sky2.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/crc32.h>
  26. #include <linux/kernel.h>
  27. #include <linux/version.h>
  28. #include <linux/module.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/ip.h>
  35. #include <linux/tcp.h>
  36. #include <linux/in.h>
  37. #include <linux/delay.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/prefetch.h>
  41. #include <linux/mii.h>
  42. #include <asm/irq.h>
  43. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  44. #define SKY2_VLAN_TAG_USED 1
  45. #endif
  46. #include "sky2.h"
  47. #define DRV_NAME "sky2"
  48. #define DRV_VERSION "1.9"
  49. #define PFX DRV_NAME " "
  50. /*
  51. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  52. * that are organized into three (receive, transmit, status) different rings
  53. * similar to Tigon3.
  54. */
  55. #define RX_LE_SIZE 1024
  56. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  57. #define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
  58. #define RX_DEF_PENDING RX_MAX_PENDING
  59. #define RX_SKB_ALIGN 8
  60. #define RX_BUF_WRITE 16
  61. #define TX_RING_SIZE 512
  62. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  63. #define TX_MIN_PENDING 64
  64. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  65. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  66. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  67. #define TX_WATCHDOG (5 * HZ)
  68. #define NAPI_WEIGHT 64
  69. #define PHY_RETRIES 1000
  70. #define RING_NEXT(x,s) (((x)+1) & ((s)-1))
  71. static const u32 default_msg =
  72. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  73. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  74. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  75. static int debug = -1; /* defaults above */
  76. module_param(debug, int, 0);
  77. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  78. static int copybreak __read_mostly = 128;
  79. module_param(copybreak, int, 0);
  80. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  81. static int disable_msi = 0;
  82. module_param(disable_msi, int, 0);
  83. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  84. static int idle_timeout = 0;
  85. module_param(idle_timeout, int, 0);
  86. MODULE_PARM_DESC(idle_timeout, "Watchdog timer for lost interrupts (ms)");
  87. static const struct pci_device_id sky2_id_table[] = {
  88. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
  89. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
  90. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
  91. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
  92. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) },
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) },
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) },
  110. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) },
  111. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) },
  112. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) },
  113. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) },
  114. { 0 }
  115. };
  116. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  117. /* Avoid conditionals by using array */
  118. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  119. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  120. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  121. /* This driver supports yukon2 chipset only */
  122. static const char *yukon2_name[] = {
  123. "XL", /* 0xb3 */
  124. "EC Ultra", /* 0xb4 */
  125. "UNKNOWN", /* 0xb5 */
  126. "EC", /* 0xb6 */
  127. "FE", /* 0xb7 */
  128. };
  129. /* Access to external PHY */
  130. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  131. {
  132. int i;
  133. gma_write16(hw, port, GM_SMI_DATA, val);
  134. gma_write16(hw, port, GM_SMI_CTRL,
  135. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  136. for (i = 0; i < PHY_RETRIES; i++) {
  137. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  138. return 0;
  139. udelay(1);
  140. }
  141. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  142. return -ETIMEDOUT;
  143. }
  144. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  145. {
  146. int i;
  147. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  148. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  149. for (i = 0; i < PHY_RETRIES; i++) {
  150. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  151. *val = gma_read16(hw, port, GM_SMI_DATA);
  152. return 0;
  153. }
  154. udelay(1);
  155. }
  156. return -ETIMEDOUT;
  157. }
  158. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  159. {
  160. u16 v;
  161. if (__gm_phy_read(hw, port, reg, &v) != 0)
  162. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  163. return v;
  164. }
  165. static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  166. {
  167. u16 power_control;
  168. int vaux;
  169. pr_debug("sky2_set_power_state %d\n", state);
  170. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  171. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  172. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  173. (power_control & PCI_PM_CAP_PME_D3cold);
  174. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  175. power_control |= PCI_PM_CTRL_PME_STATUS;
  176. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  177. switch (state) {
  178. case PCI_D0:
  179. /* switch power to VCC (WA for VAUX problem) */
  180. sky2_write8(hw, B0_POWER_CTRL,
  181. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  182. /* disable Core Clock Division, */
  183. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  184. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  185. /* enable bits are inverted */
  186. sky2_write8(hw, B2_Y2_CLK_GATE,
  187. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  188. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  189. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  190. else
  191. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  192. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  193. u32 reg1;
  194. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  195. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  196. reg1 &= P_ASPM_CONTROL_MSK;
  197. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  198. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  199. }
  200. break;
  201. case PCI_D3hot:
  202. case PCI_D3cold:
  203. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  204. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  205. else
  206. /* enable bits are inverted */
  207. sky2_write8(hw, B2_Y2_CLK_GATE,
  208. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  209. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  210. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  211. /* switch power to VAUX */
  212. if (vaux && state != PCI_D3cold)
  213. sky2_write8(hw, B0_POWER_CTRL,
  214. (PC_VAUX_ENA | PC_VCC_ENA |
  215. PC_VAUX_ON | PC_VCC_OFF));
  216. break;
  217. default:
  218. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  219. }
  220. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  221. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  222. }
  223. static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
  224. {
  225. u16 reg;
  226. /* disable all GMAC IRQ's */
  227. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  228. /* disable PHY IRQs */
  229. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  230. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  231. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  232. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  233. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  234. reg = gma_read16(hw, port, GM_RX_CTRL);
  235. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  236. gma_write16(hw, port, GM_RX_CTRL, reg);
  237. }
  238. /* flow control to advertise bits */
  239. static const u16 copper_fc_adv[] = {
  240. [FC_NONE] = 0,
  241. [FC_TX] = PHY_M_AN_ASP,
  242. [FC_RX] = PHY_M_AN_PC,
  243. [FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
  244. };
  245. /* flow control to advertise bits when using 1000BaseX */
  246. static const u16 fiber_fc_adv[] = {
  247. [FC_BOTH] = PHY_M_P_BOTH_MD_X,
  248. [FC_TX] = PHY_M_P_ASYM_MD_X,
  249. [FC_RX] = PHY_M_P_SYM_MD_X,
  250. [FC_NONE] = PHY_M_P_NO_PAUSE_X,
  251. };
  252. /* flow control to GMA disable bits */
  253. static const u16 gm_fc_disable[] = {
  254. [FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
  255. [FC_TX] = GM_GPCR_FC_RX_DIS,
  256. [FC_RX] = GM_GPCR_FC_TX_DIS,
  257. [FC_BOTH] = 0,
  258. };
  259. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  260. {
  261. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  262. u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
  263. if (sky2->autoneg == AUTONEG_ENABLE &&
  264. !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  265. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  266. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  267. PHY_M_EC_MAC_S_MSK);
  268. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  269. if (hw->chip_id == CHIP_ID_YUKON_EC)
  270. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  271. else
  272. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  273. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  274. }
  275. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  276. if (sky2_is_copper(hw)) {
  277. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  278. /* enable automatic crossover */
