core.c 194 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <asm/switch_to.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include <asm/mutex.h>
  78. #ifdef CONFIG_PARAVIRT
  79. #include <asm/paravirt.h>
  80. #endif
  81. #include "sched.h"
  82. #include "../workqueue_sched.h"
  83. #include "../smpboot.h"
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/sched.h>
  86. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  87. {
  88. unsigned long delta;
  89. ktime_t soft, hard, now;
  90. for (;;) {
  91. if (hrtimer_active(period_timer))
  92. break;
  93. now = hrtimer_cb_get_time(period_timer);
  94. hrtimer_forward(period_timer, now, period);
  95. soft = hrtimer_get_softexpires(period_timer);
  96. hard = hrtimer_get_expires(period_timer);
  97. delta = ktime_to_ns(ktime_sub(hard, soft));
  98. __hrtimer_start_range_ns(period_timer, soft, delta,
  99. HRTIMER_MODE_ABS_PINNED, 0);
  100. }
  101. }
  102. DEFINE_MUTEX(sched_domains_mutex);
  103. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  104. static void update_rq_clock_task(struct rq *rq, s64 delta);
  105. void update_rq_clock(struct rq *rq)
  106. {
  107. s64 delta;
  108. if (rq->skip_clock_update > 0)
  109. return;
  110. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  111. rq->clock += delta;
  112. update_rq_clock_task(rq, delta);
  113. }
  114. /*
  115. * Debugging: various feature bits
  116. */
  117. #define SCHED_FEAT(name, enabled) \
  118. (1UL << __SCHED_FEAT_##name) * enabled |
  119. const_debug unsigned int sysctl_sched_features =
  120. #include "features.h"
  121. 0;
  122. #undef SCHED_FEAT
  123. #ifdef CONFIG_SCHED_DEBUG
  124. #define SCHED_FEAT(name, enabled) \
  125. #name ,
  126. static const char * const sched_feat_names[] = {
  127. #include "features.h"
  128. };
  129. #undef SCHED_FEAT
  130. static int sched_feat_show(struct seq_file *m, void *v)
  131. {
  132. int i;
  133. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  134. if (!(sysctl_sched_features & (1UL << i)))
  135. seq_puts(m, "NO_");
  136. seq_printf(m, "%s ", sched_feat_names[i]);
  137. }
  138. seq_puts(m, "\n");
  139. return 0;
  140. }
  141. #ifdef HAVE_JUMP_LABEL
  142. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  143. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  144. #define SCHED_FEAT(name, enabled) \
  145. jump_label_key__##enabled ,
  146. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  147. #include "features.h"
  148. };
  149. #undef SCHED_FEAT
  150. static void sched_feat_disable(int i)
  151. {
  152. if (static_key_enabled(&sched_feat_keys[i]))
  153. static_key_slow_dec(&sched_feat_keys[i]);
  154. }
  155. static void sched_feat_enable(int i)
  156. {
  157. if (!static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_inc(&sched_feat_keys[i]);
  159. }
  160. #else
  161. static void sched_feat_disable(int i) { };
  162. static void sched_feat_enable(int i) { };
  163. #endif /* HAVE_JUMP_LABEL */
  164. static ssize_t
  165. sched_feat_write(struct file *filp, const char __user *ubuf,
  166. size_t cnt, loff_t *ppos)
  167. {
  168. char buf[64];
  169. char *cmp;
  170. int neg = 0;
  171. int i;
  172. if (cnt > 63)
  173. cnt = 63;
  174. if (copy_from_user(&buf, ubuf, cnt))
  175. return -EFAULT;
  176. buf[cnt] = 0;
  177. cmp = strstrip(buf);
  178. if (strncmp(cmp, "NO_", 3) == 0) {
  179. neg = 1;
  180. cmp += 3;
  181. }
  182. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  183. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  184. if (neg) {
  185. sysctl_sched_features &= ~(1UL << i);
  186. sched_feat_disable(i);
  187. } else {
  188. sysctl_sched_features |= (1UL << i);
  189. sched_feat_enable(i);
  190. }
  191. break;
  192. }
  193. }
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /*
  242. * __task_rq_lock - lock the rq @p resides on.
  243. */
  244. static inline struct rq *__task_rq_lock(struct task_struct *p)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. lockdep_assert_held(&p->pi_lock);
  249. for (;;) {
  250. rq = task_rq(p);
  251. raw_spin_lock(&rq->lock);
  252. if (likely(rq == task_rq(p)))
  253. return rq;
  254. raw_spin_unlock(&rq->lock);
  255. }
  256. }
  257. /*
  258. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  259. */
  260. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  261. __acquires(p->pi_lock)
  262. __acquires(rq->lock)
  263. {
  264. struct rq *rq;
  265. for (;;) {
  266. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  267. rq = task_rq(p);
  268. raw_spin_lock(&rq->lock);
  269. if (likely(rq == task_rq(p)))
  270. return rq;
  271. raw_spin_unlock(&rq->lock);
  272. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  273. }
  274. }
  275. static void __task_rq_unlock(struct rq *rq)
  276. __releases(rq->lock)
  277. {
  278. raw_spin_unlock(&rq->lock);
  279. }
  280. static inline void
  281. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  282. __releases(rq->lock)
  283. __releases(p->pi_lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  287. }
  288. /*
  289. * this_rq_lock - lock this runqueue and disable interrupts.
  290. */
  291. static struct rq *this_rq_lock(void)
  292. __acquires(rq->lock)
  293. {
  294. struct rq *rq;
  295. local_irq_disable();
  296. rq = this_rq();
  297. raw_spin_lock(&rq->lock);
  298. return rq;
  299. }
  300. #ifdef CONFIG_SCHED_HRTICK
  301. /*
  302. * Use HR-timers to deliver accurate preemption points.
  303. *
  304. * Its all a bit involved since we cannot program an hrt while holding the
  305. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  306. * reschedule event.
  307. *
  308. * When we get rescheduled we reprogram the hrtick_timer outside of the
  309. * rq->lock.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. /*
  332. * called from hardirq (IPI) context
  333. */
  334. static void __hrtick_start(void *arg)
  335. {
  336. struct rq *rq = arg;
  337. raw_spin_lock(&rq->lock);
  338. hrtimer_restart(&rq->hrtick_timer);
  339. rq->hrtick_csd_pending = 0;
  340. raw_spin_unlock(&rq->lock);
  341. }
  342. /*
  343. * Called to set the hrtick timer state.
  344. *
  345. * called with rq->lock held and irqs disabled
  346. */
  347. void hrtick_start(struct rq *rq, u64 delay)
  348. {
  349. struct hrtimer *timer = &rq->hrtick_timer;
  350. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  351. hrtimer_set_expires(timer, time);
  352. if (rq == this_rq()) {
  353. hrtimer_restart(timer);
  354. } else if (!rq->hrtick_csd_pending) {
  355. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  356. rq->hrtick_csd_pending = 1;
  357. }
  358. }
  359. static int
  360. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  361. {
  362. int cpu = (int)(long)hcpu;
  363. switch (action) {
  364. case CPU_UP_CANCELED:
  365. case CPU_UP_CANCELED_FROZEN:
  366. case CPU_DOWN_PREPARE:
  367. case CPU_DOWN_PREPARE_FROZEN:
  368. case CPU_DEAD:
  369. case CPU_DEAD_FROZEN:
  370. hrtick_clear(cpu_rq(cpu));
  371. return NOTIFY_OK;
  372. }
  373. return NOTIFY_DONE;
  374. }
  375. static __init void init_hrtick(void)
  376. {
  377. hotcpu_notifier(hotplug_hrtick, 0);
  378. }
  379. #else
  380. /*
  381. * Called to set the hrtick timer state.
  382. *
  383. * called with rq->lock held and irqs disabled
  384. */
  385. void hrtick_start(struct rq *rq, u64 delay)
  386. {
  387. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  388. HRTIMER_MODE_REL_PINNED, 0);
  389. }
  390. static inline void init_hrtick(void)
  391. {
  392. }
  393. #endif /* CONFIG_SMP */
  394. static void init_rq_hrtick(struct rq *rq)
  395. {
  396. #ifdef CONFIG_SMP
  397. rq->hrtick_csd_pending = 0;
  398. rq->hrtick_csd.flags = 0;
  399. rq->hrtick_csd.func = __hrtick_start;
  400. rq->hrtick_csd.info = rq;
  401. #endif
  402. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  403. rq->hrtick_timer.function = hrtick;
  404. }
  405. #else /* CONFIG_SCHED_HRTICK */
  406. static inline void hrtick_clear(struct rq *rq)
  407. {
  408. }
  409. static inline void init_rq_hrtick(struct rq *rq)
  410. {
  411. }
  412. static inline void init_hrtick(void)
  413. {
  414. }
  415. #endif /* CONFIG_SCHED_HRTICK */
  416. /*
  417. * resched_task - mark a task 'to be rescheduled now'.
  418. *
  419. * On UP this means the setting of the need_resched flag, on SMP it
  420. * might also involve a cross-CPU call to trigger the scheduler on
  421. * the target CPU.
  422. */
  423. #ifdef CONFIG_SMP
  424. #ifndef tsk_is_polling
  425. #define tsk_is_polling(t) 0
  426. #endif
  427. void resched_task(struct task_struct *p)
  428. {
  429. int cpu;
  430. assert_raw_spin_locked(&task_rq(p)->lock);
  431. if (test_tsk_need_resched(p))
  432. return;
  433. set_tsk_need_resched(p);
  434. cpu = task_cpu(p);
  435. if (cpu == smp_processor_id())
  436. return;
  437. /* NEED_RESCHED must be visible before we test polling */
  438. smp_mb();
  439. if (!tsk_is_polling(p))
  440. smp_send_reschedule(cpu);
  441. }
  442. void resched_cpu(int cpu)
  443. {
  444. struct rq *rq = cpu_rq(cpu);
  445. unsigned long flags;
  446. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  447. return;
  448. resched_task(cpu_curr(cpu));
  449. raw_spin_unlock_irqrestore(&rq->lock, flags);
  450. }
  451. #ifdef CONFIG_NO_HZ
  452. /*
  453. * In the semi idle case, use the nearest busy cpu for migrating timers
  454. * from an idle cpu. This is good for power-savings.
  455. *
  456. * We don't do similar optimization for completely idle system, as
  457. * selecting an idle cpu will add more delays to the timers than intended
  458. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  459. */
  460. int get_nohz_timer_target(void)
  461. {
  462. int cpu = smp_processor_id();
  463. int i;
  464. struct sched_domain *sd;
  465. rcu_read_lock();
  466. for_each_domain(cpu, sd) {
  467. for_each_cpu(i, sched_domain_span(sd)) {
  468. if (!idle_cpu(i)) {
  469. cpu = i;
  470. goto unlock;
  471. }
  472. }
  473. }
  474. unlock:
  475. rcu_read_unlock();
  476. return cpu;
  477. }
  478. /*
  479. * When add_timer_on() enqueues a timer into the timer wheel of an
  480. * idle CPU then this timer might expire before the next timer event
  481. * which is scheduled to wake up that CPU. In case of a completely
  482. * idle system the next event might even be infinite time into the
  483. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  484. * leaves the inner idle loop so the newly added timer is taken into
  485. * account when the CPU goes back to idle and evaluates the timer
  486. * wheel for the next timer event.
  487. */
  488. void wake_up_idle_cpu(int cpu)
  489. {
  490. struct rq *rq = cpu_rq(cpu);
  491. if (cpu == smp_processor_id())
  492. return;
  493. /*
  494. * This is safe, as this function is called with the timer
  495. * wheel base lock of (cpu) held. When the CPU is on the way
  496. * to idle and has not yet set rq->curr to idle then it will
  497. * be serialized on the timer wheel base lock and take the new
  498. * timer into account automatically.
  499. */
  500. if (rq->curr != rq->idle)
  501. return;
  502. /*
  503. * We can set TIF_RESCHED on the idle task of the other CPU
  504. * lockless. The worst case is that the other CPU runs the
  505. * idle task through an additional NOOP schedule()
  506. */
  507. set_tsk_need_resched(rq->idle);
  508. /* NEED_RESCHED must be visible before we test polling */
  509. smp_mb();
  510. if (!tsk_is_polling(rq->idle))
  511. smp_send_reschedule(cpu);
  512. }
  513. static inline bool got_nohz_idle_kick(void)
  514. {
  515. int cpu = smp_processor_id();
  516. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  517. }
  518. #else /* CONFIG_NO_HZ */
  519. static inline bool got_nohz_idle_kick(void)
  520. {
  521. return false;
  522. }
  523. #endif /* CONFIG_NO_HZ */
  524. void sched_avg_update(struct rq *rq)
  525. {
  526. s64 period = sched_avg_period();
  527. while ((s64)(rq->clock - rq->age_stamp) > period) {
  528. /*
  529. * Inline assembly required to prevent the compiler
  530. * optimising this loop into a divmod call.
  531. * See __iter_div_u64_rem() for another example of this.
  532. */
  533. asm("" : "+rm" (rq->age_stamp));
  534. rq->age_stamp += period;
  535. rq->rt_avg /= 2;
  536. }
  537. }
  538. #else /* !CONFIG_SMP */
  539. void resched_task(struct task_struct *p)
  540. {
  541. assert_raw_spin_locked(&task_rq(p)->lock);
  542. set_tsk_need_resched(p);
  543. }
  544. #endif /* CONFIG_SMP */
  545. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  546. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  547. /*
  548. * Iterate task_group tree rooted at *from, calling @down when first entering a
  549. * node and @up when leaving it for the final time.
  550. *
  551. * Caller must hold rcu_lock or sufficient equivalent.
  552. */
  553. int walk_tg_tree_from(struct task_group *from,
  554. tg_visitor down, tg_visitor up, void *data)
  555. {
  556. struct task_group *parent, *child;
  557. int ret;
  558. parent = from;
  559. down:
  560. ret = (*down)(parent, data);
  561. if (ret)
  562. goto out;
  563. list_for_each_entry_rcu(child, &parent->children, siblings) {
  564. parent = child;
  565. goto down;
  566. up:
  567. continue;
  568. }
  569. ret = (*up)(parent, data);
  570. if (ret || parent == from)
  571. goto out;
  572. child = parent;
  573. parent = parent->parent;
  574. if (parent)
  575. goto up;
  576. out:
  577. return ret;
  578. }
  579. int tg_nop(struct task_group *tg, void *data)
  580. {
  581. return 0;
  582. }
  583. #endif
  584. static void set_load_weight(struct task_struct *p)
  585. {
  586. int prio = p->static_prio - MAX_RT_PRIO;
  587. struct load_weight *load = &p->se.load;
  588. /*
  589. * SCHED_IDLE tasks get minimal weight:
  590. */
  591. if (p->policy == SCHED_IDLE) {
  592. load->weight = scale_load(WEIGHT_IDLEPRIO);
  593. load->inv_weight = WMULT_IDLEPRIO;
  594. return;
  595. }
  596. load->weight = scale_load(prio_to_weight[prio]);
  597. load->inv_weight = prio_to_wmult[prio];
  598. }
  599. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  600. {
  601. update_rq_clock(rq);
  602. sched_info_queued(p);
  603. p->sched_class->enqueue_task(rq, p, flags);
  604. }
  605. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  606. {
  607. update_rq_clock(rq);
  608. sched_info_dequeued(p);
  609. p->sched_class->dequeue_task(rq, p, flags);
  610. }
  611. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  612. {
  613. if (task_contributes_to_load(p))
  614. rq->nr_uninterruptible--;
  615. enqueue_task(rq, p, flags);
  616. }
  617. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  618. {
  619. if (task_contributes_to_load(p))
  620. rq->nr_uninterruptible++;
  621. dequeue_task(rq, p, flags);
  622. }
  623. static void update_rq_clock_task(struct rq *rq, s64 delta)
  624. {
  625. /*
  626. * In theory, the compile should just see 0 here, and optimize out the call
  627. * to sched_rt_avg_update. But I don't trust it...
  628. */
  629. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  630. s64 steal = 0, irq_delta = 0;
  631. #endif
  632. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  633. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  634. /*
  635. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  636. * this case when a previous update_rq_clock() happened inside a
  637. * {soft,}irq region.
  638. *
  639. * When this happens, we stop ->clock_task and only update the
  640. * prev_irq_time stamp to account for the part that fit, so that a next
  641. * update will consume the rest. This ensures ->clock_task is
  642. * monotonic.
  643. *
  644. * It does however cause some slight miss-attribution of {soft,}irq
  645. * time, a more accurate solution would be to update the irq_time using
  646. * the current rq->clock timestamp, except that would require using
  647. * atomic ops.
  648. */
  649. if (irq_delta > delta)
  650. irq_delta = delta;
  651. rq->prev_irq_time += irq_delta;
  652. delta -= irq_delta;
  653. #endif
  654. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  655. if (static_key_false((&paravirt_steal_rq_enabled))) {
  656. u64 st;
  657. steal = paravirt_steal_clock(cpu_of(rq));
  658. steal -= rq->prev_steal_time_rq;
  659. if (unlikely(steal > delta))
  660. steal = delta;
  661. st = steal_ticks(steal);
  662. steal = st * TICK_NSEC;
  663. rq->prev_steal_time_rq += steal;
  664. delta -= steal;
  665. }
  666. #endif
  667. rq->clock_task += delta;
  668. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  669. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  670. sched_rt_avg_update(rq, irq_delta + steal);
  671. #endif
  672. }
  673. void sched_set_stop_task(int cpu, struct task_struct *stop)
  674. {
  675. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  676. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  677. if (stop) {
  678. /*
  679. * Make it appear like a SCHED_FIFO task, its something
  680. * userspace knows about and won't get confused about.
  681. *
  682. * Also, it will make PI more or less work without too
  683. * much confusion -- but then, stop work should not
  684. * rely on PI working anyway.
  685. */
  686. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  687. stop->sched_class = &stop_sched_class;
  688. }
  689. cpu_rq(cpu)->stop = stop;
  690. if (old_stop) {
  691. /*
  692. * Reset it back to a normal scheduling class so that
  693. * it can die in pieces.
  694. */
  695. old_stop->sched_class = &rt_sched_class;
  696. }
  697. }
  698. /*
  699. * __normal_prio - return the priority that is based on the static prio
  700. */
  701. static inline int __normal_prio(struct task_struct *p)
  702. {
  703. return p->static_prio;
  704. }
  705. /*
  706. * Calculate the expected normal priority: i.e. priority
  707. * without taking RT-inheritance into account. Might be
  708. * boosted by interactivity modifiers. Changes upon fork,
  709. * setprio syscalls, and whenever the interactivity
  710. * estimator recalculates.
  711. */
  712. static inline int normal_prio(struct task_struct *p)
  713. {
  714. int prio;
  715. if (task_has_rt_policy(p))
  716. prio = MAX_RT_PRIO-1 - p->rt_priority;
  717. else
  718. prio = __normal_prio(p);
  719. return prio;
  720. }
  721. /*
  722. * Calculate the current priority, i.e. the priority
  723. * taken into account by the scheduler. This value might
  724. * be boosted by RT tasks, or might be boosted by
  725. * interactivity modifiers. Will be RT if the task got
  726. * RT-boosted. If not then it returns p->normal_prio.
  727. */
  728. static int effective_prio(struct task_struct *p)
  729. {
  730. p->normal_prio = normal_prio(p);
  731. /*
  732. * If we are RT tasks or we were boosted to RT priority,
  733. * keep the priority unchanged. Otherwise, update priority
  734. * to the normal priority:
  735. */
  736. if (!rt_prio(p->prio))
  737. return p->normal_prio;
  738. return p->prio;
  739. }
  740. /**
  741. * task_curr - is this task currently executing on a CPU?
  742. * @p: the task in question.
  743. */
  744. inline int task_curr(const struct task_struct *p)
  745. {
  746. return cpu_curr(task_cpu(p)) == p;
  747. }
  748. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  749. const struct sched_class *prev_class,
  750. int oldprio)
  751. {
  752. if (prev_class != p->sched_class) {
  753. if (prev_class->switched_from)
  754. prev_class->switched_from(rq, p);
  755. p->sched_class->switched_to(rq, p);
  756. } else if (oldprio != p->prio)
  757. p->sched_class->prio_changed(rq, p, oldprio);
  758. }
  759. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  760. {
  761. const struct sched_class *class;
  762. if (p->sched_class == rq->curr->sched_class) {
  763. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  764. } else {
  765. for_each_class(class) {
  766. if (class == rq->curr->sched_class)
  767. break;
  768. if (class == p->sched_class) {
  769. resched_task(rq->curr);
  770. break;
  771. }
  772. }
  773. }
  774. /*
  775. * A queue event has occurred, and we're going to schedule. In
  776. * this case, we can save a useless back to back clock update.
  777. */
  778. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  779. rq->skip_clock_update = 1;
  780. }
  781. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  782. void register_task_migration_notifier(struct notifier_block *n)
  783. {
  784. atomic_notifier_chain_register(&task_migration_notifier, n);
  785. }
  786. #ifdef CONFIG_SMP
  787. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  788. {
  789. #ifdef CONFIG_SCHED_DEBUG
  790. /*
  791. * We should never call set_task_cpu() on a blocked task,
  792. * ttwu() will sort out the placement.
  793. */
  794. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  795. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  796. #ifdef CONFIG_LOCKDEP
  797. /*
  798. * The caller should hold either p->pi_lock or rq->lock, when changing
  799. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  800. *
  801. * sched_move_task() holds both and thus holding either pins the cgroup,
  802. * see task_group().
  803. *
  804. * Furthermore, all task_rq users should acquire both locks, see
  805. * task_rq_lock().
  806. */
  807. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  808. lockdep_is_held(&task_rq(p)->lock)));
  809. #endif
  810. #endif
  811. trace_sched_migrate_task(p, new_cpu);
  812. if (task_cpu(p) != new_cpu) {
  813. struct task_migration_notifier tmn;
  814. p->se.nr_migrations++;
  815. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  816. tmn.task = p;
  817. tmn.from_cpu = task_cpu(p);
  818. tmn.to_cpu = new_cpu;
  819. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  820. }
  821. __set_task_cpu(p, new_cpu);
  822. }
  823. struct migration_arg {
  824. struct task_struct *task;
  825. int dest_cpu;
  826. };
  827. static int migration_cpu_stop(void *data);
  828. /*
  829. * wait_task_inactive - wait for a thread to unschedule.
  830. *
  831. * If @match_state is nonzero, it's the @p->state value just checked and
  832. * not expected to change. If it changes, i.e. @p might have woken up,
  833. * then return zero. When we succeed in waiting for @p to be off its CPU,
  834. * we return a positive number (its total switch count). If a second call
  835. * a short while later returns the same number, the caller can be sure that
  836. * @p has remained unscheduled the whole time.
  837. *
  838. * The caller must ensure that the task *will* unschedule sometime soon,
  839. * else this function might spin for a *long* time. This function can't
  840. * be called with interrupts off, or it may introduce deadlock with
  841. * smp_call_function() if an IPI is sent by the same process we are
  842. * waiting to become inactive.
  843. */
  844. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  845. {
  846. unsigned long flags;
  847. int running, on_rq;
  848. unsigned long ncsw;
  849. struct rq *rq;
  850. for (;;) {
  851. /*
  852. * We do the initial early heuristics without holding
  853. * any task-queue locks at all. We'll only try to get
  854. * the runqueue lock when things look like they will
  855. * work out!
  856. */
  857. rq = task_rq(p);
  858. /*
  859. * If the task is actively running on another CPU
  860. * still, just relax and busy-wait without holding
  861. * any locks.
  862. *
  863. * NOTE! Since we don't hold any locks, it's not
  864. * even sure that "rq" stays as the right runqueue!
  865. * But we don't care, since "task_running()" will
  866. * return false if the runqueue has changed and p
  867. * is actually now running somewhere else!
  868. */
  869. while (task_running(rq, p)) {
  870. if (match_state && unlikely(p->state != match_state))
  871. return 0;
  872. cpu_relax();
  873. }
  874. /*
  875. * Ok, time to look more closely! We need the rq
  876. * lock now, to be *sure*. If we're wrong, we'll
  877. * just go back and repeat.
  878. */
  879. rq = task_rq_lock(p, &flags);
  880. trace_sched_wait_task(p);
  881. running = task_running(rq, p);
  882. on_rq = p->on_rq;
  883. ncsw = 0;
  884. if (!match_state || p->state == match_state)
  885. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  886. task_rq_unlock(rq, p, &flags);
  887. /*
  888. * If it changed from the expected state, bail out now.
  889. */
  890. if (unlikely(!ncsw))
  891. break;
  892. /*
  893. * Was it really running after all now that we
  894. * checked with the proper locks actually held?
  895. *
  896. * Oops. Go back and try again..
  897. */
  898. if (unlikely(running)) {
  899. cpu_relax();
  900. continue;
  901. }
  902. /*
  903. * It's not enough that it's not actively running,
  904. * it must be off the runqueue _entirely_, and not
  905. * preempted!
  906. *
  907. * So if it was still runnable (but just not actively
  908. * running right now), it's preempted, and we should
  909. * yield - it could be a while.
  910. */
  911. if (unlikely(on_rq)) {
  912. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  913. set_current_state(TASK_UNINTERRUPTIBLE);
  914. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  915. continue;
  916. }
  917. /*
  918. * Ahh, all good. It wasn't running, and it wasn't
  919. * runnable, which means that it will never become
  920. * running in the future either. We're all done!
  921. */
  922. break;
  923. }
  924. return ncsw;
  925. }
  926. /***
  927. * kick_process - kick a running thread to enter/exit the kernel
  928. * @p: the to-be-kicked thread
  929. *
  930. * Cause a process which is running on another CPU to enter
  931. * kernel-mode, without any delay. (to get signals handled.)
  932. *
  933. * NOTE: this function doesn't have to take the runqueue lock,
  934. * because all it wants to ensure is that the remote task enters
  935. * the kernel. If the IPI races and the task has been migrated
  936. * to another CPU then no harm is done and the purpose has been
  937. * achieved as well.
  938. */
  939. void kick_process(struct task_struct *p)
  940. {
  941. int cpu;
  942. preempt_disable();
  943. cpu = task_cpu(p);
  944. if ((cpu != smp_processor_id()) && task_curr(p))
  945. smp_send_reschedule(cpu);
  946. preempt_enable();
  947. }
  948. EXPORT_SYMBOL_GPL(kick_process);
  949. #endif /* CONFIG_SMP */
  950. #ifdef CONFIG_SMP
  951. /*
  952. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  953. */
  954. static int select_fallback_rq(int cpu, struct task_struct *p)
  955. {
  956. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  957. enum { cpuset, possible, fail } state = cpuset;
  958. int dest_cpu;
  959. /* Look for allowed, online CPU in same node. */
  960. for_each_cpu(dest_cpu, nodemask) {
  961. if (!cpu_online(dest_cpu))
  962. continue;
  963. if (!cpu_active(dest_cpu))
  964. continue;
  965. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  966. return dest_cpu;
  967. }
  968. for (;;) {
  969. /* Any allowed, online CPU? */
  970. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  971. if (!cpu_online(dest_cpu))
  972. continue;
  973. if (!cpu_active(dest_cpu))
  974. continue;
  975. goto out;
  976. }
  977. switch (state) {
  978. case cpuset:
  979. /* No more Mr. Nice Guy. */
  980. cpuset_cpus_allowed_fallback(p);
  981. state = possible;
  982. break;
  983. case possible:
  984. do_set_cpus_allowed(p, cpu_possible_mask);
  985. state = fail;
  986. break;
  987. case fail:
  988. BUG();
  989. break;
  990. }
  991. }
  992. out:
  993. if (state != cpuset) {
  994. /*
  995. * Don't tell them about moving exiting tasks or
  996. * kernel threads (both mm NULL), since they never
  997. * leave kernel.
  998. */
  999. if (p->mm && printk_ratelimit()) {
  1000. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1001. task_pid_nr(p), p->comm, cpu);
  1002. }
  1003. }
  1004. return dest_cpu;
  1005. }
  1006. /*
  1007. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1008. */
  1009. static inline
  1010. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1011. {
  1012. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1013. /*
  1014. * In order not to call set_task_cpu() on a blocking task we need
  1015. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1016. * cpu.
  1017. *
  1018. * Since this is common to all placement strategies, this lives here.
