process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/cpuidle.h>
  33. #include <linux/leds.h>
  34. #include <asm/cacheflush.h>
  35. #include <asm/idmap.h>
  36. #include <asm/processor.h>
  37. #include <asm/thread_notify.h>
  38. #include <asm/stacktrace.h>
  39. #include <asm/mach/time.h>
  40. #include <asm/tls.h>
  41. #ifdef CONFIG_CC_STACKPROTECTOR
  42. #include <linux/stackprotector.h>
  43. unsigned long __stack_chk_guard __read_mostly;
  44. EXPORT_SYMBOL(__stack_chk_guard);
  45. #endif
  46. static const char *processor_modes[] = {
  47. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  48. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  49. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  50. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  51. };
  52. static const char *isa_modes[] = {
  53. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  54. };
  55. extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  56. typedef void (*phys_reset_t)(unsigned long);
  57. /*
  58. * A temporary stack to use for CPU reset. This is static so that we
  59. * don't clobber it with the identity mapping. When running with this
  60. * stack, any references to the current task *will not work* so you
  61. * should really do as little as possible before jumping to your reset
  62. * code.
  63. */
  64. static u64 soft_restart_stack[16];
  65. static void __soft_restart(void *addr)
  66. {
  67. phys_reset_t phys_reset;
  68. /* Take out a flat memory mapping. */
  69. setup_mm_for_reboot();
  70. /* Clean and invalidate caches */
  71. flush_cache_all();
  72. /* Turn off caching */
  73. cpu_proc_fin();
  74. /* Push out any further dirty data, and ensure cache is empty */
  75. flush_cache_all();
  76. /* Switch to the identity mapping. */
  77. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  78. phys_reset((unsigned long)addr);
  79. /* Should never get here. */
  80. BUG();
  81. }
  82. void soft_restart(unsigned long addr)
  83. {
  84. u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  85. /* Disable interrupts first */
  86. local_irq_disable();
  87. local_fiq_disable();
  88. /* Disable the L2 if we're the last man standing. */
  89. if (num_online_cpus() == 1)
  90. outer_disable();
  91. /* Change to the new stack and continue with the reset. */
  92. call_with_stack(__soft_restart, (void *)addr, (void *)stack);
  93. /* Should never get here. */
  94. BUG();
  95. }
  96. static void null_restart(char mode, const char *cmd)
  97. {
  98. }
  99. /*
  100. * Function pointers to optional machine specific functions
  101. */
  102. void (*pm_power_off)(void);
  103. EXPORT_SYMBOL(pm_power_off);
  104. void (*arm_pm_restart)(char str, const char *cmd) = null_restart;
  105. EXPORT_SYMBOL_GPL(arm_pm_restart);
  106. /*
  107. * This is our default idle handler.
  108. */
  109. void (*arm_pm_idle)(void);
  110. static void default_idle(void)
  111. {
  112. if (arm_pm_idle)
  113. arm_pm_idle();
  114. else
  115. cpu_do_idle();
  116. local_irq_enable();
  117. }
  118. void arch_cpu_idle_prepare(void)
  119. {
  120. local_fiq_enable();
  121. }
  122. void arch_cpu_idle_enter(void)
  123. {
  124. ledtrig_cpu(CPU_LED_IDLE_START);
  125. #ifdef CONFIG_PL310_ERRATA_769419
  126. wmb();
  127. #endif
  128. }
  129. void arch_cpu_idle_exit(void)
  130. {
  131. ledtrig_cpu(CPU_LED_IDLE_END);
  132. }
  133. #ifdef CONFIG_HOTPLUG_CPU
  134. void arch_cpu_idle_dead(void)
  135. {
  136. cpu_die();
  137. }
  138. #endif
  139. /*
  140. * Called from the core idle loop.
  141. */
  142. void arch_cpu_idle(void)
  143. {
  144. if (cpuidle_idle_call())
  145. default_idle();
  146. }
  147. enum reboot_mode reboot_mode = REBOOT_HARD;
  148. static int __init reboot_setup(char *str)
  149. {
  150. if ('s' == str[0])
  151. reboot_mode = REBOOT_SOFT;
  152. return 1;
  153. }
  154. __setup("reboot=", reboot_setup);
  155. /*
  156. * Called by kexec, immediately prior to machine_kexec().