  279. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  280. } else {
  281. /* disable energy detect */
  282. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  283. /* enable automatic crossover */
  284. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  285. if (sky2->autoneg == AUTONEG_ENABLE &&
  286. (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  287. ctrl &= ~PHY_M_PC_DSC_MSK;
  288. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  289. }
  290. }
  291. } else {
  292. /* workaround for deviation #4.88 (CRC errors) */
  293. /* disable Automatic Crossover */
  294. ctrl &= ~PHY_M_PC_MDIX_MSK;
  295. }
  296. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  297. /* special setup for PHY 88E1112 Fiber */
  298. if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) {
  299. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  300. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  301. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  302. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  303. ctrl &= ~PHY_M_MAC_MD_MSK;
  304. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  305. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  306. if (hw->pmd_type == 'P') {
  307. /* select page 1 to access Fiber registers */
  308. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  309. /* for SFP-module set SIGDET polarity to low */
  310. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  311. ctrl |= PHY_M_FIB_SIGD_POL;
  312. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  313. }
  314. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  315. }
  316. ctrl = PHY_CT_RESET;
  317. ct1000 = 0;
  318. adv = PHY_AN_CSMA;
  319. reg = 0;
  320. if (sky2->autoneg == AUTONEG_ENABLE) {
  321. if (sky2_is_copper(hw)) {
  322. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  323. ct1000 |= PHY_M_1000C_AFD;
  324. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  325. ct1000 |= PHY_M_1000C_AHD;
  326. if (sky2->advertising & ADVERTISED_100baseT_Full)
  327. adv |= PHY_M_AN_100_FD;
  328. if (sky2->advertising & ADVERTISED_100baseT_Half)
  329. adv |= PHY_M_AN_100_HD;
  330. if (sky2->advertising & ADVERTISED_10baseT_Full)
  331. adv |= PHY_M_AN_10_FD;
  332. if (sky2->advertising & ADVERTISED_10baseT_Half)
  333. adv |= PHY_M_AN_10_HD;
  334. adv |= copper_fc_adv[sky2->flow_mode];
  335. } else { /* special defines for FIBER (88E1040S only) */
  336. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  337. adv |= PHY_M_AN_1000X_AFD;
  338. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  339. adv |= PHY_M_AN_1000X_AHD;
  340. adv |= fiber_fc_adv[sky2->flow_mode];
  341. }
  342. /* Restart Auto-negotiation */
  343. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  344. } else {
  345. /* forced speed/duplex settings */
  346. ct1000 = PHY_M_1000C_MSE;
  347. /* Disable auto update for duplex flow control and speed */
  348. reg |= GM_GPCR_AU_ALL_DIS;
  349. switch (sky2->speed) {
  350. case SPEED_1000:
  351. ctrl |= PHY_CT_SP1000;
  352. reg |= GM_GPCR_SPEED_1000;
  353. break;
  354. case SPEED_100:
  355. ctrl |= PHY_CT_SP100;
  356. reg |= GM_GPCR_SPEED_100;
  357. break;
  358. }
  359. if (sky2->duplex == DUPLEX_FULL) {
  360. reg |= GM_GPCR_DUP_FULL;
  361. ctrl |= PHY_CT_DUP_MD;
  362. } else if (sky2->speed < SPEED_1000)
  363. sky2->flow_mode = FC_NONE;
  364. reg |= gm_fc_disable[sky2->flow_mode];
  365. /* Forward pause packets to GMAC? */
  366. if (sky2->flow_mode & FC_RX)
  367. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  368. else
  369. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  370. }
  371. gma_write16(hw, port, GM_GP_CTRL, reg);
  372. if (hw->chip_id != CHIP_ID_YUKON_FE)
  373. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  374. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  375. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  376. /* Setup Phy LED's */
  377. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  378. ledover = 0;
  379. switch (hw->chip_id) {
  380. case CHIP_ID_YUKON_FE:
  381. /* on 88E3082 these bits are at 11..9 (shifted left) */
  382. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  383. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  384. /* delete ACT LED control bits */
  385. ctrl &= ~PHY_M_FELP_LED1_MSK;
  386. /* change ACT LED control to blink mode */
  387. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  388. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  389. break;
  390. case CHIP_ID_YUKON_XL:
  391. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  392. /* select page 3 to access LED control register */
  393. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  394. /* set LED Function Control register */
  395. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  396. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  397. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  398. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  399. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  400. /* set Polarity Control register */
  401. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  402. (PHY_M_POLC_LS1_P_MIX(4) |
  403. PHY_M_POLC_IS0_P_MIX(4) |
  404. PHY_M_POLC_LOS_CTRL(2) |
  405. PHY_M_POLC_INIT_CTRL(2) |
  406. PHY_M_POLC_STA1_CTRL(2) |
  407. PHY_M_POLC_STA0_CTRL(2)));
  408. /* restore page register */
  409. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  410. break;
  411. case CHIP_ID_YUKON_EC_U:
  412. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  413. /* select page 3 to access LED control register */
  414. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  415. /* set LED Function Control register */
  416. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  417. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  418. PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
  419. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  420. PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
  421. /* set Blink Rate in LED Timer Control Register */
  422. gm_phy_write(hw, port, PHY_MARV_INT_MASK,
  423. ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
  424. /* restore page register */
  425. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  426. break;
  427. default:
  428. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  429. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  430. /* turn off the Rx LED (LED_RX) */
  431. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  432. }
  433. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  434. /* apply fixes in PHY AFE */
  435. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  436. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
  437. /* increase differential signal amplitude in 10BASE-T */
  438. gm_phy_write(hw, port, 0x18, 0xaa99);
  439. gm_phy_write(hw, port, 0x17, 0x2011);
  440. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  441. gm_phy_write(hw, port, 0x18, 0xa204);
  442. gm_phy_write(hw, port, 0x17, 0x2002);
  443. /* set page register to 0 */
  444. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  445. } else {
  446. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  447. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  448. /* turn on 100 Mbps LED (LED_LINK100) */
  449. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  450. }
  451. if (ledover)
  452. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  453. }
  454. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  455. if (sky2->autoneg == AUTONEG_ENABLE)
  456. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  457. else
  458. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  459. }
  460. static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff)
  461. {
  462. u32 reg1;
  463. static const u32 phy_power[]
  464. = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
  465. /* looks like this XL is back asswards .. */
  466. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  467. onoff = !onoff;
  468. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  469. if (onoff)
  470. /* Turn off phy power saving */
  471. reg1 &= ~phy_power[port];
  472. else
  473. reg1 |= phy_power[port];
  474. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  475. sky2_pci_read32(hw, PCI_DEV_REG1);
  476. udelay(100);
  477. }
  478. /* Force a renegotiation */
  479. static void sky2_phy_reinit(struct sky2_port *sky2)
  480. {
  481. spin_lock_bh(&sky2->phy_lock);
  482. sky2_phy_init(sky2->hw, sky2->port);
  483. spin_unlock_bh(&sky2->phy_lock);
  484. }
  485. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  486. {
  487. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  488. u16 reg;
  489. int i;
  490. const u8 *addr = hw->dev[port]->dev_addr;
  491. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  492. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  493. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  494. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  495. /* WA DEV_472 -- looks like crossed wires on port 2 */
  496. /* clear GMAC 1 Control reset */
  497. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  498. do {
  499. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  500. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  501. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  502. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  503. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  504. }