  1019. *
  1020. * [ this allows ->select_task() to simply return task_cpu(p) and
  1021. * not worry about this generic constraint ]
  1022. */
  1023. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1024. !cpu_online(cpu)))
  1025. cpu = select_fallback_rq(task_cpu(p), p);
  1026. return cpu;
  1027. }
  1028. static void update_avg(u64 *avg, u64 sample)
  1029. {
  1030. s64 diff = sample - *avg;
  1031. *avg += diff >> 3;
  1032. }
  1033. #endif
  1034. static void
  1035. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1036. {
  1037. #ifdef CONFIG_SCHEDSTATS
  1038. struct rq *rq = this_rq();
  1039. #ifdef CONFIG_SMP
  1040. int this_cpu = smp_processor_id();
  1041. if (cpu == this_cpu) {
  1042. schedstat_inc(rq, ttwu_local);
  1043. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1044. } else {
  1045. struct sched_domain *sd;
  1046. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1047. rcu_read_lock();
  1048. for_each_domain(this_cpu, sd) {
  1049. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1050. schedstat_inc(sd, ttwu_wake_remote);
  1051. break;
  1052. }
  1053. }
  1054. rcu_read_unlock();
  1055. }
  1056. if (wake_flags & WF_MIGRATED)
  1057. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1058. #endif /* CONFIG_SMP */
  1059. schedstat_inc(rq, ttwu_count);
  1060. schedstat_inc(p, se.statistics.nr_wakeups);
  1061. if (wake_flags & WF_SYNC)
  1062. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1063. #endif /* CONFIG_SCHEDSTATS */
  1064. }
  1065. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1066. {
  1067. activate_task(rq, p, en_flags);
  1068. p->on_rq = 1;
  1069. /* if a worker is waking up, notify workqueue */
  1070. if (p->flags & PF_WQ_WORKER)
  1071. wq_worker_waking_up(p, cpu_of(rq));
  1072. }
  1073. /*
  1074. * Mark the task runnable and perform wakeup-preemption.
  1075. */
  1076. static void
  1077. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1078. {
  1079. trace_sched_wakeup(p, true);
  1080. check_preempt_curr(rq, p, wake_flags);
  1081. p->state = TASK_RUNNING;
  1082. #ifdef CONFIG_SMP
  1083. if (p->sched_class->task_woken)
  1084. p->sched_class->task_woken(rq, p);
  1085. if (rq->idle_stamp) {
  1086. u64 delta = rq->clock - rq->idle_stamp;
  1087. u64 max = 2*sysctl_sched_migration_cost;
  1088. if (delta > max)
  1089. rq->avg_idle = max;
  1090. else
  1091. update_avg(&rq->avg_idle, delta);
  1092. rq->idle_stamp = 0;
  1093. }
  1094. #endif
  1095. }
  1096. static void
  1097. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1098. {
  1099. #ifdef CONFIG_SMP
  1100. if (p->sched_contributes_to_load)
  1101. rq->nr_uninterruptible--;
  1102. #endif
  1103. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1104. ttwu_do_wakeup(rq, p, wake_flags);
  1105. }
  1106. /*
  1107. * Called in case the task @p isn't fully descheduled from its runqueue,
  1108. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1109. * since all we need to do is flip p->state to TASK_RUNNING, since
  1110. * the task is still ->on_rq.
  1111. */
  1112. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1113. {
  1114. struct rq *rq;
  1115. int ret = 0;
  1116. rq = __task_rq_lock(p);
  1117. if (p->on_rq) {
  1118. ttwu_do_wakeup(rq, p, wake_flags);
  1119. ret = 1;
  1120. }
  1121. __task_rq_unlock(rq);
  1122. return ret;
  1123. }
  1124. #ifdef CONFIG_SMP
  1125. static void sched_ttwu_pending(void)
  1126. {
  1127. struct rq *rq = this_rq();
  1128. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1129. struct task_struct *p;
  1130. raw_spin_lock(&rq->lock);
  1131. while (llist) {
  1132. p = llist_entry(llist, struct task_struct, wake_entry);
  1133. llist = llist_next(llist);
  1134. ttwu_do_activate(rq, p, 0);
  1135. }
  1136. raw_spin_unlock(&rq->lock);
  1137. }
  1138. void scheduler_ipi(void)
  1139. {
  1140. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1141. return;
  1142. /*
  1143. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1144. * traditionally all their work was done from the interrupt return
  1145. * path. Now that we actually do some work, we need to make sure
  1146. * we do call them.
  1147. *
  1148. * Some archs already do call them, luckily irq_enter/exit nest
  1149. * properly.
  1150. *
  1151. * Arguably we should visit all archs and update all handlers,
  1152. * however a fair share of IPIs are still resched only so this would
  1153. * somewhat pessimize the simple resched case.
  1154. */
  1155. irq_enter();
  1156. sched_ttwu_pending();
  1157. /*
  1158. * Check if someone kicked us for doing the nohz idle load balance.
  1159. */
  1160. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1161. this_rq()->idle_balance = 1;
  1162. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1163. }
  1164. irq_exit();
  1165. }
  1166. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1167. {
  1168. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1169. smp_send_reschedule(cpu);
  1170. }
  1171. bool cpus_share_cache(int this_cpu, int that_cpu)
  1172. {
  1173. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1174. }
  1175. #endif /* CONFIG_SMP */
  1176. static void ttwu_queue(struct task_struct *p, int cpu)
  1177. {
  1178. struct rq *rq = cpu_rq(cpu);
  1179. #if defined(CONFIG_SMP)
  1180. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1181. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1182. ttwu_queue_remote(p, cpu);
  1183. return;
  1184. }
  1185. #endif
  1186. raw_spin_lock(&rq->lock);
  1187. ttwu_do_activate(rq, p, 0);
  1188. raw_spin_unlock(&rq->lock);
  1189. }
  1190. /**
  1191. * try_to_wake_up - wake up a thread
  1192. * @p: the thread to be awakened
  1193. * @state: the mask of task states that can be woken
  1194. * @wake_flags: wake modifier flags (WF_*)
  1195. *
  1196. * Put it on the run-queue if it's not already there. The "current"
  1197. * thread is always on the run-queue (except when the actual
  1198. * re-schedule is in progress), and as such you're allowed to do
  1199. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1200. * runnable without the overhead of this.
  1201. *
  1202. * Returns %true if @p was woken up, %false if it was already running
  1203. * or @state didn't match @p's state.
  1204. */
  1205. static int
  1206. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1207. {
  1208. unsigned long flags;
  1209. int cpu, success = 0;
  1210. smp_wmb();
  1211. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1212. if (!(p->state & state))
  1213. goto out;
  1214. success = 1; /* we're going to change ->state */
  1215. cpu = task_cpu(p);
  1216. if (p->on_rq && ttwu_remote(p, wake_flags))
  1217. goto stat;
  1218. #ifdef CONFIG_SMP
  1219. /*
  1220. * If the owning (remote) cpu is still in the middle of schedule() with
  1221. * this task as prev, wait until its done referencing the task.
  1222. */
  1223. while (p->on_cpu)
  1224. cpu_relax();
  1225. /*
  1226. * Pairs with the smp_wmb() in finish_lock_switch().
  1227. */
  1228. smp_rmb();
  1229. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1230. p->state = TASK_WAKING;
  1231. if (p->sched_class->task_waking)
  1232. p->sched_class->task_waking(p);
  1233. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1234. if (task_cpu(p) != cpu) {
  1235. wake_flags |= WF_MIGRATED;
  1236. set_task_cpu(p, cpu);
  1237. }
  1238. #endif /* CONFIG_SMP */
  1239. ttwu_queue(p, cpu);
  1240. stat:
  1241. ttwu_stat(p, cpu, wake_flags);
  1242. out:
  1243. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1244. return success;
  1245. }
  1246. /**
  1247. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1248. * @p: the thread to be awakened
  1249. *
  1250. * Put @p on the run-queue if it's not already there. The caller must
  1251. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1252. * the current task.
  1253. */
  1254. static void try_to_wake_up_local(struct task_struct *p)
  1255. {
  1256. struct rq *rq = task_rq(p);
  1257. BUG_ON(rq != this_rq());
  1258. BUG_ON(p == current);
  1259. lockdep_assert_held(&rq->lock);
  1260. if (!raw_spin_trylock(&p->pi_lock)) {
  1261. raw_spin_unlock(&rq->lock);
  1262. raw_spin_lock(&p->pi_lock);
  1263. raw_spin_lock(&rq->lock);
  1264. }
  1265. if (!(p->state & TASK_NORMAL))
  1266. goto out;
  1267. if (!p->on_rq)
  1268. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1269. ttwu_do_wakeup(rq, p, 0);
  1270. ttwu_stat(p, smp_processor_id(), 0);
  1271. out:
  1272. raw_spin_unlock(&p->pi_lock);
  1273. }
  1274. /**
  1275. * wake_up_process - Wake up a specific process
  1276. * @p: The process to be woken up.
  1277. *
  1278. * Attempt to wake up the nominated process and move it to the set of runnable
  1279. * processes. Returns 1 if the process was woken up, 0 if it was already
  1280. * running.
  1281. *
  1282. * It may be assumed that this function implies a write memory barrier before
  1283. * changing the task state if and only if any tasks are woken up.
  1284. */
  1285. int wake_up_process(struct task_struct *p)
  1286. {
  1287. return try_to_wake_up(p, TASK_ALL, 0);
  1288. }
  1289. EXPORT_SYMBOL(wake_up_process);
  1290. int wake_up_state(struct task_struct *p, unsigned int state)
  1291. {
  1292. return try_to_wake_up(p, state, 0);
  1293. }
  1294. /*
  1295. * Perform scheduler related setup for a newly forked process p.
  1296. * p is forked by current.
  1297. *
  1298. * __sched_fork() is basic setup used by init_idle() too:
  1299. */
  1300. static void __sched_fork(struct task_struct *p)
  1301. {
  1302. p->on_rq = 0;
  1303. p->se.on_rq = 0;
  1304. p->se.exec_start = 0;
  1305. p->se.sum_exec_runtime = 0;
  1306. p->se.prev_sum_exec_runtime = 0;
  1307. p->se.nr_migrations = 0;
  1308. p->se.vruntime = 0;
  1309. INIT_LIST_HEAD(&p->se.group_node);
  1310. #ifdef CONFIG_SCHEDSTATS
  1311. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1312. #endif
  1313. INIT_LIST_HEAD(&p->rt.run_list);
  1314. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1315. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1316. #endif
  1317. }
  1318. /*
  1319. * fork()/clone()-time setup:
  1320. */
  1321. void sched_fork(struct task_struct *p)
  1322. {
  1323. unsigned long flags;
  1324. int cpu = get_cpu();
  1325. __sched_fork(p);
  1326. /*
  1327. * We mark the process as running here. This guarantees that
  1328. * nobody will actually run it, and a signal or other external
  1329. * event cannot wake it up and insert it on the runqueue either.
  1330. */
  1331. p->state = TASK_RUNNING;
  1332. /*
  1333. * Make sure we do not leak PI boosting priority to the child.
  1334. */
  1335. p->prio = current->normal_prio;
  1336. /*
  1337. * Revert to default priority/policy on fork if requested.
  1338. */
  1339. if (unlikely(p->sched_reset_on_fork)) {
  1340. if (task_has_rt_policy(p)) {
  1341. p->policy = SCHED_NORMAL;
  1342. p->static_prio = NICE_TO_PRIO(0);
  1343. p->rt_priority = 0;
  1344. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1345. p->static_prio = NICE_TO_PRIO(0);
  1346. p->prio = p->normal_prio = __normal_prio(p);
  1347. set_load_weight(p);
  1348. /*
  1349. * We don't need the reset flag anymore after the fork. It has
  1350. * fulfilled its duty:
  1351. */
  1352. p->sched_reset_on_fork = 0;
  1353. }
  1354. if (!rt_prio(p->prio))
  1355. p->sched_class = &fair_sched_class;
  1356. if (p->sched_class->task_fork)
  1357. p->sched_class->task_fork(p);
  1358. /*
  1359. * The child is not yet in the pid-hash so no cgroup attach races,
  1360. * and the cgroup is pinned to this child due to cgroup_fork()
  1361. * is ran before sched_fork().
  1362. *
  1363. * Silence PROVE_RCU.
  1364. */
  1365. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1366. set_task_cpu(p, cpu);
  1367. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1368. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1369. if (likely(sched_info_on()))
  1370. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1371. #endif
  1372. #if defined(CONFIG_SMP)
  1373. p->on_cpu = 0;
  1374. #endif
  1375. #ifdef CONFIG_PREEMPT_COUNT
  1376. /* Want to start with kernel preemption disabled. */
  1377. task_thread_info(p)->preempt_count = 1;
  1378. #endif
  1379. #ifdef CONFIG_SMP
  1380. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1381. #endif
  1382. put_cpu();
  1383. }
  1384. /*
  1385. * wake_up_new_task - wake up a newly created task for the first time.
  1386. *
  1387. * This function will do some initial scheduler statistics housekeeping
  1388. * that must be done for every newly created context, then puts the task
  1389. * on the runqueue and wakes it.
  1390. */
  1391. void wake_up_new_task(struct task_struct *p)
  1392. {
  1393. unsigned long flags;
  1394. struct rq *rq;
  1395. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1396. #ifdef CONFIG_SMP
  1397. /*
  1398. * Fork balancing, do it here and not earlier because:
  1399. * - cpus_allowed can change in the fork path
  1400. * - any previously selected cpu might disappear through hotplug
  1401. */
  1402. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1403. #endif
  1404. rq = __task_rq_lock(p);
  1405. activate_task(rq, p, 0);
  1406. p->on_rq = 1;
  1407. trace_sched_wakeup_new(p, true);
  1408. check_preempt_curr(rq, p, WF_FORK);
  1409. #ifdef CONFIG_SMP
  1410. if (p->sched_class->task_woken)
  1411. p->sched_class->task_woken(rq, p);
  1412. #endif
  1413. task_rq_unlock(rq, p, &flags);
  1414. }
  1415. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1416. /**
  1417. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1418. * @notifier: notifier struct to register
  1419. */
  1420. void preempt_notifier_register(struct preempt_notifier *notifier)
  1421. {
  1422. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1423. }
  1424. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1425. /**
  1426. * preempt_notifier_unregister - no longer interested in preemption notifications
  1427. * @notifier: notifier struct to unregister
  1428. *
  1429. * This is safe to call from within a preemption notifier.
  1430. */
  1431. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1432. {
  1433. hlist_del(&notifier->link);
  1434. }
  1435. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1436. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1437. {
  1438. struct preempt_notifier *notifier;
  1439. struct hlist_node *node;
  1440. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1441. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1442. }
  1443. static void
  1444. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1445. struct task_struct *next)
  1446. {
  1447. struct preempt_notifier *notifier;
  1448. struct hlist_node *node;
  1449. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1450. notifier->ops->sched_out(notifier, next);
  1451. }
  1452. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1453. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1454. {
  1455. }
  1456. static void
  1457. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1458. struct task_struct *next)
  1459. {
  1460. }
  1461. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1462. /**
  1463. * prepare_task_switch - prepare to switch tasks
  1464. * @rq: the runqueue preparing to switch
  1465. * @prev: the current task that is being switched out
  1466. * @next: the task we are going to switch to.
  1467. *
  1468. * This is called with the rq lock held and interrupts off. It must
  1469. * be paired with a subsequent finish_task_switch after the context
  1470. * switch.
  1471. *
  1472. * prepare_task_switch sets up locking and calls architecture specific
  1473. * hooks.
  1474. */
  1475. static inline void
  1476. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1477. struct task_struct *next)
  1478. {
  1479. trace_sched_switch(prev, next);
  1480. sched_info_switch(prev, next);
  1481. perf_event_task_sched_out(prev, next);
  1482. fire_sched_out_preempt_notifiers(prev, next);
  1483. prepare_lock_switch(rq, next);
  1484. prepare_arch_switch(next);
  1485. }
  1486. /**
  1487. * finish_task_switch - clean up after a task-switch
  1488. * @rq: runqueue associated with task-switch
  1489. * @prev: the thread we just switched away from.
  1490. *
  1491. * finish_task_switch must be called after the context switch, paired
  1492. * with a prepare_task_switch call before the context switch.
  1493. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1494. * and do any other architecture-specific cleanup actions.
  1495. *
  1496. * Note that we may have delayed dropping an mm in context_switch(). If
  1497. * so, we finish that here outside of the runqueue lock. (Doing it
  1498. * with the lock held can cause deadlocks; see schedule() for
  1499. * details.)
  1500. */
  1501. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1502. __releases(rq->lock)
  1503. {
  1504. struct mm_struct *mm = rq->prev_mm;
  1505. long prev_state;
  1506. rq->prev_mm = NULL;
  1507. /*
  1508. * A task struct has one reference for the use as "current".
  1509. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1510. * schedule one last time. The schedule call will never return, and
  1511. * the scheduled task must drop that reference.
  1512. * The test for TASK_DEAD must occur while the runqueue locks are
  1513. * still held, otherwise prev could be scheduled on another cpu, die
  1514. * there before we look at prev->state, and then the reference would
  1515. * be dropped twice.
  1516. * Manfred Spraul <manfred@colorfullife.com>
  1517. */
  1518. prev_state = prev->state;
  1519. vtime_task_switch(prev);
  1520. finish_arch_switch(prev);
  1521. perf_event_task_sched_in(prev, current);
  1522. finish_lock_switch(rq, prev);
  1523. finish_arch_post_lock_switch();
  1524. fire_sched_in_preempt_notifiers(current);
  1525. if (mm)
  1526. mmdrop(mm);
  1527. if (unlikely(prev_state == TASK_DEAD)) {
  1528. /*
  1529. * Remove function-return probe instances associated with this
  1530. * task and put them back on the free list.
  1531. */
  1532. kprobe_flush_task(prev);
  1533. put_task_struct(prev);
  1534. }
  1535. }
  1536. #ifdef CONFIG_SMP
  1537. /* assumes rq->lock is held */
  1538. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1539. {
  1540. if (prev->sched_class->pre_schedule)
  1541. prev->sched_class->pre_schedule(rq, prev);
  1542. }
  1543. /* rq->lock is NOT held, but preemption is disabled */
  1544. static inline void post_schedule(struct rq *rq)
  1545. {
  1546. if (rq->post_schedule) {
  1547. unsigned long flags;
  1548. raw_spin_lock_irqsave(&rq->lock, flags);
  1549. if (rq->curr->sched_class->post_schedule)
  1550. rq->curr->sched_class->post_schedule(rq);
  1551. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1552. rq->post_schedule = 0;
  1553. }
  1554. }
  1555. #else
  1556. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1557. {
  1558. }
  1559. static inline void post_schedule(struct rq *rq)
  1560. {
  1561. }
  1562. #endif
  1563. /**
  1564. * schedule_tail - first thing a freshly forked thread must call.
  1565. * @prev: the thread we just switched away from.
  1566. */
  1567. asmlinkage void schedule_tail(struct task_struct *prev)
  1568. __releases(rq->lock)
  1569. {
  1570. struct rq *rq = this_rq();
  1571. finish_task_switch(rq, prev);
  1572. /*
  1573. * FIXME: do we need to worry about rq being invalidated by the
  1574. * task_switch?
  1575. */
  1576. post_schedule(rq);
  1577. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1578. /* In this case, finish_task_switch does not reenable preemption */
  1579. preempt_enable();
  1580. #endif
  1581. if (current->set_child_tid)
  1582. put_user(task_pid_vnr(current), current->set_child_tid);
  1583. }
  1584. /*
  1585. * context_switch - switch to the new MM and the new
  1586. * thread's register state.
  1587. */
  1588. static inline void
  1589. context_switch(struct rq *rq, struct task_struct *prev,
  1590. struct task_struct *next)
  1591. {
  1592. struct mm_struct *mm, *oldmm;
  1593. prepare_task_switch(rq, prev, next);
  1594. mm = next->mm;
  1595. oldmm = prev->active_mm;
  1596. /*
  1597. * For paravirt, this is coupled with an exit in switch_to to
  1598. * combine the page table reload and the switch backend into
  1599. * one hypercall.
  1600. */
  1601. arch_start_context_switch(prev);
  1602. if (!mm) {
  1603. next->active_mm = oldmm;
  1604. atomic_inc(&oldmm->mm_count);
  1605. enter_lazy_tlb(oldmm, next);
  1606. } else
  1607. switch_mm(oldmm, mm, next);
  1608. if (!prev->mm) {
  1609. prev->active_mm = NULL;
  1610. rq->prev_mm = oldmm;
  1611. }
  1612. /*
  1613. * Since the runqueue lock will be released by the next
  1614. * task (which is an invalid locking op but in the case
  1615. * of the scheduler it's an obvious special-case), so we
  1616. * do an early lockdep release here:
  1617. */
  1618. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1619. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1620. #endif
  1621. /* Here we just switch the register state and the stack. */
  1622. rcu_switch(prev, next);
  1623. switch_to(prev, next, prev);
  1624. barrier();
  1625. /*
  1626. * this_rq must be evaluated again because prev may have moved
  1627. * CPUs since it called schedule(), thus the 'rq' on its stack
  1628. * frame will be invalid.
  1629. */
  1630. finish_task_switch(this_rq(), prev);
  1631. }
  1632. /*
  1633. * nr_running, nr_uninterruptible and nr_context_switches:
  1634. *
  1635. * externally visible scheduler statistics: current number of runnable
  1636. * threads, current number of uninterruptible-sleeping threads, total
  1637. * number of context switches performed since bootup.
  1638. */
  1639. unsigned long nr_running(void)
  1640. {
  1641. unsigned long i, sum = 0;
  1642. for_each_online_cpu(i)
  1643. sum += cpu_rq(i)->nr_running;
  1644. return sum;
  1645. }
  1646. unsigned long nr_uninterruptible(void)
  1647. {
  1648. unsigned long i, sum = 0;
  1649. for_each_possible_cpu(i)
  1650. sum += cpu_rq(i)->nr_uninterruptible;
  1651. /*
  1652. * Since we read the counters lockless, it might be slightly
  1653. * inaccurate. Do not allow it to go below zero though:
  1654. */
  1655. if (unlikely((long)sum < 0))
  1656. sum = 0;
  1657. return sum;
  1658. }
  1659. unsigned long long nr_context_switches(void)
  1660. {
  1661. int i;
  1662. unsigned long long sum = 0;
  1663. for_each_possible_cpu(i)
  1664. sum += cpu_rq(i)->nr_switches;
  1665. return sum;
  1666. }
  1667. unsigned long nr_iowait(void)
  1668. {
  1669. unsigned long i, sum = 0;
  1670. for_each_possible_cpu(i)
  1671. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1672. return sum;
  1673. }
  1674. unsigned long nr_iowait_cpu(int cpu)
  1675. {
  1676. struct rq *this = cpu_rq(cpu);
  1677. return atomic_read(&this->nr_iowait);
  1678. }
  1679. unsigned long this_cpu_load(void)
  1680. {
  1681. struct rq *this = this_rq();
  1682. return this->cpu_load[0];
  1683. }
  1684. /*
  1685. * Global load-average calculations
  1686. *
  1687. * We take a distributed and async approach to calculating the global load-avg
  1688. * in order to minimize overhead.
  1689. *
  1690. * The global load average is an exponentially decaying average of nr_running +
  1691. * nr_uninterruptible.
  1692. *
  1693. * Once every LOAD_FREQ:
  1694. *
  1695. * nr_active = 0;
  1696. * for_each_possible_cpu(cpu)
  1697. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1698. *
  1699. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1700. *
  1701. * Due to a number of reasons the above turns in the mess below:
  1702. *
  1703. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1704. * serious number of cpus, therefore we need to take a distributed approach
  1705. * to calculating nr_active.
  1706. *
  1707. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1708. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1709. *
  1710. * So assuming nr_active := 0 when we start out -- true per definition, we
  1711. * can simply take per-cpu deltas and fold those into a global accumulate
  1712. * to obtain the same result. See calc_load_fold_active().
  1713. *
  1714. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1715. * across the machine, we assume 10 ticks is sufficient time for every
  1716. * cpu to have completed this task.
  1717. *
  1718. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1719. * again, being late doesn't loose the delta, just wrecks the sample.
  1720. *
  1721. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1722. * this would add another cross-cpu cacheline miss and atomic operation
  1723. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1724. * when it went into uninterruptible state and decrement on whatever cpu
  1725. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1726. * all cpus yields the correct result.
  1727. *
  1728. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1729. */
  1730. /* Variables and functions for calc_load */
  1731. static atomic_long_t calc_load_tasks;
  1732. static unsigned long calc_load_update;
  1733. unsigned long avenrun[3];
  1734. EXPORT_SYMBOL(avenrun); /* should be removed */
  1735. /**
  1736. * get_avenrun - get the load average array
  1737. * @loads: pointer to dest load array
  1738. * @offset: offset to add
  1739. * @shift: shift count to shift the result left
  1740. *
  1741. * These values are estimates at best, so no need for locking.
  1742. */
  1743. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1744. {
  1745. loads[0] = (avenrun[0] + offset) << shift;
  1746. loads[1] = (avenrun[1] + offset) << shift;
  1747. loads[2] = (avenrun[2] + offset) << shift;
  1748. }
  1749. static long calc_load_fold_active(struct rq *this_rq)
  1750. {
  1751. long nr_active, delta = 0;
  1752. nr_active = this_rq->nr_running;
  1753. nr_active += (long) this_rq->nr_uninterruptible;
  1754. if (nr_active != this_rq->calc_load_active) {
  1755. delta = nr_active - this_rq->calc_load_active;
  1756. this_rq->calc_load_active = nr_active;
  1757. }
  1758. return delta;
  1759. }
  1760. /*
  1761. * a1 = a0 * e + a * (1 - e)
  1762. */
  1763. static unsigned long
  1764. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1765. {
  1766. load *= exp;
  1767. load += active * (FIXED_1 - exp);
  1768. load += 1UL << (FSHIFT - 1);
  1769. return load >> FSHIFT;
  1770. }
  1771. #ifdef CONFIG_NO_HZ
  1772. /*
  1773. * Handle NO_HZ for the global load-average.
  1774. *
  1775. * Since the above described distributed algorithm to compute the global
  1776. * load-average relies on per-cpu sampling from the tick, it is affected by
  1777. * NO_HZ.
  1778. *
  1779. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1780. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1781. * when we read the global state.
  1782. *
  1783. * Obviously reality has to ruin such a delightfully simple scheme:
  1784. *
  1785. * - When we go NO_HZ idle during the window, we can negate our sample
  1786. * contribution, causing under-accounting.
  1787. *
  1788. * We avoid this by keeping two idle-delta counters and flipping them
  1789. * when the window starts, thus separating old and new NO_HZ load.
  1790. *
  1791. * The only trick is the slight shift in index flip for read vs write.
  1792. *
  1793. * 0s 5s 10s 15s
  1794. * +10 +10 +10 +10
  1795. * |-|-----------|-|-----------|-|-----------|-|
  1796. * r:0 0 1 1 0 0 1 1 0
  1797. * w:0 1 1 0 0 1 1 0 0
  1798. *
  1799. * This ensures we'll fold the old idle contribution in this window while
  1800. * accumlating the new one.
  1801. *
  1802. * - When we wake up from NO_HZ idle during the window, we push up our
  1803. * contribution, since we effectively move our sample point to a known
  1804. * busy state.
  1805. *
  1806. * This is solved by pushing the window forward, and thus skipping the
  1807. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1808. * was in effect at the time the window opened). This also solves the issue
  1809. * of having to deal with a cpu having been in NOHZ idle for multiple
  1810. * LOAD_FREQ intervals.
  1811. *
  1812. * When making the ILB scale, we should try to pull this in as well.
  1813. */
  1814. static atomic_long_t calc_load_idle[2];
  1815. static int calc_load_idx;
  1816. static inline int calc_load_write_idx(void)
  1817. {
  1818. int idx = calc_load_idx;
  1819. /*
  1820. * See calc_global_nohz(), if we observe the new index, we also
  1821. * need to observe the new update time.
  1822. */
  1823. smp_rmb();
  1824. /*
  1825. * If the folding window started, make sure we start writing in the
  1826. * next idle-delta.
