bitops.h 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. /*
  2. * PowerPC atomic bit operations.
  3. *
  4. * Merged version by David Gibson <david@gibson.dropbear.id.au>.
  5. * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
  6. * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
  7. * originally took it from the ppc32 code.
  8. *
  9. * Within a word, bits are numbered LSB first. Lot's of places make
  10. * this assumption by directly testing bits with (val & (1<<nr)).
  11. * This can cause confusion for large (> 1 word) bitmaps on a
  12. * big-endian system because, unlike little endian, the number of each
  13. * bit depends on the word size.
  14. *
  15. * The bitop functions are defined to work on unsigned longs, so for a
  16. * ppc64 system the bits end up numbered:
  17. * |63..............0|127............64|191...........128|255...........196|
  18. * and on ppc32:
  19. * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
  20. *
  21. * There are a few little-endian macros used mostly for filesystem
  22. * bitmaps, these work on similar bit arrays layouts, but
  23. * byte-oriented:
  24. * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
  25. *
  26. * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
  27. * number field needs to be reversed compared to the big-endian bit
  28. * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
  29. *
  30. * This program is free software; you can redistribute it and/or
  31. * modify it under the terms of the GNU General Public License
  32. * as published by the Free Software Foundation; either version
  33. * 2 of the License, or (at your option) any later version.
  34. */
  35. #ifndef _ASM_POWERPC_BITOPS_H
  36. #define _ASM_POWERPC_BITOPS_H
  37. #ifdef __KERNEL__
  38. #ifndef _LINUX_BITOPS_H
  39. #error only <linux/bitops.h> can be included directly
  40. #endif
  41. #include <linux/compiler.h>
  42. #include <asm/asm-compat.h>
  43. #include <asm/synch.h>
  44. /*
  45. * clear_bit doesn't imply a memory barrier
  46. */
  47. #define smp_mb__before_clear_bit() smp_mb()
  48. #define smp_mb__after_clear_bit() smp_mb()
  49. #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
  50. /* Macro for generating the ***_bits() functions */
  51. #define DEFINE_BITOP(fn, op, prefix, postfix) \
  52. static __inline__ void fn(unsigned long mask, \
  53. volatile unsigned long *_p) \
  54. { \
  55. unsigned long old; \
  56. unsigned long *p = (unsigned long *)_p; \
  57. __asm__ __volatile__ ( \
  58. prefix \
  59. "1:" PPC_LLARX(%0,0,%3,0) "\n" \
  60. stringify_in_c(op) "%0,%0,%2\n" \
  61. PPC405_ERR77(0,%3) \
  62. PPC_STLCX "%0,0,%3\n" \
  63. "bne- 1b\n" \
  64. postfix \
  65. : "=&r" (old), "+m" (*p) \
  66. : "r" (mask), "r" (p) \
  67. : "cc", "memory"); \
  68. }
  69. DEFINE_BITOP(set_bits, or, "", "")
  70. DEFINE_BITOP(clear_bits, andc, "", "")
  71. DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
  72. DEFINE_BITOP(change_bits, xor, "", "")
  73. static __inline__ void set_bit(int nr, volatile unsigned long *addr)
  74. {
  75. set_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
  76. }
  77. static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
  78. {
  79. clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
  80. }
  81. static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
  82. {
  83. clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr));
  84. }
  85. static __inline__ void change_bit(int nr, volatile unsigned long *addr)
  86. {
  87. change_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
  88. }
  89. /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
  90. * operands. */
  91. #define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
  92. static __inline__ unsigned long fn( \
  93. unsigned long mask, \
  94. volatile unsigned long *_p) \
  95. { \
  96. unsigned long old, t; \
  97. unsigned long *p = (unsigned long *)_p; \
  98. __asm__ __volatile__ ( \
  99. prefix \
  100. "1:" PPC_LLARX(%0,0,%3,eh) "\n" \
  101. stringify_in_c(op) "%1,%0,%2\n" \
  102. PPC405_ERR77(0,%3) \
  103. PPC_STLCX "%1,0,%3\n" \
  104. "bne- 1b\n" \
  105. postfix \
  106. : "=&r" (old), "=&r" (t) \
  107. : "r" (mask), "r" (p) \
  108. : "cc", "memory"); \
  109. return (old & mask); \
  110. }
  111. DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
  112. PPC_ATOMIC_EXIT_BARRIER, 0)
  113. DEFINE_TESTOP(test_and_set_bits_lock, or, "",
  114. PPC_ACQUIRE_BARRIER, 1)
  115. DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
  116. PPC_ATOMIC_EXIT_BARRIER, 0)
  117. DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
  118. PPC_ATOMIC_EXIT_BARRIER, 0)
  119. static __inline__ int test_and_set_bit(unsigned long nr,
  120. volatile unsigned long *addr)
  121. {
  122. return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
  123. }
  124. static __inline__ int test_and_set_bit_lock(unsigned long nr,
  125. volatile unsigned long *addr)
  126. {
  127. return test_and_set_bits_lock(BIT_MASK(nr),
  128. addr + BIT_WORD(nr)) != 0;
  129. }
  130. static __inline__ int test_and_clear_bit(unsigned long nr,
  131. volatile unsigned long *addr)
  132. {
  133. return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
  134. }
  135. static __inline__ int test_and_change_bit(unsigned long nr,
  136. volatile unsigned long *addr)
  137. {
  138. return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
  139. }
  140. #include <asm-generic/bitops/non-atomic.h>
  141. static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
  142. {
  143. __asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
  144. __clear_bit(nr, addr);
  145. }
  146. /*
  147. * Return the zero-based bit position (LE, not IBM bit numbering) of
  148. * the most significant 1-bit in a double word.