  505. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  506. /* Enable Transmit FIFO Underrun */
  507. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  508. spin_lock_bh(&sky2->phy_lock);
  509. sky2_phy_init(hw, port);
  510. spin_unlock_bh(&sky2->phy_lock);
  511. /* MIB clear */
  512. reg = gma_read16(hw, port, GM_PHY_ADDR);
  513. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  514. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  515. gma_read16(hw, port, i);
  516. gma_write16(hw, port, GM_PHY_ADDR, reg);
  517. /* transmit control */
  518. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  519. /* receive control reg: unicast + multicast + no FCS */
  520. gma_write16(hw, port, GM_RX_CTRL,
  521. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  522. /* transmit flow control */
  523. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  524. /* transmit parameter */
  525. gma_write16(hw, port, GM_TX_PARAM,
  526. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  527. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  528. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  529. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  530. /* serial mode register */
  531. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  532. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  533. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  534. reg |= GM_SMOD_JUMBO_ENA;
  535. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  536. /* virtual address for data */
  537. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  538. /* physical address: used for pause frames */
  539. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  540. /* ignore counter overflows */
  541. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  542. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  543. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  544. /* Configure Rx MAC FIFO */
  545. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  546. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  547. GMF_OPER_ON | GMF_RX_F_FL_ON);
  548. /* Flush Rx MAC FIFO on any flow control or error */
  549. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  550. /* Set threshold to 0xa (64 bytes)
  551. * ASF disabled so no need to do WA dev #4.30
  552. */
  553. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  554. /* Configure Tx MAC FIFO */
  555. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  556. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  557. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  558. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 512/8);
  559. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  560. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  561. /* set Tx GMAC FIFO Almost Empty Threshold */
  562. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  563. /* Disable Store & Forward mode for TX */
  564. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  565. }
  566. }
  567. }
  568. /* Assign Ram Buffer allocation.
  569. * start and end are in units of 4k bytes
  570. * ram registers are in units of 64bit words
  571. */
  572. static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk)
  573. {
  574. u32 start, end;
  575. start = startk * 4096/8;
  576. end = (endk * 4096/8) - 1;
  577. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  578. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  579. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  580. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  581. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  582. if (q == Q_R1 || q == Q_R2) {
  583. u32 space = (endk - startk) * 4096/8;
  584. u32 tp = space - space/4;
  585. /* On receive queue's set the thresholds
  586. * give receiver priority when > 3/4 full
  587. * send pause when down to 2K
  588. */
  589. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  590. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  591. tp = space - 2048/8;
  592. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  593. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  594. } else {
  595. /* Enable store & forward on Tx queue's because
  596. * Tx FIFO is only 1K on Yukon
  597. */
  598. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  599. }
  600. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  601. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  602. }
  603. /* Setup Bus Memory Interface */
  604. static void sky2_qset(struct sky2_hw *hw, u16 q)
  605. {
  606. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  607. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  608. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  609. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  610. }
  611. /* Setup prefetch unit registers. This is the interface between
  612. * hardware and driver list elements
  613. */
  614. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  615. u64 addr, u32 last)
  616. {
  617. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  618. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  619. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  620. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  621. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  622. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  623. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  624. }
  625. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  626. {
  627. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  628. sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
  629. le->ctrl = 0;
  630. return le;
  631. }
  632. static inline struct tx_ring_info *tx_le_re(struct sky2_port *sky2,
  633. struct sky2_tx_le *le)
  634. {
  635. return sky2->tx_ring + (le - sky2->tx_le);
  636. }
  637. /* Update chip's next pointer */
  638. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  639. {
  640. q = Y2_QADDR(q, PREF_UNIT_PUT_IDX);
  641. wmb();
  642. sky2_write16(hw, q, idx);
  643. sky2_read16(hw, q);
  644. }
  645. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  646. {
  647. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  648. sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
  649. le->ctrl = 0;
  650. return le;
  651. }
  652. /* Return high part of DMA address (could be 32 or 64 bit) */
  653. static inline u32 high32(dma_addr_t a)
  654. {
  655. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  656. }
  657. /* Build description to hardware for one receive segment */
  658. static void sky2_rx_add(struct sky2_port *sky2, u8 op,
  659. dma_addr_t map, unsigned len)
  660. {
  661. struct sky2_rx_le *le;
  662. u32 hi = high32(map);
  663. if (sky2->rx_addr64 != hi) {
  664. le = sky2_next_rx(sky2);
  665. le->addr = cpu_to_le32(hi);
  666. le->opcode = OP_ADDR64 | HW_OWNER;
  667. sky2->rx_addr64 = high32(map + len);
  668. }
  669. le = sky2_next_rx(sky2);
  670. le->addr = cpu_to_le32((u32) map);
  671. le->length = cpu_to_le16(len);
  672. le->opcode = op | HW_OWNER;
  673. }
  674. /* Build description to hardware for one possibly fragmented skb */
  675. static void sky2_rx_submit(struct sky2_port *sky2,
  676. const struct rx_ring_info *re)
  677. {
  678. int i;
  679. sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
  680. for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
  681. sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
  682. }
  683. static void sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
  684. unsigned size)
  685. {
  686. struct sk_buff *skb = re->skb;
  687. int i;
  688. re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
  689. pci_unmap_len_set(re, data_size, size);
  690. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  691. re->frag_addr[i] = pci_map_page(pdev,
  692. skb_shinfo(skb)->frags[i].page,
  693. skb_shinfo(skb)->frags[i].page_offset,
  694. skb_shinfo(skb)->frags[i].size,
  695. PCI_DMA_FROMDEVICE);
  696. }
  697. static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
  698. {
  699. struct sk_buff *skb = re->skb;
  700. int i;
  701. pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size),
  702. PCI_DMA_FROMDEVICE);
  703. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  704. pci_unmap_page(pdev, re->frag_addr[i],
  705. skb_shinfo(skb)->frags[i].size,
  706. PCI_DMA_FROMDEVICE);
  707. }
  708. /* Tell chip where to start receive checksum.
  709. * Actually has two checksums, but set both same to avoid possible byte
  710. * order problems.
  711. */
  712. static void rx_set_checksum(struct sky2_port *sky2)
  713. {
  714. struct sky2_rx_le *le;
  715. le = sky2_next_rx(sky2);
  716. le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
  717. le->ctrl = 0;
  718. le->opcode = OP_TCPSTART | HW_OWNER;
  719. sky2_write32(sky2->hw,
  720. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  721. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  722. }
  723. /*
  724. * The RX Stop command will not work for Yukon-2 if the BMU does not
  725. * reach the end of packet and since we can't make sure that we have
  726. * incoming data, we must reset the BMU while it is not doing a DMA
  727. * transfer. Since it is possible that the RX path is still active,
  728. * the RX RAM buffer will be stopped first, so any possible incoming
  729. * data will not trigger a DMA. After the RAM buffer is stopped, the
  730. * BMU is polled until any DMA in progress is ended and only then it
  731. * will be reset.