  1827. */
  1828. if (!time_before(jiffies, calc_load_update))
  1829. idx++;
  1830. return idx & 1;
  1831. }
  1832. static inline int calc_load_read_idx(void)
  1833. {
  1834. return calc_load_idx & 1;
  1835. }
  1836. void calc_load_enter_idle(void)
  1837. {
  1838. struct rq *this_rq = this_rq();
  1839. long delta;
  1840. /*
  1841. * We're going into NOHZ mode, if there's any pending delta, fold it
  1842. * into the pending idle delta.
  1843. */
  1844. delta = calc_load_fold_active(this_rq);
  1845. if (delta) {
  1846. int idx = calc_load_write_idx();
  1847. atomic_long_add(delta, &calc_load_idle[idx]);
  1848. }
  1849. }
  1850. void calc_load_exit_idle(void)
  1851. {
  1852. struct rq *this_rq = this_rq();
  1853. /*
  1854. * If we're still before the sample window, we're done.
  1855. */
  1856. if (time_before(jiffies, this_rq->calc_load_update))
  1857. return;
  1858. /*
  1859. * We woke inside or after the sample window, this means we're already
  1860. * accounted through the nohz accounting, so skip the entire deal and
  1861. * sync up for the next window.
  1862. */
  1863. this_rq->calc_load_update = calc_load_update;
  1864. if (time_before(jiffies, this_rq->calc_load_update + 10))
  1865. this_rq->calc_load_update += LOAD_FREQ;
  1866. }
  1867. static long calc_load_fold_idle(void)
  1868. {
  1869. int idx = calc_load_read_idx();
  1870. long delta = 0;
  1871. if (atomic_long_read(&calc_load_idle[idx]))
  1872. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  1873. return delta;
  1874. }
  1875. /**
  1876. * fixed_power_int - compute: x^n, in O(log n) time
  1877. *
  1878. * @x: base of the power
  1879. * @frac_bits: fractional bits of @x
  1880. * @n: power to raise @x to.
  1881. *
  1882. * By exploiting the relation between the definition of the natural power
  1883. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1884. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1885. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1886. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1887. * of course trivially computable in O(log_2 n), the length of our binary
  1888. * vector.
  1889. */
  1890. static unsigned long
  1891. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1892. {
  1893. unsigned long result = 1UL << frac_bits;
  1894. if (n) for (;;) {
  1895. if (n & 1) {
  1896. result *= x;
  1897. result += 1UL << (frac_bits - 1);
  1898. result >>= frac_bits;
  1899. }
  1900. n >>= 1;
  1901. if (!n)
  1902. break;
  1903. x *= x;
  1904. x += 1UL << (frac_bits - 1);
  1905. x >>= frac_bits;
  1906. }
  1907. return result;
  1908. }
  1909. /*
  1910. * a1 = a0 * e + a * (1 - e)
  1911. *
  1912. * a2 = a1 * e + a * (1 - e)
  1913. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1914. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1915. *
  1916. * a3 = a2 * e + a * (1 - e)
  1917. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1918. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1919. *
  1920. * ...
  1921. *
  1922. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1923. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1924. * = a0 * e^n + a * (1 - e^n)
  1925. *
  1926. * [1] application of the geometric series:
  1927. *
  1928. * n 1 - x^(n+1)
  1929. * S_n := \Sum x^i = -------------
  1930. * i=0 1 - x
  1931. */
  1932. static unsigned long
  1933. calc_load_n(unsigned long load, unsigned long exp,
  1934. unsigned long active, unsigned int n)
  1935. {
  1936. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1937. }
  1938. /*
  1939. * NO_HZ can leave us missing all per-cpu ticks calling
  1940. * calc_load_account_active(), but since an idle CPU folds its delta into
  1941. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1942. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1943. *
  1944. * Once we've updated the global active value, we need to apply the exponential
  1945. * weights adjusted to the number of cycles missed.
  1946. */
  1947. static void calc_global_nohz(void)
  1948. {
  1949. long delta, active, n;
  1950. if (!time_before(jiffies, calc_load_update + 10)) {
  1951. /*
  1952. * Catch-up, fold however many we are behind still
  1953. */
  1954. delta = jiffies - calc_load_update - 10;
  1955. n = 1 + (delta / LOAD_FREQ);
  1956. active = atomic_long_read(&calc_load_tasks);
  1957. active = active > 0 ? active * FIXED_1 : 0;
  1958. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1959. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1960. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1961. calc_load_update += n * LOAD_FREQ;
  1962. }
  1963. /*
  1964. * Flip the idle index...
  1965. *
  1966. * Make sure we first write the new time then flip the index, so that
  1967. * calc_load_write_idx() will see the new time when it reads the new
  1968. * index, this avoids a double flip messing things up.
  1969. */
  1970. smp_wmb();
  1971. calc_load_idx++;
  1972. }
  1973. #else /* !CONFIG_NO_HZ */
  1974. static inline long calc_load_fold_idle(void) { return 0; }
  1975. static inline void calc_global_nohz(void) { }
  1976. #endif /* CONFIG_NO_HZ */
  1977. /*
  1978. * calc_load - update the avenrun load estimates 10 ticks after the
  1979. * CPUs have updated calc_load_tasks.
  1980. */
  1981. void calc_global_load(unsigned long ticks)
  1982. {
  1983. long active, delta;
  1984. if (time_before(jiffies, calc_load_update + 10))
  1985. return;
  1986. /*
  1987. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  1988. */
  1989. delta = calc_load_fold_idle();
  1990. if (delta)
  1991. atomic_long_add(delta, &calc_load_tasks);
  1992. active = atomic_long_read(&calc_load_tasks);
  1993. active = active > 0 ? active * FIXED_1 : 0;
  1994. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  1995. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  1996. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  1997. calc_load_update += LOAD_FREQ;
  1998. /*
  1999. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2000. */
  2001. calc_global_nohz();
  2002. }
  2003. /*
  2004. * Called from update_cpu_load() to periodically update this CPU's
  2005. * active count.
  2006. */
  2007. static void calc_load_account_active(struct rq *this_rq)
  2008. {
  2009. long delta;
  2010. if (time_before(jiffies, this_rq->calc_load_update))
  2011. return;
  2012. delta = calc_load_fold_active(this_rq);
  2013. if (delta)
  2014. atomic_long_add(delta, &calc_load_tasks);
  2015. this_rq->calc_load_update += LOAD_FREQ;
  2016. }
  2017. /*
  2018. * End of global load-average stuff
  2019. */
  2020. /*
  2021. * The exact cpuload at various idx values, calculated at every tick would be
  2022. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2023. *
  2024. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2025. * on nth tick when cpu may be busy, then we have:
  2026. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2027. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2028. *
  2029. * decay_load_missed() below does efficient calculation of
  2030. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2031. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2032. *
  2033. * The calculation is approximated on a 128 point scale.
  2034. * degrade_zero_ticks is the number of ticks after which load at any
  2035. * particular idx is approximated to be zero.
  2036. * degrade_factor is a precomputed table, a row for each load idx.
  2037. * Each column corresponds to degradation factor for a power of two ticks,
  2038. * based on 128 point scale.
  2039. * Example:
  2040. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2041. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2042. *
  2043. * With this power of 2 load factors, we can degrade the load n times
  2044. * by looking at 1 bits in n and doing as many mult/shift instead of
  2045. * n mult/shifts needed by the exact degradation.
  2046. */
  2047. #define DEGRADE_SHIFT 7
  2048. static const unsigned char
  2049. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2050. static const unsigned char
  2051. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2052. {0, 0, 0, 0, 0, 0, 0, 0},
  2053. {64, 32, 8, 0, 0, 0, 0, 0},
  2054. {96, 72, 40, 12, 1, 0, 0},
  2055. {112, 98, 75, 43, 15, 1, 0},
  2056. {120, 112, 98, 76, 45, 16, 2} };
  2057. /*
  2058. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2059. * would be when CPU is idle and so we just decay the old load without
  2060. * adding any new load.
  2061. */
  2062. static unsigned long
  2063. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2064. {
  2065. int j = 0;
  2066. if (!missed_updates)
  2067. return load;
  2068. if (missed_updates >= degrade_zero_ticks[idx])
  2069. return 0;
  2070. if (idx == 1)
  2071. return load >> missed_updates;
  2072. while (missed_updates) {
  2073. if (missed_updates % 2)
  2074. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2075. missed_updates >>= 1;
  2076. j++;
  2077. }
  2078. return load;
  2079. }
  2080. /*
  2081. * Update rq->cpu_load[] statistics. This function is usually called every
  2082. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2083. * every tick. We fix it up based on jiffies.
  2084. */
  2085. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2086. unsigned long pending_updates)
  2087. {
  2088. int i, scale;
  2089. this_rq->nr_load_updates++;
  2090. /* Update our load: */
  2091. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2092. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2093. unsigned long old_load, new_load;
  2094. /* scale is effectively 1 << i now, and >> i divides by scale */
  2095. old_load = this_rq->cpu_load[i];
  2096. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2097. new_load = this_load;
  2098. /*
  2099. * Round up the averaging division if load is increasing. This
  2100. * prevents us from getting stuck on 9 if the load is 10, for
  2101. * example.
  2102. */
  2103. if (new_load > old_load)
  2104. new_load += scale - 1;
  2105. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2106. }
  2107. sched_avg_update(this_rq);
  2108. }
  2109. #ifdef CONFIG_NO_HZ
  2110. /*
  2111. * There is no sane way to deal with nohz on smp when using jiffies because the
  2112. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2113. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2114. *
  2115. * Therefore we cannot use the delta approach from the regular tick since that
  2116. * would seriously skew the load calculation. However we'll make do for those
  2117. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2118. * (tick_nohz_idle_exit).
  2119. *
  2120. * This means we might still be one tick off for nohz periods.
  2121. */
  2122. /*
  2123. * Called from nohz_idle_balance() to update the load ratings before doing the
  2124. * idle balance.
  2125. */
  2126. void update_idle_cpu_load(struct rq *this_rq)
  2127. {
  2128. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2129. unsigned long load = this_rq->load.weight;
  2130. unsigned long pending_updates;
  2131. /*
  2132. * bail if there's load or we're actually up-to-date.
  2133. */
  2134. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2135. return;
  2136. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2137. this_rq->last_load_update_tick = curr_jiffies;
  2138. __update_cpu_load(this_rq, load, pending_updates);
  2139. }
  2140. /*
  2141. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2142. */
  2143. void update_cpu_load_nohz(void)
  2144. {
  2145. struct rq *this_rq = this_rq();
  2146. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2147. unsigned long pending_updates;
  2148. if (curr_jiffies == this_rq->last_load_update_tick)
  2149. return;
  2150. raw_spin_lock(&this_rq->lock);
  2151. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2152. if (pending_updates) {
  2153. this_rq->last_load_update_tick = curr_jiffies;
  2154. /*
  2155. * We were idle, this means load 0, the current load might be
  2156. * !0 due to remote wakeups and the sort.
  2157. */
  2158. __update_cpu_load(this_rq, 0, pending_updates);
  2159. }
  2160. raw_spin_unlock(&this_rq->lock);
  2161. }
  2162. #endif /* CONFIG_NO_HZ */
  2163. /*
  2164. * Called from scheduler_tick()
  2165. */
  2166. static void update_cpu_load_active(struct rq *this_rq)
  2167. {
  2168. /*
  2169. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2170. */
  2171. this_rq->last_load_update_tick = jiffies;
  2172. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2173. calc_load_account_active(this_rq);
  2174. }
  2175. #ifdef CONFIG_SMP
  2176. /*
  2177. * sched_exec - execve() is a valuable balancing opportunity, because at
  2178. * this point the task has the smallest effective memory and cache footprint.
  2179. */
  2180. void sched_exec(void)
  2181. {
  2182. struct task_struct *p = current;
  2183. unsigned long flags;
  2184. int dest_cpu;
  2185. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2186. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2187. if (dest_cpu == smp_processor_id())
  2188. goto unlock;
  2189. if (likely(cpu_active(dest_cpu))) {
  2190. struct migration_arg arg = { p, dest_cpu };
  2191. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2192. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2193. return;
  2194. }
  2195. unlock:
  2196. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2197. }
  2198. #endif
  2199. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2200. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2201. EXPORT_PER_CPU_SYMBOL(kstat);
  2202. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2203. /*
  2204. * Return any ns on the sched_clock that have not yet been accounted in
  2205. * @p in case that task is currently running.
  2206. *
  2207. * Called with task_rq_lock() held on @rq.
  2208. */
  2209. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2210. {
  2211. u64 ns = 0;
  2212. if (task_current(rq, p)) {
  2213. update_rq_clock(rq);
  2214. ns = rq->clock_task - p->se.exec_start;
  2215. if ((s64)ns < 0)
  2216. ns = 0;
  2217. }
  2218. return ns;
  2219. }
  2220. unsigned long long task_delta_exec(struct task_struct *p)
  2221. {
  2222. unsigned long flags;
  2223. struct rq *rq;
  2224. u64 ns = 0;
  2225. rq = task_rq_lock(p, &flags);
  2226. ns = do_task_delta_exec(p, rq);
  2227. task_rq_unlock(rq, p, &flags);
  2228. return ns;
  2229. }
  2230. /*
  2231. * Return accounted runtime for the task.
  2232. * In case the task is currently running, return the runtime plus current's
  2233. * pending runtime that have not been accounted yet.
  2234. */
  2235. unsigned long long task_sched_runtime(struct task_struct *p)
  2236. {
  2237. unsigned long flags;
  2238. struct rq *rq;
  2239. u64 ns = 0;
  2240. rq = task_rq_lock(p, &flags);
  2241. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2242. task_rq_unlock(rq, p, &flags);
  2243. return ns;
  2244. }
  2245. /*
  2246. * This function gets called by the timer code, with HZ frequency.
  2247. * We call it with interrupts disabled.
  2248. */
  2249. void scheduler_tick(void)
  2250. {
  2251. int cpu = smp_processor_id();
  2252. struct rq *rq = cpu_rq(cpu);
  2253. struct task_struct *curr = rq->curr;
  2254. sched_clock_tick();
  2255. raw_spin_lock(&rq->lock);
  2256. update_rq_clock(rq);
  2257. update_cpu_load_active(rq);
  2258. curr->sched_class->task_tick(rq, curr, 0);
  2259. raw_spin_unlock(&rq->lock);
  2260. perf_event_task_tick();
  2261. #ifdef CONFIG_SMP
  2262. rq->idle_balance = idle_cpu(cpu);
  2263. trigger_load_balance(rq, cpu);
  2264. #endif
  2265. }
  2266. notrace unsigned long get_parent_ip(unsigned long addr)
  2267. {
  2268. if (in_lock_functions(addr)) {
  2269. addr = CALLER_ADDR2;
  2270. if (in_lock_functions(addr))
  2271. addr = CALLER_ADDR3;
  2272. }
  2273. return addr;
  2274. }
  2275. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2276. defined(CONFIG_PREEMPT_TRACER))
  2277. void __kprobes add_preempt_count(int val)
  2278. {
  2279. #ifdef CONFIG_DEBUG_PREEMPT
  2280. /*
  2281. * Underflow?
  2282. */
  2283. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2284. return;
  2285. #endif
  2286. preempt_count() += val;
  2287. #ifdef CONFIG_DEBUG_PREEMPT
  2288. /*
  2289. * Spinlock count overflowing soon?
  2290. */
  2291. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2292. PREEMPT_MASK - 10);
  2293. #endif
  2294. if (preempt_count() == val)
  2295. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2296. }
  2297. EXPORT_SYMBOL(add_preempt_count);
  2298. void __kprobes sub_preempt_count(int val)
  2299. {
  2300. #ifdef CONFIG_DEBUG_PREEMPT
  2301. /*
  2302. * Underflow?
  2303. */
  2304. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2305. return;
  2306. /*
  2307. * Is the spinlock portion underflowing?
  2308. */
  2309. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2310. !(preempt_count() & PREEMPT_MASK)))
  2311. return;
  2312. #endif
  2313. if (preempt_count() == val)
  2314. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2315. preempt_count() -= val;
  2316. }
  2317. EXPORT_SYMBOL(sub_preempt_count);
  2318. #endif
  2319. /*
  2320. * Print scheduling while atomic bug:
  2321. */
  2322. static noinline void __schedule_bug(struct task_struct *prev)
  2323. {
  2324. if (oops_in_progress)
  2325. return;
  2326. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2327. prev->comm, prev->pid, preempt_count());
  2328. debug_show_held_locks(prev);
  2329. print_modules();
  2330. if (irqs_disabled())
  2331. print_irqtrace_events(prev);
  2332. dump_stack();
  2333. add_taint(TAINT_WARN);
  2334. }
  2335. /*
  2336. * Various schedule()-time debugging checks and statistics:
  2337. */
  2338. static inline void schedule_debug(struct task_struct *prev)
  2339. {
  2340. /*
  2341. * Test if we are atomic. Since do_exit() needs to call into
  2342. * schedule() atomically, we ignore that path for now.
  2343. * Otherwise, whine if we are scheduling when we should not be.
  2344. */
  2345. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2346. __schedule_bug(prev);
  2347. rcu_sleep_check();
  2348. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2349. schedstat_inc(this_rq(), sched_count);
  2350. }
  2351. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2352. {
  2353. if (prev->on_rq || rq->skip_clock_update < 0)
  2354. update_rq_clock(rq);
  2355. prev->sched_class->put_prev_task(rq, prev);
  2356. }
  2357. /*
  2358. * Pick up the highest-prio task:
  2359. */
  2360. static inline struct task_struct *
  2361. pick_next_task(struct rq *rq)
  2362. {
  2363. const struct sched_class *class;
  2364. struct task_struct *p;
  2365. /*
  2366. * Optimization: we know that if all tasks are in
  2367. * the fair class we can call that function directly:
  2368. */
  2369. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2370. p = fair_sched_class.pick_next_task(rq);
  2371. if (likely(p))
  2372. return p;
  2373. }
  2374. for_each_class(class) {
  2375. p = class->pick_next_task(rq);
  2376. if (p)
  2377. return p;
  2378. }
  2379. BUG(); /* the idle class will always have a runnable task */
  2380. }
  2381. /*
  2382. * __schedule() is the main scheduler function.
  2383. *
  2384. * The main means of driving the scheduler and thus entering this function are:
  2385. *
  2386. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2387. *
  2388. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2389. * paths. For example, see arch/x86/entry_64.S.
  2390. *
  2391. * To drive preemption between tasks, the scheduler sets the flag in timer
  2392. * interrupt handler scheduler_tick().
  2393. *
  2394. * 3. Wakeups don't really cause entry into schedule(). They add a
  2395. * task to the run-queue and that's it.
  2396. *
  2397. * Now, if the new task added to the run-queue preempts the current
  2398. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2399. * called on the nearest possible occasion:
  2400. *
  2401. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2402. *
  2403. * - in syscall or exception context, at the next outmost
  2404. * preempt_enable(). (this might be as soon as the wake_up()'s
  2405. * spin_unlock()!)
  2406. *
  2407. * - in IRQ context, return from interrupt-handler to
  2408. * preemptible context
  2409. *
  2410. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2411. * then at the next:
  2412. *
  2413. * - cond_resched() call
  2414. * - explicit schedule() call
  2415. * - return from syscall or exception to user-space
  2416. * - return from interrupt-handler to user-space
  2417. */
  2418. static void __sched __schedule(void)
  2419. {
  2420. struct task_struct *prev, *next;
  2421. unsigned long *switch_count;
  2422. struct rq *rq;
  2423. int cpu;
  2424. need_resched:
  2425. preempt_disable();
  2426. cpu = smp_processor_id();
  2427. rq = cpu_rq(cpu);
  2428. rcu_note_context_switch(cpu);
  2429. prev = rq->curr;
  2430. schedule_debug(prev);
  2431. if (sched_feat(HRTICK))
  2432. hrtick_clear(rq);
  2433. raw_spin_lock_irq(&rq->lock);
  2434. switch_count = &prev->nivcsw;
  2435. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2436. if (unlikely(signal_pending_state(prev->state, prev))) {
  2437. prev->state = TASK_RUNNING;
  2438. } else {
  2439. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2440. prev->on_rq = 0;
  2441. /*
  2442. * If a worker went to sleep, notify and ask workqueue
  2443. * whether it wants to wake up a task to maintain
  2444. * concurrency.
  2445. */
  2446. if (prev->flags & PF_WQ_WORKER) {
  2447. struct task_struct *to_wakeup;
  2448. to_wakeup = wq_worker_sleeping(prev, cpu);
  2449. if (to_wakeup)
  2450. try_to_wake_up_local(to_wakeup);
  2451. }
  2452. }
  2453. switch_count = &prev->nvcsw;
  2454. }
  2455. pre_schedule(rq, prev);
  2456. if (unlikely(!rq->nr_running))
  2457. idle_balance(cpu, rq);
  2458. put_prev_task(rq, prev);
  2459. next = pick_next_task(rq);
  2460. clear_tsk_need_resched(prev);
  2461. rq->skip_clock_update = 0;
  2462. if (likely(prev != next)) {
  2463. rq->nr_switches++;
  2464. rq->curr = next;
  2465. ++*switch_count;
  2466. context_switch(rq, prev, next); /* unlocks the rq */
  2467. /*
  2468. * The context switch have flipped the stack from under us
  2469. * and restored the local variables which were saved when
  2470. * this task called schedule() in the past. prev == current
  2471. * is still correct, but it can be moved to another cpu/rq.
  2472. */
  2473. cpu = smp_processor_id();
  2474. rq = cpu_rq(cpu);
  2475. } else
  2476. raw_spin_unlock_irq(&rq->lock);
  2477. post_schedule(rq);
  2478. sched_preempt_enable_no_resched();
  2479. if (need_resched())
  2480. goto need_resched;
  2481. }
  2482. static inline void sched_submit_work(struct task_struct *tsk)
  2483. {
  2484. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2485. return;
  2486. /*
  2487. * If we are going to sleep and we have plugged IO queued,
  2488. * make sure to submit it to avoid deadlocks.
  2489. */
  2490. if (blk_needs_flush_plug(tsk))
  2491. blk_schedule_flush_plug(tsk);
  2492. }
  2493. asmlinkage void __sched schedule(void)
  2494. {
  2495. struct task_struct *tsk = current;
  2496. sched_submit_work(tsk);
  2497. __schedule();
  2498. }
  2499. EXPORT_SYMBOL(schedule);
  2500. #ifdef CONFIG_RCU_USER_QS
  2501. asmlinkage void __sched schedule_user(void)
  2502. {
  2503. /*
  2504. * If we come here after a random call to set_need_resched(),
  2505. * or we have been woken up remotely but the IPI has not yet arrived,
  2506. * we haven't yet exited the RCU idle mode. Do it here manually until
  2507. * we find a better solution.
  2508. */
  2509. rcu_user_exit();
  2510. schedule();
  2511. rcu_user_enter();
  2512. }
  2513. #endif
  2514. /**
  2515. * schedule_preempt_disabled - called with preemption disabled
  2516. *
  2517. * Returns with preemption disabled. Note: preempt_count must be 1
  2518. */
  2519. void __sched schedule_preempt_disabled(void)
  2520. {
  2521. sched_preempt_enable_no_resched();
  2522. schedule();
  2523. preempt_disable();
  2524. }
  2525. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2526. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2527. {
  2528. if (lock->owner != owner)
  2529. return false;
  2530. /*
  2531. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2532. * lock->owner still matches owner, if that fails, owner might
  2533. * point to free()d memory, if it still matches, the rcu_read_lock()
  2534. * ensures the memory stays valid.
  2535. */
  2536. barrier();
  2537. return owner->on_cpu;
  2538. }
  2539. /*
  2540. * Look out! "owner" is an entirely speculative pointer
  2541. * access and not reliable.
  2542. */
  2543. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2544. {
  2545. if (!sched_feat(OWNER_SPIN))
  2546. return 0;
  2547. rcu_read_lock();
  2548. while (owner_running(lock, owner)) {
  2549. if (need_resched())
  2550. break;
  2551. arch_mutex_cpu_relax();
  2552. }
  2553. rcu_read_unlock();
  2554. /*
  2555. * We break out the loop above on need_resched() and when the
  2556. * owner changed, which is a sign for heavy contention. Return
  2557. * success only when lock->owner is NULL.
  2558. */
  2559. return lock->owner == NULL;
  2560. }
  2561. #endif
  2562. #ifdef CONFIG_PREEMPT
  2563. /*
  2564. * this is the entry point to schedule() from in-kernel preemption
  2565. * off of preempt_enable. Kernel preemptions off return from interrupt
  2566. * occur there and call schedule directly.
  2567. */
  2568. asmlinkage void __sched notrace preempt_schedule(void)
  2569. {
  2570. struct thread_info *ti = current_thread_info();
  2571. /*
  2572. * If there is a non-zero preempt_count or interrupts are disabled,
  2573. * we do not want to preempt the current task. Just return..
  2574. */
  2575. if (likely(ti->preempt_count || irqs_disabled()))
  2576. return;
  2577. do {
  2578. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2579. __schedule();
  2580. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2581. /*
  2582. * Check again in case we missed a preemption opportunity
  2583. * between schedule and now.
  2584. */
  2585. barrier();
  2586. } while (need_resched());
  2587. }
  2588. EXPORT_SYMBOL(preempt_schedule);
  2589. /*
  2590. * this is the entry point to schedule() from kernel preemption
  2591. * off of irq context.
  2592. * Note, that this is called and return with irqs disabled. This will
  2593. * protect us against recursive calling from irq.
  2594. */
  2595. asmlinkage void __sched preempt_schedule_irq(void)
  2596. {
  2597. struct thread_info *ti = current_thread_info();
  2598. /* Catch callers which need to be fixed */
  2599. BUG_ON(ti->preempt_count || !irqs_disabled());
  2600. rcu_user_exit();
  2601. do {
  2602. add_preempt_count(PREEMPT_ACTIVE);
  2603. local_irq_enable();
  2604. __schedule();
  2605. local_irq_disable();
  2606. sub_preempt_count(PREEMPT_ACTIVE);
  2607. /*
  2608. * Check again in case we missed a preemption opportunity
  2609. * between schedule and now.
  2610. */
  2611. barrier();
  2612. } while (need_resched());
  2613. }
  2614. #endif /* CONFIG_PREEMPT */
  2615. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2616. void *key)
  2617. {
  2618. return try_to_wake_up(curr->private, mode, wake_flags);
  2619. }
  2620. EXPORT_SYMBOL(default_wake_function);
  2621. /*
  2622. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2623. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2624. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2625. *
  2626. * There are circumstances in which we can try to wake a task which has already
  2627. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2628. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2629. */
  2630. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2631. int nr_exclusive, int wake_flags, void *key)
  2632. {
  2633. wait_queue_t *curr, *next;
  2634. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2635. unsigned flags = curr->flags;
  2636. if (curr->func(curr, mode, wake_flags, key) &&
  2637. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2638. break;
  2639. }
  2640. }
  2641. /**
  2642. * __wake_up - wake up threads blocked on a waitqueue.
  2643. * @q: the waitqueue
  2644. * @mode: which threads
  2645. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2646. * @key: is directly passed to the wakeup function
  2647. *
  2648. * It may be assumed that this function implies a write memory barrier before
  2649. * changing the task state if and only if any tasks are woken up.
  2650. */
  2651. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2652. int nr_exclusive, void *key)
  2653. {
  2654. unsigned long flags;
  2655. spin_lock_irqsave(&q->lock, flags);
  2656. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2657. spin_unlock_irqrestore(&q->lock, flags);
  2658. }
  2659. EXPORT_SYMBOL(__wake_up);
  2660. /*
  2661. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2662. */
  2663. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2664. {
  2665. __wake_up_common(q, mode, nr, 0, NULL);
  2666. }
  2667. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2668. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2669. {
  2670. __wake_up_common(q, mode, 1, 0, key);
  2671. }
  2672. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2673. /**
  2674. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2675. * @q: the waitqueue
  2676. * @mode: which threads
  2677. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2678. * @key: opaque value to be passed to wakeup targets
  2679. *
  2680. * The sync wakeup differs that the waker knows that it will schedule
  2681. * away soon, so while the target thread will be woken up, it will not
  2682. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2683. * with each other. This can prevent needless bouncing between CPUs.
  2684. *
  2685. * On UP it can prevent extra preemption.
  2686. *
  2687. * It may be assumed that this function implies a write memory barrier before
  2688. * changing the task state if and only if any tasks are woken up.