  157. *
  158. * This must completely disable all secondary CPUs; simply causing those CPUs
  159. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  160. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  161. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  162. * functionality embodied in disable_nonboot_cpus() to achieve this.
  163. */
  164. void machine_shutdown(void)
  165. {
  166. disable_nonboot_cpus();
  167. }
  168. /*
  169. * Halting simply requires that the secondary CPUs stop performing any
  170. * activity (executing tasks, handling interrupts). smp_send_stop()
  171. * achieves this.
  172. */
  173. void machine_halt(void)
  174. {
  175. smp_send_stop();
  176. local_irq_disable();
  177. while (1);
  178. }
  179. /*
  180. * Power-off simply requires that the secondary CPUs stop performing any
  181. * activity (executing tasks, handling interrupts). smp_send_stop()
  182. * achieves this. When the system power is turned off, it will take all CPUs
  183. * with it.
  184. */
  185. void machine_power_off(void)
  186. {
  187. smp_send_stop();
  188. if (pm_power_off)
  189. pm_power_off();
  190. }
  191. /*
  192. * Restart requires that the secondary CPUs stop performing any activity
  193. * while the primary CPU resets the system. Systems with a single CPU can
  194. * use soft_restart() as their machine descriptor's .restart hook, since that
  195. * will cause the only available CPU to reset. Systems with multiple CPUs must
  196. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  197. * This is required so that any code running after reset on the primary CPU
  198. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  199. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  200. * to use. Implementing such co-ordination would be essentially impossible.
  201. */
  202. void machine_restart(char *cmd)
  203. {
  204. smp_send_stop();
  205. arm_pm_restart(reboot_mode, cmd);
  206. /* Give a grace period for failure to restart of 1s */
  207. mdelay(1000);
  208. /* Whoops - the platform was unable to reboot. Tell the user! */
  209. printk("Reboot failed -- System halted\n");
  210. local_irq_disable();
  211. while (1);
  212. }
  213. void __show_regs(struct pt_regs *regs)
  214. {
  215. unsigned long flags;
  216. char buf[64];
  217. show_regs_print_info(KERN_DEFAULT);
  218. print_symbol("PC is at %s\n", instruction_pointer(regs));
  219. print_symbol("LR is at %s\n", regs->ARM_lr);
  220. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  221. "sp : %08lx ip : %08lx fp : %08lx\n",
  222. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  223. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  224. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  225. regs->ARM_r10, regs->ARM_r9,
  226. regs->ARM_r8);
  227. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  228. regs->ARM_r7, regs->ARM_r6,
  229. regs->ARM_r5, regs->ARM_r4);
  230. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  231. regs->ARM_r3, regs->ARM_r2,
  232. regs->ARM_r1, regs->ARM_r0);
  233. flags = regs->ARM_cpsr;
  234. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  235. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  236. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  237. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  238. buf[4] = '\0';
  239. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  240. buf, interrupts_enabled(regs) ? "n" : "ff",
  241. fast_interrupts_enabled(regs) ? "n" : "ff",
  242. processor_modes[processor_mode(regs)],
  243. isa_modes[isa_mode(regs)],
  244. get_fs() == get_ds() ? "kernel" : "user");
  245. #ifdef CONFIG_CPU_CP15
  246. {
  247. unsigned int ctrl;
  248. buf[0] = '\0';
  249. #ifdef CONFIG_CPU_CP15_MMU
  250. {
  251. unsigned int transbase, dac;
  252. asm("mrc p15, 0, %0, c2, c0\n\t"
  253. "mrc p15, 0, %1, c3, c0\n"
  254. : "=r" (transbase), "=r" (dac));
  255. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  256. transbase, dac);
  257. }
  258. #endif
  259. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  260. printk("Control: %08x%s\n", ctrl, buf);
  261. }
  262. #endif
  263. }
  264. void show_regs(struct pt_regs * regs)
  265. {
  266. printk("\n");
  267. __show_regs(regs);
  268. dump_stack();
  269. }
  270. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  271. EXPORT_SYMBOL_GPL(thread_notify_head);
  272. /*
  273. * Free current thread data structures etc..
