0"
  1129. " is useful for hot add of devices using hotmod.");
  1130. module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
  1131. MODULE_PARM_DESC(kipmid_max_busy_us,
  1132. "Max time (in microseconds) to busy-wait for IPMI data before"
  1133. " sleeping. 0 (default) means to wait forever. Set to 100-500"
  1134. " if kipmid is using up a lot of CPU time.");
  1135. static void std_irq_cleanup(struct smi_info *info)
  1136. {
  1137. if (info->si_type == SI_BT)
  1138. /* Disable the interrupt in the BT interface. */
  1139. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
  1140. free_irq(info->irq, info);
  1141. }
  1142. static int std_irq_setup(struct smi_info *info)
  1143. {
  1144. int rv;
  1145. if (!info->irq)
  1146. return 0;
  1147. if (info->si_type == SI_BT) {
  1148. rv = request_irq(info->irq,
  1149. si_bt_irq_handler,
  1150. IRQF_SHARED | IRQF_DISABLED,
  1151. DEVICE_NAME,
  1152. info);
  1153. if (!rv)
  1154. /* Enable the interrupt in the BT interface. */
  1155. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
  1156. IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  1157. } else
  1158. rv = request_irq(info->irq,
  1159. si_irq_handler,
  1160. IRQF_SHARED | IRQF_DISABLED,
  1161. DEVICE_NAME,
  1162. info);
  1163. if (rv) {
  1164. dev_warn(info->dev, "%s unable to claim interrupt %d,"
  1165. " running polled\n",
  1166. DEVICE_NAME, info->irq);
  1167. info->irq = 0;
  1168. } else {
  1169. info->irq_cleanup = std_irq_cleanup;
  1170. dev_info(info->dev, "Using irq %d\n", info->irq);
  1171. }
  1172. return rv;
  1173. }
  1174. static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
  1175. {
  1176. unsigned int addr = io->addr_data;
  1177. return inb(addr + (offset * io->regspacing));
  1178. }
  1179. static void port_outb(struct si_sm_io *io, unsigned int offset,
  1180. unsigned char b)
  1181. {
  1182. unsigned int addr = io->addr_data;
  1183. outb(b, addr + (offset * io->regspacing));
  1184. }
  1185. static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
  1186. {
  1187. unsigned int addr = io->addr_data;
  1188. return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1189. }
  1190. static void port_outw(struct si_sm_io *io, unsigned int offset,
  1191. unsigned char b)
  1192. {
  1193. unsigned int addr = io->addr_data;
  1194. outw(b << io->regshift, addr + (offset * io->regspacing));
  1195. }
  1196. static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
  1197. {
  1198. unsigned int addr = io->addr_data;
  1199. return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1200. }
  1201. static void port_outl(struct si_sm_io *io, unsigned int offset,
  1202. unsigned char b)
  1203. {
  1204. unsigned int addr = io->addr_data;
  1205. outl(b << io->regshift, addr+(offset * io->regspacing));
  1206. }
  1207. static void port_cleanup(struct smi_info *info)
  1208. {
  1209. unsigned int addr = info->io.addr_data;
  1210. int idx;
  1211. if (addr) {
  1212. for (idx = 0; idx < info->io_size; idx++)
  1213. release_region(addr + idx * info->io.regspacing,
  1214. info->io.regsize);
  1215. }
  1216. }
  1217. static int port_setup(struct smi_info *info)
  1218. {
  1219. unsigned int addr = info->io.addr_data;
  1220. int idx;
  1221. if (!addr)
  1222. return -ENODEV;
  1223. info->io_cleanup = port_cleanup;
  1224. /*
  1225. * Figure out the actual inb/inw/inl/etc routine to use based
  1226. * upon the register size.
  1227. */
  1228. switch (info->io.regsize) {
  1229. case 1:
  1230. info->io.inputb = port_inb;
  1231. info->io.outputb = port_outb;
  1232. break;
  1233. case 2:
  1234. info->io.inputb = port_inw;
  1235. info->io.outputb = port_outw;
  1236. break;
  1237. case 4:
  1238. info->io.inputb = port_inl;
  1239. info->io.outputb = port_outl;
  1240. break;
  1241. default:
  1242. dev_warn(info->dev, "Invalid register size: %d\n",
  1243. info->io.regsize);
  1244. return -EINVAL;
  1245. }
  1246. /*
  1247. * Some BIOSes reserve disjoint I/O regions in their ACPI
  1248. * tables. This causes problems when trying to register the
  1249. * entire I/O region. Therefore we must register each I/O
  1250. * port separately.
  1251. */
  1252. for (idx = 0; idx < info->io_size; idx++) {
  1253. if (request_region(addr + idx * info->io.regspacing,
  1254. info->io.regsize, DEVICE_NAME) == NULL) {
  1255. /* Undo allocations */
  1256. while (idx--) {
  1257. release_region(addr + idx * info->io.regspacing,
  1258. info->io.regsize);
  1259. }
  1260. return -EIO;
  1261. }
  1262. }
  1263. return 0;
  1264. }
  1265. static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
  1266. {
  1267. return readb((io->addr)+(offset * io->regspacing));
  1268. }
  1269. static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
  1270. unsigned char b)
  1271. {
  1272. writeb(b, (io->addr)+(offset * io->regspacing));
  1273. }
  1274. static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
  1275. {
  1276. return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1277. & 0xff;
  1278. }
  1279. static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
  1280. unsigned char b)
  1281. {
  1282. writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1283. }
  1284. static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
  1285. {
  1286. return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1287. & 0xff;
  1288. }
  1289. static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
  1290. unsigned char b)
  1291. {
  1292. writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1293. }
  1294. #ifdef readq
  1295. static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
  1296. {
  1297. return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1298. & 0xff;
  1299. }
  1300. static void mem_outq(struct si_sm_io *io, unsigned int offset,
  1301. unsigned char b)
  1302. {
  1303. writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1304. }
  1305. #endif
  1306. static void mem_cleanup(struct smi_info *info)
  1307. {
  1308. unsigned long addr = info->io.addr_data;
  1309. int mapsize;
  1310. if (info->io.addr) {
  1311. iounmap(info->io.addr);
  1312. mapsize = ((info->io_size * info->io.regspacing)
  1313. - (info->io.regspacing - info->io.regsize));
  1314. release_mem_region(addr, mapsize);
  1315. }
  1316. }
  1317. static int mem_setup(struct smi_info *info)
  1318. {
  1319. unsigned long addr = info->io.addr_data;
  1320. int mapsize;
  1321. if (!addr)
  1322. return -ENODEV;
  1323. info->io_cleanup = mem_cleanup;
  1324. /*
  1325. * Figure out the actual readb/readw/readl/etc routine to use based
  1326. * upon the register size.
  1327. */
  1328. switch (info->io.regsize) {
  1329. case 1:
  1330. info->io.inputb = intf_mem_inb;
  1331. info->io.outputb = intf_mem_outb;
  1332. break;
  1333. case 2:
  1334. info->io.inputb = intf_mem_inw;
  1335. info->io.outputb = intf_mem_outw;
  1336. break;
  1337. case 4:
  1338. info->io.inputb = intf_mem_inl;
  1339. info->io.outputb = intf_mem_outl;
  1340. break;
  1341. #ifdef readq
  1342. case 8:
  1343. info->io.inputb = mem_inq;
  1344. info->io.outputb = mem_outq;
  1345. break;
  1346. #endif
  1347. default:
  1348. dev_warn(info->dev, "Invalid register size: %d\n",
  1349. info->io.regsize);
  1350. return -EINVAL;
  1351. }
  1352. /*
  1353. * Calculate the total amount of memory to claim. This is an
  1354. * unusual looking calculation, but it avoids claiming any
  1355. * more memory than it has to. It will claim everything
  1356. * between the first address to the end of the last full
  1357. * register.