  2689. */
  2690. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2691. int nr_exclusive, void *key)
  2692. {
  2693. unsigned long flags;
  2694. int wake_flags = WF_SYNC;
  2695. if (unlikely(!q))
  2696. return;
  2697. if (unlikely(!nr_exclusive))
  2698. wake_flags = 0;
  2699. spin_lock_irqsave(&q->lock, flags);
  2700. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2701. spin_unlock_irqrestore(&q->lock, flags);
  2702. }
  2703. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2704. /*
  2705. * __wake_up_sync - see __wake_up_sync_key()
  2706. */
  2707. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2708. {
  2709. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2710. }
  2711. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2712. /**
  2713. * complete: - signals a single thread waiting on this completion
  2714. * @x: holds the state of this particular completion
  2715. *
  2716. * This will wake up a single thread waiting on this completion. Threads will be
  2717. * awakened in the same order in which they were queued.
  2718. *
  2719. * See also complete_all(), wait_for_completion() and related routines.
  2720. *
  2721. * It may be assumed that this function implies a write memory barrier before
  2722. * changing the task state if and only if any tasks are woken up.
  2723. */
  2724. void complete(struct completion *x)
  2725. {
  2726. unsigned long flags;
  2727. spin_lock_irqsave(&x->wait.lock, flags);
  2728. x->done++;
  2729. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2730. spin_unlock_irqrestore(&x->wait.lock, flags);
  2731. }
  2732. EXPORT_SYMBOL(complete);
  2733. /**
  2734. * complete_all: - signals all threads waiting on this completion
  2735. * @x: holds the state of this particular completion
  2736. *
  2737. * This will wake up all threads waiting on this particular completion event.
  2738. *
  2739. * It may be assumed that this function implies a write memory barrier before
  2740. * changing the task state if and only if any tasks are woken up.
  2741. */
  2742. void complete_all(struct completion *x)
  2743. {
  2744. unsigned long flags;
  2745. spin_lock_irqsave(&x->wait.lock, flags);
  2746. x->done += UINT_MAX/2;
  2747. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2748. spin_unlock_irqrestore(&x->wait.lock, flags);
  2749. }
  2750. EXPORT_SYMBOL(complete_all);
  2751. static inline long __sched
  2752. do_wait_for_common(struct completion *x, long timeout, int state)
  2753. {
  2754. if (!x->done) {
  2755. DECLARE_WAITQUEUE(wait, current);
  2756. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2757. do {
  2758. if (signal_pending_state(state, current)) {
  2759. timeout = -ERESTARTSYS;
  2760. break;
  2761. }
  2762. __set_current_state(state);
  2763. spin_unlock_irq(&x->wait.lock);
  2764. timeout = schedule_timeout(timeout);
  2765. spin_lock_irq(&x->wait.lock);
  2766. } while (!x->done && timeout);
  2767. __remove_wait_queue(&x->wait, &wait);
  2768. if (!x->done)
  2769. return timeout;
  2770. }
  2771. x->done--;
  2772. return timeout ?: 1;
  2773. }
  2774. static long __sched
  2775. wait_for_common(struct completion *x, long timeout, int state)
  2776. {
  2777. might_sleep();
  2778. spin_lock_irq(&x->wait.lock);
  2779. timeout = do_wait_for_common(x, timeout, state);
  2780. spin_unlock_irq(&x->wait.lock);
  2781. return timeout;
  2782. }
  2783. /**
  2784. * wait_for_completion: - waits for completion of a task
  2785. * @x: holds the state of this particular completion
  2786. *
  2787. * This waits to be signaled for completion of a specific task. It is NOT
  2788. * interruptible and there is no timeout.
  2789. *
  2790. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  2791. * and interrupt capability. Also see complete().
  2792. */
  2793. void __sched wait_for_completion(struct completion *x)
  2794. {
  2795. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  2796. }
  2797. EXPORT_SYMBOL(wait_for_completion);
  2798. /**
  2799. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  2800. * @x: holds the state of this particular completion
  2801. * @timeout: timeout value in jiffies
  2802. *
  2803. * This waits for either a completion of a specific task to be signaled or for a
  2804. * specified timeout to expire. The timeout is in jiffies. It is not
  2805. * interruptible.
  2806. *
  2807. * The return value is 0 if timed out, and positive (at least 1, or number of
  2808. * jiffies left till timeout) if completed.
  2809. */
  2810. unsigned long __sched
  2811. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2812. {
  2813. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  2814. }
  2815. EXPORT_SYMBOL(wait_for_completion_timeout);
  2816. /**
  2817. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  2818. * @x: holds the state of this particular completion
  2819. *
  2820. * This waits for completion of a specific task to be signaled. It is
  2821. * interruptible.
  2822. *
  2823. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2824. */
  2825. int __sched wait_for_completion_interruptible(struct completion *x)
  2826. {
  2827. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  2828. if (t == -ERESTARTSYS)
  2829. return t;
  2830. return 0;
  2831. }
  2832. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2833. /**
  2834. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  2835. * @x: holds the state of this particular completion
  2836. * @timeout: timeout value in jiffies
  2837. *
  2838. * This waits for either a completion of a specific task to be signaled or for a
  2839. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  2840. *
  2841. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2842. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2843. */
  2844. long __sched
  2845. wait_for_completion_interruptible_timeout(struct completion *x,
  2846. unsigned long timeout)
  2847. {
  2848. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  2849. }
  2850. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2851. /**
  2852. * wait_for_completion_killable: - waits for completion of a task (killable)
  2853. * @x: holds the state of this particular completion
  2854. *
  2855. * This waits to be signaled for completion of a specific task. It can be
  2856. * interrupted by a kill signal.
  2857. *
  2858. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  2859. */
  2860. int __sched wait_for_completion_killable(struct completion *x)
  2861. {
  2862. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  2863. if (t == -ERESTARTSYS)
  2864. return t;
  2865. return 0;
  2866. }
  2867. EXPORT_SYMBOL(wait_for_completion_killable);
  2868. /**
  2869. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  2870. * @x: holds the state of this particular completion
  2871. * @timeout: timeout value in jiffies
  2872. *
  2873. * This waits for either a completion of a specific task to be
  2874. * signaled or for a specified timeout to expire. It can be
  2875. * interrupted by a kill signal. The timeout is in jiffies.
  2876. *
  2877. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  2878. * positive (at least 1, or number of jiffies left till timeout) if completed.
  2879. */
  2880. long __sched
  2881. wait_for_completion_killable_timeout(struct completion *x,
  2882. unsigned long timeout)
  2883. {
  2884. return wait_for_common(x, timeout, TASK_KILLABLE);
  2885. }
  2886. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  2887. /**
  2888. * try_wait_for_completion - try to decrement a completion without blocking
  2889. * @x: completion structure
  2890. *
  2891. * Returns: 0 if a decrement cannot be done without blocking
  2892. * 1 if a decrement succeeded.
  2893. *
  2894. * If a completion is being used as a counting completion,
  2895. * attempt to decrement the counter without blocking. This
  2896. * enables us to avoid waiting if the resource the completion
  2897. * is protecting is not available.
  2898. */
  2899. bool try_wait_for_completion(struct completion *x)
  2900. {
  2901. unsigned long flags;
  2902. int ret = 1;
  2903. spin_lock_irqsave(&x->wait.lock, flags);
  2904. if (!x->done)
  2905. ret = 0;
  2906. else
  2907. x->done--;
  2908. spin_unlock_irqrestore(&x->wait.lock, flags);
  2909. return ret;
  2910. }
  2911. EXPORT_SYMBOL(try_wait_for_completion);
  2912. /**
  2913. * completion_done - Test to see if a completion has any waiters
  2914. * @x: completion structure
  2915. *
  2916. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  2917. * 1 if there are no waiters.
  2918. *
  2919. */
  2920. bool completion_done(struct completion *x)
  2921. {
  2922. unsigned long flags;
  2923. int ret = 1;
  2924. spin_lock_irqsave(&x->wait.lock, flags);
  2925. if (!x->done)
  2926. ret = 0;
  2927. spin_unlock_irqrestore(&x->wait.lock, flags);
  2928. return ret;
  2929. }
  2930. EXPORT_SYMBOL(completion_done);
  2931. static long __sched
  2932. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2933. {
  2934. unsigned long flags;
  2935. wait_queue_t wait;
  2936. init_waitqueue_entry(&wait, current);
  2937. __set_current_state(state);
  2938. spin_lock_irqsave(&q->lock, flags);
  2939. __add_wait_queue(q, &wait);
  2940. spin_unlock(&q->lock);
  2941. timeout = schedule_timeout(timeout);
  2942. spin_lock_irq(&q->lock);
  2943. __remove_wait_queue(q, &wait);
  2944. spin_unlock_irqrestore(&q->lock, flags);
  2945. return timeout;
  2946. }
  2947. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2948. {
  2949. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2950. }
  2951. EXPORT_SYMBOL(interruptible_sleep_on);
  2952. long __sched
  2953. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2954. {
  2955. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2956. }
  2957. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2958. void __sched sleep_on(wait_queue_head_t *q)
  2959. {
  2960. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2961. }
  2962. EXPORT_SYMBOL(sleep_on);
  2963. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2964. {
  2965. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2966. }
  2967. EXPORT_SYMBOL(sleep_on_timeout);
  2968. #ifdef CONFIG_RT_MUTEXES
  2969. /*
  2970. * rt_mutex_setprio - set the current priority of a task
  2971. * @p: task
  2972. * @prio: prio value (kernel-internal form)
  2973. *
  2974. * This function changes the 'effective' priority of a task. It does
  2975. * not touch ->normal_prio like __setscheduler().
  2976. *
  2977. * Used by the rt_mutex code to implement priority inheritance logic.
  2978. */
  2979. void rt_mutex_setprio(struct task_struct *p, int prio)
  2980. {
  2981. int oldprio, on_rq, running;
  2982. struct rq *rq;
  2983. const struct sched_class *prev_class;
  2984. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2985. rq = __task_rq_lock(p);
  2986. /*
  2987. * Idle task boosting is a nono in general. There is one
  2988. * exception, when PREEMPT_RT and NOHZ is active:
  2989. *
  2990. * The idle task calls get_next_timer_interrupt() and holds
  2991. * the timer wheel base->lock on the CPU and another CPU wants
  2992. * to access the timer (probably to cancel it). We can safely
  2993. * ignore the boosting request, as the idle CPU runs this code
  2994. * with interrupts disabled and will complete the lock
  2995. * protected section without being interrupted. So there is no
  2996. * real need to boost.
  2997. */
  2998. if (unlikely(p == rq->idle)) {
  2999. WARN_ON(p != rq->curr);
  3000. WARN_ON(p->pi_blocked_on);
  3001. goto out_unlock;
  3002. }
  3003. trace_sched_pi_setprio(p, prio);
  3004. oldprio = p->prio;
  3005. prev_class = p->sched_class;
  3006. on_rq = p->on_rq;
  3007. running = task_current(rq, p);
  3008. if (on_rq)
  3009. dequeue_task(rq, p, 0);
  3010. if (running)
  3011. p->sched_class->put_prev_task(rq, p);
  3012. if (rt_prio(prio))
  3013. p->sched_class = &rt_sched_class;
  3014. else
  3015. p->sched_class = &fair_sched_class;
  3016. p->prio = prio;
  3017. if (running)
  3018. p->sched_class->set_curr_task(rq);
  3019. if (on_rq)
  3020. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3021. check_class_changed(rq, p, prev_class, oldprio);
  3022. out_unlock:
  3023. __task_rq_unlock(rq);
  3024. }
  3025. #endif
  3026. void set_user_nice(struct task_struct *p, long nice)
  3027. {
  3028. int old_prio, delta, on_rq;
  3029. unsigned long flags;
  3030. struct rq *rq;
  3031. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3032. return;
  3033. /*
  3034. * We have to be careful, if called from sys_setpriority(),
  3035. * the task might be in the middle of scheduling on another CPU.
  3036. */
  3037. rq = task_rq_lock(p, &flags);
  3038. /*
  3039. * The RT priorities are set via sched_setscheduler(), but we still
  3040. * allow the 'normal' nice value to be set - but as expected
  3041. * it wont have any effect on scheduling until the task is
  3042. * SCHED_FIFO/SCHED_RR:
  3043. */
  3044. if (task_has_rt_policy(p)) {
  3045. p->static_prio = NICE_TO_PRIO(nice);
  3046. goto out_unlock;
  3047. }
  3048. on_rq = p->on_rq;
  3049. if (on_rq)
  3050. dequeue_task(rq, p, 0);
  3051. p->static_prio = NICE_TO_PRIO(nice);
  3052. set_load_weight(p);
  3053. old_prio = p->prio;
  3054. p->prio = effective_prio(p);
  3055. delta = p->prio - old_prio;
  3056. if (on_rq) {
  3057. enqueue_task(rq, p, 0);
  3058. /*
  3059. * If the task increased its priority or is running and
  3060. * lowered its priority, then reschedule its CPU:
  3061. */
  3062. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3063. resched_task(rq->curr);
  3064. }
  3065. out_unlock:
  3066. task_rq_unlock(rq, p, &flags);
  3067. }
  3068. EXPORT_SYMBOL(set_user_nice);
  3069. /*
  3070. * can_nice - check if a task can reduce its nice value
  3071. * @p: task
  3072. * @nice: nice value
  3073. */
  3074. int can_nice(const struct task_struct *p, const int nice)
  3075. {
  3076. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3077. int nice_rlim = 20 - nice;
  3078. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3079. capable(CAP_SYS_NICE));
  3080. }
  3081. #ifdef __ARCH_WANT_SYS_NICE
  3082. /*
  3083. * sys_nice - change the priority of the current process.
  3084. * @increment: priority increment
  3085. *
  3086. * sys_setpriority is a more generic, but much slower function that
  3087. * does similar things.
  3088. */
  3089. SYSCALL_DEFINE1(nice, int, increment)
  3090. {
  3091. long nice, retval;
  3092. /*
  3093. * Setpriority might change our priority at the same moment.
  3094. * We don't have to worry. Conceptually one call occurs first
  3095. * and we have a single winner.
  3096. */
  3097. if (increment < -40)
  3098. increment = -40;
  3099. if (increment > 40)
  3100. increment = 40;
  3101. nice = TASK_NICE(current) + increment;
  3102. if (nice < -20)
  3103. nice = -20;
  3104. if (nice > 19)
  3105. nice = 19;
  3106. if (increment < 0 && !can_nice(current, nice))
  3107. return -EPERM;
  3108. retval = security_task_setnice(current, nice);
  3109. if (retval)
  3110. return retval;
  3111. set_user_nice(current, nice);
  3112. return 0;
  3113. }
  3114. #endif
  3115. /**
  3116. * task_prio - return the priority value of a given task.
  3117. * @p: the task in question.
  3118. *
  3119. * This is the priority value as seen by users in /proc.
  3120. * RT tasks are offset by -200. Normal tasks are centered
  3121. * around 0, value goes from -16 to +15.
  3122. */
  3123. int task_prio(const struct task_struct *p)
  3124. {
  3125. return p->prio - MAX_RT_PRIO;
  3126. }
  3127. /**
  3128. * task_nice - return the nice value of a given task.
  3129. * @p: the task in question.
  3130. */
  3131. int task_nice(const struct task_struct *p)
  3132. {
  3133. return TASK_NICE(p);
  3134. }
  3135. EXPORT_SYMBOL(task_nice);
  3136. /**
  3137. * idle_cpu - is a given cpu idle currently?
  3138. * @cpu: the processor in question.
  3139. */
  3140. int idle_cpu(int cpu)
  3141. {
  3142. struct rq *rq = cpu_rq(cpu);
  3143. if (rq->curr != rq->idle)
  3144. return 0;
  3145. if (rq->nr_running)
  3146. return 0;
  3147. #ifdef CONFIG_SMP
  3148. if (!llist_empty(&rq->wake_list))
  3149. return 0;
  3150. #endif
  3151. return 1;
  3152. }
  3153. /**
  3154. * idle_task - return the idle task for a given cpu.
  3155. * @cpu: the processor in question.
  3156. */
  3157. struct task_struct *idle_task(int cpu)
  3158. {
  3159. return cpu_rq(cpu)->idle;
  3160. }
  3161. /**
  3162. * find_process_by_pid - find a process with a matching PID value.
  3163. * @pid: the pid in question.
  3164. */
  3165. static struct task_struct *find_process_by_pid(pid_t pid)
  3166. {
  3167. return pid ? find_task_by_vpid(pid) : current;
  3168. }
  3169. /* Actually do priority change: must hold rq lock. */
  3170. static void
  3171. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3172. {
  3173. p->policy = policy;
  3174. p->rt_priority = prio;
  3175. p->normal_prio = normal_prio(p);
  3176. /* we are holding p->pi_lock already */
  3177. p->prio = rt_mutex_getprio(p);
  3178. if (rt_prio(p->prio))
  3179. p->sched_class = &rt_sched_class;
  3180. else
  3181. p->sched_class = &fair_sched_class;
  3182. set_load_weight(p);
  3183. }
  3184. /*
  3185. * check the target process has a UID that matches the current process's
  3186. */
  3187. static bool check_same_owner(struct task_struct *p)
  3188. {
  3189. const struct cred *cred = current_cred(), *pcred;
  3190. bool match;
  3191. rcu_read_lock();
  3192. pcred = __task_cred(p);
  3193. match = (uid_eq(cred->euid, pcred->euid) ||
  3194. uid_eq(cred->euid, pcred->uid));
  3195. rcu_read_unlock();
  3196. return match;
  3197. }
  3198. static int __sched_setscheduler(struct task_struct *p, int policy,
  3199. const struct sched_param *param, bool user)
  3200. {
  3201. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3202. unsigned long flags;
  3203. const struct sched_class *prev_class;
  3204. struct rq *rq;
  3205. int reset_on_fork;
  3206. /* may grab non-irq protected spin_locks */
  3207. BUG_ON(in_interrupt());
  3208. recheck:
  3209. /* double check policy once rq lock held */
  3210. if (policy < 0) {
  3211. reset_on_fork = p->sched_reset_on_fork;
  3212. policy = oldpolicy = p->policy;
  3213. } else {
  3214. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3215. policy &= ~SCHED_RESET_ON_FORK;
  3216. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3217. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3218. policy != SCHED_IDLE)
  3219. return -EINVAL;
  3220. }
  3221. /*
  3222. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3223. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3224. * SCHED_BATCH and SCHED_IDLE is 0.
  3225. */
  3226. if (param->sched_priority < 0 ||
  3227. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3228. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3229. return -EINVAL;
  3230. if (rt_policy(policy) != (param->sched_priority != 0))
  3231. return -EINVAL;
  3232. /*
  3233. * Allow unprivileged RT tasks to decrease priority:
  3234. */
  3235. if (user && !capable(CAP_SYS_NICE)) {
  3236. if (rt_policy(policy)) {
  3237. unsigned long rlim_rtprio =
  3238. task_rlimit(p, RLIMIT_RTPRIO);
  3239. /* can't set/change the rt policy */
  3240. if (policy != p->policy && !rlim_rtprio)
  3241. return -EPERM;
  3242. /* can't increase priority */
  3243. if (param->sched_priority > p->rt_priority &&
  3244. param->sched_priority > rlim_rtprio)
  3245. return -EPERM;
  3246. }
  3247. /*
  3248. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3249. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3250. */
  3251. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3252. if (!can_nice(p, TASK_NICE(p)))
  3253. return -EPERM;
  3254. }
  3255. /* can't change other user's priorities */
  3256. if (!check_same_owner(p))
  3257. return -EPERM;
  3258. /* Normal users shall not reset the sched_reset_on_fork flag */
  3259. if (p->sched_reset_on_fork && !reset_on_fork)
  3260. return -EPERM;
  3261. }
  3262. if (user) {
  3263. retval = security_task_setscheduler(p);
  3264. if (retval)
  3265. return retval;
  3266. }
  3267. /*
  3268. * make sure no PI-waiters arrive (or leave) while we are
  3269. * changing the priority of the task:
  3270. *
  3271. * To be able to change p->policy safely, the appropriate
  3272. * runqueue lock must be held.
  3273. */
  3274. rq = task_rq_lock(p, &flags);
  3275. /*
  3276. * Changing the policy of the stop threads its a very bad idea
  3277. */
  3278. if (p == rq->stop) {
  3279. task_rq_unlock(rq, p, &flags);
  3280. return -EINVAL;
  3281. }
  3282. /*
  3283. * If not changing anything there's no need to proceed further:
  3284. */
  3285. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3286. param->sched_priority == p->rt_priority))) {
  3287. task_rq_unlock(rq, p, &flags);
  3288. return 0;
  3289. }
  3290. #ifdef CONFIG_RT_GROUP_SCHED
  3291. if (user) {
  3292. /*
  3293. * Do not allow realtime tasks into groups that have no runtime
  3294. * assigned.
  3295. */
  3296. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3297. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3298. !task_group_is_autogroup(task_group(p))) {
  3299. task_rq_unlock(rq, p, &flags);
  3300. return -EPERM;
  3301. }
  3302. }
  3303. #endif
  3304. /* recheck policy now with rq lock held */
  3305. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3306. policy = oldpolicy = -1;
  3307. task_rq_unlock(rq, p, &flags);
  3308. goto recheck;
  3309. }
  3310. on_rq = p->on_rq;
  3311. running = task_current(rq, p);
  3312. if (on_rq)
  3313. dequeue_task(rq, p, 0);
  3314. if (running)
  3315. p->sched_class->put_prev_task(rq, p);
  3316. p->sched_reset_on_fork = reset_on_fork;
  3317. oldprio = p->prio;
  3318. prev_class = p->sched_class;
  3319. __setscheduler(rq, p, policy, param->sched_priority);
  3320. if (running)
  3321. p->sched_class->set_curr_task(rq);
  3322. if (on_rq)
  3323. enqueue_task(rq, p, 0);
  3324. check_class_changed(rq, p, prev_class, oldprio);
  3325. task_rq_unlock(rq, p, &flags);
  3326. rt_mutex_adjust_pi(p);
  3327. return 0;
  3328. }
  3329. /**
  3330. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3331. * @p: the task in question.
  3332. * @policy: new policy.
  3333. * @param: structure containing the new RT priority.
  3334. *
  3335. * NOTE that the task may be already dead.
  3336. */
  3337. int sched_setscheduler(struct task_struct *p, int policy,
  3338. const struct sched_param *param)
  3339. {
  3340. return __sched_setscheduler(p, policy, param, true);
  3341. }
  3342. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3343. /**
  3344. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3345. * @p: the task in question.
  3346. * @policy: new policy.
  3347. * @param: structure containing the new RT priority.
  3348. *
  3349. * Just like sched_setscheduler, only don't bother checking if the
  3350. * current context has permission. For example, this is needed in
  3351. * stop_machine(): we create temporary high priority worker threads,
  3352. * but our caller might not have that capability.
  3353. */
  3354. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3355. const struct sched_param *param)
  3356. {
  3357. return __sched_setscheduler(p, policy, param, false);
  3358. }
  3359. static int
  3360. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3361. {
  3362. struct sched_param lparam;
  3363. struct task_struct *p;
  3364. int retval;
  3365. if (!param || pid < 0)
  3366. return -EINVAL;
  3367. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3368. return -EFAULT;
  3369. rcu_read_lock();
  3370. retval = -ESRCH;
  3371. p = find_process_by_pid(pid);
  3372. if (p != NULL)
  3373. retval = sched_setscheduler(p, policy, &lparam);
  3374. rcu_read_unlock();
  3375. return retval;
  3376. }
  3377. /**
  3378. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3379. * @pid: the pid in question.
  3380. * @policy: new policy.
  3381. * @param: structure containing the new RT priority.
  3382. */
  3383. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3384. struct sched_param __user *, param)
  3385. {
  3386. /* negative values for policy are not valid */
  3387. if (policy < 0)
  3388. return -EINVAL;
  3389. return do_sched_setscheduler(pid, policy, param);
  3390. }
  3391. /**
  3392. * sys_sched_setparam - set/change the RT priority of a thread
  3393. * @pid: the pid in question.
  3394. * @param: structure containing the new RT priority.
  3395. */
  3396. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3397. {
  3398. return do_sched_setscheduler(pid, -1, param);
  3399. }
  3400. /**
  3401. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3402. * @pid: the pid in question.
  3403. */
  3404. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3405. {
  3406. struct task_struct *p;
  3407. int retval;
  3408. if (pid < 0)
  3409. return -EINVAL;
  3410. retval = -ESRCH;
  3411. rcu_read_lock();
  3412. p = find_process_by_pid(pid);
  3413. if (p) {
  3414. retval = security_task_getscheduler(p);
  3415. if (!retval)
  3416. retval = p->policy
  3417. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3418. }
  3419. rcu_read_unlock();
  3420. return retval;
  3421. }
  3422. /**
  3423. * sys_sched_getparam - get the RT priority of a thread
  3424. * @pid: the pid in question.
  3425. * @param: structure containing the RT priority.
  3426. */
  3427. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3428. {
  3429. struct sched_param lp;
  3430. struct task_struct *p;
  3431. int retval;
  3432. if (!param || pid < 0)
  3433. return -EINVAL;
  3434. rcu_read_lock();
  3435. p = find_process_by_pid(pid);
  3436. retval = -ESRCH;
  3437. if (!p)
  3438. goto out_unlock;
  3439. retval = security_task_getscheduler(p);
  3440. if (retval)
  3441. goto out_unlock;
  3442. lp.sched_priority = p->rt_priority;
  3443. rcu_read_unlock();
  3444. /*
  3445. * This one might sleep, we cannot do it with a spinlock held ...
  3446. */
  3447. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3448. return retval;
  3449. out_unlock:
  3450. rcu_read_unlock();
  3451. return retval;
  3452. }
  3453. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3454. {
  3455. cpumask_var_t cpus_allowed, new_mask;
  3456. struct task_struct *p;
  3457. int retval;
  3458. get_online_cpus();
  3459. rcu_read_lock();
  3460. p = find_process_by_pid(pid);
  3461. if (!p) {
  3462. rcu_read_unlock();
  3463. put_online_cpus();
  3464. return -ESRCH;
  3465. }
  3466. /* Prevent p going away */
  3467. get_task_struct(p);
  3468. rcu_read_unlock();
  3469. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3470. retval = -ENOMEM;
  3471. goto out_put_task;
  3472. }
  3473. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3474. retval = -ENOMEM;
  3475. goto out_free_cpus_allowed;
  3476. }
  3477. retval = -EPERM;
  3478. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3479. goto out_unlock;
  3480. retval = security_task_setscheduler(p);
  3481. if (retval)
  3482. goto out_unlock;
  3483. cpuset_cpus_allowed(p, cpus_allowed);
  3484. cpumask_and(new_mask, in_mask, cpus_allowed);
  3485. again:
  3486. retval = set_cpus_allowed_ptr(p, new_mask);
  3487. if (!retval) {
  3488. cpuset_cpus_allowed(p, cpus_allowed);
  3489. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3490. /*
  3491. * We must have raced with a concurrent cpuset
  3492. * update. Just reset the cpus_allowed to the
  3493. * cpuset's cpus_allowed
  3494. */
  3495. cpumask_copy(new_mask, cpus_allowed);
  3496. goto again;
  3497. }
  3498. }
  3499. out_unlock:
  3500. free_cpumask_var(new_mask);
  3501. out_free_cpus_allowed:
  3502. free_cpumask_var(cpus_allowed);
  3503. out_put_task:
  3504. put_task_struct(p);
  3505. put_online_cpus();
  3506. return retval;
  3507. }
  3508. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3509. struct cpumask *new_mask)
  3510. {
  3511. if (len < cpumask_size())
  3512. cpumask_clear(new_mask);
  3513. else if (len > cpumask_size())
  3514. len = cpumask_size();
  3515. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3516. }
  3517. /**
  3518. * sys_sched_setaffinity - set the cpu affinity of a process
  3519. * @pid: pid of the process
  3520. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3521. * @user_mask_ptr: user-space pointer to the new cpu mask
  3522. */
  3523. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3524. unsigned long __user *, user_mask_ptr)
  3525. {
  3526. cpumask_var_t new_mask;
  3527. int retval;
  3528. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3529. return -ENOMEM;
  3530. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3531. if (retval == 0)
  3532. retval = sched_setaffinity(pid, new_mask);
  3533. free_cpumask_var(new_mask);
  3534. return retval;
  3535. }
  3536. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3537. {
  3538. struct task_struct *p;
  3539. unsigned long flags;
  3540. int retval;
  3541. get_online_cpus();
  3542. rcu_read_lock();
  3543. retval = -ESRCH;
  3544. p = find_process_by_pid(pid);
  3545. if (!p)
  3546. goto out_unlock;
  3547. retval = security_task_getscheduler(p);
  3548. if (retval)
  3549. goto out_unlock;
  3550. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3551. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3552. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3553. out_unlock:
  3554. rcu_read_unlock();
  3555. put_online_cpus();
  3556. return retval;
  3557. }
  3558. /**
  3559. * sys_sched_getaffinity - get the cpu affinity of a process
  3560. * @pid: pid of the process
  3561. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3562. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3563. */
  3564. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3565. unsigned long __user *, user_mask_ptr)
  3566. {
  3567. int ret;
  3568. cpumask_var_t mask;
  3569. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3570. return -EINVAL;
  3571. if (len & (sizeof(unsigned long)-1))
  3572. return -EINVAL;
  3573. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3574. return -ENOMEM;
  3575. ret = sched_getaffinity(pid, mask);
  3576. if (ret == 0) {
  3577. size_t retlen = min_t(size_t, len, cpumask_size());
  3578. if (copy_to_user(user_mask_ptr, mask, retlen))
  3579. ret = -EFAULT;
  3580. else
  3581. ret = retlen;
  3582. }
  3583. free_cpumask_var(mask);
  3584. return ret;
  3585. }
  3586. /**
  3587. * sys_sched_yield - yield the current processor to other threads.