  274. */
  275. void exit_thread(void)
  276. {
  277. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  278. }
  279. void flush_thread(void)
  280. {
  281. struct thread_info *thread = current_thread_info();
  282. struct task_struct *tsk = current;
  283. flush_ptrace_hw_breakpoint(tsk);
  284. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  285. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  286. memset(&thread->fpstate, 0, sizeof(union fp_state));
  287. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  288. }
  289. void release_thread(struct task_struct *dead_task)
  290. {
  291. }
  292. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  293. int
  294. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  295. unsigned long stk_sz, struct task_struct *p)
  296. {
  297. struct thread_info *thread = task_thread_info(p);
  298. struct pt_regs *childregs = task_pt_regs(p);
  299. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  300. if (likely(!(p->flags & PF_KTHREAD))) {
  301. *childregs = *current_pt_regs();
  302. childregs->ARM_r0 = 0;
  303. if (stack_start)
  304. childregs->ARM_sp = stack_start;
  305. } else {
  306. memset(childregs, 0, sizeof(struct pt_regs));
  307. thread->cpu_context.r4 = stk_sz;
  308. thread->cpu_context.r5 = stack_start;
  309. childregs->ARM_cpsr = SVC_MODE;
  310. }
  311. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  312. thread->cpu_context.sp = (unsigned long)childregs;
  313. clear_ptrace_hw_breakpoint(p);
  314. if (clone_flags & CLONE_SETTLS)
  315. thread->tp_value[0] = childregs->ARM_r3;
  316. thread->tp_value[1] = get_tpuser();
  317. thread_notify(THREAD_NOTIFY_COPY, thread);
  318. return 0;
  319. }
  320. /*
  321. * Fill in the task's elfregs structure for a core dump.
  322. */
  323. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  324. {
  325. elf_core_copy_regs(elfregs, task_pt_regs(t));
  326. return 1;
  327. }
  328. /*
  329. * fill in the fpe structure for a core dump...
  330. */
  331. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  332. {
  333. struct thread_info *thread = current_thread_info();
  334. int used_math = thread->used_cp[1] | thread->used_cp[2];
  335. if (used_math)
  336. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  337. return used_math != 0;
  338. }
  339. EXPORT_SYMBOL(dump_fpu);
  340. unsigned long get_wchan(struct task_struct *p)
  341. {
  342. struct stackframe frame;
  343. int count = 0;
  344. if (!p || p == current || p->state == TASK_RUNNING)
  345. return 0;
  346. frame.fp = thread_saved_fp(p);
  347. frame.sp = thread_saved_sp(p);
  348. frame.lr = 0; /* recovered from the stack */
  349. frame.pc = thread_saved_pc(p);
  350. do {
  351. int ret = unwind_frame(&frame);
  352. if (ret < 0)
  353. return 0;
  354. if (!in_sched_functions(frame.pc))
  355. return frame.pc;
  356. } while (count ++ < 16);
  357. return 0;
  358. }
  359. unsigned long arch_randomize_brk(struct mm_struct *mm)
  360. {
  361. unsigned long range_end = mm->brk + 0x02000000;
  362. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  363. }
  364. #ifdef CONFIG_MMU
  365. /*
  366. * The vectors page is always readable from user space for the
  367. * atomic helpers and the signal restart code. Insert it into the
  368. * gate_vma so that it is visible through ptrace and /proc/<pid>/mem.
  369. */
  370. static struct vm_area_struct gate_vma = {
  371. .vm_start = 0xffff0000,
  372. .vm_end = 0xffff0000 + PAGE_SIZE,
  373. .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
  374. };
  375. static int __init gate_vma_init(void)
  376. {
  377. gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
  378. return 0;
  379. }
  380. arch_initcall(gate_vma_init);
  381. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  382. {
  383. return &gate_vma;
  384. }
  385. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  386. {
  387. return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
  388. }
  389. int in_gate_area_no_mm(unsigned long addr)
  390. {
  391. return in_gate_area(NULL, addr);
  392. }
  393. const char *arch_vma_name(struct vm_area_struct *vma)
  394. {
  395. return (vma == &gate_vma) ? "[vectors]" : NULL;
  396. }
  397. #endif