  1358. */
  1359. mapsize = ((info->io_size * info->io.regspacing)
  1360. - (info->io.regspacing - info->io.regsize));
  1361. if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
  1362. return -EIO;
  1363. info->io.addr = ioremap(addr, mapsize);
  1364. if (info->io.addr == NULL) {
  1365. release_mem_region(addr, mapsize);
  1366. return -EIO;
  1367. }
  1368. return 0;
  1369. }
  1370. /*
  1371. * Parms come in as <op1>[:op2[:op3...]]. ops are:
  1372. * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
  1373. * Options are:
  1374. * rsp=<regspacing>
  1375. * rsi=<regsize>
  1376. * rsh=<regshift>
  1377. * irq=<irq>
  1378. * ipmb=<ipmb addr>
  1379. */
  1380. enum hotmod_op { HM_ADD, HM_REMOVE };
  1381. struct hotmod_vals {
  1382. char *name;
  1383. int val;
  1384. };
  1385. static struct hotmod_vals hotmod_ops[] = {
  1386. { "add", HM_ADD },
  1387. { "remove", HM_REMOVE },
  1388. { NULL }
  1389. };
  1390. static struct hotmod_vals hotmod_si[] = {
  1391. { "kcs", SI_KCS },
  1392. { "smic", SI_SMIC },
  1393. { "bt", SI_BT },
  1394. { NULL }
  1395. };
  1396. static struct hotmod_vals hotmod_as[] = {
  1397. { "mem", IPMI_MEM_ADDR_SPACE },
  1398. { "i/o", IPMI_IO_ADDR_SPACE },
  1399. { NULL }
  1400. };
  1401. static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
  1402. {
  1403. char *s;
  1404. int i;
  1405. s = strchr(*curr, ',');
  1406. if (!s) {
  1407. printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
  1408. return -EINVAL;
  1409. }
  1410. *s = '\0';
  1411. s++;
  1412. for (i = 0; hotmod_ops[i].name; i++) {
  1413. if (strcmp(*curr, v[i].name) == 0) {
  1414. *val = v[i].val;
  1415. *curr = s;
  1416. return 0;
  1417. }
  1418. }
  1419. printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
  1420. return -EINVAL;
  1421. }
  1422. static int check_hotmod_int_op(const char *curr, const char *option,
  1423. const char *name, int *val)
  1424. {
  1425. char *n;
  1426. if (strcmp(curr, name) == 0) {
  1427. if (!option) {
  1428. printk(KERN_WARNING PFX
  1429. "No option given for '%s'\n",
  1430. curr);
  1431. return -EINVAL;
  1432. }
  1433. *val = simple_strtoul(option, &n, 0);
  1434. if ((*n != '\0') || (*option == '\0')) {
  1435. printk(KERN_WARNING PFX
  1436. "Bad option given for '%s'\n",
  1437. curr);
  1438. return -EINVAL;
  1439. }
  1440. return 1;
  1441. }
  1442. return 0;
  1443. }
  1444. static struct smi_info *smi_info_alloc(void)
  1445. {
  1446. struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
  1447. if (info) {
  1448. spin_lock_init(&info->si_lock);
  1449. spin_lock_init(&info->msg_lock);
  1450. }
  1451. return info;
  1452. }
  1453. static int hotmod_handler(const char *val, struct kernel_param *kp)
  1454. {
  1455. char *str = kstrdup(val, GFP_KERNEL);
  1456. int rv;
  1457. char *next, *curr, *s, *n, *o;
  1458. enum hotmod_op op;
  1459. enum si_type si_type;
  1460. int addr_space;
  1461. unsigned long addr;
  1462. int regspacing;
  1463. int regsize;
  1464. int regshift;
  1465. int irq;
  1466. int ipmb;
  1467. int ival;
  1468. int len;
  1469. struct smi_info *info;
  1470. if (!str)
  1471. return -ENOMEM;
  1472. /* Kill any trailing spaces, as we can get a "\n" from echo. */
  1473. len = strlen(str);
  1474. ival = len - 1;
  1475. while ((ival >= 0) && isspace(str[ival])) {
  1476. str[ival] = '\0';
  1477. ival--;
  1478. }
  1479. for (curr = str; curr; curr = next) {
  1480. regspacing = 1;
  1481. regsize = 1;
  1482. regshift = 0;
  1483. irq = 0;
  1484. ipmb = 0; /* Choose the default if not specified */
  1485. next = strchr(curr, ':');
  1486. if (next) {
  1487. *next = '\0';
  1488. next++;
  1489. }
  1490. rv = parse_str(hotmod_ops, &ival, "operation", &curr);
  1491. if (rv)
  1492. break;
  1493. op = ival;
  1494. rv = parse_str(hotmod_si, &ival, "interface type", &curr);
  1495. if (rv)
  1496. break;
  1497. si_type = ival;
  1498. rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
  1499. if (rv)
  1500. break;
  1501. s = strchr(curr, ',');
  1502. if (s) {
  1503. *s = '\0';
  1504. s++;
  1505. }
  1506. addr = simple_strtoul(curr, &n, 0);
  1507. if ((*n != '\0') || (*curr == '\0')) {
  1508. printk(KERN_WARNING PFX "Invalid hotmod address"
  1509. " '%s'\n", curr);
  1510. break;
  1511. }
  1512. while (s) {
  1513. curr = s;
  1514. s = strchr(curr, ',');
  1515. if (s) {
  1516. *s = '\0';
  1517. s++;
  1518. }
  1519. o = strchr(curr, '=');
  1520. if (o) {
  1521. *o = '\0';
  1522. o++;
  1523. }
  1524. rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
  1525. if (rv < 0)
  1526. goto out;
  1527. else if (rv)
  1528. continue;
  1529. rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
  1530. if (rv < 0)
  1531. goto out;
  1532. else if (rv)
  1533. continue;
  1534. rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
  1535. if (rv < 0)
  1536. goto out;
  1537. else if (rv)
  1538. continue;
  1539. rv = check_hotmod_int_op(curr, o, "irq", &irq);
  1540. if (rv < 0)
  1541. goto out;
  1542. else if (rv)
  1543. continue;
  1544. rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
  1545. if (rv < 0)
  1546. goto out;
  1547. else if (rv)
  1548. continue;
  1549. rv = -EINVAL;
  1550. printk(KERN_WARNING PFX
  1551. "Invalid hotmod option '%s'\n",
  1552. curr);
  1553. goto out;
  1554. }
  1555. if (op == HM_ADD) {
  1556. info = smi_info_alloc();
  1557. if (!info) {
  1558. rv = -ENOMEM;
  1559. goto out;
  1560. }
  1561. info->addr_source = SI_HOTMOD;
  1562. info->si_type = si_type;
  1563. info->io.addr_data = addr;
  1564. info->io.addr_type = addr_space;
  1565. if (addr_space == IPMI_MEM_ADDR_SPACE)
  1566. info->io_setup = mem_setup;
  1567. else
  1568. info->io_setup = port_setup;
  1569. info->io.addr = NULL;
  1570. info->io.regspacing = regspacing;
  1571. if (!info->io.regspacing)
  1572. info->io.regspacing = DEFAULT_REGSPACING;
  1573. info->io.regsize = regsize;
  1574. if (!info->io.regsize)
  1575. info->io.regsize = DEFAULT_REGSPACING;
  1576. info->io.regshift = regshift;
  1577. info->irq = irq;
  1578. if (info->irq)
  1579. info->irq_setup = std_irq_setup;
  1580. info->slave_addr = ipmb;
  1581. if (!add_smi(info)) {
  1582. if (try_smi_init(info))
  1583. cleanup_one_si(info);
  1584. } else {
  1585. kfree(info);
  1586. }
  1587. } else {
  1588. /* remove */
  1589. struct smi_info *e, *tmp_e;
  1590. mutex_lock(&smi_infos_lock);
  1591. list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
  1592. if (e->io.addr_type != addr_space)
  1593. continue;
  1594. if (e->si_type != si_type)
  1595. continue;
  1596. if (e->io.addr_data == addr)
  1597. cleanup_one_si(e);
  1598. }
  1599. mutex_unlock(&smi_infos_lock);
  1600. }
  1601. }
  1602. rv = len;
  1603. out:
  1604. kfree(str);
  1605. return rv;
  1606. }
  1607. static void __devinit hardcode_find_bmc(void)
  1608. {
  1609. int i;
  1610. struct smi_info *info;
  1611. for (i = 0; i < SI_MAX_PARMS; i++) {
  1612. if (!ports[i] && !addrs[i])
  1613. continue;
  1614. info = smi_info_alloc();
  1615. if (!info)
  1616. return;
  1617. info->addr_source = SI_HARDCODED;
  1618. printk(KERN_INFO PFX "probing via hardcoded address\n");
  1619. if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
  1620. info->si_type = SI_KCS;
  1621. } else if (strcmp(si_type[i], "smic") == 0) {
  1622. info->si_type = SI_SMIC;
  1623. } else if (strcmp(si_type[i], "bt") == 0) {
  1624. info->si_type = SI_BT;
  1625. } else {
  1626. printk(KERN_WARNING PFX "Interface type specified "
  1627. "for interface %d, was invalid: %s\n",
  1628. i, si_type[i]);
  1629. kfree(info);
  1630. continue;
  1631. }
  1632. if (ports[i]) {
  1633. /* An I/O port */
  1634. info->io_setup = port_setup;
  1635. info->io.addr_data = ports[i];
  1636. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1637. } else if (addrs[i]) {
  1638. /* A memory port */
  1639. info->io_setup = mem_setup;
  1640. info->io.addr_data = addrs[i];
  1641. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1642. } else {
  1643. printk(KERN_WARNING PFX "Interface type specified "
  1644. "for interface %d, but port and address were "
  1645. "not set or set to zero.\n", i);
  1646. kfree(info);
  1647. continue;
  1648. }
  1649. info->io.addr = NULL;
  1650. info->io.regspacing = regspacings[i];
  1651. if (!info->io.regspacing)
  1652. info->io.regspacing = DEFAULT_REGSPACING;
  1653. info->io.regsize = regsizes[i];
  1654. if (!info->io.regsize)
  1655. info->io.regsize = DEFAULT_REGSPACING;
  1656. info->io.regshift = regshifts[i];
  1657. info->irq = irqs[i];
  1658. if (info->irq)
  1659. info->irq_setup = std_irq_setup;
  1660. info->slave_addr = slave_addrs[i];
  1661. if (!add_smi(info)) {
  1662. if (try_smi_init(info))
  1663. cleanup_one_si(info);
  1664. } else {
  1665. kfree(info);
  1666. }
  1667. }
  1668. }
  1669. #ifdef CONFIG_ACPI
  1670. #include <linux/acpi.h>
  1671. /*
  1672. * Once we get an ACPI failure, we don't try any more, because we go
  1673. * through the tables sequentially. Once we don't find a table, there
  1674. * are no more.