  3588. *
  3589. * This function yields the current CPU to other tasks. If there are no
  3590. * other threads running on this CPU then this function will return.
  3591. */
  3592. SYSCALL_DEFINE0(sched_yield)
  3593. {
  3594. struct rq *rq = this_rq_lock();
  3595. schedstat_inc(rq, yld_count);
  3596. current->sched_class->yield_task(rq);
  3597. /*
  3598. * Since we are going to call schedule() anyway, there's
  3599. * no need to preempt or enable interrupts:
  3600. */
  3601. __release(rq->lock);
  3602. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3603. do_raw_spin_unlock(&rq->lock);
  3604. sched_preempt_enable_no_resched();
  3605. schedule();
  3606. return 0;
  3607. }
  3608. static inline int should_resched(void)
  3609. {
  3610. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3611. }
  3612. static void __cond_resched(void)
  3613. {
  3614. add_preempt_count(PREEMPT_ACTIVE);
  3615. __schedule();
  3616. sub_preempt_count(PREEMPT_ACTIVE);
  3617. }
  3618. int __sched _cond_resched(void)
  3619. {
  3620. if (should_resched()) {
  3621. __cond_resched();
  3622. return 1;
  3623. }
  3624. return 0;
  3625. }
  3626. EXPORT_SYMBOL(_cond_resched);
  3627. /*
  3628. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3629. * call schedule, and on return reacquire the lock.
  3630. *
  3631. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3632. * operations here to prevent schedule() from being called twice (once via
  3633. * spin_unlock(), once by hand).
  3634. */
  3635. int __cond_resched_lock(spinlock_t *lock)
  3636. {
  3637. int resched = should_resched();
  3638. int ret = 0;
  3639. lockdep_assert_held(lock);
  3640. if (spin_needbreak(lock) || resched) {
  3641. spin_unlock(lock);
  3642. if (resched)
  3643. __cond_resched();
  3644. else
  3645. cpu_relax();
  3646. ret = 1;
  3647. spin_lock(lock);
  3648. }
  3649. return ret;
  3650. }
  3651. EXPORT_SYMBOL(__cond_resched_lock);
  3652. int __sched __cond_resched_softirq(void)
  3653. {
  3654. BUG_ON(!in_softirq());
  3655. if (should_resched()) {
  3656. local_bh_enable();
  3657. __cond_resched();
  3658. local_bh_disable();
  3659. return 1;
  3660. }
  3661. return 0;
  3662. }
  3663. EXPORT_SYMBOL(__cond_resched_softirq);
  3664. /**
  3665. * yield - yield the current processor to other threads.
  3666. *
  3667. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3668. *
  3669. * The scheduler is at all times free to pick the calling task as the most
  3670. * eligible task to run, if removing the yield() call from your code breaks
  3671. * it, its already broken.
  3672. *
  3673. * Typical broken usage is:
  3674. *
  3675. * while (!event)
  3676. * yield();
  3677. *
  3678. * where one assumes that yield() will let 'the other' process run that will
  3679. * make event true. If the current task is a SCHED_FIFO task that will never
  3680. * happen. Never use yield() as a progress guarantee!!
  3681. *
  3682. * If you want to use yield() to wait for something, use wait_event().
  3683. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3684. * If you still want to use yield(), do not!
  3685. */
  3686. void __sched yield(void)
  3687. {
  3688. set_current_state(TASK_RUNNING);
  3689. sys_sched_yield();
  3690. }
  3691. EXPORT_SYMBOL(yield);
  3692. /**
  3693. * yield_to - yield the current processor to another thread in
  3694. * your thread group, or accelerate that thread toward the
  3695. * processor it's on.
  3696. * @p: target task
  3697. * @preempt: whether task preemption is allowed or not
  3698. *
  3699. * It's the caller's job to ensure that the target task struct
  3700. * can't go away on us before we can do any checks.
  3701. *
  3702. * Returns true if we indeed boosted the target task.
  3703. */
  3704. bool __sched yield_to(struct task_struct *p, bool preempt)
  3705. {
  3706. struct task_struct *curr = current;
  3707. struct rq *rq, *p_rq;
  3708. unsigned long flags;
  3709. bool yielded = 0;
  3710. local_irq_save(flags);
  3711. rq = this_rq();
  3712. again:
  3713. p_rq = task_rq(p);
  3714. double_rq_lock(rq, p_rq);
  3715. while (task_rq(p) != p_rq) {
  3716. double_rq_unlock(rq, p_rq);
  3717. goto again;
  3718. }
  3719. if (!curr->sched_class->yield_to_task)
  3720. goto out;
  3721. if (curr->sched_class != p->sched_class)
  3722. goto out;
  3723. if (task_running(p_rq, p) || p->state)
  3724. goto out;
  3725. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3726. if (yielded) {
  3727. schedstat_inc(rq, yld_count);
  3728. /*
  3729. * Make p's CPU reschedule; pick_next_entity takes care of
  3730. * fairness.
  3731. */
  3732. if (preempt && rq != p_rq)
  3733. resched_task(p_rq->curr);
  3734. }
  3735. out:
  3736. double_rq_unlock(rq, p_rq);
  3737. local_irq_restore(flags);
  3738. if (yielded)
  3739. schedule();
  3740. return yielded;
  3741. }
  3742. EXPORT_SYMBOL_GPL(yield_to);
  3743. /*
  3744. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3745. * that process accounting knows that this is a task in IO wait state.
  3746. */
  3747. void __sched io_schedule(void)
  3748. {
  3749. struct rq *rq = raw_rq();
  3750. delayacct_blkio_start();
  3751. atomic_inc(&rq->nr_iowait);
  3752. blk_flush_plug(current);
  3753. current->in_iowait = 1;
  3754. schedule();
  3755. current->in_iowait = 0;
  3756. atomic_dec(&rq->nr_iowait);
  3757. delayacct_blkio_end();
  3758. }
  3759. EXPORT_SYMBOL(io_schedule);
  3760. long __sched io_schedule_timeout(long timeout)
  3761. {
  3762. struct rq *rq = raw_rq();
  3763. long ret;
  3764. delayacct_blkio_start();
  3765. atomic_inc(&rq->nr_iowait);
  3766. blk_flush_plug(current);
  3767. current->in_iowait = 1;
  3768. ret = schedule_timeout(timeout);
  3769. current->in_iowait = 0;
  3770. atomic_dec(&rq->nr_iowait);
  3771. delayacct_blkio_end();
  3772. return ret;
  3773. }
  3774. /**
  3775. * sys_sched_get_priority_max - return maximum RT priority.
  3776. * @policy: scheduling class.
  3777. *
  3778. * this syscall returns the maximum rt_priority that can be used
  3779. * by a given scheduling class.
  3780. */
  3781. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3782. {
  3783. int ret = -EINVAL;
  3784. switch (policy) {
  3785. case SCHED_FIFO:
  3786. case SCHED_RR:
  3787. ret = MAX_USER_RT_PRIO-1;
  3788. break;
  3789. case SCHED_NORMAL:
  3790. case SCHED_BATCH:
  3791. case SCHED_IDLE:
  3792. ret = 0;
  3793. break;
  3794. }
  3795. return ret;
  3796. }
  3797. /**
  3798. * sys_sched_get_priority_min - return minimum RT priority.
  3799. * @policy: scheduling class.
  3800. *
  3801. * this syscall returns the minimum rt_priority that can be used
  3802. * by a given scheduling class.
  3803. */
  3804. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3805. {
  3806. int ret = -EINVAL;
  3807. switch (policy) {
  3808. case SCHED_FIFO:
  3809. case SCHED_RR:
  3810. ret = 1;
  3811. break;
  3812. case SCHED_NORMAL:
  3813. case SCHED_BATCH:
  3814. case SCHED_IDLE:
  3815. ret = 0;
  3816. }
  3817. return ret;
  3818. }
  3819. /**
  3820. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3821. * @pid: pid of the process.
  3822. * @interval: userspace pointer to the timeslice value.
  3823. *
  3824. * this syscall writes the default timeslice value of a given process
  3825. * into the user-space timespec buffer. A value of '0' means infinity.
  3826. */
  3827. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3828. struct timespec __user *, interval)
  3829. {
  3830. struct task_struct *p;
  3831. unsigned int time_slice;
  3832. unsigned long flags;
  3833. struct rq *rq;
  3834. int retval;
  3835. struct timespec t;
  3836. if (pid < 0)
  3837. return -EINVAL;
  3838. retval = -ESRCH;
  3839. rcu_read_lock();
  3840. p = find_process_by_pid(pid);
  3841. if (!p)
  3842. goto out_unlock;
  3843. retval = security_task_getscheduler(p);
  3844. if (retval)
  3845. goto out_unlock;
  3846. rq = task_rq_lock(p, &flags);
  3847. time_slice = p->sched_class->get_rr_interval(rq, p);
  3848. task_rq_unlock(rq, p, &flags);
  3849. rcu_read_unlock();
  3850. jiffies_to_timespec(time_slice, &t);
  3851. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3852. return retval;
  3853. out_unlock:
  3854. rcu_read_unlock();
  3855. return retval;
  3856. }
  3857. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3858. void sched_show_task(struct task_struct *p)
  3859. {
  3860. unsigned long free = 0;
  3861. unsigned state;
  3862. state = p->state ? __ffs(p->state) + 1 : 0;
  3863. printk(KERN_INFO "%-15.15s %c", p->comm,
  3864. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3865. #if BITS_PER_LONG == 32
  3866. if (state == TASK_RUNNING)
  3867. printk(KERN_CONT " running ");
  3868. else
  3869. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3870. #else
  3871. if (state == TASK_RUNNING)
  3872. printk(KERN_CONT " running task ");
  3873. else
  3874. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3875. #endif
  3876. #ifdef CONFIG_DEBUG_STACK_USAGE
  3877. free = stack_not_used(p);
  3878. #endif
  3879. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3880. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  3881. (unsigned long)task_thread_info(p)->flags);
  3882. show_stack(p, NULL);
  3883. }
  3884. void show_state_filter(unsigned long state_filter)
  3885. {
  3886. struct task_struct *g, *p;
  3887. #if BITS_PER_LONG == 32
  3888. printk(KERN_INFO
  3889. " task PC stack pid father\n");
  3890. #else
  3891. printk(KERN_INFO
  3892. " task PC stack pid father\n");
  3893. #endif
  3894. rcu_read_lock();
  3895. do_each_thread(g, p) {
  3896. /*
  3897. * reset the NMI-timeout, listing all files on a slow
  3898. * console might take a lot of time:
  3899. */
  3900. touch_nmi_watchdog();
  3901. if (!state_filter || (p->state & state_filter))
  3902. sched_show_task(p);
  3903. } while_each_thread(g, p);
  3904. touch_all_softlockup_watchdogs();
  3905. #ifdef CONFIG_SCHED_DEBUG
  3906. sysrq_sched_debug_show();
  3907. #endif
  3908. rcu_read_unlock();
  3909. /*
  3910. * Only show locks if all tasks are dumped:
  3911. */
  3912. if (!state_filter)
  3913. debug_show_all_locks();
  3914. }
  3915. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  3916. {
  3917. idle->sched_class = &idle_sched_class;
  3918. }
  3919. /**
  3920. * init_idle - set up an idle thread for a given CPU
  3921. * @idle: task in question
  3922. * @cpu: cpu the idle task belongs to
  3923. *
  3924. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3925. * flag, to make booting more robust.
  3926. */
  3927. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  3928. {
  3929. struct rq *rq = cpu_rq(cpu);
  3930. unsigned long flags;
  3931. raw_spin_lock_irqsave(&rq->lock, flags);
  3932. __sched_fork(idle);
  3933. idle->state = TASK_RUNNING;
  3934. idle->se.exec_start = sched_clock();
  3935. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3936. /*
  3937. * We're having a chicken and egg problem, even though we are
  3938. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3939. * lockdep check in task_group() will fail.
  3940. *
  3941. * Similar case to sched_fork(). / Alternatively we could
  3942. * use task_rq_lock() here and obtain the other rq->lock.
  3943. *
  3944. * Silence PROVE_RCU
  3945. */
  3946. rcu_read_lock();
  3947. __set_task_cpu(idle, cpu);
  3948. rcu_read_unlock();
  3949. rq->curr = rq->idle = idle;
  3950. #if defined(CONFIG_SMP)
  3951. idle->on_cpu = 1;
  3952. #endif
  3953. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3954. /* Set the preempt count _outside_ the spinlocks! */
  3955. task_thread_info(idle)->preempt_count = 0;
  3956. /*
  3957. * The idle tasks have their own, simple scheduling class:
  3958. */
  3959. idle->sched_class = &idle_sched_class;
  3960. ftrace_graph_init_idle_task(idle, cpu);
  3961. #if defined(CONFIG_SMP)
  3962. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3963. #endif
  3964. }
  3965. #ifdef CONFIG_SMP
  3966. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3967. {
  3968. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3969. p->sched_class->set_cpus_allowed(p, new_mask);
  3970. cpumask_copy(&p->cpus_allowed, new_mask);
  3971. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3972. }
  3973. /*
  3974. * This is how migration works:
  3975. *
  3976. * 1) we invoke migration_cpu_stop() on the target CPU using
  3977. * stop_one_cpu().
  3978. * 2) stopper starts to run (implicitly forcing the migrated thread
  3979. * off the CPU)
  3980. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3981. * 4) if it's in the wrong runqueue then the migration thread removes
  3982. * it and puts it into the right queue.
  3983. * 5) stopper completes and stop_one_cpu() returns and the migration
  3984. * is done.
  3985. */
  3986. /*
  3987. * Change a given task's CPU affinity. Migrate the thread to a
  3988. * proper CPU and schedule it away if the CPU it's executing on
  3989. * is removed from the allowed bitmask.
  3990. *
  3991. * NOTE: the caller must have a valid reference to the task, the
  3992. * task must not exit() & deallocate itself prematurely. The
  3993. * call is not atomic; no spinlocks may be held.
  3994. */
  3995. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3996. {
  3997. unsigned long flags;
  3998. struct rq *rq;
  3999. unsigned int dest_cpu;
  4000. int ret = 0;
  4001. rq = task_rq_lock(p, &flags);
  4002. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4003. goto out;
  4004. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4005. ret = -EINVAL;
  4006. goto out;
  4007. }
  4008. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4009. ret = -EINVAL;
  4010. goto out;
  4011. }
  4012. do_set_cpus_allowed(p, new_mask);
  4013. /* Can the task run on the task's current CPU? If so, we're done */
  4014. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4015. goto out;
  4016. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4017. if (p->on_rq) {
  4018. struct migration_arg arg = { p, dest_cpu };
  4019. /* Need help from migration thread: drop lock and wait. */
  4020. task_rq_unlock(rq, p, &flags);
  4021. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4022. tlb_migrate_finish(p->mm);
  4023. return 0;
  4024. }
  4025. out:
  4026. task_rq_unlock(rq, p, &flags);
  4027. return ret;
  4028. }
  4029. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4030. /*
  4031. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4032. * this because either it can't run here any more (set_cpus_allowed()
  4033. * away from this CPU, or CPU going down), or because we're
  4034. * attempting to rebalance this task on exec (sched_exec).
  4035. *
  4036. * So we race with normal scheduler movements, but that's OK, as long
  4037. * as the task is no longer on this CPU.
  4038. *
  4039. * Returns non-zero if task was successfully migrated.
  4040. */
  4041. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4042. {
  4043. struct rq *rq_dest, *rq_src;
  4044. int ret = 0;
  4045. if (unlikely(!cpu_active(dest_cpu)))
  4046. return ret;
  4047. rq_src = cpu_rq(src_cpu);
  4048. rq_dest = cpu_rq(dest_cpu);
  4049. raw_spin_lock(&p->pi_lock);
  4050. double_rq_lock(rq_src, rq_dest);
  4051. /* Already moved. */
  4052. if (task_cpu(p) != src_cpu)
  4053. goto done;
  4054. /* Affinity changed (again). */
  4055. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4056. goto fail;
  4057. /*
  4058. * If we're not on a rq, the next wake-up will ensure we're
  4059. * placed properly.
  4060. */
  4061. if (p->on_rq) {
  4062. dequeue_task(rq_src, p, 0);
  4063. set_task_cpu(p, dest_cpu);
  4064. enqueue_task(rq_dest, p, 0);
  4065. check_preempt_curr(rq_dest, p, 0);
  4066. }
  4067. done:
  4068. ret = 1;
  4069. fail:
  4070. double_rq_unlock(rq_src, rq_dest);
  4071. raw_spin_unlock(&p->pi_lock);
  4072. return ret;
  4073. }
  4074. /*
  4075. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4076. * and performs thread migration by bumping thread off CPU then
  4077. * 'pushing' onto another runqueue.
  4078. */
  4079. static int migration_cpu_stop(void *data)
  4080. {
  4081. struct migration_arg *arg = data;
  4082. /*
  4083. * The original target cpu might have gone down and we might
  4084. * be on another cpu but it doesn't matter.
  4085. */
  4086. local_irq_disable();
  4087. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4088. local_irq_enable();
  4089. return 0;
  4090. }
  4091. #ifdef CONFIG_HOTPLUG_CPU
  4092. /*
  4093. * Ensures that the idle task is using init_mm right before its cpu goes
  4094. * offline.
  4095. */
  4096. void idle_task_exit(void)
  4097. {
  4098. struct mm_struct *mm = current->active_mm;
  4099. BUG_ON(cpu_online(smp_processor_id()));
  4100. if (mm != &init_mm)
  4101. switch_mm(mm, &init_mm, current);
  4102. mmdrop(mm);
  4103. }
  4104. /*
  4105. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4106. * we might have. Assumes we're called after migrate_tasks() so that the
  4107. * nr_active count is stable.
  4108. *
  4109. * Also see the comment "Global load-average calculations".
  4110. */
  4111. static void calc_load_migrate(struct rq *rq)
  4112. {
  4113. long delta = calc_load_fold_active(rq);
  4114. if (delta)
  4115. atomic_long_add(delta, &calc_load_tasks);
  4116. }
  4117. /*
  4118. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4119. * try_to_wake_up()->select_task_rq().
  4120. *
  4121. * Called with rq->lock held even though we'er in stop_machine() and
  4122. * there's no concurrency possible, we hold the required locks anyway
  4123. * because of lock validation efforts.
  4124. */
  4125. static void migrate_tasks(unsigned int dead_cpu)
  4126. {
  4127. struct rq *rq = cpu_rq(dead_cpu);
  4128. struct task_struct *next, *stop = rq->stop;
  4129. int dest_cpu;
  4130. /*
  4131. * Fudge the rq selection such that the below task selection loop
  4132. * doesn't get stuck on the currently eligible stop task.
  4133. *
  4134. * We're currently inside stop_machine() and the rq is either stuck
  4135. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4136. * either way we should never end up calling schedule() until we're
  4137. * done here.
  4138. */
  4139. rq->stop = NULL;
  4140. for ( ; ; ) {
  4141. /*
  4142. * There's this thread running, bail when that's the only
  4143. * remaining thread.
  4144. */
  4145. if (rq->nr_running == 1)
  4146. break;
  4147. next = pick_next_task(rq);
  4148. BUG_ON(!next);
  4149. next->sched_class->put_prev_task(rq, next);
  4150. /* Find suitable destination for @next, with force if needed. */
  4151. dest_cpu = select_fallback_rq(dead_cpu, next);
  4152. raw_spin_unlock(&rq->lock);
  4153. __migrate_task(next, dead_cpu, dest_cpu);
  4154. raw_spin_lock(&rq->lock);
  4155. }
  4156. rq->stop = stop;
  4157. }
  4158. #endif /* CONFIG_HOTPLUG_CPU */
  4159. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4160. static struct ctl_table sd_ctl_dir[] = {
  4161. {
  4162. .procname = "sched_domain",
  4163. .mode = 0555,
  4164. },
  4165. {}
  4166. };
  4167. static struct ctl_table sd_ctl_root[] = {
  4168. {
  4169. .procname = "kernel",
  4170. .mode = 0555,
  4171. .child = sd_ctl_dir,
  4172. },
  4173. {}
  4174. };
  4175. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4176. {
  4177. struct ctl_table *entry =
  4178. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4179. return entry;
  4180. }
  4181. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4182. {
  4183. struct ctl_table *entry;
  4184. /*
  4185. * In the intermediate directories, both the child directory and
  4186. * procname are dynamically allocated and could fail but the mode
  4187. * will always be set. In the lowest directory the names are
  4188. * static strings and all have proc handlers.
  4189. */
  4190. for (entry = *tablep; entry->mode; entry++) {
  4191. if (entry->child)
  4192. sd_free_ctl_entry(&entry->child);
  4193. if (entry->proc_handler == NULL)
  4194. kfree(entry->procname);
  4195. }
  4196. kfree(*tablep);
  4197. *tablep = NULL;
  4198. }
  4199. static int min_load_idx = 0;
  4200. static int max_load_idx = CPU_LOAD_IDX_MAX;
  4201. static void
  4202. set_table_entry(struct ctl_table *entry,
  4203. const char *procname, void *data, int maxlen,
  4204. umode_t mode, proc_handler *proc_handler,
  4205. bool load_idx)
  4206. {
  4207. entry->procname = procname;
  4208. entry->data = data;
  4209. entry->maxlen = maxlen;
  4210. entry->mode = mode;
  4211. entry->proc_handler = proc_handler;
  4212. if (load_idx) {
  4213. entry->extra1 = &min_load_idx;
  4214. entry->extra2 = &max_load_idx;
  4215. }
  4216. }
  4217. static struct ctl_table *
  4218. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4219. {
  4220. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4221. if (table == NULL)
  4222. return NULL;
  4223. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4224. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4225. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4226. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4227. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4228. sizeof(int), 0644, proc_dointvec_minmax, true);
  4229. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4230. sizeof(int), 0644, proc_dointvec_minmax, true);
  4231. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4232. sizeof(int), 0644, proc_dointvec_minmax, true);
  4233. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4234. sizeof(int), 0644, proc_dointvec_minmax, true);
  4235. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4236. sizeof(int), 0644, proc_dointvec_minmax, true);
  4237. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4238. sizeof(int), 0644, proc_dointvec_minmax, false);
  4239. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4240. sizeof(int), 0644, proc_dointvec_minmax, false);
  4241. set_table_entry(&table[9], "cache_nice_tries",
  4242. &sd->cache_nice_tries,
  4243. sizeof(int), 0644, proc_dointvec_minmax, false);
  4244. set_table_entry(&table[10], "flags", &sd->flags,
  4245. sizeof(int), 0644, proc_dointvec_minmax, false);
  4246. set_table_entry(&table[11], "name", sd->name,
  4247. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4248. /* &table[12] is terminator */
  4249. return table;
  4250. }
  4251. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4252. {
  4253. struct ctl_table *entry, *table;
  4254. struct sched_domain *sd;
  4255. int domain_num = 0, i;
  4256. char buf[32];
  4257. for_each_domain(cpu, sd)
  4258. domain_num++;
  4259. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4260. if (table == NULL)
  4261. return NULL;
  4262. i = 0;
  4263. for_each_domain(cpu, sd) {
  4264. snprintf(buf, 32, "domain%d", i);
  4265. entry->procname = kstrdup(buf, GFP_KERNEL);
  4266. entry->mode = 0555;
  4267. entry->child = sd_alloc_ctl_domain_table(sd);
  4268. entry++;
  4269. i++;
  4270. }
  4271. return table;
  4272. }
  4273. static struct ctl_table_header *sd_sysctl_header;
  4274. static void register_sched_domain_sysctl(void)
  4275. {
  4276. int i, cpu_num = num_possible_cpus();
  4277. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4278. char buf[32];
  4279. WARN_ON(sd_ctl_dir[0].child);
  4280. sd_ctl_dir[0].child = entry;
  4281. if (entry == NULL)
  4282. return;
  4283. for_each_possible_cpu(i) {
  4284. snprintf(buf, 32, "cpu%d", i);
  4285. entry->procname = kstrdup(buf, GFP_KERNEL);
  4286. entry->mode = 0555;
  4287. entry->child = sd_alloc_ctl_cpu_table(i);
  4288. entry++;
  4289. }
  4290. WARN_ON(sd_sysctl_header);
  4291. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4292. }
  4293. /* may be called multiple times per register */
  4294. static void unregister_sched_domain_sysctl(void)
  4295. {
  4296. if (sd_sysctl_header)
  4297. unregister_sysctl_table(sd_sysctl_header);
  4298. sd_sysctl_header = NULL;
  4299. if (sd_ctl_dir[0].child)
  4300. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4301. }
  4302. #else
  4303. static void register_sched_domain_sysctl(void)
  4304. {
  4305. }
  4306. static void unregister_sched_domain_sysctl(void)
  4307. {
  4308. }
  4309. #endif
  4310. static void set_rq_online(struct rq *rq)
  4311. {
  4312. if (!rq->online) {
  4313. const struct sched_class *class;
  4314. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4315. rq->online = 1;
  4316. for_each_class(class) {
  4317. if (class->rq_online)
  4318. class->rq_online(rq);
  4319. }
  4320. }
  4321. }
  4322. static void set_rq_offline(struct rq *rq)
  4323. {
  4324. if (rq->online) {
  4325. const struct sched_class *class;
  4326. for_each_class(class) {
  4327. if (class->rq_offline)
  4328. class->rq_offline(rq);
  4329. }
  4330. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4331. rq->online = 0;
  4332. }
  4333. }
  4334. /*
  4335. * migration_call - callback that gets triggered when a CPU is added.
  4336. * Here we can start up the necessary migration thread for the new CPU.
  4337. */
  4338. static int __cpuinit
  4339. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4340. {
  4341. int cpu = (long)hcpu;
  4342. unsigned long flags;
  4343. struct rq *rq = cpu_rq(cpu);
  4344. switch (action & ~CPU_TASKS_FROZEN) {
  4345. case CPU_UP_PREPARE:
  4346. rq->calc_load_update = calc_load_update;
  4347. break;
  4348. case CPU_ONLINE:
  4349. /* Update our root-domain */
  4350. raw_spin_lock_irqsave(&rq->lock, flags);
  4351. if (rq->rd) {
  4352. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4353. set_rq_online(rq);
  4354. }
  4355. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4356. break;
  4357. #ifdef CONFIG_HOTPLUG_CPU
  4358. case CPU_DYING:
  4359. sched_ttwu_pending();
  4360. /* Update our root-domain */
  4361. raw_spin_lock_irqsave(&rq->lock, flags);
  4362. if (rq->rd) {
  4363. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4364. set_rq_offline(rq);
  4365. }
  4366. migrate_tasks(cpu);
  4367. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4368. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4369. break;
  4370. case CPU_DEAD:
  4371. calc_load_migrate(rq);
  4372. break;
  4373. #endif
  4374. }
  4375. update_max_interval();
  4376. return NOTIFY_OK;
  4377. }
  4378. /*
  4379. * Register at high priority so that task migration (migrate_all_tasks)
  4380. * happens before everything else. This has to be lower priority than
  4381. * the notifier in the perf_event subsystem, though.