  732. */
  733. static void sky2_rx_stop(struct sky2_port *sky2)
  734. {
  735. struct sky2_hw *hw = sky2->hw;
  736. unsigned rxq = rxqaddr[sky2->port];
  737. int i;
  738. /* disable the RAM Buffer receive queue */
  739. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  740. for (i = 0; i < 0xffff; i++)
  741. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  742. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  743. goto stopped;
  744. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  745. sky2->netdev->name);
  746. stopped:
  747. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  748. /* reset the Rx prefetch unit */
  749. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  750. }
  751. /* Clean out receive buffer area, assumes receiver hardware stopped */
  752. static void sky2_rx_clean(struct sky2_port *sky2)
  753. {
  754. unsigned i;
  755. memset(sky2->rx_le, 0, RX_LE_BYTES);
  756. for (i = 0; i < sky2->rx_pending; i++) {
  757. struct rx_ring_info *re = sky2->rx_ring + i;
  758. if (re->skb) {
  759. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  760. kfree_skb(re->skb);
  761. re->skb = NULL;
  762. }
  763. }
  764. }
  765. /* Basic MII support */
  766. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  767. {
  768. struct mii_ioctl_data *data = if_mii(ifr);
  769. struct sky2_port *sky2 = netdev_priv(dev);
  770. struct sky2_hw *hw = sky2->hw;
  771. int err = -EOPNOTSUPP;
  772. if (!netif_running(dev))
  773. return -ENODEV; /* Phy still in reset */
  774. switch (cmd) {
  775. case SIOCGMIIPHY:
  776. data->phy_id = PHY_ADDR_MARV;
  777. /* fallthru */
  778. case SIOCGMIIREG: {
  779. u16 val = 0;
  780. spin_lock_bh(&sky2->phy_lock);
  781. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  782. spin_unlock_bh(&sky2->phy_lock);
  783. data->val_out = val;
  784. break;
  785. }
  786. case SIOCSMIIREG:
  787. if (!capable(CAP_NET_ADMIN))
  788. return -EPERM;
  789. spin_lock_bh(&sky2->phy_lock);
  790. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  791. data->val_in);
  792. spin_unlock_bh(&sky2->phy_lock);
  793. break;
  794. }
  795. return err;
  796. }
  797. #ifdef SKY2_VLAN_TAG_USED
  798. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  799. {
  800. struct sky2_port *sky2 = netdev_priv(dev);
  801. struct sky2_hw *hw = sky2->hw;
  802. u16 port = sky2->port;
  803. netif_tx_lock_bh(dev);
  804. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  805. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  806. sky2->vlgrp = grp;
  807. netif_tx_unlock_bh(dev);
  808. }
  809. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  810. {
  811. struct sky2_port *sky2 = netdev_priv(dev);
  812. struct sky2_hw *hw = sky2->hw;
  813. u16 port = sky2->port;
  814. netif_tx_lock_bh(dev);
  815. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  816. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  817. if (sky2->vlgrp)
  818. sky2->vlgrp->vlan_devices[vid] = NULL;
  819. netif_tx_unlock_bh(dev);
  820. }
  821. #endif
  822. /*
  823. * Allocate an skb for receiving. If the MTU is large enough
  824. * make the skb non-linear with a fragment list of pages.
  825. *
  826. * It appears the hardware has a bug in the FIFO logic that
  827. * cause it to hang if the FIFO gets overrun and the receive buffer
  828. * is not 64 byte aligned. The buffer returned from netdev_alloc_skb is
  829. * aligned except if slab debugging is enabled.
  830. */
  831. static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2)
  832. {
  833. struct sk_buff *skb;
  834. unsigned long p;
  835. int i;
  836. skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + RX_SKB_ALIGN);
  837. if (!skb)
  838. goto nomem;
  839. p = (unsigned long) skb->data;
  840. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  841. for (i = 0; i < sky2->rx_nfrags; i++) {
  842. struct page *page = alloc_page(GFP_ATOMIC);
  843. if (!page)
  844. goto free_partial;
  845. skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
  846. }
  847. return skb;
  848. free_partial:
  849. kfree_skb(skb);
  850. nomem:
  851. return NULL;
  852. }
  853. /*
  854. * Allocate and setup receiver buffer pool.
  855. * Normal case this ends up creating one list element for skb
  856. * in the receive ring. Worst case if using large MTU and each
  857. * allocation falls on a different 64 bit region, that results
  858. * in 6 list elements per ring entry.
  859. * One element is used for checksum enable/disable, and one
  860. * extra to avoid wrap.
  861. */
  862. static int sky2_rx_start(struct sky2_port *sky2)
  863. {
  864. struct sky2_hw *hw = sky2->hw;
  865. struct rx_ring_info *re;
  866. unsigned rxq = rxqaddr[sky2->port];
  867. unsigned i, size, space, thresh;
  868. sky2->rx_put = sky2->rx_next = 0;
  869. sky2_qset(hw, rxq);
  870. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) {
  871. /* MAC Rx RAM Read is controlled by hardware */
  872. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  873. }
  874. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  875. rx_set_checksum(sky2);
  876. /* Space needed for frame data + headers rounded up */
  877. size = ALIGN(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8)
  878. + 8;
  879. /* Stopping point for hardware truncation */
  880. thresh = (size - 8) / sizeof(u32);
  881. /* Account for overhead of skb - to avoid order > 0 allocation */
  882. space = SKB_DATA_ALIGN(size) + NET_SKB_PAD
  883. + sizeof(struct skb_shared_info);
  884. sky2->rx_nfrags = space >> PAGE_SHIFT;
  885. BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
  886. if (sky2->rx_nfrags != 0) {
  887. /* Compute residue after pages */
  888. space = sky2->rx_nfrags << PAGE_SHIFT;
  889. if (space < size)
  890. size -= space;
  891. else
  892. size = 0;
  893. /* Optimize to handle small packets and headers */
  894. if (size < copybreak)
  895. size = copybreak;
  896. if (size < ETH_HLEN)
  897. size = ETH_HLEN;
  898. }
  899. sky2->rx_data_size = size;
  900. /* Fill Rx ring */
  901. for (i = 0; i < sky2->rx_pending; i++) {
  902. re = sky2->rx_ring + i;
  903. re->skb = sky2_rx_alloc(sky2);
  904. if (!re->skb)
  905. goto nomem;
  906. sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size);
  907. sky2_rx_submit(sky2, re);
  908. }
  909. /*
  910. * The receiver hangs if it receives frames larger than the
  911. * packet buffer. As a workaround, truncate oversize frames, but
  912. * the register is limited to 9 bits, so if you do frames > 2052
  913. * you better get the MTU right!