  1675. */
  1676. static int acpi_failure;
  1677. /* For GPE-type interrupts. */
  1678. static u32 ipmi_acpi_gpe(void *context)
  1679. {
  1680. struct smi_info *smi_info = context;
  1681. unsigned long flags;
  1682. #ifdef DEBUG_TIMING
  1683. struct timeval t;
  1684. #endif
  1685. spin_lock_irqsave(&(smi_info->si_lock), flags);
  1686. smi_inc_stat(smi_info, interrupts);
  1687. #ifdef DEBUG_TIMING
  1688. do_gettimeofday(&t);
  1689. printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  1690. #endif
  1691. smi_event_handler(smi_info, 0);
  1692. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  1693. return ACPI_INTERRUPT_HANDLED;
  1694. }
  1695. static void acpi_gpe_irq_cleanup(struct smi_info *info)
  1696. {
  1697. if (!info->irq)
  1698. return;
  1699. acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
  1700. }
  1701. static int acpi_gpe_irq_setup(struct smi_info *info)
  1702. {
  1703. acpi_status status;
  1704. if (!info->irq)
  1705. return 0;
  1706. /* FIXME - is level triggered right? */
  1707. status = acpi_install_gpe_handler(NULL,
  1708. info->irq,
  1709. ACPI_GPE_LEVEL_TRIGGERED,
  1710. &ipmi_acpi_gpe,
  1711. info);
  1712. if (status != AE_OK) {
  1713. dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
  1714. " running polled\n", DEVICE_NAME, info->irq);
  1715. info->irq = 0;
  1716. return -EINVAL;
  1717. } else {
  1718. info->irq_cleanup = acpi_gpe_irq_cleanup;
  1719. dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
  1720. return 0;
  1721. }
  1722. }
  1723. /*
  1724. * Defined at
  1725. * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
  1726. */
  1727. struct SPMITable {
  1728. s8 Signature[4];
  1729. u32 Length;
  1730. u8 Revision;
  1731. u8 Checksum;
  1732. s8 OEMID[6];
  1733. s8 OEMTableID[8];
  1734. s8 OEMRevision[4];
  1735. s8 CreatorID[4];
  1736. s8 CreatorRevision[4];
  1737. u8 InterfaceType;
  1738. u8 IPMIlegacy;
  1739. s16 SpecificationRevision;
  1740. /*
  1741. * Bit 0 - SCI interrupt supported
  1742. * Bit 1 - I/O APIC/SAPIC
  1743. */
  1744. u8 InterruptType;
  1745. /*
  1746. * If bit 0 of InterruptType is set, then this is the SCI
  1747. * interrupt in the GPEx_STS register.
  1748. */
  1749. u8 GPE;
  1750. s16 Reserved;
  1751. /*
  1752. * If bit 1 of InterruptType is set, then this is the I/O
  1753. * APIC/SAPIC interrupt.
  1754. */
  1755. u32 GlobalSystemInterrupt;
  1756. /* The actual register address. */
  1757. struct acpi_generic_address addr;
  1758. u8 UID[4];
  1759. s8 spmi_id[1]; /* A '\0' terminated array starts here. */
  1760. };
  1761. static int __devinit try_init_spmi(struct SPMITable *spmi)
  1762. {
  1763. struct smi_info *info;
  1764. if (spmi->IPMIlegacy != 1) {
  1765. printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
  1766. return -ENODEV;
  1767. }
  1768. info = smi_info_alloc();
  1769. if (!info) {
  1770. printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
  1771. return -ENOMEM;
  1772. }
  1773. info->addr_source = SI_SPMI;
  1774. printk(KERN_INFO PFX "probing via SPMI\n");
  1775. /* Figure out the interface type. */
  1776. switch (spmi->InterfaceType) {
  1777. case 1: /* KCS */
  1778. info->si_type = SI_KCS;
  1779. break;
  1780. case 2: /* SMIC */
  1781. info->si_type = SI_SMIC;
  1782. break;
  1783. case 3: /* BT */
  1784. info->si_type = SI_BT;
  1785. break;
  1786. default:
  1787. printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
  1788. spmi->InterfaceType);
  1789. kfree(info);
  1790. return -EIO;
  1791. }
  1792. if (spmi->InterruptType & 1) {
  1793. /* We've got a GPE interrupt. */
  1794. info->irq = spmi->GPE;
  1795. info->irq_setup = acpi_gpe_irq_setup;
  1796. } else if (spmi->InterruptType & 2) {
  1797. /* We've got an APIC/SAPIC interrupt. */
  1798. info->irq = spmi->GlobalSystemInterrupt;
  1799. info->irq_setup = std_irq_setup;
  1800. } else {
  1801. /* Use the default interrupt setting. */
  1802. info->irq = 0;
  1803. info->irq_setup = NULL;
  1804. }
  1805. if (spmi->addr.bit_width) {
  1806. /* A (hopefully) properly formed register bit width. */
  1807. info->io.regspacing = spmi->addr.bit_width / 8;
  1808. } else {
  1809. info->io.regspacing = DEFAULT_REGSPACING;
  1810. }
  1811. info->io.regsize = info->io.regspacing;
  1812. info->io.regshift = spmi->addr.bit_offset;
  1813. if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
  1814. info->io_setup = mem_setup;
  1815. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1816. } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
  1817. info->io_setup = port_setup;
  1818. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1819. } else {
  1820. kfree(info);
  1821. printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
  1822. return -EIO;
  1823. }
  1824. info->io.addr_data = spmi->addr.address;
  1825. pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
  1826. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  1827. info->io.addr_data, info->io.regsize, info->io.regspacing,
  1828. info->irq);
  1829. if (add_smi(info))
  1830. kfree(info);
  1831. return 0;
  1832. }
  1833. static void __devinit spmi_find_bmc(void)
  1834. {
  1835. acpi_status status;
  1836. struct SPMITable *spmi;
  1837. int i;
  1838. if (acpi_disabled)
  1839. return;
  1840. if (acpi_failure)
  1841. return;
  1842. for (i = 0; ; i++) {
  1843. status = acpi_get_table(ACPI_SIG_SPMI, i+1,
  1844. (struct acpi_table_header **)&spmi);
  1845. if (status != AE_OK)
  1846. return;
  1847. try_init_spmi(spmi);
  1848. }
  1849. }
  1850. static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
  1851. const struct pnp_device_id *dev_id)
  1852. {
  1853. struct acpi_device *acpi_dev;
  1854. struct smi_info *info;
  1855. struct resource *res, *res_second;
  1856. acpi_handle handle;
  1857. acpi_status status;
  1858. unsigned long long tmp;
  1859. acpi_dev = pnp_acpi_device(dev);
  1860. if (!acpi_dev)
  1861. return -ENODEV;
  1862. info = smi_info_alloc();
  1863. if (!info)
  1864. return -ENOMEM;
  1865. info->addr_source = SI_ACPI;
  1866. printk(KERN_INFO PFX "probing via ACPI\n");
  1867. handle = acpi_dev->handle;
  1868. info->addr_info.acpi_info.acpi_handle = handle;
  1869. /* _IFT tells us the interface type: KCS, BT, etc */
  1870. status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
  1871. if (ACPI_FAILURE(status))
  1872. goto err_free;
  1873. switch (tmp) {
  1874. case 1:
  1875. info->si_type = SI_KCS;
  1876. break;
  1877. case 2:
  1878. info->si_type = SI_SMIC;
  1879. break;
  1880. case 3:
  1881. info->si_type = SI_BT;
  1882. break;
  1883. default:
  1884. dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
  1885. goto err_free;
  1886. }
  1887. res = pnp_get_resource(dev, IORESOURCE_IO, 0);
  1888. if (res) {
  1889. info->io_setup = port_setup;
  1890. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1891. } else {
  1892. res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
  1893. if (res) {
  1894. info->io_setup = mem_setup;
  1895. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1896. }
  1897. }
  1898. if (!res) {
  1899. dev_err(&dev->dev, "no I/O or memory address\n");
  1900. goto err_free;
  1901. }
  1902. info->io.addr_data = res->start;
  1903. info->io.regspacing = DEFAULT_REGSPACING;
  1904. res_second = pnp_get_resource(dev,
  1905. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
  1906. IORESOURCE_IO : IORESOURCE_MEM,
  1907. 1);
  1908. if (res_second) {
  1909. if (res_second->start > info->io.addr_data)
  1910. info->io.regspacing = res_second->start - info->io.addr_data;
  1911. }
  1912. info->io.regsize = DEFAULT_REGSPACING;
  1913. info->io.regshift = 0;
  1914. /* If _GPE exists, use it; otherwise use standard interrupts */
  1915. status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
  1916. if (ACPI_SUCCESS(status)) {
  1917. info->irq = tmp;
  1918. info->irq_setup = acpi_gpe_irq_setup;
  1919. } else if (pnp_irq_valid(dev, 0)) {
  1920. info->irq = pnp_irq(dev, 0);
  1921. info->irq_setup = std_irq_setup;