  4382. */
  4383. static struct notifier_block __cpuinitdata migration_notifier = {
  4384. .notifier_call = migration_call,
  4385. .priority = CPU_PRI_MIGRATION,
  4386. };
  4387. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4388. unsigned long action, void *hcpu)
  4389. {
  4390. switch (action & ~CPU_TASKS_FROZEN) {
  4391. case CPU_STARTING:
  4392. case CPU_DOWN_FAILED:
  4393. set_cpu_active((long)hcpu, true);
  4394. return NOTIFY_OK;
  4395. default:
  4396. return NOTIFY_DONE;
  4397. }
  4398. }
  4399. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4400. unsigned long action, void *hcpu)
  4401. {
  4402. switch (action & ~CPU_TASKS_FROZEN) {
  4403. case CPU_DOWN_PREPARE:
  4404. set_cpu_active((long)hcpu, false);
  4405. return NOTIFY_OK;
  4406. default:
  4407. return NOTIFY_DONE;
  4408. }
  4409. }
  4410. static int __init migration_init(void)
  4411. {
  4412. void *cpu = (void *)(long)smp_processor_id();
  4413. int err;
  4414. /* Initialize migration for the boot CPU */
  4415. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4416. BUG_ON(err == NOTIFY_BAD);
  4417. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4418. register_cpu_notifier(&migration_notifier);
  4419. /* Register cpu active notifiers */
  4420. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4421. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4422. return 0;
  4423. }
  4424. early_initcall(migration_init);
  4425. #endif
  4426. #ifdef CONFIG_SMP
  4427. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4428. #ifdef CONFIG_SCHED_DEBUG
  4429. static __read_mostly int sched_debug_enabled;
  4430. static int __init sched_debug_setup(char *str)
  4431. {
  4432. sched_debug_enabled = 1;
  4433. return 0;
  4434. }
  4435. early_param("sched_debug", sched_debug_setup);
  4436. static inline bool sched_debug(void)
  4437. {
  4438. return sched_debug_enabled;
  4439. }
  4440. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4441. struct cpumask *groupmask)
  4442. {
  4443. struct sched_group *group = sd->groups;
  4444. char str[256];
  4445. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4446. cpumask_clear(groupmask);
  4447. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4448. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4449. printk("does not load-balance\n");
  4450. if (sd->parent)
  4451. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4452. " has parent");
  4453. return -1;
  4454. }
  4455. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4456. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4457. printk(KERN_ERR "ERROR: domain->span does not contain "
  4458. "CPU%d\n", cpu);
  4459. }
  4460. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4461. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4462. " CPU%d\n", cpu);
  4463. }
  4464. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4465. do {
  4466. if (!group) {
  4467. printk("\n");
  4468. printk(KERN_ERR "ERROR: group is NULL\n");
  4469. break;
  4470. }
  4471. /*
  4472. * Even though we initialize ->power to something semi-sane,
  4473. * we leave power_orig unset. This allows us to detect if
  4474. * domain iteration is still funny without causing /0 traps.
  4475. */
  4476. if (!group->sgp->power_orig) {
  4477. printk(KERN_CONT "\n");
  4478. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4479. "set\n");
  4480. break;
  4481. }
  4482. if (!cpumask_weight(sched_group_cpus(group))) {
  4483. printk(KERN_CONT "\n");
  4484. printk(KERN_ERR "ERROR: empty group\n");
  4485. break;
  4486. }
  4487. if (!(sd->flags & SD_OVERLAP) &&
  4488. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4489. printk(KERN_CONT "\n");
  4490. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4491. break;
  4492. }
  4493. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4494. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4495. printk(KERN_CONT " %s", str);
  4496. if (group->sgp->power != SCHED_POWER_SCALE) {
  4497. printk(KERN_CONT " (cpu_power = %d)",
  4498. group->sgp->power);
  4499. }
  4500. group = group->next;
  4501. } while (group != sd->groups);
  4502. printk(KERN_CONT "\n");
  4503. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4504. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4505. if (sd->parent &&
  4506. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4507. printk(KERN_ERR "ERROR: parent span is not a superset "
  4508. "of domain->span\n");
  4509. return 0;
  4510. }
  4511. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4512. {
  4513. int level = 0;
  4514. if (!sched_debug_enabled)
  4515. return;
  4516. if (!sd) {
  4517. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4518. return;
  4519. }
  4520. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4521. for (;;) {
  4522. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4523. break;
  4524. level++;
  4525. sd = sd->parent;
  4526. if (!sd)
  4527. break;
  4528. }
  4529. }
  4530. #else /* !CONFIG_SCHED_DEBUG */
  4531. # define sched_domain_debug(sd, cpu) do { } while (0)
  4532. static inline bool sched_debug(void)
  4533. {
  4534. return false;
  4535. }
  4536. #endif /* CONFIG_SCHED_DEBUG */
  4537. static int sd_degenerate(struct sched_domain *sd)
  4538. {
  4539. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4540. return 1;
  4541. /* Following flags need at least 2 groups */
  4542. if (sd->flags & (SD_LOAD_BALANCE |
  4543. SD_BALANCE_NEWIDLE |
  4544. SD_BALANCE_FORK |
  4545. SD_BALANCE_EXEC |
  4546. SD_SHARE_CPUPOWER |
  4547. SD_SHARE_PKG_RESOURCES)) {
  4548. if (sd->groups != sd->groups->next)
  4549. return 0;
  4550. }
  4551. /* Following flags don't use groups */
  4552. if (sd->flags & (SD_WAKE_AFFINE))
  4553. return 0;
  4554. return 1;
  4555. }
  4556. static int
  4557. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4558. {
  4559. unsigned long cflags = sd->flags, pflags = parent->flags;
  4560. if (sd_degenerate(parent))
  4561. return 1;
  4562. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4563. return 0;
  4564. /* Flags needing groups don't count if only 1 group in parent */
  4565. if (parent->groups == parent->groups->next) {
  4566. pflags &= ~(SD_LOAD_BALANCE |
  4567. SD_BALANCE_NEWIDLE |
  4568. SD_BALANCE_FORK |
  4569. SD_BALANCE_EXEC |
  4570. SD_SHARE_CPUPOWER |
  4571. SD_SHARE_PKG_RESOURCES);
  4572. if (nr_node_ids == 1)
  4573. pflags &= ~SD_SERIALIZE;
  4574. }
  4575. if (~cflags & pflags)
  4576. return 0;
  4577. return 1;
  4578. }
  4579. static void free_rootdomain(struct rcu_head *rcu)
  4580. {
  4581. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4582. cpupri_cleanup(&rd->cpupri);
  4583. free_cpumask_var(rd->rto_mask);
  4584. free_cpumask_var(rd->online);
  4585. free_cpumask_var(rd->span);
  4586. kfree(rd);
  4587. }
  4588. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4589. {
  4590. struct root_domain *old_rd = NULL;
  4591. unsigned long flags;
  4592. raw_spin_lock_irqsave(&rq->lock, flags);
  4593. if (rq->rd) {
  4594. old_rd = rq->rd;
  4595. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4596. set_rq_offline(rq);
  4597. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4598. /*
  4599. * If we dont want to free the old_rt yet then
  4600. * set old_rd to NULL to skip the freeing later
  4601. * in this function:
  4602. */
  4603. if (!atomic_dec_and_test(&old_rd->refcount))
  4604. old_rd = NULL;
  4605. }
  4606. atomic_inc(&rd->refcount);
  4607. rq->rd = rd;
  4608. cpumask_set_cpu(rq->cpu, rd->span);
  4609. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4610. set_rq_online(rq);
  4611. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4612. if (old_rd)
  4613. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4614. }
  4615. static int init_rootdomain(struct root_domain *rd)
  4616. {
  4617. memset(rd, 0, sizeof(*rd));
  4618. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4619. goto out;
  4620. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4621. goto free_span;
  4622. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4623. goto free_online;
  4624. if (cpupri_init(&rd->cpupri) != 0)
  4625. goto free_rto_mask;
  4626. return 0;
  4627. free_rto_mask:
  4628. free_cpumask_var(rd->rto_mask);
  4629. free_online:
  4630. free_cpumask_var(rd->online);
  4631. free_span:
  4632. free_cpumask_var(rd->span);
  4633. out:
  4634. return -ENOMEM;
  4635. }
  4636. /*
  4637. * By default the system creates a single root-domain with all cpus as
  4638. * members (mimicking the global state we have today).
  4639. */
  4640. struct root_domain def_root_domain;
  4641. static void init_defrootdomain(void)
  4642. {
  4643. init_rootdomain(&def_root_domain);
  4644. atomic_set(&def_root_domain.refcount, 1);
  4645. }
  4646. static struct root_domain *alloc_rootdomain(void)
  4647. {
  4648. struct root_domain *rd;
  4649. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4650. if (!rd)
  4651. return NULL;
  4652. if (init_rootdomain(rd) != 0) {
  4653. kfree(rd);
  4654. return NULL;
  4655. }
  4656. return rd;
  4657. }
  4658. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4659. {
  4660. struct sched_group *tmp, *first;
  4661. if (!sg)
  4662. return;
  4663. first = sg;
  4664. do {
  4665. tmp = sg->next;
  4666. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4667. kfree(sg->sgp);
  4668. kfree(sg);
  4669. sg = tmp;
  4670. } while (sg != first);
  4671. }
  4672. static void free_sched_domain(struct rcu_head *rcu)
  4673. {
  4674. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4675. /*
  4676. * If its an overlapping domain it has private groups, iterate and
  4677. * nuke them all.
  4678. */
  4679. if (sd->flags & SD_OVERLAP) {
  4680. free_sched_groups(sd->groups, 1);
  4681. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4682. kfree(sd->groups->sgp);
  4683. kfree(sd->groups);
  4684. }
  4685. kfree(sd);
  4686. }
  4687. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4688. {
  4689. call_rcu(&sd->rcu, free_sched_domain);
  4690. }
  4691. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4692. {
  4693. for (; sd; sd = sd->parent)
  4694. destroy_sched_domain(sd, cpu);
  4695. }
  4696. /*
  4697. * Keep a special pointer to the highest sched_domain that has
  4698. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4699. * allows us to avoid some pointer chasing select_idle_sibling().
  4700. *
  4701. * Also keep a unique ID per domain (we use the first cpu number in
  4702. * the cpumask of the domain), this allows us to quickly tell if
  4703. * two cpus are in the same cache domain, see cpus_share_cache().
  4704. */
  4705. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4706. DEFINE_PER_CPU(int, sd_llc_id);
  4707. static void update_top_cache_domain(int cpu)
  4708. {
  4709. struct sched_domain *sd;
  4710. int id = cpu;
  4711. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4712. if (sd)
  4713. id = cpumask_first(sched_domain_span(sd));
  4714. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4715. per_cpu(sd_llc_id, cpu) = id;
  4716. }
  4717. /*
  4718. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4719. * hold the hotplug lock.
  4720. */
  4721. static void
  4722. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4723. {
  4724. struct rq *rq = cpu_rq(cpu);
  4725. struct sched_domain *tmp;
  4726. /* Remove the sched domains which do not contribute to scheduling. */
  4727. for (tmp = sd; tmp; ) {
  4728. struct sched_domain *parent = tmp->parent;
  4729. if (!parent)
  4730. break;
  4731. if (sd_parent_degenerate(tmp, parent)) {
  4732. tmp->parent = parent->parent;
  4733. if (parent->parent)
  4734. parent->parent->child = tmp;
  4735. destroy_sched_domain(parent, cpu);
  4736. } else
  4737. tmp = tmp->parent;
  4738. }
  4739. if (sd && sd_degenerate(sd)) {
  4740. tmp = sd;
  4741. sd = sd->parent;
  4742. destroy_sched_domain(tmp, cpu);
  4743. if (sd)
  4744. sd->child = NULL;
  4745. }
  4746. sched_domain_debug(sd, cpu);
  4747. rq_attach_root(rq, rd);
  4748. tmp = rq->sd;
  4749. rcu_assign_pointer(rq->sd, sd);
  4750. destroy_sched_domains(tmp, cpu);
  4751. update_top_cache_domain(cpu);
  4752. }
  4753. /* cpus with isolated domains */
  4754. static cpumask_var_t cpu_isolated_map;
  4755. /* Setup the mask of cpus configured for isolated domains */
  4756. static int __init isolated_cpu_setup(char *str)
  4757. {
  4758. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4759. cpulist_parse(str, cpu_isolated_map);
  4760. return 1;
  4761. }
  4762. __setup("isolcpus=", isolated_cpu_setup);
  4763. static const struct cpumask *cpu_cpu_mask(int cpu)
  4764. {
  4765. return cpumask_of_node(cpu_to_node(cpu));
  4766. }
  4767. struct sd_data {
  4768. struct sched_domain **__percpu sd;
  4769. struct sched_group **__percpu sg;
  4770. struct sched_group_power **__percpu sgp;
  4771. };
  4772. struct s_data {
  4773. struct sched_domain ** __percpu sd;
  4774. struct root_domain *rd;
  4775. };
  4776. enum s_alloc {
  4777. sa_rootdomain,
  4778. sa_sd,
  4779. sa_sd_storage,
  4780. sa_none,
  4781. };
  4782. struct sched_domain_topology_level;
  4783. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4784. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4785. #define SDTL_OVERLAP 0x01
  4786. struct sched_domain_topology_level {
  4787. sched_domain_init_f init;
  4788. sched_domain_mask_f mask;
  4789. int flags;
  4790. int numa_level;
  4791. struct sd_data data;
  4792. };
  4793. /*
  4794. * Build an iteration mask that can exclude certain CPUs from the upwards
  4795. * domain traversal.
  4796. *
  4797. * Asymmetric node setups can result in situations where the domain tree is of
  4798. * unequal depth, make sure to skip domains that already cover the entire
  4799. * range.
  4800. *
  4801. * In that case build_sched_domains() will have terminated the iteration early
  4802. * and our sibling sd spans will be empty. Domains should always include the
  4803. * cpu they're built on, so check that.
  4804. *
  4805. */
  4806. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4807. {
  4808. const struct cpumask *span = sched_domain_span(sd);
  4809. struct sd_data *sdd = sd->private;
  4810. struct sched_domain *sibling;
  4811. int i;
  4812. for_each_cpu(i, span) {
  4813. sibling = *per_cpu_ptr(sdd->sd, i);
  4814. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4815. continue;
  4816. cpumask_set_cpu(i, sched_group_mask(sg));
  4817. }
  4818. }
  4819. /*
  4820. * Return the canonical balance cpu for this group, this is the first cpu
  4821. * of this group that's also in the iteration mask.
  4822. */
  4823. int group_balance_cpu(struct sched_group *sg)
  4824. {
  4825. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4826. }
  4827. static int
  4828. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4829. {
  4830. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4831. const struct cpumask *span = sched_domain_span(sd);
  4832. struct cpumask *covered = sched_domains_tmpmask;
  4833. struct sd_data *sdd = sd->private;
  4834. struct sched_domain *child;
  4835. int i;
  4836. cpumask_clear(covered);
  4837. for_each_cpu(i, span) {
  4838. struct cpumask *sg_span;
  4839. if (cpumask_test_cpu(i, covered))
  4840. continue;
  4841. child = *per_cpu_ptr(sdd->sd, i);
  4842. /* See the comment near build_group_mask(). */
  4843. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4844. continue;
  4845. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4846. GFP_KERNEL, cpu_to_node(cpu));
  4847. if (!sg)
  4848. goto fail;
  4849. sg_span = sched_group_cpus(sg);
  4850. if (child->child) {
  4851. child = child->child;
  4852. cpumask_copy(sg_span, sched_domain_span(child));
  4853. } else
  4854. cpumask_set_cpu(i, sg_span);
  4855. cpumask_or(covered, covered, sg_span);
  4856. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4857. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4858. build_group_mask(sd, sg);
  4859. /*
  4860. * Initialize sgp->power such that even if we mess up the
  4861. * domains and no possible iteration will get us here, we won't
  4862. * die on a /0 trap.
  4863. */
  4864. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4865. /*
  4866. * Make sure the first group of this domain contains the
  4867. * canonical balance cpu. Otherwise the sched_domain iteration
  4868. * breaks. See update_sg_lb_stats().
  4869. */
  4870. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4871. group_balance_cpu(sg) == cpu)
  4872. groups = sg;
  4873. if (!first)
  4874. first = sg;
  4875. if (last)
  4876. last->next = sg;
  4877. last = sg;
  4878. last->next = first;
  4879. }
  4880. sd->groups = groups;
  4881. return 0;
  4882. fail:
  4883. free_sched_groups(first, 0);
  4884. return -ENOMEM;
  4885. }
  4886. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4887. {
  4888. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4889. struct sched_domain *child = sd->child;
  4890. if (child)
  4891. cpu = cpumask_first(sched_domain_span(child));
  4892. if (sg) {
  4893. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4894. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4895. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4896. }
  4897. return cpu;
  4898. }
  4899. /*
  4900. * build_sched_groups will build a circular linked list of the groups
  4901. * covered by the given span, and will set each group's ->cpumask correctly,
  4902. * and ->cpu_power to 0.
  4903. *
  4904. * Assumes the sched_domain tree is fully constructed
  4905. */
  4906. static int
  4907. build_sched_groups(struct sched_domain *sd, int cpu)
  4908. {
  4909. struct sched_group *first = NULL, *last = NULL;
  4910. struct sd_data *sdd = sd->private;
  4911. const struct cpumask *span = sched_domain_span(sd);
  4912. struct cpumask *covered;
  4913. int i;
  4914. get_group(cpu, sdd, &sd->groups);
  4915. atomic_inc(&sd->groups->ref);
  4916. if (cpu != cpumask_first(sched_domain_span(sd)))
  4917. return 0;
  4918. lockdep_assert_held(&sched_domains_mutex);
  4919. covered = sched_domains_tmpmask;
  4920. cpumask_clear(covered);
  4921. for_each_cpu(i, span) {
  4922. struct sched_group *sg;
  4923. int group = get_group(i, sdd, &sg);
  4924. int j;
  4925. if (cpumask_test_cpu(i, covered))
  4926. continue;
  4927. cpumask_clear(sched_group_cpus(sg));
  4928. sg->sgp->power = 0;
  4929. cpumask_setall(sched_group_mask(sg));
  4930. for_each_cpu(j, span) {
  4931. if (get_group(j, sdd, NULL) != group)
  4932. continue;
  4933. cpumask_set_cpu(j, covered);
  4934. cpumask_set_cpu(j, sched_group_cpus(sg));
  4935. }
  4936. if (!first)
  4937. first = sg;
  4938. if (last)
  4939. last->next = sg;
  4940. last = sg;
  4941. }
  4942. last->next = first;
  4943. return 0;
  4944. }
  4945. /*
  4946. * Initialize sched groups cpu_power.
  4947. *
  4948. * cpu_power indicates the capacity of sched group, which is used while
  4949. * distributing the load between different sched groups in a sched domain.
  4950. * Typically cpu_power for all the groups in a sched domain will be same unless
  4951. * there are asymmetries in the topology. If there are asymmetries, group
  4952. * having more cpu_power will pickup more load compared to the group having
  4953. * less cpu_power.
  4954. */
  4955. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4956. {
  4957. struct sched_group *sg = sd->groups;
  4958. WARN_ON(!sd || !sg);
  4959. do {
  4960. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4961. sg = sg->next;
  4962. } while (sg != sd->groups);
  4963. if (cpu != group_balance_cpu(sg))
  4964. return;
  4965. update_group_power(sd, cpu);
  4966. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4967. }
  4968. int __weak arch_sd_sibling_asym_packing(void)
  4969. {
  4970. return 0*SD_ASYM_PACKING;
  4971. }
  4972. /*
  4973. * Initializers for schedule domains
  4974. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4975. */
  4976. #ifdef CONFIG_SCHED_DEBUG
  4977. # define SD_INIT_NAME(sd, type) sd->name = #type
  4978. #else
  4979. # define SD_INIT_NAME(sd, type) do { } while (0)
  4980. #endif
  4981. #define SD_INIT_FUNC(type) \
  4982. static noinline struct sched_domain * \
  4983. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4984. { \
  4985. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4986. *sd = SD_##type##_INIT; \
  4987. SD_INIT_NAME(sd, type); \
  4988. sd->private = &tl->data; \
  4989. return sd; \
  4990. }
  4991. SD_INIT_FUNC(CPU)
  4992. #ifdef CONFIG_SCHED_SMT
  4993. SD_INIT_FUNC(SIBLING)
  4994. #endif
  4995. #ifdef CONFIG_SCHED_MC
  4996. SD_INIT_FUNC(MC)
  4997. #endif
  4998. #ifdef CONFIG_SCHED_BOOK
  4999. SD_INIT_FUNC(BOOK)
  5000. #endif
  5001. static int default_relax_domain_level = -1;
  5002. int sched_domain_level_max;
  5003. static int __init setup_relax_domain_level(char *str)
  5004. {
  5005. if (kstrtoint(str, 0, &default_relax_domain_level))
  5006. pr_warn("Unable to set relax_domain_level\n");
  5007. return 1;
  5008. }
  5009. __setup("relax_domain_level=", setup_relax_domain_level);
  5010. static void set_domain_attribute(struct sched_domain *sd,
  5011. struct sched_domain_attr *attr)
  5012. {
  5013. int request;
  5014. if (!attr || attr->relax_domain_level < 0) {
  5015. if (default_relax_domain_level < 0)
  5016. return;
  5017. else
  5018. request = default_relax_domain_level;
  5019. } else
  5020. request = attr->relax_domain_level;
  5021. if (request < sd->level) {
  5022. /* turn off idle balance on this domain */
  5023. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5024. } else {
  5025. /* turn on idle balance on this domain */
  5026. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5027. }
  5028. }
  5029. static void __sdt_free(const struct cpumask *cpu_map);
  5030. static int __sdt_alloc(const struct cpumask *cpu_map);
  5031. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5032. const struct cpumask *cpu_map)
  5033. {
  5034. switch (what) {
  5035. case sa_rootdomain:
  5036. if (!atomic_read(&d->rd->refcount))
  5037. free_rootdomain(&d->rd->rcu); /* fall through */
  5038. case sa_sd:
  5039. free_percpu(d->sd); /* fall through */
  5040. case sa_sd_storage:
  5041. __sdt_free(cpu_map); /* fall through */
  5042. case sa_none:
  5043. break;
  5044. }
  5045. }
  5046. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5047. const struct cpumask *cpu_map)
  5048. {
  5049. memset(d, 0, sizeof(*d));
  5050. if (__sdt_alloc(cpu_map))
  5051. return sa_sd_storage;
  5052. d->sd = alloc_percpu(struct sched_domain *);
  5053. if (!d->sd)
  5054. return sa_sd_storage;
  5055. d->rd = alloc_rootdomain();
  5056. if (!d->rd)
  5057. return sa_sd;
  5058. return sa_rootdomain;
  5059. }
  5060. /*
  5061. * NULL the sd_data elements we've used to build the sched_domain and
  5062. * sched_group structure so that the subsequent __free_domain_allocs()
  5063. * will not free the data we're using.
  5064. */
  5065. static void claim_allocations(int cpu, struct sched_domain *sd)
  5066. {
  5067. struct sd_data *sdd = sd->private;
  5068. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5069. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5070. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5071. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5072. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5073. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5074. }
  5075. #ifdef CONFIG_SCHED_SMT
  5076. static const struct cpumask *cpu_smt_mask(int cpu)
  5077. {
  5078. return topology_thread_cpumask(cpu);
  5079. }
  5080. #endif
  5081. /*
  5082. * Topology list, bottom-up.
  5083. */
  5084. static struct sched_domain_topology_level default_topology[] = {
  5085. #ifdef CONFIG_SCHED_SMT
  5086. { sd_init_SIBLING, cpu_smt_mask, },
  5087. #endif
  5088. #ifdef CONFIG_SCHED_MC
  5089. { sd_init_MC, cpu_coregroup_mask, },
  5090. #endif
  5091. #ifdef CONFIG_SCHED_BOOK
  5092. { sd_init_BOOK, cpu_book_mask, },
  5093. #endif
  5094. { sd_init_CPU, cpu_cpu_mask, },
  5095. { NULL, },
  5096. };
  5097. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5098. #ifdef CONFIG_NUMA
  5099. static int sched_domains_numa_levels;
  5100. static int *sched_domains_numa_distance;
  5101. static struct cpumask ***sched_domains_numa_masks;
  5102. static int sched_domains_curr_level;
  5103. static inline int sd_local_flags(int level)
  5104. {
  5105. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5106. return 0;
  5107. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5108. }
  5109. static struct sched_domain *
  5110. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5111. {
  5112. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5113. int level = tl->numa_level;
  5114. int sd_weight = cpumask_weight(
  5115. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5116. *sd = (struct sched_domain){
  5117. .min_interval = sd_weight,
  5118. .max_interval = 2*sd_weight,
  5119. .busy_factor = 32,
  5120. .imbalance_pct = 125,
  5121. .cache_nice_tries = 2,
  5122. .busy_idx = 3,
  5123. .idle_idx = 2,
  5124. .newidle_idx = 0,
  5125. .wake_idx = 0,
  5126. .forkexec_idx = 0,
  5127. .flags = 1*SD_LOAD_BALANCE
  5128. | 1*SD_BALANCE_NEWIDLE
  5129. | 0*SD_BALANCE_EXEC
  5130. | 0*SD_BALANCE_FORK
  5131. | 0*SD_BALANCE_WAKE
  5132. | 0*SD_WAKE_AFFINE
  5133. | 0*SD_SHARE_CPUPOWER
  5134. | 0*SD_SHARE_PKG_RESOURCES
  5135. | 1*SD_SERIALIZE
  5136. | 0*SD_PREFER_SIBLING
  5137. | sd_local_flags(level)
  5138. ,
  5139. .last_balance = jiffies,
  5140. .balance_interval = sd_weight,
  5141. };
  5142. SD_INIT_NAME(sd, NUMA);
  5143. sd->private = &tl->data;
  5144. /*
  5145. * Ugly hack to pass state to sd_numa_mask()...
  5146. */
  5147. sched_domains_curr_level = tl->numa_level;
  5148. return sd;
  5149. }
  5150. static const struct cpumask *sd_numa_mask(int cpu)
  5151. {
  5152. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5153. }
  5154. static void sched_numa_warn(const char *str)
  5155. {
  5156. static int done = false;
  5157. int i,j;
  5158. if (done)
  5159. return;
  5160. done = true;
  5161. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5162. for (i = 0; i < nr_node_ids; i++) {
  5163. printk(KERN_WARNING " ");
  5164. for (j = 0; j < nr_node_ids; j++)
  5165. printk(KERN_CONT "%02d ", node_distance(i,j));
  5166. printk(KERN_CONT "\n");
  5167. }
  5168. printk(KERN_WARNING "\n");
  5169. }
  5170. static bool find_numa_distance(int distance)
  5171. {
  5172. int i;
  5173. if (distance == node_distance(0, 0))
  5174. return true;
  5175. for (i = 0; i < sched_domains_numa_levels; i++) {
  5176. if (sched_domains_numa_distance[i] == distance)
  5177. return true;
  5178. }
  5179. return false;
  5180. }
  5181. static void sched_init_numa(void)
  5182. {
  5183. int next_distance, curr_distance = node_distance(0, 0);
  5184. struct sched_domain_topology_level *tl;
  5185. int level = 0;
  5186. int i, j, k;
  5187. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5188. if (!sched_domains_numa_distance)
  5189. return;
  5190. /*
  5191. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5192. * unique distances in the node_distance() table.
  5193. *
  5194. * Assumes node_distance(0,j) includes all distances in
  5195. * node_distance(i,j) in order to avoid cubic time.
  5196. */
  5197. next_distance = curr_distance;
  5198. for (i = 0; i < nr_node_ids; i++) {
  5199. for (j = 0; j < nr_node_ids; j++) {
  5200. for (k = 0; k < nr_node_ids; k++) {
  5201. int distance = node_distance(i, k);
  5202. if (distance > curr_distance &&
  5203. (distance < next_distance ||
  5204. next_distance == curr_distance))
  5205. next_distance = distance;
  5206. /*
  5207. * While not a strong assumption it would be nice to know
  5208. * about cases where if node A is connected to B, B is not
  5209. * equally connected to A.