  914. */
  915. if (thresh > 0x1ff)
  916. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
  917. else {
  918. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
  919. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  920. }
  921. /* Tell chip about available buffers */
  922. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  923. return 0;
  924. nomem:
  925. sky2_rx_clean(sky2);
  926. return -ENOMEM;
  927. }
  928. /* Bring up network interface. */
  929. static int sky2_up(struct net_device *dev)
  930. {
  931. struct sky2_port *sky2 = netdev_priv(dev);
  932. struct sky2_hw *hw = sky2->hw;
  933. unsigned port = sky2->port;
  934. u32 ramsize, rxspace, imask;
  935. int cap, err = -ENOMEM;
  936. struct net_device *otherdev = hw->dev[sky2->port^1];
  937. /*
  938. * On dual port PCI-X card, there is an problem where status
  939. * can be received out of order due to split transactions
  940. */
  941. if (otherdev && netif_running(otherdev) &&
  942. (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
  943. struct sky2_port *osky2 = netdev_priv(otherdev);
  944. u16 cmd;
  945. cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
  946. cmd &= ~PCI_X_CMD_MAX_SPLIT;
  947. sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
  948. sky2->rx_csum = 0;
  949. osky2->rx_csum = 0;
  950. }
  951. if (netif_msg_ifup(sky2))
  952. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  953. /* must be power of 2 */
  954. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  955. TX_RING_SIZE *
  956. sizeof(struct sky2_tx_le),
  957. &sky2->tx_le_map);
  958. if (!sky2->tx_le)
  959. goto err_out;
  960. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  961. GFP_KERNEL);
  962. if (!sky2->tx_ring)
  963. goto err_out;
  964. sky2->tx_prod = sky2->tx_cons = 0;
  965. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  966. &sky2->rx_le_map);
  967. if (!sky2->rx_le)
  968. goto err_out;
  969. memset(sky2->rx_le, 0, RX_LE_BYTES);
  970. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
  971. GFP_KERNEL);
  972. if (!sky2->rx_ring)
  973. goto err_out;
  974. sky2_phy_power(hw, port, 1);
  975. sky2_mac_init(hw, port);
  976. /* Determine available ram buffer space (in 4K blocks).
  977. * Note: not sure about the FE setting below yet
  978. */
  979. if (hw->chip_id == CHIP_ID_YUKON_FE)
  980. ramsize = 4;
  981. else
  982. ramsize = sky2_read8(hw, B2_E_0);
  983. /* Give transmitter one third (rounded up) */
  984. rxspace = ramsize - (ramsize + 2) / 3;
  985. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  986. sky2_ramset(hw, txqaddr[port], rxspace, ramsize);
  987. /* Make sure SyncQ is disabled */
  988. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  989. RB_RST_SET);
  990. sky2_qset(hw, txqaddr[port]);
  991. /* Set almost empty threshold */
  992. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  993. && hw->chip_rev == CHIP_REV_YU_EC_U_A0)
  994. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  995. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  996. TX_RING_SIZE - 1);
  997. err = sky2_rx_start(sky2);
  998. if (err)
  999. goto err_out;
  1000. /* Enable interrupts from phy/mac for port */
  1001. imask = sky2_read32(hw, B0_IMSK);
  1002. imask |= portirq_msk[port];
  1003. sky2_write32(hw, B0_IMSK, imask);
  1004. return 0;
  1005. err_out:
  1006. if (sky2->rx_le) {
  1007. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1008. sky2->rx_le, sky2->rx_le_map);
  1009. sky2->rx_le = NULL;
  1010. }
  1011. if (sky2->tx_le) {
  1012. pci_free_consistent(hw->pdev,
  1013. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1014. sky2->tx_le, sky2->tx_le_map);
  1015. sky2->tx_le = NULL;
  1016. }
  1017. kfree(sky2->tx_ring);
  1018. kfree(sky2->rx_ring);
  1019. sky2->tx_ring = NULL;
  1020. sky2->rx_ring = NULL;
  1021. return err;
  1022. }
  1023. /* Modular subtraction in ring */
  1024. static inline int tx_dist(unsigned tail, unsigned head)
  1025. {
  1026. return (head - tail) & (TX_RING_SIZE - 1);
  1027. }
  1028. /* Number of list elements available for next tx */
  1029. static inline int tx_avail(const struct sky2_port *sky2)
  1030. {
  1031. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  1032. }
  1033. /* Estimate of number of transmit list elements required */
  1034. static unsigned tx_le_req(const struct sk_buff *skb)
  1035. {
  1036. unsigned count;
  1037. count = sizeof(dma_addr_t) / sizeof(u32);
  1038. count += skb_shinfo(skb)->nr_frags * count;
  1039. if (skb_is_gso(skb))
  1040. ++count;
  1041. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1042. ++count;
  1043. return count;
  1044. }
  1045. /*
  1046. * Put one packet in ring for transmit.
  1047. * A single packet can generate multiple list elements, and
  1048. * the number of ring elements will probably be less than the number
  1049. * of list elements used.