  1922. }
  1923. info->dev = &dev->dev;
  1924. pnp_set_drvdata(dev, info);
  1925. dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
  1926. res, info->io.regsize, info->io.regspacing,
  1927. info->irq);
  1928. if (add_smi(info))
  1929. goto err_free;
  1930. return 0;
  1931. err_free:
  1932. kfree(info);
  1933. return -EINVAL;
  1934. }
  1935. static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
  1936. {
  1937. struct smi_info *info = pnp_get_drvdata(dev);
  1938. cleanup_one_si(info);
  1939. }
  1940. static const struct pnp_device_id pnp_dev_table[] = {
  1941. {"IPI0001", 0},
  1942. {"", 0},
  1943. };
  1944. static struct pnp_driver ipmi_pnp_driver = {
  1945. .name = DEVICE_NAME,
  1946. .probe = ipmi_pnp_probe,
  1947. .remove = __devexit_p(ipmi_pnp_remove),
  1948. .id_table = pnp_dev_table,
  1949. };
  1950. #endif
  1951. #ifdef CONFIG_DMI
  1952. struct dmi_ipmi_data {
  1953. u8 type;
  1954. u8 addr_space;
  1955. unsigned long base_addr;
  1956. u8 irq;
  1957. u8 offset;
  1958. u8 slave_addr;
  1959. };
  1960. static int __devinit decode_dmi(const struct dmi_header *dm,
  1961. struct dmi_ipmi_data *dmi)
  1962. {
  1963. const u8 *data = (const u8 *)dm;
  1964. unsigned long base_addr;
  1965. u8 reg_spacing;
  1966. u8 len = dm->length;
  1967. dmi->type = data[4];
  1968. memcpy(&base_addr, data+8, sizeof(unsigned long));
  1969. if (len >= 0x11) {
  1970. if (base_addr & 1) {
  1971. /* I/O */
  1972. base_addr &= 0xFFFE;
  1973. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1974. } else
  1975. /* Memory */
  1976. dmi->addr_space = IPMI_MEM_ADDR_SPACE;
  1977. /* If bit 4 of byte 0x10 is set, then the lsb for the address
  1978. is odd. */
  1979. dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
  1980. dmi->irq = data[0x11];
  1981. /* The top two bits of byte 0x10 hold the register spacing. */
  1982. reg_spacing = (data[0x10] & 0xC0) >> 6;
  1983. switch (reg_spacing) {
  1984. case 0x00: /* Byte boundaries */
  1985. dmi->offset = 1;
  1986. break;
  1987. case 0x01: /* 32-bit boundaries */
  1988. dmi->offset = 4;
  1989. break;
  1990. case 0x02: /* 16-byte boundaries */
  1991. dmi->offset = 16;
  1992. break;
  1993. default:
  1994. /* Some other interface, just ignore it. */
  1995. return -EIO;
  1996. }
  1997. } else {
  1998. /* Old DMI spec. */
  1999. /*
  2000. * Note that technically, the lower bit of the base
  2001. * address should be 1 if the address is I/O and 0 if
  2002. * the address is in memory. So many systems get that
  2003. * wrong (and all that I have seen are I/O) so we just
  2004. * ignore that bit and assume I/O. Systems that use
  2005. * memory should use the newer spec, anyway.
  2006. */
  2007. dmi->base_addr = base_addr & 0xfffe;
  2008. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  2009. dmi->offset = 1;
  2010. }
  2011. dmi->slave_addr = data[6];
  2012. return 0;
  2013. }
  2014. static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
  2015. {
  2016. struct smi_info *info;
  2017. info = smi_info_alloc();
  2018. if (!info) {
  2019. printk(KERN_ERR PFX "Could not allocate SI data\n");
  2020. return;
  2021. }
  2022. info->addr_source = SI_SMBIOS;
  2023. printk(KERN_INFO PFX "probing via SMBIOS\n");
  2024. switch (ipmi_data->type) {
  2025. case 0x01: /* KCS */
  2026. info->si_type = SI_KCS;
  2027. break;
  2028. case 0x02: /* SMIC */
  2029. info->si_type = SI_SMIC;
  2030. break;
  2031. case 0x03: /* BT */
  2032. info->si_type = SI_BT;
  2033. break;
  2034. default:
  2035. kfree(info);
  2036. return;
  2037. }
  2038. switch (ipmi_data->addr_space) {
  2039. case IPMI_MEM_ADDR_SPACE:
  2040. info->io_setup = mem_setup;
  2041. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2042. break;
  2043. case IPMI_IO_ADDR_SPACE:
  2044. info->io_setup = port_setup;
  2045. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2046. break;
  2047. default:
  2048. kfree(info);
  2049. printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
  2050. ipmi_data->addr_space);
  2051. return;
  2052. }
  2053. info->io.addr_data = ipmi_data->base_addr;
  2054. info->io.regspacing = ipmi_data->offset;
  2055. if (!info->io.regspacing)
  2056. info->io.regspacing = DEFAULT_REGSPACING;
  2057. info->io.regsize = DEFAULT_REGSPACING;
  2058. info->io.regshift = 0;
  2059. info->slave_addr = ipmi_data->slave_addr;
  2060. info->irq = ipmi_data->irq;
  2061. if (info->irq)
  2062. info->irq_setup = std_irq_setup;
  2063. pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
  2064. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  2065. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2066. info->irq);
  2067. if (add_smi(info))
  2068. kfree(info);
  2069. }
  2070. static void __devinit dmi_find_bmc(void)
  2071. {
  2072. const struct dmi_device *dev = NULL;
  2073. struct dmi_ipmi_data data;
  2074. int rv;
  2075. while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
  2076. memset(&data, 0, sizeof(data));
  2077. rv = decode_dmi((const struct dmi_header *) dev->device_data,
  2078. &data);
  2079. if (!rv)
  2080. try_init_dmi(&data);
  2081. }
  2082. }
  2083. #endif /* CONFIG_DMI */
  2084. #ifdef CONFIG_PCI
  2085. #define PCI_ERMC_CLASSCODE 0x0C0700
  2086. #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
  2087. #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
  2088. #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
  2089. #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
  2090. #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
  2091. #define PCI_HP_VENDOR_ID 0x103C
  2092. #define PCI_MMC_DEVICE_ID 0x121A
  2093. #define PCI_MMC_ADDR_CW 0x10
  2094. static void ipmi_pci_cleanup(struct smi_info *info)
  2095. {
  2096. struct pci_dev *pdev = info->addr_source_data;
  2097. pci_disable_device(pdev);
  2098. }
  2099. static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
  2100. const struct pci_device_id *ent)
  2101. {
  2102. int rv;
  2103. int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
  2104. struct smi_info *info;
  2105. info = smi_info_alloc();
  2106. if (!info)
  2107. return -ENOMEM;
  2108. info->addr_source = SI_PCI;
  2109. dev_info(&pdev->dev, "probing via PCI");
  2110. switch (class_type) {
  2111. case PCI_ERMC_CLASSCODE_TYPE_SMIC:
  2112. info->si_type = SI_SMIC;
  2113. break;
  2114. case PCI_ERMC_CLASSCODE_TYPE_KCS:
  2115. info->si_type = SI_KCS;
  2116. break;
  2117. case PCI_ERMC_CLASSCODE_TYPE_BT:
  2118. info->si_type = SI_BT;
  2119. break;
  2120. default:
  2121. kfree(info);
  2122. dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
  2123. return -ENOMEM;
  2124. }
  2125. rv = pci_enable_device(pdev);
  2126. if (rv) {
  2127. dev_err(&pdev->dev, "couldn't enable PCI device\n");
  2128. kfree(info);
  2129. return rv;
  2130. }
  2131. info->addr_source_cleanup = ipmi_pci_cleanup;
  2132. info->addr_source_data = pdev;
  2133. if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
  2134. info->io_setup = port_setup;
  2135. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2136. } else {
  2137. info->io_setup = mem_setup;
  2138. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2139. }
  2140. info->io.addr_data = pci_resource_start(pdev, 0);
  2141. info->io.regspacing = DEFAULT_REGSPACING;
  2142. info->io.regsize = DEFAULT_REGSPACING;
  2143. info->io.regshift = 0;
  2144. info->irq = pdev->irq;
  2145. if (info->irq)
  2146. info->irq_setup = std_irq_setup;
  2147. info->dev = &pdev->dev;
  2148. pci_set_drvdata(pdev, info);
  2149. dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
  2150. &pdev->resource[0], info->io.regsize, info->io.regspacing,
  2151. info->irq);
  2152. if (add_smi(info))
  2153. kfree(info);
  2154. return 0;
  2155. }
  2156. static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
  2157. {
  2158. struct smi_info *info = pci_get_drvdata(pdev);
  2159. cleanup_one_si(info);
  2160. }
  2161. #ifdef CONFIG_PM
  2162. static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  2163. {
  2164. return 0;