  5210. */
  5211. if (sched_debug() && node_distance(k, i) != distance)
  5212. sched_numa_warn("Node-distance not symmetric");
  5213. if (sched_debug() && i && !find_numa_distance(distance))
  5214. sched_numa_warn("Node-0 not representative");
  5215. }
  5216. if (next_distance != curr_distance) {
  5217. sched_domains_numa_distance[level++] = next_distance;
  5218. sched_domains_numa_levels = level;
  5219. curr_distance = next_distance;
  5220. } else break;
  5221. }
  5222. /*
  5223. * In case of sched_debug() we verify the above assumption.
  5224. */
  5225. if (!sched_debug())
  5226. break;
  5227. }
  5228. /*
  5229. * 'level' contains the number of unique distances, excluding the
  5230. * identity distance node_distance(i,i).
  5231. *
  5232. * The sched_domains_nume_distance[] array includes the actual distance
  5233. * numbers.
  5234. */
  5235. /*
  5236. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5237. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5238. * the array will contain less then 'level' members. This could be
  5239. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5240. * in other functions.
  5241. *
  5242. * We reset it to 'level' at the end of this function.
  5243. */
  5244. sched_domains_numa_levels = 0;
  5245. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5246. if (!sched_domains_numa_masks)
  5247. return;
  5248. /*
  5249. * Now for each level, construct a mask per node which contains all
  5250. * cpus of nodes that are that many hops away from us.
  5251. */
  5252. for (i = 0; i < level; i++) {
  5253. sched_domains_numa_masks[i] =
  5254. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5255. if (!sched_domains_numa_masks[i])
  5256. return;
  5257. for (j = 0; j < nr_node_ids; j++) {
  5258. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5259. if (!mask)
  5260. return;
  5261. sched_domains_numa_masks[i][j] = mask;
  5262. for (k = 0; k < nr_node_ids; k++) {
  5263. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5264. continue;
  5265. cpumask_or(mask, mask, cpumask_of_node(k));
  5266. }
  5267. }
  5268. }
  5269. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5270. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5271. if (!tl)
  5272. return;
  5273. /*
  5274. * Copy the default topology bits..
  5275. */
  5276. for (i = 0; default_topology[i].init; i++)
  5277. tl[i] = default_topology[i];
  5278. /*
  5279. * .. and append 'j' levels of NUMA goodness.
  5280. */
  5281. for (j = 0; j < level; i++, j++) {
  5282. tl[i] = (struct sched_domain_topology_level){
  5283. .init = sd_numa_init,
  5284. .mask = sd_numa_mask,
  5285. .flags = SDTL_OVERLAP,
  5286. .numa_level = j,
  5287. };
  5288. }
  5289. sched_domain_topology = tl;
  5290. sched_domains_numa_levels = level;
  5291. }
  5292. static void sched_domains_numa_masks_set(int cpu)
  5293. {
  5294. int i, j;
  5295. int node = cpu_to_node(cpu);
  5296. for (i = 0; i < sched_domains_numa_levels; i++) {
  5297. for (j = 0; j < nr_node_ids; j++) {
  5298. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5299. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5300. }
  5301. }
  5302. }
  5303. static void sched_domains_numa_masks_clear(int cpu)
  5304. {
  5305. int i, j;
  5306. for (i = 0; i < sched_domains_numa_levels; i++) {
  5307. for (j = 0; j < nr_node_ids; j++)
  5308. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5309. }
  5310. }
  5311. /*
  5312. * Update sched_domains_numa_masks[level][node] array when new cpus
  5313. * are onlined.
  5314. */
  5315. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5316. unsigned long action,
  5317. void *hcpu)
  5318. {
  5319. int cpu = (long)hcpu;
  5320. switch (action & ~CPU_TASKS_FROZEN) {
  5321. case CPU_ONLINE:
  5322. sched_domains_numa_masks_set(cpu);
  5323. break;
  5324. case CPU_DEAD:
  5325. sched_domains_numa_masks_clear(cpu);
  5326. break;
  5327. default:
  5328. return NOTIFY_DONE;
  5329. }
  5330. return NOTIFY_OK;
  5331. }
  5332. #else
  5333. static inline void sched_init_numa(void)
  5334. {
  5335. }
  5336. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5337. unsigned long action,
  5338. void *hcpu)
  5339. {
  5340. return 0;
  5341. }
  5342. #endif /* CONFIG_NUMA */
  5343. static int __sdt_alloc(const struct cpumask *cpu_map)
  5344. {
  5345. struct sched_domain_topology_level *tl;
  5346. int j;
  5347. for (tl = sched_domain_topology; tl->init; tl++) {
  5348. struct sd_data *sdd = &tl->data;
  5349. sdd->sd = alloc_percpu(struct sched_domain *);
  5350. if (!sdd->sd)
  5351. return -ENOMEM;
  5352. sdd->sg = alloc_percpu(struct sched_group *);
  5353. if (!sdd->sg)
  5354. return -ENOMEM;
  5355. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5356. if (!sdd->sgp)
  5357. return -ENOMEM;
  5358. for_each_cpu(j, cpu_map) {
  5359. struct sched_domain *sd;
  5360. struct sched_group *sg;
  5361. struct sched_group_power *sgp;
  5362. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5363. GFP_KERNEL, cpu_to_node(j));
  5364. if (!sd)
  5365. return -ENOMEM;
  5366. *per_cpu_ptr(sdd->sd, j) = sd;
  5367. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5368. GFP_KERNEL, cpu_to_node(j));
  5369. if (!sg)
  5370. return -ENOMEM;
  5371. sg->next = sg;
  5372. *per_cpu_ptr(sdd->sg, j) = sg;
  5373. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5374. GFP_KERNEL, cpu_to_node(j));
  5375. if (!sgp)
  5376. return -ENOMEM;
  5377. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5378. }
  5379. }
  5380. return 0;
  5381. }
  5382. static void __sdt_free(const struct cpumask *cpu_map)
  5383. {
  5384. struct sched_domain_topology_level *tl;
  5385. int j;
  5386. for (tl = sched_domain_topology; tl->init; tl++) {
  5387. struct sd_data *sdd = &tl->data;
  5388. for_each_cpu(j, cpu_map) {
  5389. struct sched_domain *sd;
  5390. if (sdd->sd) {
  5391. sd = *per_cpu_ptr(sdd->sd, j);
  5392. if (sd && (sd->flags & SD_OVERLAP))
  5393. free_sched_groups(sd->groups, 0);
  5394. kfree(*per_cpu_ptr(sdd->sd, j));
  5395. }
  5396. if (sdd->sg)
  5397. kfree(*per_cpu_ptr(sdd->sg, j));
  5398. if (sdd->sgp)
  5399. kfree(*per_cpu_ptr(sdd->sgp, j));
  5400. }
  5401. free_percpu(sdd->sd);
  5402. sdd->sd = NULL;
  5403. free_percpu(sdd->sg);
  5404. sdd->sg = NULL;
  5405. free_percpu(sdd->sgp);
  5406. sdd->sgp = NULL;
  5407. }
  5408. }
  5409. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5410. struct s_data *d, const struct cpumask *cpu_map,
  5411. struct sched_domain_attr *attr, struct sched_domain *child,
  5412. int cpu)
  5413. {
  5414. struct sched_domain *sd = tl->init(tl, cpu);
  5415. if (!sd)
  5416. return child;
  5417. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5418. if (child) {
  5419. sd->level = child->level + 1;
  5420. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5421. child->parent = sd;
  5422. }
  5423. sd->child = child;
  5424. set_domain_attribute(sd, attr);
  5425. return sd;
  5426. }
  5427. /*
  5428. * Build sched domains for a given set of cpus and attach the sched domains
  5429. * to the individual cpus
  5430. */
  5431. static int build_sched_domains(const struct cpumask *cpu_map,
  5432. struct sched_domain_attr *attr)
  5433. {
  5434. enum s_alloc alloc_state = sa_none;
  5435. struct sched_domain *sd;
  5436. struct s_data d;
  5437. int i, ret = -ENOMEM;
  5438. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5439. if (alloc_state != sa_rootdomain)
  5440. goto error;
  5441. /* Set up domains for cpus specified by the cpu_map. */
  5442. for_each_cpu(i, cpu_map) {
  5443. struct sched_domain_topology_level *tl;
  5444. sd = NULL;
  5445. for (tl = sched_domain_topology; tl->init; tl++) {
  5446. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5447. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5448. sd->flags |= SD_OVERLAP;
  5449. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5450. break;
  5451. }
  5452. while (sd->child)
  5453. sd = sd->child;
  5454. *per_cpu_ptr(d.sd, i) = sd;
  5455. }
  5456. /* Build the groups for the domains */
  5457. for_each_cpu(i, cpu_map) {
  5458. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5459. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5460. if (sd->flags & SD_OVERLAP) {
  5461. if (build_overlap_sched_groups(sd, i))
  5462. goto error;
  5463. } else {
  5464. if (build_sched_groups(sd, i))
  5465. goto error;
  5466. }
  5467. }
  5468. }
  5469. /* Calculate CPU power for physical packages and nodes */
  5470. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5471. if (!cpumask_test_cpu(i, cpu_map))
  5472. continue;
  5473. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5474. claim_allocations(i, sd);
  5475. init_sched_groups_power(i, sd);
  5476. }
  5477. }
  5478. /* Attach the domains */
  5479. rcu_read_lock();
  5480. for_each_cpu(i, cpu_map) {
  5481. sd = *per_cpu_ptr(d.sd, i);
  5482. cpu_attach_domain(sd, d.rd, i);
  5483. }
  5484. rcu_read_unlock();
  5485. ret = 0;
  5486. error:
  5487. __free_domain_allocs(&d, alloc_state, cpu_map);
  5488. return ret;
  5489. }
  5490. static cpumask_var_t *doms_cur; /* current sched domains */
  5491. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5492. static struct sched_domain_attr *dattr_cur;
  5493. /* attribues of custom domains in 'doms_cur' */
  5494. /*
  5495. * Special case: If a kmalloc of a doms_cur partition (array of
  5496. * cpumask) fails, then fallback to a single sched domain,
  5497. * as determined by the single cpumask fallback_doms.
  5498. */
  5499. static cpumask_var_t fallback_doms;
  5500. /*
  5501. * arch_update_cpu_topology lets virtualized architectures update the
  5502. * cpu core maps. It is supposed to return 1 if the topology changed
  5503. * or 0 if it stayed the same.
  5504. */
  5505. int __attribute__((weak)) arch_update_cpu_topology(void)
  5506. {
  5507. return 0;
  5508. }
  5509. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5510. {
  5511. int i;
  5512. cpumask_var_t *doms;
  5513. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5514. if (!doms)
  5515. return NULL;
  5516. for (i = 0; i < ndoms; i++) {
  5517. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5518. free_sched_domains(doms, i);
  5519. return NULL;
  5520. }
  5521. }
  5522. return doms;
  5523. }
  5524. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5525. {
  5526. unsigned int i;
  5527. for (i = 0; i < ndoms; i++)
  5528. free_cpumask_var(doms[i]);
  5529. kfree(doms);
  5530. }
  5531. /*
  5532. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5533. * For now this just excludes isolated cpus, but could be used to
  5534. * exclude other special cases in the future.
  5535. */
  5536. static int init_sched_domains(const struct cpumask *cpu_map)
  5537. {
  5538. int err;
  5539. arch_update_cpu_topology();
  5540. ndoms_cur = 1;
  5541. doms_cur = alloc_sched_domains(ndoms_cur);
  5542. if (!doms_cur)
  5543. doms_cur = &fallback_doms;
  5544. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5545. err = build_sched_domains(doms_cur[0], NULL);
  5546. register_sched_domain_sysctl();
  5547. return err;
  5548. }
  5549. /*
  5550. * Detach sched domains from a group of cpus specified in cpu_map
  5551. * These cpus will now be attached to the NULL domain
  5552. */
  5553. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5554. {
  5555. int i;
  5556. rcu_read_lock();
  5557. for_each_cpu(i, cpu_map)
  5558. cpu_attach_domain(NULL, &def_root_domain, i);
  5559. rcu_read_unlock();
  5560. }
  5561. /* handle null as "default" */
  5562. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5563. struct sched_domain_attr *new, int idx_new)
  5564. {
  5565. struct sched_domain_attr tmp;
  5566. /* fast path */
  5567. if (!new && !cur)
  5568. return 1;
  5569. tmp = SD_ATTR_INIT;
  5570. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5571. new ? (new + idx_new) : &tmp,
  5572. sizeof(struct sched_domain_attr));
  5573. }
  5574. /*
  5575. * Partition sched domains as specified by the 'ndoms_new'
  5576. * cpumasks in the array doms_new[] of cpumasks. This compares
  5577. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5578. * It destroys each deleted domain and builds each new domain.
  5579. *
  5580. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5581. * The masks don't intersect (don't overlap.) We should setup one
  5582. * sched domain for each mask. CPUs not in any of the cpumasks will
  5583. * not be load balanced. If the same cpumask appears both in the
  5584. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5585. * it as it is.
  5586. *
  5587. * The passed in 'doms_new' should be allocated using
  5588. * alloc_sched_domains. This routine takes ownership of it and will
  5589. * free_sched_domains it when done with it. If the caller failed the
  5590. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5591. * and partition_sched_domains() will fallback to the single partition
  5592. * 'fallback_doms', it also forces the domains to be rebuilt.
  5593. *
  5594. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5595. * ndoms_new == 0 is a special case for destroying existing domains,
  5596. * and it will not create the default domain.
  5597. *
  5598. * Call with hotplug lock held
  5599. */
  5600. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5601. struct sched_domain_attr *dattr_new)
  5602. {
  5603. int i, j, n;
  5604. int new_topology;
  5605. mutex_lock(&sched_domains_mutex);
  5606. /* always unregister in case we don't destroy any domains */
  5607. unregister_sched_domain_sysctl();
  5608. /* Let architecture update cpu core mappings. */
  5609. new_topology = arch_update_cpu_topology();
  5610. n = doms_new ? ndoms_new : 0;
  5611. /* Destroy deleted domains */
  5612. for (i = 0; i < ndoms_cur; i++) {
  5613. for (j = 0; j < n && !new_topology; j++) {
  5614. if (cpumask_equal(doms_cur[i], doms_new[j])
  5615. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5616. goto match1;
  5617. }
  5618. /* no match - a current sched domain not in new doms_new[] */
  5619. detach_destroy_domains(doms_cur[i]);
  5620. match1:
  5621. ;
  5622. }
  5623. if (doms_new == NULL) {
  5624. ndoms_cur = 0;
  5625. doms_new = &fallback_doms;
  5626. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5627. WARN_ON_ONCE(dattr_new);
  5628. }
  5629. /* Build new domains */
  5630. for (i = 0; i < ndoms_new; i++) {
  5631. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5632. if (cpumask_equal(doms_new[i], doms_cur[j])
  5633. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5634. goto match2;
  5635. }
  5636. /* no match - add a new doms_new */
  5637. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5638. match2:
  5639. ;
  5640. }
  5641. /* Remember the new sched domains */
  5642. if (doms_cur != &fallback_doms)
  5643. free_sched_domains(doms_cur, ndoms_cur);
  5644. kfree(dattr_cur); /* kfree(NULL) is safe */
  5645. doms_cur = doms_new;
  5646. dattr_cur = dattr_new;
  5647. ndoms_cur = ndoms_new;
  5648. register_sched_domain_sysctl();
  5649. mutex_unlock(&sched_domains_mutex);
  5650. }
  5651. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5652. /*
  5653. * Update cpusets according to cpu_active mask. If cpusets are
  5654. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5655. * around partition_sched_domains().
  5656. *
  5657. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5658. * want to restore it back to its original state upon resume anyway.
  5659. */
  5660. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5661. void *hcpu)
  5662. {
  5663. switch (action) {
  5664. case CPU_ONLINE_FROZEN:
  5665. case CPU_DOWN_FAILED_FROZEN:
  5666. /*
  5667. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5668. * resume sequence. As long as this is not the last online
  5669. * operation in the resume sequence, just build a single sched
  5670. * domain, ignoring cpusets.
  5671. */
  5672. num_cpus_frozen--;
  5673. if (likely(num_cpus_frozen)) {
  5674. partition_sched_domains(1, NULL, NULL);
  5675. break;
  5676. }
  5677. /*
  5678. * This is the last CPU online operation. So fall through and
  5679. * restore the original sched domains by considering the
  5680. * cpuset configurations.
  5681. */
  5682. case CPU_ONLINE:
  5683. case CPU_DOWN_FAILED:
  5684. cpuset_update_active_cpus(true);
  5685. break;
  5686. default:
  5687. return NOTIFY_DONE;
  5688. }
  5689. return NOTIFY_OK;
  5690. }
  5691. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5692. void *hcpu)
  5693. {
  5694. switch (action) {
  5695. case CPU_DOWN_PREPARE:
  5696. cpuset_update_active_cpus(false);
  5697. break;
  5698. case CPU_DOWN_PREPARE_FROZEN:
  5699. num_cpus_frozen++;
  5700. partition_sched_domains(1, NULL, NULL);
  5701. break;
  5702. default:
  5703. return NOTIFY_DONE;
  5704. }
  5705. return NOTIFY_OK;
  5706. }
  5707. void __init sched_init_smp(void)
  5708. {
  5709. cpumask_var_t non_isolated_cpus;
  5710. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5711. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5712. sched_init_numa();
  5713. get_online_cpus();
  5714. mutex_lock(&sched_domains_mutex);
  5715. init_sched_domains(cpu_active_mask);
  5716. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5717. if (cpumask_empty(non_isolated_cpus))
  5718. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5719. mutex_unlock(&sched_domains_mutex);
  5720. put_online_cpus();
  5721. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5722. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5723. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5724. /* RT runtime code needs to handle some hotplug events */
  5725. hotcpu_notifier(update_runtime, 0);
  5726. init_hrtick();
  5727. /* Move init over to a non-isolated CPU */
  5728. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5729. BUG();
  5730. sched_init_granularity();
  5731. free_cpumask_var(non_isolated_cpus);
  5732. init_sched_rt_class();
  5733. }
  5734. #else
  5735. void __init sched_init_smp(void)
  5736. {
  5737. sched_init_granularity();
  5738. }
  5739. #endif /* CONFIG_SMP */
  5740. const_debug unsigned int sysctl_timer_migration = 1;
  5741. int in_sched_functions(unsigned long addr)
  5742. {
  5743. return in_lock_functions(addr) ||
  5744. (addr >= (unsigned long)__sched_text_start
  5745. && addr < (unsigned long)__sched_text_end);
  5746. }
  5747. #ifdef CONFIG_CGROUP_SCHED
  5748. struct task_group root_task_group;
  5749. LIST_HEAD(task_groups);
  5750. #endif
  5751. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5752. void __init sched_init(void)
  5753. {
  5754. int i, j;
  5755. unsigned long alloc_size = 0, ptr;
  5756. #ifdef CONFIG_FAIR_GROUP_SCHED
  5757. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5758. #endif
  5759. #ifdef CONFIG_RT_GROUP_SCHED
  5760. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5761. #endif
  5762. #ifdef CONFIG_CPUMASK_OFFSTACK
  5763. alloc_size += num_possible_cpus() * cpumask_size();
  5764. #endif
  5765. if (alloc_size) {
  5766. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5767. #ifdef CONFIG_FAIR_GROUP_SCHED
  5768. root_task_group.se = (struct sched_entity **)ptr;
  5769. ptr += nr_cpu_ids * sizeof(void **);
  5770. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5771. ptr += nr_cpu_ids * sizeof(void **);
  5772. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5773. #ifdef CONFIG_RT_GROUP_SCHED
  5774. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5775. ptr += nr_cpu_ids * sizeof(void **);
  5776. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5777. ptr += nr_cpu_ids * sizeof(void **);
  5778. #endif /* CONFIG_RT_GROUP_SCHED */
  5779. #ifdef CONFIG_CPUMASK_OFFSTACK
  5780. for_each_possible_cpu(i) {
  5781. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5782. ptr += cpumask_size();
  5783. }
  5784. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5785. }
  5786. #ifdef CONFIG_SMP
  5787. init_defrootdomain();
  5788. #endif
  5789. init_rt_bandwidth(&def_rt_bandwidth,
  5790. global_rt_period(), global_rt_runtime());
  5791. #ifdef CONFIG_RT_GROUP_SCHED
  5792. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5793. global_rt_period(), global_rt_runtime());
  5794. #endif /* CONFIG_RT_GROUP_SCHED */
  5795. #ifdef CONFIG_CGROUP_SCHED
  5796. list_add(&root_task_group.list, &task_groups);
  5797. INIT_LIST_HEAD(&root_task_group.children);
  5798. INIT_LIST_HEAD(&root_task_group.siblings);
  5799. autogroup_init(&init_task);
  5800. #endif /* CONFIG_CGROUP_SCHED */
  5801. #ifdef CONFIG_CGROUP_CPUACCT
  5802. root_cpuacct.cpustat = &kernel_cpustat;
  5803. root_cpuacct.cpuusage = alloc_percpu(u64);
  5804. /* Too early, not expected to fail */
  5805. BUG_ON(!root_cpuacct.cpuusage);
  5806. #endif
  5807. for_each_possible_cpu(i) {
  5808. struct rq *rq;
  5809. rq = cpu_rq(i);
  5810. raw_spin_lock_init(&rq->lock);
  5811. rq->nr_running = 0;
  5812. rq->calc_load_active = 0;
  5813. rq->calc_load_update = jiffies + LOAD_FREQ;
  5814. init_cfs_rq(&rq->cfs);
  5815. init_rt_rq(&rq->rt, rq);
  5816. #ifdef CONFIG_FAIR_GROUP_SCHED
  5817. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5818. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5819. /*
  5820. * How much cpu bandwidth does root_task_group get?
  5821. *
  5822. * In case of task-groups formed thr' the cgroup filesystem, it
  5823. * gets 100% of the cpu resources in the system. This overall
  5824. * system cpu resource is divided among the tasks of
  5825. * root_task_group and its child task-groups in a fair manner,
  5826. * based on each entity's (task or task-group's) weight
  5827. * (se->load.weight).
  5828. *
  5829. * In other words, if root_task_group has 10 tasks of weight
  5830. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5831. * then A0's share of the cpu resource is:
  5832. *
  5833. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5834. *
  5835. * We achieve this by letting root_task_group's tasks sit
  5836. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5837. */
  5838. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5839. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5840. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5841. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5842. #ifdef CONFIG_RT_GROUP_SCHED
  5843. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5844. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5845. #endif
  5846. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5847. rq->cpu_load[j] = 0;
  5848. rq->last_load_update_tick = jiffies;
  5849. #ifdef CONFIG_SMP
  5850. rq->sd = NULL;
  5851. rq->rd = NULL;
  5852. rq->cpu_power = SCHED_POWER_SCALE;
  5853. rq->post_schedule = 0;
  5854. rq->active_balance = 0;
  5855. rq->next_balance = jiffies;
  5856. rq->push_cpu = 0;
  5857. rq->cpu = i;
  5858. rq->online = 0;
  5859. rq->idle_stamp = 0;
  5860. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5861. INIT_LIST_HEAD(&rq->cfs_tasks);
  5862. rq_attach_root(rq, &def_root_domain);
  5863. #ifdef CONFIG_NO_HZ
  5864. rq->nohz_flags = 0;
  5865. #endif
  5866. #endif
  5867. init_rq_hrtick(rq);
  5868. atomic_set(&rq->nr_iowait, 0);
  5869. }
  5870. set_load_weight(&init_task);
  5871. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5872. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5873. #endif
  5874. #ifdef CONFIG_RT_MUTEXES
  5875. plist_head_init(&init_task.pi_waiters);
  5876. #endif
  5877. /*
  5878. * The boot idle thread does lazy MMU switching as well:
  5879. */
  5880. atomic_inc(&init_mm.mm_count);
  5881. enter_lazy_tlb(&init_mm, current);
  5882. /*
  5883. * Make us the idle thread. Technically, schedule() should not be
  5884. * called from this thread, however somewhere below it might be,
  5885. * but because we are the idle thread, we just pick up running again
  5886. * when this runqueue becomes "idle".
  5887. */
  5888. init_idle(current, smp_processor_id());
  5889. calc_load_update = jiffies + LOAD_FREQ;
  5890. /*
  5891. * During early bootup we pretend to be a normal task:
  5892. */
  5893. current->sched_class = &fair_sched_class;
  5894. #ifdef CONFIG_SMP
  5895. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5896. /* May be allocated at isolcpus cmdline parse time */
  5897. if (cpu_isolated_map == NULL)
  5898. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5899. idle_thread_set_boot_cpu();
  5900. #endif
  5901. init_sched_fair_class();
  5902. scheduler_running = 1;
  5903. }
  5904. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5905. static inline int preempt_count_equals(int preempt_offset)
  5906. {
  5907. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5908. return (nested == preempt_offset);
  5909. }
  5910. void __might_sleep(const char *file, int line, int preempt_offset)
  5911. {
  5912. static unsigned long prev_jiffy; /* ratelimiting */
  5913. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5914. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5915. system_state != SYSTEM_RUNNING || oops_in_progress)
  5916. return;
  5917. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5918. return;
  5919. prev_jiffy = jiffies;
  5920. printk(KERN_ERR
  5921. "BUG: sleeping function called from invalid context at %s:%d\n",
  5922. file, line);
  5923. printk(KERN_ERR
  5924. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5925. in_atomic(), irqs_disabled(),
  5926. current->pid, current->comm);
  5927. debug_show_held_locks(current);
  5928. if (irqs_disabled())
  5929. print_irqtrace_events(current);
  5930. dump_stack();
  5931. }
  5932. EXPORT_SYMBOL(__might_sleep);
  5933. #endif
  5934. #ifdef CONFIG_MAGIC_SYSRQ
  5935. static void normalize_task(struct rq *rq, struct task_struct *p)
  5936. {
  5937. const struct sched_class *prev_class = p->sched_class;
  5938. int old_prio = p->prio;
  5939. int on_rq;
  5940. on_rq = p->on_rq;
  5941. if (on_rq)
  5942. dequeue_task(rq, p, 0);
  5943. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5944. if (on_rq) {
  5945. enqueue_task(rq, p, 0);
  5946. resched_task(rq->curr);
  5947. }
  5948. check_class_changed(rq, p, prev_class, old_prio);
  5949. }
  5950. void normalize_rt_tasks(void)
  5951. {
  5952. struct task_struct *g, *p;
  5953. unsigned long flags;
  5954. struct rq *rq;
  5955. read_lock_irqsave(&tasklist_lock, flags);
  5956. do_each_thread(g, p) {
  5957. /*
  5958. * Only normalize user tasks:
  5959. */
  5960. if (!p->mm)
  5961. continue;
  5962. p->se.exec_start = 0;
  5963. #ifdef CONFIG_SCHEDSTATS
  5964. p->se.statistics.wait_start = 0;
  5965. p->se.statistics.sleep_start = 0;
  5966. p->se.statistics.block_start = 0;
  5967. #endif
  5968. if (!rt_task(p)) {
  5969. /*
  5970. * Renice negative nice level userspace
  5971. * tasks back to 0:
  5972. */
  5973. if (TASK_NICE(p) < 0 && p->mm)
  5974. set_user_nice(p, 0);
  5975. continue;
  5976. }
  5977. raw_spin_lock(&p->pi_lock);
  5978. rq = __task_rq_lock(p);
  5979. normalize_task(rq, p);
  5980. __task_rq_unlock(rq);
  5981. raw_spin_unlock(&p->pi_lock);
  5982. } while_each_thread(g, p);
  5983. read_unlock_irqrestore(&tasklist_lock, flags);
  5984. }
  5985. #endif /* CONFIG_MAGIC_SYSRQ */
  5986. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5987. /*
  5988. * These functions are only useful for the IA64 MCA handling, or kdb.
  5989. *
  5990. * They can only be called when the whole system has been
  5991. * stopped - every CPU needs to be quiescent, and no scheduling
  5992. * activity can take place. Using them for anything else would
  5993. * be a serious bug, and as a result, they aren't even visible
  5994. * under any other configuration.