  1050. */
  1051. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1052. {
  1053. struct sky2_port *sky2 = netdev_priv(dev);
  1054. struct sky2_hw *hw = sky2->hw;
  1055. struct sky2_tx_le *le = NULL;
  1056. struct tx_ring_info *re;
  1057. unsigned i, len;
  1058. dma_addr_t mapping;
  1059. u32 addr64;
  1060. u16 mss;
  1061. u8 ctrl;
  1062. if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
  1063. return NETDEV_TX_BUSY;
  1064. if (unlikely(netif_msg_tx_queued(sky2)))
  1065. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  1066. dev->name, sky2->tx_prod, skb->len);
  1067. len = skb_headlen(skb);
  1068. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1069. addr64 = high32(mapping);
  1070. /* Send high bits if changed or crosses boundary */
  1071. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  1072. le = get_tx_le(sky2);
  1073. le->addr = cpu_to_le32(addr64);
  1074. le->opcode = OP_ADDR64 | HW_OWNER;
  1075. sky2->tx_addr64 = high32(mapping + len);
  1076. }
  1077. /* Check for TCP Segmentation Offload */
  1078. mss = skb_shinfo(skb)->gso_size;
  1079. if (mss != 0) {
  1080. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  1081. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  1082. mss += ETH_HLEN;
  1083. if (mss != sky2->tx_last_mss) {
  1084. le = get_tx_le(sky2);
  1085. le->addr = cpu_to_le32(mss);
  1086. le->opcode = OP_LRGLEN | HW_OWNER;
  1087. sky2->tx_last_mss = mss;
  1088. }
  1089. }
  1090. ctrl = 0;
  1091. #ifdef SKY2_VLAN_TAG_USED
  1092. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  1093. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  1094. if (!le) {
  1095. le = get_tx_le(sky2);
  1096. le->addr = 0;
  1097. le->opcode = OP_VLAN|HW_OWNER;
  1098. } else
  1099. le->opcode |= OP_VLAN;
  1100. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  1101. ctrl |= INS_VLAN;
  1102. }
  1103. #endif
  1104. /* Handle TCP checksum offload */
  1105. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1106. unsigned offset = skb->h.raw - skb->data;
  1107. u32 tcpsum;
  1108. tcpsum = offset << 16; /* sum start */
  1109. tcpsum |= offset + skb->csum; /* sum write */
  1110. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1111. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1112. ctrl |= UDPTCP;
  1113. if (tcpsum != sky2->tx_tcpsum) {
  1114. sky2->tx_tcpsum = tcpsum;
  1115. le = get_tx_le(sky2);
  1116. le->addr = cpu_to_le32(tcpsum);
  1117. le->length = 0; /* initial checksum value */
  1118. le->ctrl = 1; /* one packet */
  1119. le->opcode = OP_TCPLISW | HW_OWNER;
  1120. }
  1121. }
  1122. le = get_tx_le(sky2);
  1123. le->addr = cpu_to_le32((u32) mapping);
  1124. le->length = cpu_to_le16(len);
  1125. le->ctrl = ctrl;
  1126. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1127. re = tx_le_re(sky2, le);
  1128. re->skb = skb;
  1129. pci_unmap_addr_set(re, mapaddr, mapping);
  1130. pci_unmap_len_set(re, maplen, len);
  1131. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1132. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1133. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1134. frag->size, PCI_DMA_TODEVICE);
  1135. addr64 = high32(mapping);
  1136. if (addr64 != sky2->tx_addr64) {
  1137. le = get_tx_le(sky2);
  1138. le->addr = cpu_to_le32(addr64);
  1139. le->ctrl = 0;
  1140. le->opcode = OP_ADDR64 | HW_OWNER;
  1141. sky2->tx_addr64 = addr64;
  1142. }
  1143. le = get_tx_le(sky2);
  1144. le->addr = cpu_to_le32((u32) mapping);
  1145. le->length = cpu_to_le16(frag->size);
  1146. le->ctrl = ctrl;
  1147. le->opcode = OP_BUFFER | HW_OWNER;
  1148. re = tx_le_re(sky2, le);
  1149. re->skb = skb;
  1150. pci_unmap_addr_set(re, mapaddr, mapping);
  1151. pci_unmap_len_set(re, maplen, frag->size);
  1152. }
  1153. le->ctrl |= EOP;
  1154. if (tx_avail(sky2) <= MAX_SKB_TX_LE)
  1155. netif_stop_queue(dev);
  1156. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1157. dev->trans_start = jiffies;
  1158. return NETDEV_TX_OK;
  1159. }
  1160. /*
  1161. * Free ring elements from starting at tx_cons until "done"
  1162. *
  1163. * NB: the hardware will tell us about partial completion of multi-part
  1164. * buffers so make sure not to free skb to early.
  1165. */
  1166. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1167. {
  1168. struct net_device *dev = sky2->netdev;
  1169. struct pci_dev *pdev = sky2->hw->pdev;
  1170. unsigned idx;
  1171. BUG_ON(done >= TX_RING_SIZE);
  1172. for (idx = sky2->tx_cons; idx != done;
  1173. idx = RING_NEXT(idx, TX_RING_SIZE)) {
  1174. struct sky2_tx_le *le = sky2->tx_le + idx;
  1175. struct tx_ring_info *re = sky2->tx_ring + idx;
  1176. switch(le->opcode & ~HW_OWNER) {
  1177. case OP_LARGESEND:
  1178. case OP_PACKET:
  1179. pci_unmap_single(pdev,
  1180. pci_unmap_addr(re, mapaddr),
  1181. pci_unmap_len(re, maplen),
  1182. PCI_DMA_TODEVICE);
  1183. break;
  1184. case OP_BUFFER:
  1185. pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr),
  1186. pci_unmap_len(re, maplen),
  1187. PCI_DMA_TODEVICE);
  1188. break;
  1189. }
  1190. if (le->ctrl & EOP) {
  1191. if (unlikely(netif_msg_tx_done(sky2)))
  1192. printk(KERN_DEBUG "%s: tx done %u\n",
  1193. dev->name, idx);
  1194. dev_kfree_skb(re->skb);
  1195. }
  1196. le->opcode = 0; /* paranoia */
  1197. }
  1198. sky2->tx_cons = idx;
  1199. if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
  1200. netif_wake_queue(dev);
  1201. }
  1202. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1203. static void sky2_tx_clean(struct net_device *dev)
  1204. {
  1205. struct sky2_port *sky2 = netdev_priv(dev);
  1206. netif_tx_lock_bh(dev);
  1207. sky2_tx_complete(sky2, sky2->tx_prod);
  1208. netif_tx_unlock_bh(dev);
  1209. }
  1210. /* Network shutdown */
  1211. static int sky2_down(struct net_device *dev)
  1212. {
  1213. struct sky2_port *sky2 = netdev_priv(dev);
  1214. struct sky2_hw *hw = sky2->hw;
  1215. unsigned port = sky2->port;
  1216. u16 ctrl;
  1217. u32 imask;
  1218. /* Never really got started! */
  1219. if (!sky2->tx_le)
  1220. return 0;
  1221. if (netif_msg_ifdown(sky2))
  1222. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1223. /* Stop more packets from being queued */
  1224. netif_stop_queue(dev);
  1225. /* Disable port IRQ */
  1226. imask = sky2_read32(hw, B0_IMSK);
  1227. imask &= ~portirq_msk[port];
  1228. sky2_write32(hw, B0_IMSK, imask);
  1229. sky2_gmac_reset(hw, port);
  1230. /* Stop transmitter */
  1231. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1232. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1233. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1234. RB_RST_SET | RB_DIS_OP_MD);
  1235. /* WA for dev. #4.209 */
  1236. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  1237. && hw->chip_rev == CHIP_REV_YU_EC_U_A1)
  1238. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
  1239. sky2->speed != SPEED_1000 ?