  2165. }
  2166. static int ipmi_pci_resume(struct pci_dev *pdev)
  2167. {
  2168. return 0;
  2169. }
  2170. #endif
  2171. static struct pci_device_id ipmi_pci_devices[] = {
  2172. { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
  2173. { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
  2174. { 0, }
  2175. };
  2176. MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
  2177. static struct pci_driver ipmi_pci_driver = {
  2178. .name = DEVICE_NAME,
  2179. .id_table = ipmi_pci_devices,
  2180. .probe = ipmi_pci_probe,
  2181. .remove = __devexit_p(ipmi_pci_remove),
  2182. #ifdef CONFIG_PM
  2183. .suspend = ipmi_pci_suspend,
  2184. .resume = ipmi_pci_resume,
  2185. #endif
  2186. };
  2187. #endif /* CONFIG_PCI */
  2188. #ifdef CONFIG_PPC_OF
  2189. static int __devinit ipmi_of_probe(struct platform_device *dev,
  2190. const struct of_device_id *match)
  2191. {
  2192. struct smi_info *info;
  2193. struct resource resource;
  2194. const int *regsize, *regspacing, *regshift;
  2195. struct device_node *np = dev->dev.of_node;
  2196. int ret;
  2197. int proplen;
  2198. dev_info(&dev->dev, "probing via device tree\n");
  2199. ret = of_address_to_resource(np, 0, &resource);
  2200. if (ret) {
  2201. dev_warn(&dev->dev, PFX "invalid address from OF\n");
  2202. return ret;
  2203. }
  2204. regsize = of_get_property(np, "reg-size", &proplen);
  2205. if (regsize && proplen != 4) {
  2206. dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
  2207. return -EINVAL;
  2208. }
  2209. regspacing = of_get_property(np, "reg-spacing", &proplen);
  2210. if (regspacing && proplen != 4) {
  2211. dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
  2212. return -EINVAL;
  2213. }
  2214. regshift = of_get_property(np, "reg-shift", &proplen);
  2215. if (regshift && proplen != 4) {
  2216. dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
  2217. return -EINVAL;
  2218. }
  2219. info = smi_info_alloc();
  2220. if (!info) {
  2221. dev_err(&dev->dev,
  2222. "could not allocate memory for OF probe\n");
  2223. return -ENOMEM;
  2224. }
  2225. info->si_type = (enum si_type) match->data;
  2226. info->addr_source = SI_DEVICETREE;
  2227. info->irq_setup = std_irq_setup;
  2228. if (resource.flags & IORESOURCE_IO) {
  2229. info->io_setup = port_setup;
  2230. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2231. } else {
  2232. info->io_setup = mem_setup;
  2233. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2234. }
  2235. info->io.addr_data = resource.start;
  2236. info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
  2237. info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
  2238. info->io.regshift = regshift ? *regshift : 0;
  2239. info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
  2240. info->dev = &dev->dev;
  2241. dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
  2242. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2243. info->irq);
  2244. dev_set_drvdata(&dev->dev, info);
  2245. if (add_smi(info)) {
  2246. kfree(info);
  2247. return -EBUSY;
  2248. }
  2249. return 0;
  2250. }
  2251. static int __devexit ipmi_of_remove(struct platform_device *dev)
  2252. {
  2253. cleanup_one_si(dev_get_drvdata(&dev->dev));
  2254. return 0;
  2255. }
  2256. static struct of_device_id ipmi_match[] =
  2257. {
  2258. { .type = "ipmi", .compatible = "ipmi-kcs",
  2259. .data = (void *)(unsigned long) SI_KCS },
  2260. { .type = "ipmi", .compatible = "ipmi-smic",
  2261. .data = (void *)(unsigned long) SI_SMIC },
  2262. { .type = "ipmi", .compatible = "ipmi-bt",
  2263. .data = (void *)(unsigned long) SI_BT },
  2264. {},
  2265. };
  2266. static struct of_platform_driver ipmi_of_platform_driver = {
  2267. .driver = {
  2268. .name = "ipmi",
  2269. .owner = THIS_MODULE,
  2270. .of_match_table = ipmi_match,
  2271. },
  2272. .probe = ipmi_of_probe,
  2273. .remove = __devexit_p(ipmi_of_remove),
  2274. };
  2275. #endif /* CONFIG_PPC_OF */
  2276. static int wait_for_msg_done(struct smi_info *smi_info)
  2277. {
  2278. enum si_sm_result smi_result;
  2279. smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
  2280. for (;;) {
  2281. if (smi_result == SI_SM_CALL_WITH_DELAY ||
  2282. smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
  2283. schedule_timeout_uninterruptible(1);
  2284. smi_result = smi_info->handlers->event(
  2285. smi_info->si_sm, 100);
  2286. } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
  2287. smi_result = smi_info->handlers->event(
  2288. smi_info->si_sm, 0);
  2289. } else
  2290. break;
  2291. }
  2292. if (smi_result == SI_SM_HOSED)
  2293. /*
  2294. * We couldn't get the state machine to run, so whatever's at
  2295. * the port is probably not an IPMI SMI interface.
  2296. */
  2297. return -ENODEV;
  2298. return 0;
  2299. }
  2300. static int try_get_dev_id(struct smi_info *smi_info)
  2301. {
  2302. unsigned char msg[2];
  2303. unsigned char *resp;
  2304. unsigned long resp_len;
  2305. int rv = 0;
  2306. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2307. if (!resp)
  2308. return -ENOMEM;
  2309. /*
  2310. * Do a Get Device ID command, since it comes back with some
  2311. * useful info.
  2312. */
  2313. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2314. msg[1] = IPMI_GET_DEVICE_ID_CMD;
  2315. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2316. rv = wait_for_msg_done(smi_info);
  2317. if (rv)
  2318. goto out;
  2319. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2320. resp, IPMI_MAX_MSG_LENGTH);
  2321. /* Check and record info from the get device id, in case we need it. */
  2322. rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
  2323. out:
  2324. kfree(resp);
  2325. return rv;
  2326. }
  2327. static int try_enable_event_buffer(struct smi_info *smi_info)
  2328. {
  2329. unsigned char msg[3];
  2330. unsigned char *resp;
  2331. unsigned long resp_len;
  2332. int rv = 0;
  2333. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2334. if (!resp)
  2335. return -ENOMEM;
  2336. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2337. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  2338. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2339. rv = wait_for_msg_done(smi_info);
  2340. if (rv) {
  2341. printk(KERN_WARNING PFX "Error getting response from get"
  2342. " global enables command, the event buffer is not"
  2343. " enabled.\n");
  2344. goto out;
  2345. }
  2346. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2347. resp, IPMI_MAX_MSG_LENGTH);
  2348. if (resp_len < 4 ||
  2349. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2350. resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
  2351. resp[2] != 0) {
  2352. printk(KERN_WARNING PFX "Invalid return from get global"
  2353. " enables command, cannot enable the event buffer.\n");
  2354. rv = -EINVAL;
  2355. goto out;
  2356. }
  2357. if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
  2358. /* buffer is already enabled, nothing to do. */
  2359. goto out;
  2360. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2361. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  2362. msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
  2363. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  2364. rv = wait_for_msg_done(smi_info);
  2365. if (rv) {
  2366. printk(KERN_WARNING PFX "Error getting response from set"
  2367. " global, enables command, the event buffer is not"
  2368. " enabled.\n");
  2369. goto out;
  2370. }
  2371. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2372. resp, IPMI_MAX_MSG_LENGTH);
  2373. if (resp_len < 3 ||
  2374. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2375. resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
  2376. printk(KERN_WARNING PFX "Invalid return from get global,"
  2377. "enables command, not enable the event buffer.\n");
  2378. rv = -EINVAL;
  2379. goto out;
  2380. }
  2381. if (resp[2] != 0)
  2382. /*
  2383. * An error when setting the event buffer bit means
  2384. * that the event buffer is not supported.