  149. */
  150. static __inline__ __attribute__((const))
  151. int __ilog2(unsigned long x)
  152. {
  153. int lz;
  154. asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
  155. return BITS_PER_LONG - 1 - lz;
  156. }
  157. static inline __attribute__((const))
  158. int __ilog2_u32(u32 n)
  159. {
  160. int bit;
  161. asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
  162. return 31 - bit;
  163. }
  164. #ifdef __powerpc64__
  165. static inline __attribute__((const))
  166. int __ilog2_u64(u64 n)
  167. {
  168. int bit;
  169. asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
  170. return 63 - bit;
  171. }
  172. #endif
  173. /*
  174. * Determines the bit position of the least significant 0 bit in the
  175. * specified double word. The returned bit position will be
  176. * zero-based, starting from the right side (63/31 - 0).
  177. */
  178. static __inline__ unsigned long ffz(unsigned long x)
  179. {
  180. /* no zero exists anywhere in the 8 byte area. */
  181. if ((x = ~x) == 0)
  182. return BITS_PER_LONG;
  183. /*
  184. * Calculate the bit position of the least significant '1' bit in x
  185. * (since x has been changed this will actually be the least significant
  186. * '0' bit in * the original x). Note: (x & -x) gives us a mask that
  187. * is the least significant * (RIGHT-most) 1-bit of the value in x.
  188. */
  189. return __ilog2(x & -x);
  190. }
  191. static __inline__ int __ffs(unsigned long x)
  192. {
  193. return __ilog2(x & -x);
  194. }
  195. /*
  196. * ffs: find first bit set. This is defined the same way as
  197. * the libc and compiler builtin ffs routines, therefore
  198. * differs in spirit from the above ffz (man ffs).
  199. */
  200. static __inline__ int ffs(int x)
  201. {
  202. unsigned long i = (unsigned long)x;
  203. return __ilog2(i & -i) + 1;
  204. }
  205. /*
  206. * fls: find last (most-significant) bit set.
  207. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
  208. */
  209. static __inline__ int fls(unsigned int x)
  210. {
  211. int lz;
  212. asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
  213. return 32 - lz;
  214. }
  215. static __inline__ unsigned long __fls(unsigned long x)
  216. {
  217. return __ilog2(x);
  218. }
  219. /*
  220. * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
  221. * instruction; for 32-bit we use the generic version, which does two
  222. * 32-bit fls calls.
  223. */
  224. #ifdef __powerpc64__
  225. static __inline__ int fls64(__u64 x)
  226. {
  227. int lz;
  228. asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
  229. return 64 - lz;
  230. }
  231. #else
  232. #include <asm-generic/bitops/fls64.h>
  233. #endif /* __powerpc64__ */
  234. #ifdef CONFIG_PPC64
  235. unsigned int __arch_hweight8(unsigned int w);
  236. unsigned int __arch_hweight16(unsigned int w);
  237. unsigned int __arch_hweight32(unsigned int w);
  238. unsigned long __arch_hweight64(__u64 w);
  239. #include <asm-generic/bitops/const_hweight.h>
  240. #else
  241. #include <asm-generic/bitops/hweight.h>
  242. #endif
  243. #include <asm-generic/bitops/find.h>
  244. /* Little-endian versions */
  245. #include <asm-generic/bitops/le.h>
  246. /* Bitmap functions for the ext2 filesystem */
  247. #include <asm-generic/bitops/ext2-atomic-setbit.h>
  248. #include <asm-generic/bitops/sched.h>
  249. #endif /* __KERNEL__ */
  250. #endif /* _ASM_POWERPC_BITOPS_H */