  1240. TX_STFW_ENA : TX_STFW_DIS);
  1241. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1242. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1243. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1244. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1245. /* Workaround shared GMAC reset */
  1246. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1247. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1248. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1249. /* Disable Force Sync bit and Enable Alloc bit */
  1250. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1251. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1252. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1253. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1254. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1255. /* Reset the PCI FIFO of the async Tx queue */
  1256. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1257. BMU_RST_SET | BMU_FIFO_RST);
  1258. /* Reset the Tx prefetch units */
  1259. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1260. PREF_UNIT_RST_SET);
  1261. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1262. sky2_rx_stop(sky2);
  1263. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1264. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1265. sky2_phy_power(hw, port, 0);
  1266. /* turn off LED's */
  1267. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1268. synchronize_irq(hw->pdev->irq);
  1269. sky2_tx_clean(dev);
  1270. sky2_rx_clean(sky2);
  1271. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1272. sky2->rx_le, sky2->rx_le_map);
  1273. kfree(sky2->rx_ring);
  1274. pci_free_consistent(hw->pdev,
  1275. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1276. sky2->tx_le, sky2->tx_le_map);
  1277. kfree(sky2->tx_ring);
  1278. sky2->tx_le = NULL;
  1279. sky2->rx_le = NULL;
  1280. sky2->rx_ring = NULL;
  1281. sky2->tx_ring = NULL;
  1282. return 0;
  1283. }
  1284. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1285. {
  1286. if (!sky2_is_copper(hw))
  1287. return SPEED_1000;
  1288. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1289. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1290. switch (aux & PHY_M_PS_SPEED_MSK) {
  1291. case PHY_M_PS_SPEED_1000:
  1292. return SPEED_1000;
  1293. case PHY_M_PS_SPEED_100:
  1294. return SPEED_100;
  1295. default:
  1296. return SPEED_10;
  1297. }
  1298. }
  1299. static void sky2_link_up(struct sky2_port *sky2)
  1300. {
  1301. struct sky2_hw *hw = sky2->hw;
  1302. unsigned port = sky2->port;
  1303. u16 reg;
  1304. static const char *fc_name[] = {
  1305. [FC_NONE] = "none",
  1306. [FC_TX] = "tx",
  1307. [FC_RX] = "rx",
  1308. [FC_BOTH] = "both",
  1309. };
  1310. /* enable Rx/Tx */
  1311. reg = gma_read16(hw, port, GM_GP_CTRL);
  1312. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1313. gma_write16(hw, port, GM_GP_CTRL, reg);
  1314. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1315. netif_carrier_on(sky2->netdev);
  1316. netif_wake_queue(sky2->netdev);
  1317. /* Turn on link LED */
  1318. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1319. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1320. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1321. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1322. u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
  1323. switch(sky2->speed) {
  1324. case SPEED_10:
  1325. led |= PHY_M_LEDC_INIT_CTRL(7);
  1326. break;
  1327. case SPEED_100:
  1328. led |= PHY_M_LEDC_STA1_CTRL(7);
  1329. break;
  1330. case SPEED_1000:
  1331. led |= PHY_M_LEDC_STA0_CTRL(7);
  1332. break;
  1333. }
  1334. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1335. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
  1336. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1337. }
  1338. if (netif_msg_link(sky2))
  1339. printk(KERN_INFO PFX
  1340. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1341. sky2->netdev->name, sky2->speed,
  1342. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1343. fc_name[sky2->flow_status]);
  1344. }
  1345. static void sky2_link_down(struct sky2_port *sky2)
  1346. {
  1347. struct sky2_hw *hw = sky2->hw;
  1348. unsigned port = sky2->port;
  1349. u16 reg;
  1350. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1351. reg = gma_read16(hw, port, GM_GP_CTRL);
  1352. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1353. gma_write16(hw, port, GM_GP_CTRL, reg);
  1354. if (sky2->flow_status == FC_RX) {
  1355. /* restore Asymmetric Pause bit */
  1356. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1357. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1358. | PHY_M_AN_ASP);
  1359. }
  1360. netif_carrier_off(sky2->netdev);
  1361. netif_stop_queue(sky2->netdev);
  1362. /* Turn on link LED */
  1363. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1364. if (netif_msg_link(sky2))
  1365. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1366. sky2_phy_init(hw, port);
  1367. }
  1368. static enum flow_control sky2_flow(int rx, int tx)
  1369. {
  1370. if (rx)
  1371. return tx ? FC_BOTH : FC_RX;
  1372. else
  1373. return tx ? FC_TX : FC_NONE;
  1374. }
  1375. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1376. {
  1377. struct sky2_hw *hw = sky2->hw;
  1378. unsigned port = sky2->port;
  1379. u16 lpa;
  1380. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1381. if (lpa & PHY_M_AN_RF) {
  1382. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1383. return -1;
  1384. }
  1385. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1386. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1387. sky2->netdev->name);
  1388. return -1;
  1389. }
  1390. sky2->speed = sky2_phy_speed(hw, aux);
  1391. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1392. /* Pause bits are offset (9..8) */
  1393. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
  1394. aux >>= 6;
  1395. sky2->flow_status = sky2_flow(aux & PHY_M_PS_RX_P_EN,
  1396. aux & PHY_M_PS_TX_P_EN);
  1397. if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000
  1398. && hw->chip_id != CHIP_ID_YUKON_EC_U)
  1399. sky2->flow_status = FC_NONE;
  1400. if (aux & PHY_M_PS_RX_P_EN)
  1401. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1402. else
  1403. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1404. return 0;
  1405. }
  1406. /* Interrupt from PHY */
  1407. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1408. {
  1409. struct net_device *dev = hw->dev[port];
  1410. struct sky2_port *sky2 = netdev_priv(dev);
  1411. u16 istatus, phystat;
  1412. if (!netif_running(dev))
  1413. return;
  1414. spin_lock(&sky2->phy_lock);
  1415. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1416. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1417. if (netif_msg_intr(sky2))
  1418. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1419. sky2->netdev->name, istatus, phystat);
  1420. if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
  1421. if (sky2_autoneg_done(sky2, phystat) == 0)
  1422. sky2_link_up(sky2);
  1423. goto out;
  1424. }
  1425. if (istatus & PHY_M_IS_LSP_CHANGE)
  1426. sky2->speed = sky2_phy_speed(hw, phystat);
  1427. if (istatus & PHY_M_IS_DUP_CHANGE)
  1428. sky2->duplex =
  1429. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1430. if (istatus & PHY_M_IS_LST_CHANGE) {
  1431. if (phystat & PHY_M_PS_LINK_UP)
  1432. sky2_link_up(sky2);
  1433. else
  1434. sky2_link_down(sky2);
  1435. }
  1436. out:
  1437. spin_unlock(&sky2->phy_lock);
  1438. }
  1439. /* Transmit timeout is only called if we are running, carries is up
  1440. * and tx queue is full (stopped).