  2385. */
  2386. rv = -ENOENT;
  2387. out:
  2388. kfree(resp);
  2389. return rv;
  2390. }
  2391. static int type_file_read_proc(char *page, char **start, off_t off,
  2392. int count, int *eof, void *data)
  2393. {
  2394. struct smi_info *smi = data;
  2395. return sprintf(page, "%s\n", si_to_str[smi->si_type]);
  2396. }
  2397. static int stat_file_read_proc(char *page, char **start, off_t off,
  2398. int count, int *eof, void *data)
  2399. {
  2400. char *out = (char *) page;
  2401. struct smi_info *smi = data;
  2402. out += sprintf(out, "interrupts_enabled: %d\n",
  2403. smi->irq && !smi->interrupt_disabled);
  2404. out += sprintf(out, "short_timeouts: %u\n",
  2405. smi_get_stat(smi, short_timeouts));
  2406. out += sprintf(out, "long_timeouts: %u\n",
  2407. smi_get_stat(smi, long_timeouts));
  2408. out += sprintf(out, "idles: %u\n",
  2409. smi_get_stat(smi, idles));
  2410. out += sprintf(out, "interrupts: %u\n",
  2411. smi_get_stat(smi, interrupts));
  2412. out += sprintf(out, "attentions: %u\n",
  2413. smi_get_stat(smi, attentions));
  2414. out += sprintf(out, "flag_fetches: %u\n",
  2415. smi_get_stat(smi, flag_fetches));
  2416. out += sprintf(out, "hosed_count: %u\n",
  2417. smi_get_stat(smi, hosed_count));
  2418. out += sprintf(out, "complete_transactions: %u\n",
  2419. smi_get_stat(smi, complete_transactions));
  2420. out += sprintf(out, "events: %u\n",
  2421. smi_get_stat(smi, events));
  2422. out += sprintf(out, "watchdog_pretimeouts: %u\n",
  2423. smi_get_stat(smi, watchdog_pretimeouts));
  2424. out += sprintf(out, "incoming_messages: %u\n",
  2425. smi_get_stat(smi, incoming_messages));
  2426. return out - page;
  2427. }
  2428. static int param_read_proc(char *page, char **start, off_t off,
  2429. int count, int *eof, void *data)
  2430. {
  2431. struct smi_info *smi = data;
  2432. return sprintf(page,
  2433. "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
  2434. si_to_str[smi->si_type],
  2435. addr_space_to_str[smi->io.addr_type],
  2436. smi->io.addr_data,
  2437. smi->io.regspacing,
  2438. smi->io.regsize,
  2439. smi->io.regshift,
  2440. smi->irq,
  2441. smi->slave_addr);
  2442. }
  2443. /*
  2444. * oem_data_avail_to_receive_msg_avail
  2445. * @info - smi_info structure with msg_flags set
  2446. *
  2447. * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
  2448. * Returns 1 indicating need to re-run handle_flags().
  2449. */
  2450. static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
  2451. {
  2452. smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
  2453. RECEIVE_MSG_AVAIL);
  2454. return 1;
  2455. }
  2456. /*
  2457. * setup_dell_poweredge_oem_data_handler
  2458. * @info - smi_info.device_id must be populated
  2459. *
  2460. * Systems that match, but have firmware version < 1.40 may assert
  2461. * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
  2462. * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
  2463. * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
  2464. * as RECEIVE_MSG_AVAIL instead.
  2465. *
  2466. * As Dell has no plans to release IPMI 1.5 firmware that *ever*
  2467. * assert the OEM[012] bits, and if it did, the driver would have to
  2468. * change to handle that properly, we don't actually check for the
  2469. * firmware version.
  2470. * Device ID = 0x20 BMC on PowerEdge 8G servers
  2471. * Device Revision = 0x80
  2472. * Firmware Revision1 = 0x01 BMC version 1.40
  2473. * Firmware Revision2 = 0x40 BCD encoded
  2474. * IPMI Version = 0x51 IPMI 1.5
  2475. * Manufacturer ID = A2 02 00 Dell IANA
  2476. *
  2477. * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
  2478. * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
  2479. *
  2480. */
  2481. #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
  2482. #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
  2483. #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
  2484. #define DELL_IANA_MFR_ID 0x0002a2
  2485. static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
  2486. {
  2487. struct ipmi_device_id *id = &smi_info->device_id;
  2488. if (id->manufacturer_id == DELL_IANA_MFR_ID) {
  2489. if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
  2490. id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
  2491. id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
  2492. smi_info->oem_data_avail_handler =
  2493. oem_data_avail_to_receive_msg_avail;
  2494. } else if (ipmi_version_major(id) < 1 ||
  2495. (ipmi_version_major(id) == 1 &&
  2496. ipmi_version_minor(id) < 5)) {
  2497. smi_info->oem_data_avail_handler =
  2498. oem_data_avail_to_receive_msg_avail;
  2499. }
  2500. }
  2501. }
  2502. #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
  2503. static void return_hosed_msg_badsize(struct smi_info *smi_info)
  2504. {
  2505. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  2506. /* Make it a reponse */
  2507. msg->rsp[0] = msg->data[0] | 4;
  2508. msg->rsp[1] = msg->data[1];
  2509. msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
  2510. msg->rsp_size = 3;
  2511. smi_info->curr_msg = NULL;
  2512. deliver_recv_msg(smi_info, msg);
  2513. }
  2514. /*
  2515. * dell_poweredge_bt_xaction_handler
  2516. * @info - smi_info.device_id must be populated
  2517. *
  2518. * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
  2519. * not respond to a Get SDR command if the length of the data
  2520. * requested is exactly 0x3A, which leads to command timeouts and no
  2521. * data returned. This intercepts such commands, and causes userspace
  2522. * callers to try again with a different-sized buffer, which succeeds.
  2523. */
  2524. #define STORAGE_NETFN 0x0A
  2525. #define STORAGE_CMD_GET_SDR 0x23
  2526. static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
  2527. unsigned long unused,
  2528. void *in)
  2529. {
  2530. struct smi_info *smi_info = in;
  2531. unsigned char *data = smi_info->curr_msg->data;
  2532. unsigned int size = smi_info->curr_msg->data_size;
  2533. if (size >= 8 &&
  2534. (data[0]>>2) == STORAGE_NETFN &&
  2535. data[1] == STORAGE_CMD_GET_SDR &&
  2536. data[7] == 0x3A) {
  2537. return_hosed_msg_badsize(smi_info);
  2538. return NOTIFY_STOP;
  2539. }
  2540. return NOTIFY_DONE;
  2541. }
  2542. static struct notifier_block dell_poweredge_bt_xaction_notifier = {
  2543. .notifier_call = dell_poweredge_bt_xaction_handler,
  2544. };
  2545. /*
  2546. * setup_dell_poweredge_bt_xaction_handler
  2547. * @info - smi_info.device_id must be filled in already
  2548. *
  2549. * Fills in smi_info.device_id.start_transaction_pre_hook
  2550. * when we know what function to use there.
  2551. */
  2552. static void
  2553. setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
  2554. {
  2555. struct ipmi_device_id *id = &smi_info->device_id;
  2556. if (id->manufacturer_id == DELL_IANA_MFR_ID &&
  2557. smi_info->si_type == SI_BT)
  2558. register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
  2559. }
  2560. /*
  2561. * setup_oem_data_handler
  2562. * @info - smi_info.device_id must be filled in already
  2563. *
  2564. * Fills in smi_info.device_id.oem_data_available_handler
  2565. * when we know what function to use there.
  2566. */
  2567. static void setup_oem_data_handler(struct smi_info *smi_info)
  2568. {
  2569. setup_dell_poweredge_oem_data_handler(smi_info);
  2570. }
  2571. static void setup_xaction_handlers(struct smi_info *smi_info)
  2572. {
  2573. setup_dell_poweredge_bt_xaction_handler(smi_info);
  2574. }
  2575. static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
  2576. {
  2577. if (smi_info->intf) {
  2578. /*
  2579. * The timer and thread are only running if the
  2580. * interface has been started up and registered.