  5995. */
  5996. /**
  5997. * curr_task - return the current task for a given cpu.
  5998. * @cpu: the processor in question.
  5999. *
  6000. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6001. */
  6002. struct task_struct *curr_task(int cpu)
  6003. {
  6004. return cpu_curr(cpu);
  6005. }
  6006. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6007. #ifdef CONFIG_IA64
  6008. /**
  6009. * set_curr_task - set the current task for a given cpu.
  6010. * @cpu: the processor in question.
  6011. * @p: the task pointer to set.
  6012. *
  6013. * Description: This function must only be used when non-maskable interrupts
  6014. * are serviced on a separate stack. It allows the architecture to switch the
  6015. * notion of the current task on a cpu in a non-blocking manner. This function
  6016. * must be called with all CPU's synchronized, and interrupts disabled, the
  6017. * and caller must save the original value of the current task (see
  6018. * curr_task() above) and restore that value before reenabling interrupts and
  6019. * re-starting the system.
  6020. *
  6021. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6022. */
  6023. void set_curr_task(int cpu, struct task_struct *p)
  6024. {
  6025. cpu_curr(cpu) = p;
  6026. }
  6027. #endif
  6028. #ifdef CONFIG_CGROUP_SCHED
  6029. /* task_group_lock serializes the addition/removal of task groups */
  6030. static DEFINE_SPINLOCK(task_group_lock);
  6031. static void free_sched_group(struct task_group *tg)
  6032. {
  6033. free_fair_sched_group(tg);
  6034. free_rt_sched_group(tg);
  6035. autogroup_free(tg);
  6036. kfree(tg);
  6037. }
  6038. /* allocate runqueue etc for a new task group */
  6039. struct task_group *sched_create_group(struct task_group *parent)
  6040. {
  6041. struct task_group *tg;
  6042. unsigned long flags;
  6043. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6044. if (!tg)
  6045. return ERR_PTR(-ENOMEM);
  6046. if (!alloc_fair_sched_group(tg, parent))
  6047. goto err;
  6048. if (!alloc_rt_sched_group(tg, parent))
  6049. goto err;
  6050. spin_lock_irqsave(&task_group_lock, flags);
  6051. list_add_rcu(&tg->list, &task_groups);
  6052. WARN_ON(!parent); /* root should already exist */
  6053. tg->parent = parent;
  6054. INIT_LIST_HEAD(&tg->children);
  6055. list_add_rcu(&tg->siblings, &parent->children);
  6056. spin_unlock_irqrestore(&task_group_lock, flags);
  6057. return tg;
  6058. err:
  6059. free_sched_group(tg);
  6060. return ERR_PTR(-ENOMEM);
  6061. }
  6062. /* rcu callback to free various structures associated with a task group */
  6063. static void free_sched_group_rcu(struct rcu_head *rhp)
  6064. {
  6065. /* now it should be safe to free those cfs_rqs */
  6066. free_sched_group(container_of(rhp, struct task_group, rcu));
  6067. }
  6068. /* Destroy runqueue etc associated with a task group */
  6069. void sched_destroy_group(struct task_group *tg)
  6070. {
  6071. unsigned long flags;
  6072. int i;
  6073. /* end participation in shares distribution */
  6074. for_each_possible_cpu(i)
  6075. unregister_fair_sched_group(tg, i);
  6076. spin_lock_irqsave(&task_group_lock, flags);
  6077. list_del_rcu(&tg->list);
  6078. list_del_rcu(&tg->siblings);
  6079. spin_unlock_irqrestore(&task_group_lock, flags);
  6080. /* wait for possible concurrent references to cfs_rqs complete */
  6081. call_rcu(&tg->rcu, free_sched_group_rcu);
  6082. }
  6083. /* change task's runqueue when it moves between groups.
  6084. * The caller of this function should have put the task in its new group
  6085. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6086. * reflect its new group.
  6087. */
  6088. void sched_move_task(struct task_struct *tsk)
  6089. {
  6090. struct task_group *tg;
  6091. int on_rq, running;
  6092. unsigned long flags;
  6093. struct rq *rq;
  6094. rq = task_rq_lock(tsk, &flags);
  6095. running = task_current(rq, tsk);
  6096. on_rq = tsk->on_rq;
  6097. if (on_rq)
  6098. dequeue_task(rq, tsk, 0);
  6099. if (unlikely(running))
  6100. tsk->sched_class->put_prev_task(rq, tsk);
  6101. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6102. lockdep_is_held(&tsk->sighand->siglock)),
  6103. struct task_group, css);
  6104. tg = autogroup_task_group(tsk, tg);
  6105. tsk->sched_task_group = tg;
  6106. #ifdef CONFIG_FAIR_GROUP_SCHED
  6107. if (tsk->sched_class->task_move_group)
  6108. tsk->sched_class->task_move_group(tsk, on_rq);
  6109. else
  6110. #endif
  6111. set_task_rq(tsk, task_cpu(tsk));
  6112. if (unlikely(running))
  6113. tsk->sched_class->set_curr_task(rq);
  6114. if (on_rq)
  6115. enqueue_task(rq, tsk, 0);
  6116. task_rq_unlock(rq, tsk, &flags);
  6117. }
  6118. #endif /* CONFIG_CGROUP_SCHED */
  6119. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6120. static unsigned long to_ratio(u64 period, u64 runtime)
  6121. {
  6122. if (runtime == RUNTIME_INF)
  6123. return 1ULL << 20;
  6124. return div64_u64(runtime << 20, period);
  6125. }
  6126. #endif
  6127. #ifdef CONFIG_RT_GROUP_SCHED
  6128. /*
  6129. * Ensure that the real time constraints are schedulable.
  6130. */
  6131. static DEFINE_MUTEX(rt_constraints_mutex);
  6132. /* Must be called with tasklist_lock held */
  6133. static inline int tg_has_rt_tasks(struct task_group *tg)
  6134. {
  6135. struct task_struct *g, *p;
  6136. do_each_thread(g, p) {
  6137. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6138. return 1;
  6139. } while_each_thread(g, p);
  6140. return 0;
  6141. }
  6142. struct rt_schedulable_data {
  6143. struct task_group *tg;
  6144. u64 rt_period;
  6145. u64 rt_runtime;
  6146. };
  6147. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6148. {
  6149. struct rt_schedulable_data *d = data;
  6150. struct task_group *child;
  6151. unsigned long total, sum = 0;
  6152. u64 period, runtime;
  6153. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6154. runtime = tg->rt_bandwidth.rt_runtime;
  6155. if (tg == d->tg) {
  6156. period = d->rt_period;
  6157. runtime = d->rt_runtime;
  6158. }
  6159. /*
  6160. * Cannot have more runtime than the period.
  6161. */
  6162. if (runtime > period && runtime != RUNTIME_INF)
  6163. return -EINVAL;
  6164. /*
  6165. * Ensure we don't starve existing RT tasks.
  6166. */
  6167. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6168. return -EBUSY;
  6169. total = to_ratio(period, runtime);
  6170. /*
  6171. * Nobody can have more than the global setting allows.
  6172. */
  6173. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6174. return -EINVAL;
  6175. /*
  6176. * The sum of our children's runtime should not exceed our own.
  6177. */
  6178. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6179. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6180. runtime = child->rt_bandwidth.rt_runtime;
  6181. if (child == d->tg) {
  6182. period = d->rt_period;
  6183. runtime = d->rt_runtime;
  6184. }
  6185. sum += to_ratio(period, runtime);
  6186. }
  6187. if (sum > total)
  6188. return -EINVAL;
  6189. return 0;
  6190. }
  6191. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6192. {
  6193. int ret;
  6194. struct rt_schedulable_data data = {
  6195. .tg = tg,
  6196. .rt_period = period,
  6197. .rt_runtime = runtime,
  6198. };
  6199. rcu_read_lock();
  6200. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6201. rcu_read_unlock();
  6202. return ret;
  6203. }
  6204. static int tg_set_rt_bandwidth(struct task_group *tg,
  6205. u64 rt_period, u64 rt_runtime)
  6206. {
  6207. int i, err = 0;
  6208. mutex_lock(&rt_constraints_mutex);
  6209. read_lock(&tasklist_lock);
  6210. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6211. if (err)
  6212. goto unlock;
  6213. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6214. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6215. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6216. for_each_possible_cpu(i) {
  6217. struct rt_rq *rt_rq = tg->rt_rq[i];
  6218. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6219. rt_rq->rt_runtime = rt_runtime;
  6220. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6221. }
  6222. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6223. unlock:
  6224. read_unlock(&tasklist_lock);
  6225. mutex_unlock(&rt_constraints_mutex);
  6226. return err;
  6227. }
  6228. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6229. {
  6230. u64 rt_runtime, rt_period;
  6231. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6232. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6233. if (rt_runtime_us < 0)
  6234. rt_runtime = RUNTIME_INF;
  6235. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6236. }
  6237. long sched_group_rt_runtime(struct task_group *tg)
  6238. {
  6239. u64 rt_runtime_us;
  6240. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6241. return -1;
  6242. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6243. do_div(rt_runtime_us, NSEC_PER_USEC);
  6244. return rt_runtime_us;
  6245. }
  6246. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6247. {
  6248. u64 rt_runtime, rt_period;
  6249. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6250. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6251. if (rt_period == 0)
  6252. return -EINVAL;
  6253. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6254. }
  6255. long sched_group_rt_period(struct task_group *tg)
  6256. {
  6257. u64 rt_period_us;
  6258. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6259. do_div(rt_period_us, NSEC_PER_USEC);
  6260. return rt_period_us;
  6261. }
  6262. static int sched_rt_global_constraints(void)
  6263. {
  6264. u64 runtime, period;
  6265. int ret = 0;
  6266. if (sysctl_sched_rt_period <= 0)
  6267. return -EINVAL;
  6268. runtime = global_rt_runtime();
  6269. period = global_rt_period();
  6270. /*
  6271. * Sanity check on the sysctl variables.
  6272. */
  6273. if (runtime > period && runtime != RUNTIME_INF)
  6274. return -EINVAL;
  6275. mutex_lock(&rt_constraints_mutex);
  6276. read_lock(&tasklist_lock);
  6277. ret = __rt_schedulable(NULL, 0, 0);
  6278. read_unlock(&tasklist_lock);
  6279. mutex_unlock(&rt_constraints_mutex);
  6280. return ret;
  6281. }
  6282. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6283. {
  6284. /* Don't accept realtime tasks when there is no way for them to run */
  6285. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6286. return 0;
  6287. return 1;
  6288. }
  6289. #else /* !CONFIG_RT_GROUP_SCHED */
  6290. static int sched_rt_global_constraints(void)
  6291. {
  6292. unsigned long flags;
  6293. int i;
  6294. if (sysctl_sched_rt_period <= 0)
  6295. return -EINVAL;
  6296. /*
  6297. * There's always some RT tasks in the root group
  6298. * -- migration, kstopmachine etc..
  6299. */
  6300. if (sysctl_sched_rt_runtime == 0)
  6301. return -EBUSY;
  6302. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6303. for_each_possible_cpu(i) {
  6304. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6305. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6306. rt_rq->rt_runtime = global_rt_runtime();
  6307. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6308. }
  6309. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6310. return 0;
  6311. }
  6312. #endif /* CONFIG_RT_GROUP_SCHED */
  6313. int sched_rt_handler(struct ctl_table *table, int write,
  6314. void __user *buffer, size_t *lenp,
  6315. loff_t *ppos)
  6316. {
  6317. int ret;
  6318. int old_period, old_runtime;
  6319. static DEFINE_MUTEX(mutex);
  6320. mutex_lock(&mutex);
  6321. old_period = sysctl_sched_rt_period;
  6322. old_runtime = sysctl_sched_rt_runtime;
  6323. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6324. if (!ret && write) {
  6325. ret = sched_rt_global_constraints();
  6326. if (ret) {
  6327. sysctl_sched_rt_period = old_period;
  6328. sysctl_sched_rt_runtime = old_runtime;
  6329. } else {
  6330. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6331. def_rt_bandwidth.rt_period =
  6332. ns_to_ktime(global_rt_period());
  6333. }
  6334. }
  6335. mutex_unlock(&mutex);
  6336. return ret;
  6337. }
  6338. #ifdef CONFIG_CGROUP_SCHED
  6339. /* return corresponding task_group object of a cgroup */
  6340. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6341. {
  6342. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6343. struct task_group, css);
  6344. }
  6345. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6346. {
  6347. struct task_group *tg, *parent;
  6348. if (!cgrp->parent) {
  6349. /* This is early initialization for the top cgroup */
  6350. return &root_task_group.css;
  6351. }
  6352. parent = cgroup_tg(cgrp->parent);
  6353. tg = sched_create_group(parent);
  6354. if (IS_ERR(tg))
  6355. return ERR_PTR(-ENOMEM);
  6356. return &tg->css;
  6357. }
  6358. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6359. {
  6360. struct task_group *tg = cgroup_tg(cgrp);
  6361. sched_destroy_group(tg);
  6362. }
  6363. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6364. struct cgroup_taskset *tset)
  6365. {
  6366. struct task_struct *task;
  6367. cgroup_taskset_for_each(task, cgrp, tset) {
  6368. #ifdef CONFIG_RT_GROUP_SCHED
  6369. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6370. return -EINVAL;
  6371. #else
  6372. /* We don't support RT-tasks being in separate groups */
  6373. if (task->sched_class != &fair_sched_class)
  6374. return -EINVAL;
  6375. #endif
  6376. }
  6377. return 0;
  6378. }
  6379. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6380. struct cgroup_taskset *tset)
  6381. {
  6382. struct task_struct *task;
  6383. cgroup_taskset_for_each(task, cgrp, tset)
  6384. sched_move_task(task);
  6385. }
  6386. static void
  6387. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6388. struct task_struct *task)
  6389. {
  6390. /*
  6391. * cgroup_exit() is called in the copy_process() failure path.
  6392. * Ignore this case since the task hasn't ran yet, this avoids
  6393. * trying to poke a half freed task state from generic code.
  6394. */
  6395. if (!(task->flags & PF_EXITING))
  6396. return;
  6397. sched_move_task(task);
  6398. }
  6399. #ifdef CONFIG_FAIR_GROUP_SCHED
  6400. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6401. u64 shareval)
  6402. {
  6403. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6404. }
  6405. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6406. {
  6407. struct task_group *tg = cgroup_tg(cgrp);
  6408. return (u64) scale_load_down(tg->shares);
  6409. }
  6410. #ifdef CONFIG_CFS_BANDWIDTH
  6411. static DEFINE_MUTEX(cfs_constraints_mutex);
  6412. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6413. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6414. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6415. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6416. {
  6417. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6418. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6419. if (tg == &root_task_group)
  6420. return -EINVAL;
  6421. /*
  6422. * Ensure we have at some amount of bandwidth every period. This is
  6423. * to prevent reaching a state of large arrears when throttled via
  6424. * entity_tick() resulting in prolonged exit starvation.
  6425. */
  6426. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6427. return -EINVAL;
  6428. /*
  6429. * Likewise, bound things on the otherside by preventing insane quota
  6430. * periods. This also allows us to normalize in computing quota
  6431. * feasibility.
  6432. */
  6433. if (period > max_cfs_quota_period)
  6434. return -EINVAL;
  6435. mutex_lock(&cfs_constraints_mutex);
  6436. ret = __cfs_schedulable(tg, period, quota);
  6437. if (ret)
  6438. goto out_unlock;
  6439. runtime_enabled = quota != RUNTIME_INF;
  6440. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6441. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6442. raw_spin_lock_irq(&cfs_b->lock);
  6443. cfs_b->period = ns_to_ktime(period);
  6444. cfs_b->quota = quota;
  6445. __refill_cfs_bandwidth_runtime(cfs_b);
  6446. /* restart the period timer (if active) to handle new period expiry */
  6447. if (runtime_enabled && cfs_b->timer_active) {
  6448. /* force a reprogram */
  6449. cfs_b->timer_active = 0;
  6450. __start_cfs_bandwidth(cfs_b);
  6451. }
  6452. raw_spin_unlock_irq(&cfs_b->lock);
  6453. for_each_possible_cpu(i) {
  6454. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6455. struct rq *rq = cfs_rq->rq;
  6456. raw_spin_lock_irq(&rq->lock);
  6457. cfs_rq->runtime_enabled = runtime_enabled;
  6458. cfs_rq->runtime_remaining = 0;
  6459. if (cfs_rq->throttled)
  6460. unthrottle_cfs_rq(cfs_rq);
  6461. raw_spin_unlock_irq(&rq->lock);
  6462. }
  6463. out_unlock:
  6464. mutex_unlock(&cfs_constraints_mutex);
  6465. return ret;
  6466. }
  6467. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6468. {
  6469. u64 quota, period;
  6470. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6471. if (cfs_quota_us < 0)
  6472. quota = RUNTIME_INF;
  6473. else
  6474. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6475. return tg_set_cfs_bandwidth(tg, period, quota);
  6476. }
  6477. long tg_get_cfs_quota(struct task_group *tg)
  6478. {
  6479. u64 quota_us;
  6480. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6481. return -1;
  6482. quota_us = tg->cfs_bandwidth.quota;
  6483. do_div(quota_us, NSEC_PER_USEC);
  6484. return quota_us;
  6485. }
  6486. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6487. {
  6488. u64 quota, period;
  6489. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6490. quota = tg->cfs_bandwidth.quota;
  6491. return tg_set_cfs_bandwidth(tg, period, quota);
  6492. }
  6493. long tg_get_cfs_period(struct task_group *tg)
  6494. {
  6495. u64 cfs_period_us;
  6496. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6497. do_div(cfs_period_us, NSEC_PER_USEC);
  6498. return cfs_period_us;
  6499. }
  6500. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6501. {
  6502. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6503. }
  6504. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6505. s64 cfs_quota_us)
  6506. {
  6507. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6508. }
  6509. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6510. {
  6511. return tg_get_cfs_period(cgroup_tg(cgrp));
  6512. }
  6513. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6514. u64 cfs_period_us)
  6515. {
  6516. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6517. }
  6518. struct cfs_schedulable_data {
  6519. struct task_group *tg;
  6520. u64 period, quota;
  6521. };
  6522. /*
  6523. * normalize group quota/period to be quota/max_period
  6524. * note: units are usecs
  6525. */
  6526. static u64 normalize_cfs_quota(struct task_group *tg,
  6527. struct cfs_schedulable_data *d)
  6528. {
  6529. u64 quota, period;
  6530. if (tg == d->tg) {
  6531. period = d->period;
  6532. quota = d->quota;
  6533. } else {
  6534. period = tg_get_cfs_period(tg);
  6535. quota = tg_get_cfs_quota(tg);
  6536. }
  6537. /* note: these should typically be equivalent */
  6538. if (quota == RUNTIME_INF || quota == -1)
  6539. return RUNTIME_INF;
  6540. return to_ratio(period, quota);
  6541. }
  6542. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6543. {
  6544. struct cfs_schedulable_data *d = data;
  6545. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6546. s64 quota = 0, parent_quota = -1;
  6547. if (!tg->parent) {
  6548. quota = RUNTIME_INF;
  6549. } else {
  6550. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6551. quota = normalize_cfs_quota(tg, d);
  6552. parent_quota = parent_b->hierarchal_quota;
  6553. /*
  6554. * ensure max(child_quota) <= parent_quota, inherit when no
  6555. * limit is set
  6556. */
  6557. if (quota == RUNTIME_INF)
  6558. quota = parent_quota;
  6559. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6560. return -EINVAL;
  6561. }
  6562. cfs_b->hierarchal_quota = quota;
  6563. return 0;
  6564. }
  6565. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6566. {
  6567. int ret;
  6568. struct cfs_schedulable_data data = {
  6569. .tg = tg,
  6570. .period = period,
  6571. .quota = quota,
  6572. };
  6573. if (quota != RUNTIME_INF) {
  6574. do_div(data.period, NSEC_PER_USEC);
  6575. do_div(data.quota, NSEC_PER_USEC);
  6576. }
  6577. rcu_read_lock();
  6578. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6579. rcu_read_unlock();
  6580. return ret;
  6581. }
  6582. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6583. struct cgroup_map_cb *cb)
  6584. {
  6585. struct task_group *tg = cgroup_tg(cgrp);
  6586. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6587. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6588. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6589. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6590. return 0;
  6591. }
  6592. #endif /* CONFIG_CFS_BANDWIDTH */
  6593. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6594. #ifdef CONFIG_RT_GROUP_SCHED
  6595. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6596. s64 val)
  6597. {
  6598. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6599. }
  6600. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6601. {
  6602. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6603. }
  6604. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6605. u64 rt_period_us)
  6606. {
  6607. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6608. }
  6609. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6610. {
  6611. return sched_group_rt_period(cgroup_tg(cgrp));
  6612. }
  6613. #endif /* CONFIG_RT_GROUP_SCHED */
  6614. static struct cftype cpu_files[] = {
  6615. #ifdef CONFIG_FAIR_GROUP_SCHED
  6616. {
  6617. .name = "shares",
  6618. .read_u64 = cpu_shares_read_u64,
  6619. .write_u64 = cpu_shares_write_u64,
  6620. },
  6621. #endif
  6622. #ifdef CONFIG_CFS_BANDWIDTH
  6623. {
  6624. .name = "cfs_quota_us",
  6625. .read_s64 = cpu_cfs_quota_read_s64,
  6626. .write_s64 = cpu_cfs_quota_write_s64,
  6627. },
  6628. {
  6629. .name = "cfs_period_us",
  6630. .read_u64 = cpu_cfs_period_read_u64,
  6631. .write_u64 = cpu_cfs_period_write_u64,
  6632. },
  6633. {
  6634. .name = "stat",
  6635. .read_map = cpu_stats_show,
  6636. },
  6637. #endif
  6638. #ifdef CONFIG_RT_GROUP_SCHED
  6639. {
  6640. .name = "rt_runtime_us",
  6641. .read_s64 = cpu_rt_runtime_read,
  6642. .write_s64 = cpu_rt_runtime_write,
  6643. },
  6644. {
  6645. .name = "rt_period_us",
  6646. .read_u64 = cpu_rt_period_read_uint,
  6647. .write_u64 = cpu_rt_period_write_uint,
  6648. },
  6649. #endif
  6650. { } /* terminate */
  6651. };
  6652. struct cgroup_subsys cpu_cgroup_subsys = {
  6653. .name = "cpu",
  6654. .create = cpu_cgroup_create,
  6655. .destroy = cpu_cgroup_destroy,
  6656. .can_attach = cpu_cgroup_can_attach,
  6657. .attach = cpu_cgroup_attach,
  6658. .exit = cpu_cgroup_exit,
  6659. .subsys_id = cpu_cgroup_subsys_id,
  6660. .base_cftypes = cpu_files,
  6661. .early_init = 1,
  6662. };
  6663. #endif /* CONFIG_CGROUP_SCHED */
  6664. #ifdef CONFIG_CGROUP_CPUACCT
  6665. /*
  6666. * CPU accounting code for task groups.
  6667. *
  6668. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6669. * (balbir@in.ibm.com).
  6670. */
  6671. struct cpuacct root_cpuacct;
  6672. /* create a new cpu accounting group */
  6673. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  6674. {
  6675. struct cpuacct *ca;
  6676. if (!cgrp->parent)
  6677. return &root_cpuacct.css;
  6678. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6679. if (!ca)
  6680. goto out;
  6681. ca->cpuusage = alloc_percpu(u64);
  6682. if (!ca->cpuusage)
  6683. goto out_free_ca;
  6684. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6685. if (!ca->cpustat)
  6686. goto out_free_cpuusage;
  6687. return &ca->css;
  6688. out_free_cpuusage:
  6689. free_percpu(ca->cpuusage);
  6690. out_free_ca:
  6691. kfree(ca);
  6692. out:
  6693. return ERR_PTR(-ENOMEM);
  6694. }
  6695. /* destroy an existing cpu accounting group */
  6696. static void cpuacct_destroy(struct cgroup *cgrp)
  6697. {
  6698. struct cpuacct *ca = cgroup_ca(cgrp);
  6699. free_percpu(ca->cpustat);
  6700. free_percpu(ca->cpuusage);
  6701. kfree(ca);
  6702. }
  6703. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6704. {
  6705. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6706. u64 data;
  6707. #ifndef CONFIG_64BIT
  6708. /*
  6709. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6710. */
  6711. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6712. data = *cpuusage;
  6713. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6714. #else
  6715. data = *cpuusage;
  6716. #endif
  6717. return data;
  6718. }
  6719. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6720. {
  6721. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6722. #ifndef CONFIG_64BIT
  6723. /*
  6724. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6725. */
  6726. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6727. *cpuusage = val;
  6728. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6729. #else
  6730. *cpuusage = val;
  6731. #endif
  6732. }
  6733. /* return total cpu usage (in nanoseconds) of a group */
  6734. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6735. {
  6736. struct cpuacct *ca = cgroup_ca(cgrp);
  6737. u64 totalcpuusage = 0;
  6738. int i;
  6739. for_each_present_cpu(i)
  6740. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6741. return totalcpuusage;
  6742. }
  6743. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6744. u64 reset)
  6745. {
  6746. struct cpuacct *ca = cgroup_ca(cgrp);
  6747. int err = 0;
  6748. int i;
  6749. if (reset) {
  6750. err = -EINVAL;
  6751. goto out;
  6752. }
  6753. for_each_present_cpu(i)
  6754. cpuacct_cpuusage_write(ca, i, 0);
  6755. out:
  6756. return err;
  6757. }
  6758. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6759. struct seq_file *m)
  6760. {
  6761. struct cpuacct *ca = cgroup_ca(cgroup);
  6762. u64 percpu;
  6763. int i;
  6764. for_each_present_cpu(i) {
  6765. percpu = cpuacct_cpuusage_read(ca, i);
  6766. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6767. }
  6768. seq_printf(m, "\n");
  6769. return 0;
  6770. }
  6771. static const char *cpuacct_stat_desc[] = {
  6772. [CPUACCT_STAT_USER] = "user",
  6773. [CPUACCT_STAT_SYSTEM] = "system",
  6774. };
  6775. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6776. struct cgroup_map_cb *cb)
  6777. {
  6778. struct cpuacct *ca = cgroup_ca(cgrp);
  6779. int cpu;
  6780. s64 val = 0;
  6781. for_each_online_cpu(cpu) {
  6782. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6783. val += kcpustat->cpustat[CPUTIME_USER];
  6784. val += kcpustat->cpustat[CPUTIME_NICE];
  6785. }
  6786. val = cputime64_to_clock_t(val);
  6787. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6788. val = 0;
  6789. for_each_online_cpu(cpu) {
  6790. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6791. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6792. val += kcpustat->cpustat[CPUTIME_IRQ];
  6793. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6794. }
  6795. val = cputime64_to_clock_t(val);
  6796. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6797. return 0;
  6798. }
  6799. static struct cftype files[] = {
  6800. {
  6801. .name = "usage",
  6802. .read_u64 = cpuusage_read,
  6803. .write_u64 = cpuusage_write,
  6804. },
  6805. {
  6806. .name = "usage_percpu",
  6807. .read_seq_string = cpuacct_percpu_seq_read,
  6808. },
  6809. {
  6810. .name = "stat",
  6811. .read_map = cpuacct_stats_show,
  6812. },
  6813. { } /* terminate */
  6814. };
  6815. /*
  6816. * charge this task's execution time to its accounting group.
  6817. *
  6818. * called with rq->lock held.
  6819. */
  6820. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6821. {
  6822. struct cpuacct *ca;
  6823. int cpu;
  6824. if (unlikely(!cpuacct_subsys.active))
  6825. return;
  6826. cpu = task_cpu(tsk);
  6827. rcu_read_lock();
  6828. ca = task_ca(tsk);
  6829. for (; ca; ca = parent_ca(ca)) {
  6830. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6831. *cpuusage += cputime;
  6832. }
  6833. rcu_read_unlock();
  6834. }
  6835. struct cgroup_subsys cpuacct_subsys = {
  6836. .name = "cpuacct",
  6837. .create = cpuacct_create,
  6838. .destroy = cpuacct_destroy,
  6839. .subsys_id = cpuacct_subsys_id,
  6840. .base_cftypes = files,
  6841. };
  6842. #endif /* CONFIG_CGROUP_CPUACCT */