  2581. */
  2582. if (smi_info->thread != NULL)
  2583. kthread_stop(smi_info->thread);
  2584. del_timer_sync(&smi_info->si_timer);
  2585. }
  2586. }
  2587. static __devinitdata struct ipmi_default_vals
  2588. {
  2589. int type;
  2590. int port;
  2591. } ipmi_defaults[] =
  2592. {
  2593. { .type = SI_KCS, .port = 0xca2 },
  2594. { .type = SI_SMIC, .port = 0xca9 },
  2595. { .type = SI_BT, .port = 0xe4 },
  2596. { .port = 0 }
  2597. };
  2598. static void __devinit default_find_bmc(void)
  2599. {
  2600. struct smi_info *info;
  2601. int i;
  2602. for (i = 0; ; i++) {
  2603. if (!ipmi_defaults[i].port)
  2604. break;
  2605. #ifdef CONFIG_PPC
  2606. if (check_legacy_ioport(ipmi_defaults[i].port))
  2607. continue;
  2608. #endif
  2609. info = smi_info_alloc();
  2610. if (!info)
  2611. return;
  2612. info->addr_source = SI_DEFAULT;
  2613. info->si_type = ipmi_defaults[i].type;
  2614. info->io_setup = port_setup;
  2615. info->io.addr_data = ipmi_defaults[i].port;
  2616. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2617. info->io.addr = NULL;
  2618. info->io.regspacing = DEFAULT_REGSPACING;
  2619. info->io.regsize = DEFAULT_REGSPACING;
  2620. info->io.regshift = 0;
  2621. if (add_smi(info) == 0) {
  2622. if ((try_smi_init(info)) == 0) {
  2623. /* Found one... */
  2624. printk(KERN_INFO PFX "Found default %s"
  2625. " state machine at %s address 0x%lx\n",
  2626. si_to_str[info->si_type],
  2627. addr_space_to_str[info->io.addr_type],
  2628. info->io.addr_data);
  2629. } else
  2630. cleanup_one_si(info);
  2631. } else {
  2632. kfree(info);
  2633. }
  2634. }
  2635. }
  2636. static int is_new_interface(struct smi_info *info)
  2637. {
  2638. struct smi_info *e;
  2639. list_for_each_entry(e, &smi_infos, link) {
  2640. if (e->io.addr_type != info->io.addr_type)
  2641. continue;
  2642. if (e->io.addr_data == info->io.addr_data)
  2643. return 0;
  2644. }
  2645. return 1;
  2646. }
  2647. static int add_smi(struct smi_info *new_smi)
  2648. {
  2649. int rv = 0;
  2650. printk(KERN_INFO PFX "Adding %s-specified %s state machine",
  2651. ipmi_addr_src_to_str[new_smi->addr_source],
  2652. si_to_str[new_smi->si_type]);
  2653. mutex_lock(&smi_infos_lock);
  2654. if (!is_new_interface(new_smi)) {
  2655. printk(KERN_CONT " duplicate interface\n");
  2656. rv = -EBUSY;
  2657. goto out_err;
  2658. }
  2659. printk(KERN_CONT "\n");
  2660. /* So we know not to free it unless we have allocated one. */
  2661. new_smi->intf = NULL;
  2662. new_smi->si_sm = NULL;
  2663. new_smi->handlers = NULL;
  2664. list_add_tail(&new_smi->link, &smi_infos);
  2665. out_err:
  2666. mutex_unlock(&smi_infos_lock);
  2667. return rv;
  2668. }
  2669. static int try_smi_init(struct smi_info *new_smi)
  2670. {
  2671. int rv = 0;
  2672. int i;
  2673. printk(KERN_INFO PFX "Trying %s-specified %s state"
  2674. " machine at %s address 0x%lx, slave address 0x%x,"
  2675. " irq %d\n",
  2676. ipmi_addr_src_to_str[new_smi->addr_source],
  2677. si_to_str[new_smi->si_type],
  2678. addr_space_to_str[new_smi->io.addr_type],
  2679. new_smi->io.addr_data,
  2680. new_smi->slave_addr, new_smi->irq);
  2681. switch (new_smi->si_type) {
  2682. case SI_KCS:
  2683. new_smi->handlers = &kcs_smi_handlers;
  2684. break;
  2685. case SI_SMIC:
  2686. new_smi->handlers = &smic_smi_handlers;
  2687. break;
  2688. case SI_BT:
  2689. new_smi->handlers = &bt_smi_handlers;
  2690. break;
  2691. default:
  2692. /* No support for anything else yet. */
  2693. rv = -EIO;
  2694. goto out_err;
  2695. }
  2696. /* Allocate the state machine's data and initialize it. */
  2697. new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
  2698. if (!new_smi->si_sm) {
  2699. printk(KERN_ERR PFX
  2700. "Could not allocate state machine memory\n");
  2701. rv = -ENOMEM;
  2702. goto out_err;
  2703. }
  2704. new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
  2705. &new_smi->io);
  2706. /* Now that we know the I/O size, we can set up the I/O. */
  2707. rv = new_smi->io_setup(new_smi);
  2708. if (rv) {
  2709. printk(KERN_ERR PFX "Could not set up I/O space\n");
  2710. goto out_err;
  2711. }
  2712. /* Do low-level detection first. */
  2713. if (new_smi->handlers->detect(new_smi->si_sm)) {
  2714. if (new_smi->addr_source)
  2715. printk(KERN_INFO PFX "Interface detection failed\n");
  2716. rv = -ENODEV;
  2717. goto out_err;
  2718. }
  2719. /*
  2720. * Attempt a get device id command. If it fails, we probably
  2721. * don't have a BMC here.
  2722. */
  2723. rv = try_get_dev_id(new_smi);
  2724. if (rv) {
  2725. if (new_smi->addr_source)
  2726. printk(KERN_INFO PFX "There appears to be no BMC"
  2727. " at this location\n");
  2728. goto out_err;
  2729. }
  2730. setup_oem_data_handler(new_smi);
  2731. setup_xaction_handlers(new_smi);
  2732. INIT_LIST_HEAD(&(new_smi->xmit_msgs));
  2733. INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
  2734. new_smi->curr_msg = NULL;
  2735. atomic_set(&new_smi->req_events, 0);
  2736. new_smi->run_to_completion = 0;
  2737. for (i = 0; i < SI_NUM_STATS; i++)
  2738. atomic_set(&new_smi->stats[i], 0);
  2739. new_smi->interrupt_disabled = 1;
  2740. atomic_set(&new_smi->stop_operation, 0);
  2741. new_smi->intf_num = smi_num;
  2742. smi_num++;
  2743. rv = try_enable_event_buffer(new_smi);
  2744. if (rv == 0)
  2745. new_smi->has_event_buffer = 1;
  2746. /*
  2747. * Start clearing the flags before we enable interrupts or the
  2748. * timer to avoid racing with the timer.
  2749. */
  2750. start_clear_flags(new_smi);
  2751. /* IRQ is defined to be set when non-zero. */
  2752. if (new_smi->irq)
  2753. new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
  2754. if (!new_smi->dev) {
  2755. /*
  2756. * If we don't already have a device from something
  2757. * else (like PCI), then register a new one.
  2758. */
  2759. new_smi->pdev = platform_device_alloc("ipmi_si",
  2760. new_smi->intf_num);
  2761. if (!new_smi->pdev) {
  2762. printk(KERN_ERR PFX
  2763. "Unable to allocate platform device\n");
  2764. goto out_err;
  2765. }
  2766. new_smi->dev = &new_smi->pdev->dev;
  2767. new_smi->dev->driver = &ipmi_driver.driver;
  2768. rv = platform_device_add(new_smi->pdev);
  2769. if (rv) {
  2770. printk(KERN_ERR PFX
  2771. "Unable to register system interface device:"
  2772. " %d\n",
  2773. rv);
  2774. goto out_err;
  2775. }
  2776. new_smi->dev_registered = 1;
  2777. }
  2778. rv = ipmi_register_smi(&handlers,
  2779. new_smi,
  2780. &new_smi->device_id,
  2781. new_smi->dev,
  2782. "bmc",
  2783. new_smi->slave_addr);
  2784. if (rv) {
  2785. dev_err(new_smi->dev, "Unable to register device: error %d\n",
  2786. rv);
  2787. goto out_err_stop_timer;
  2788. }
  2789. rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
  2790. type_file_read_proc,
  2791. new_smi);
  2792. if (rv) {
  2793. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2794. goto out_err_stop_timer;
  2795. }
  2796. rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
  2797. stat_file_read_proc,
  2798. new_smi);
  2799. if (rv) {
  2800. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2801. goto out_err_stop_timer;
  2802. }
  2803. rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
  2804. param_read_proc,
  2805. new_smi);
  2806. if (rv) {
  2807. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2808. goto out_err_stop_timer;
  2809. }
  2810. dev_info(new_smi->dev, "IPMI %s interface initialized\n",
  2811. si_to_str[new_smi->si_type]);
  2812. return 0;
  2813. out_err_stop_timer:
  2814. atomic_inc(&new_smi->stop_operation);
  2815. wait_for_timer_and_thread(new_smi);
  2816. out_err:
  2817. new_smi->interrupt_disabled = 1;
  2818. if (new_smi->intf) {
  2819. ipmi_unregister_smi(new_smi->intf);
  2820. new_smi->intf = NULL;
  2821. }
  2822. if (new_smi->irq_cleanup) {
  2823. new_smi->irq_cleanup(new_smi);
  2824. new_smi->irq_cleanup = NULL;
  2825. }
  2826. /*
  2827. * Wait until we know that we are out of any interrupt
  2828. * handlers might have been running before we freed the
  2829. * interrupt.
  2830. */
  2831. synchronize_sched();
  2832. if (new_smi->si_sm) {
  2833. if (new_smi->handlers)
  2834. new_smi->handlers->cleanup(new_smi->si_sm);
  2835. kfree(new_smi->si_sm);
  2836. new_smi->si_sm = NULL;
  2837. }
  2838. if (new_smi->addr_source_cleanup) {
  2839. new_smi->addr_source_cleanup(new_smi);
  2840. new_smi->addr_source_cleanup = NULL;
  2841. }
  2842. if (new_smi->io_cleanup) {
  2843. new_smi->io_cleanup(new_smi);
  2844. new_smi->io_cleanup = NULL;
  2845. }
  2846. if (new_smi->dev_registered) {
  2847. platform_device_unregister(new_smi->pdev);
  2848. new_smi->dev_registered = 0;
  2849. }
  2850. return rv;
  2851. }
  2852. static int __devinit init_ipmi_si(void)
  2853. {
  2854. int i;
  2855. char *str;
  2856. int rv;
  2857. struct smi_info *e;
  2858. enum ipmi_addr_src type = SI_INVALID;
  2859. if (initialized)
  2860. return 0;
  2861. initialized = 1;
  2862. /* Register the device drivers. */
  2863. rv = driver_register(&ipmi_driver.driver);
  2864. if (rv) {
  2865. printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
  2866. return rv;
  2867. }
  2868. /* Parse out the si_type string into its components. */
  2869. str = si_type_str;
  2870. if (*str != '\0') {
  2871. for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
  2872. si_type[i] = str;
  2873. str = strchr(str, ',');
  2874. if (str) {
  2875. *str = '\0';
  2876. str++;
  2877. } else {
  2878. break;
  2879. }
  2880. }
  2881. }
  2882. printk(KERN_INFO "IPMI System Interface driver.\n");
  2883. hardcode_find_bmc();
  2884. /* If the user gave us a device, they presumably want us to use it */
  2885. mutex_lock(&smi_infos_lock);
  2886. if (!list_empty(&smi_infos)) {
  2887. mutex_unlock(&smi_infos_lock);
  2888. return 0;
  2889. }
  2890. mutex_unlock(&smi_infos_lock);
  2891. #ifdef CONFIG_PCI
  2892. rv = pci_register_driver(&ipmi_pci_driver);
  2893. if (rv)
  2894. printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
  2895. else
  2896. pci_registered = 1;
  2897. #endif
  2898. #ifdef CONFIG_ACPI
  2899. pnp_register_driver(&ipmi_pnp_driver);
  2900. pnp_registered = 1;
  2901. #endif
  2902. #ifdef CONFIG_DMI
  2903. dmi_find_bmc();
  2904. #endif
  2905. #ifdef CONFIG_ACPI
  2906. spmi_find_bmc();
  2907. #endif
  2908. #ifdef CONFIG_PPC_OF
  2909. of_register_platform_driver(&ipmi_of_platform_driver);
  2910. of_registered = 1;
  2911. #endif
  2912. /* We prefer devices with interrupts, but in the case of a machine
  2913. with multiple BMCs we assume that there will be several instances
  2914. of a given type so if we succeed in registering a type then also
  2915. try to register everything else of the same type */
  2916. mutex_lock(&smi_infos_lock);
  2917. list_for_each_entry(e, &smi_infos, link) {
  2918. /* Try to register a device if it has an IRQ and we either
  2919. haven't successfully registered a device yet or this
  2920. device has the same type as one we successfully registered */
  2921. if (e->irq && (!type || e->addr_source == type)) {
  2922. if (!try_smi_init(e)) {
  2923. type = e->addr_source;
  2924. }
  2925. }
  2926. }
  2927. /* type will only have been set if we successfully registered an si */
  2928. if (type) {
  2929. mutex_unlock(&smi_infos_lock);
  2930. return 0;
  2931. }
  2932. /* Fall back to the preferred device */
  2933. list_for_each_entry(e, &smi_infos, link) {
  2934. if (!e->irq && (!type || e->addr_source == type)) {
  2935. if (!try_smi_init(e)) {
  2936. type = e->addr_source;
  2937. }
  2938. }
  2939. }
  2940. mutex_unlock(&smi_infos_lock);
  2941. if (type)
  2942. return 0;
  2943. if (si_trydefaults) {
  2944. mutex_lock(&smi_infos_lock);
  2945. if (list_empty(&smi_infos)) {
  2946. /* No BMC was found, try defaults. */
  2947. mutex_unlock(&smi_infos_lock);
  2948. default_find_bmc();
  2949. } else
  2950. mutex_unlock(&smi_infos_lock);
  2951. }
  2952. mutex_lock(&smi_infos_lock);
  2953. if (unload_when_empty && list_empty(&smi_infos)) {
  2954. mutex_unlock(&smi_infos_lock);
  2955. #ifdef CONFIG_PCI
  2956. if (pci_registered)
  2957. pci_unregister_driver(&ipmi_pci_driver);
  2958. #endif
  2959. #ifdef CONFIG_PPC_OF
  2960. if (of_registered)
  2961. of_unregister_platform_driver(&ipmi_of_platform_driver);
  2962. #endif
  2963. driver_unregister(&ipmi_driver.driver);
  2964. printk(KERN_WARNING PFX
  2965. "Unable to find any System Interface(s)\n");
  2966. return -ENODEV;
  2967. } else {
  2968. mutex_unlock(&smi_infos_lock);
  2969. return 0;
  2970. }
  2971. }
  2972. module_init(init_ipmi_si);
  2973. static void cleanup_one_si(struct smi_info *to_clean)
  2974. {
  2975. int rv = 0;
  2976. unsigned long flags;
  2977. if (!to_clean)
  2978. return;
  2979. list_del(&to_clean->link);
  2980. /* Tell the driver that we are shutting down. */
  2981. atomic_inc(&to_clean->stop_operation);
  2982. /*
  2983. * Make sure the timer and thread are stopped and will not run
  2984. * again.
  2985. */
  2986. wait_for_timer_and_thread(to_clean);
  2987. /*
  2988. * Timeouts are stopped, now make sure the interrupts are off
  2989. * for the device. A little tricky with locks to make sure
  2990. * there are no races.
  2991. */
  2992. spin_lock_irqsave(&to_clean->si_lock, flags);
  2993. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  2994. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  2995. poll(to_clean);
  2996. schedule_timeout_uninterruptible(1);
  2997. spin_lock_irqsave(&to_clean->si_lock, flags);
  2998. }
  2999. disable_si_irq(to_clean);
  3000. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  3001. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3002. poll(to_clean);
  3003. schedule_timeout_uninterruptible(1);
  3004. }
  3005. /* Clean up interrupts and make sure that everything is done. */
  3006. if (to_clean->irq_cleanup)
  3007. to_clean->irq_cleanup(to_clean);
  3008. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3009. poll(to_clean);
  3010. schedule_timeout_uninterruptible(1);
  3011. }
  3012. if (to_clean->intf)
  3013. rv = ipmi_unregister_smi(to_clean->intf);
  3014. if (rv) {
  3015. printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
  3016. rv);
  3017. }
  3018. if (to_clean->handlers)
  3019. to_clean->handlers->cleanup(to_clean->si_sm);
  3020. kfree(to_clean->si_sm);
  3021. if (to_clean->addr_source_cleanup)
  3022. to_clean->addr_source_cleanup(to_clean);
  3023. if (to_clean->io_cleanup)
  3024. to_clean->io_cleanup(to_clean);
  3025. if (to_clean->dev_registered)
  3026. platform_device_unregister(to_clean->pdev);
  3027. kfree(to_clean);
  3028. }
  3029. static void __exit cleanup_ipmi_si(void)
  3030. {
  3031. struct smi_info *e, *tmp_e;
  3032. if (!initialized)
  3033. return;
  3034. #ifdef CONFIG_PCI
  3035. if (pci_registered)
  3036. pci_unregister_driver(&ipmi_pci_driver);
  3037. #endif
  3038. #ifdef CONFIG_ACPI
  3039. if (pnp_registered)
  3040. pnp_unregister_driver(&ipmi_pnp_driver);
  3041. #endif
  3042. #ifdef CONFIG_PPC_OF
  3043. if (of_registered)
  3044. of_unregister_platform_driver(&ipmi_of_platform_driver);
  3045. #endif
  3046. mutex_lock(&smi_infos_lock);
  3047. list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
  3048. cleanup_one_si(e);
  3049. mutex_unlock(&smi_infos_lock);
  3050. driver_unregister(&ipmi_driver.driver);
  3051. }
  3052. module_exit(cleanup_ipmi_si);
  3053. MODULE_LICENSE("GPL");
  3054. MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
  3055. MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
  3056. " system interfaces.");