  1441. */
  1442. static void sky2_tx_timeout(struct net_device *dev)
  1443. {
  1444. struct sky2_port *sky2 = netdev_priv(dev);
  1445. struct sky2_hw *hw = sky2->hw;
  1446. unsigned txq = txqaddr[sky2->port];
  1447. u16 report, done;
  1448. if (netif_msg_timer(sky2))
  1449. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1450. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1451. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1452. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1453. dev->name,
  1454. sky2->tx_cons, sky2->tx_prod, report, done);
  1455. if (report != done) {
  1456. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1457. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1458. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1459. } else if (report != sky2->tx_cons) {
  1460. printk(KERN_INFO PFX "status report lost?\n");
  1461. netif_tx_lock_bh(dev);
  1462. sky2_tx_complete(sky2, report);
  1463. netif_tx_unlock_bh(dev);
  1464. } else {
  1465. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1466. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1467. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1468. sky2_tx_clean(dev);
  1469. sky2_qset(hw, txq);
  1470. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1471. }
  1472. }
  1473. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1474. {
  1475. struct sky2_port *sky2 = netdev_priv(dev);
  1476. struct sky2_hw *hw = sky2->hw;
  1477. int err;
  1478. u16 ctl, mode;
  1479. u32 imask;
  1480. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1481. return -EINVAL;
  1482. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1483. return -EINVAL;
  1484. if (!netif_running(dev)) {
  1485. dev->mtu = new_mtu;
  1486. return 0;
  1487. }
  1488. imask = sky2_read32(hw, B0_IMSK);
  1489. sky2_write32(hw, B0_IMSK, 0);
  1490. dev->trans_start = jiffies; /* prevent tx timeout */
  1491. netif_stop_queue(dev);
  1492. netif_poll_disable(hw->dev[0]);
  1493. synchronize_irq(hw->pdev->irq);
  1494. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1495. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1496. sky2_rx_stop(sky2);
  1497. sky2_rx_clean(sky2);
  1498. dev->mtu = new_mtu;
  1499. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1500. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1501. if (dev->mtu > ETH_DATA_LEN)
  1502. mode |= GM_SMOD_JUMBO_ENA;
  1503. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1504. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1505. err = sky2_rx_start(sky2);
  1506. sky2_write32(hw, B0_IMSK, imask);
  1507. if (err)
  1508. dev_close(dev);
  1509. else {
  1510. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1511. netif_poll_enable(hw->dev[0]);
  1512. netif_wake_queue(dev);
  1513. }
  1514. return err;
  1515. }
  1516. /* For small just reuse existing skb for next receive */
  1517. static struct sk_buff *receive_copy(struct sky2_port *sky2,
  1518. const struct rx_ring_info *re,
  1519. unsigned length)
  1520. {
  1521. struct sk_buff *skb;
  1522. skb = netdev_alloc_skb(sky2->netdev, length + 2);
  1523. if (likely(skb)) {
  1524. skb_reserve(skb, 2);
  1525. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
  1526. length, PCI_DMA_FROMDEVICE);
  1527. memcpy(skb->data, re->skb->data, length);
  1528. skb->ip_summed = re->skb->ip_summed;
  1529. skb->csum = re->skb->csum;
  1530. pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
  1531. length, PCI_DMA_FROMDEVICE);
  1532. re->skb->ip_summed = CHECKSUM_NONE;
  1533. skb_put(skb, length);
  1534. }
  1535. return skb;
  1536. }
  1537. /* Adjust length of skb with fragments to match received data */
  1538. static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
  1539. unsigned int length)
  1540. {
  1541. int i, num_frags;
  1542. unsigned int size;
  1543. /* put header into skb */
  1544. size = min(length, hdr_space);
  1545. skb->tail += size;
  1546. skb->len += size;
  1547. length -= size;
  1548. num_frags = skb_shinfo(skb)->nr_frags;
  1549. for (i = 0; i < num_frags; i++) {
  1550. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1551. if (length == 0) {
  1552. /* don't need this page */
  1553. __free_page(frag->page);
  1554. --skb_shinfo(skb)->nr_frags;
  1555. } else {
  1556. size = min(length, (unsigned) PAGE_SIZE);
  1557. frag->size = size;
  1558. skb->data_len += size;
  1559. skb->truesize += size;
  1560. skb->len += size;
  1561. length -= size;
  1562. }
  1563. }
  1564. }
  1565. /* Normal packet - take skb from ring element and put in a new one */
  1566. static struct sk_buff *receive_new(struct sky2_port *sky2,
  1567. struct rx_ring_info *re,
  1568. unsigned int length)
  1569. {
  1570. struct sk_buff *skb, *nskb;
  1571. unsigned hdr_space = sky2->rx_data_size;
  1572. pr_debug(PFX "receive new length=%d\n", length);
  1573. /* Don't be tricky about reusing pages (yet) */
  1574. nskb = sky2_rx_alloc(sky2);
  1575. if (unlikely(!nskb))
  1576. return NULL;
  1577. skb = re->skb;
  1578. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  1579. prefetch(skb->data);
  1580. re->skb = nskb;
  1581. sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space);
  1582. if (skb_shinfo(skb)->nr_frags)
  1583. skb_put_frags(skb, hdr_space, length);
  1584. else
  1585. skb_put(skb, length);
  1586. return skb;
  1587. }
  1588. /*
  1589. * Receive one packet.
  1590. * For larger packets, get new buffer.
  1591. */
  1592. static struct sk_buff *sky2_receive(struct net_device *dev,
  1593. u16 length, u32 status)
  1594. {
  1595. struct sky2_port *sky2 = netdev_priv(dev);
  1596. struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
  1597. struct sk_buff *skb = NULL;
  1598. if (unlikely(netif_msg_rx_status(sky2)))
  1599. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1600. dev->name, sky2->rx_next, status, length);
  1601. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1602. prefetch(sky2->rx_ring + sky2->rx_next);
  1603. if (status & GMR_FS_ANY_ERR)
  1604. goto error;
  1605. if (!(status & GMR_FS_RX_OK))
  1606. goto resubmit;
  1607. if (length > dev->mtu + ETH_HLEN)
  1608. goto oversize;
  1609. if (length < copybreak)
  1610. skb = receive_copy(sky2, re, length);
  1611. else
  1612. skb = receive_new(sky2, re, length);
  1613. resubmit:
  1614. sky2_rx_submit(sky2, re);
  1615. return skb;
  1616. oversize:
  1617. ++sky2->net_stats.rx_over_errors;
  1618. goto resubmit;
  1619. error:
  1620. ++sky2->net_stats.rx_errors;
  1621. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1622. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1623. dev->name, status, length);
  1624. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1625. sky2->net_stats.rx_length_errors++;
  1626. if (status & GMR_FS_FRAGMENT)
  1627. sky2->net_stats.rx_frame_errors++;
  1628. if (status & GMR_FS_CRC_ERR)
  1629. sky2->net_stats.rx_crc_errors++;
  1630. if (status & GMR_FS_RX_FF_OV)
  1631. sky2->net_stats.rx_fifo_errors++;
  1632. goto resubmit;
  1633. }
  1634. /* Transmit complete */
  1635. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1636. {
  1637. struct sky2_port *sky2 = netdev_priv(dev);
  1638. if (netif_running(dev)) {
  1639. netif_tx_lock(dev);
  1640. sky2_tx_complete(sky2, last);
  1641. netif_tx_unlock(dev);
  1642. }
  1643. }
  1644. /* Process status response ring */
  1645. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1646. {
  1647. struct sky2_port *sky2;
  1648. int work_done = 0;
  1649. unsigned buf_write[2] = { 0, 0 };
  1650. u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1651. rmb();
  1652. while (hw->st_idx != hwidx) {
  1653. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1654. struct net_device *dev;
  1655. struct sk_buff *skb;
  1656. u32 status;
  1657. u16 length;
  1658. hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
  1659. BUG_ON(le->link >= 2);
  1660. dev = hw->dev[le->link];
  1661. sky2 = netdev_priv(dev);
  1662. length = le16_to_cpu(le->length);
  1663. status = le32_to_cpu(le->status);
  1664. switch (le->opcode & ~HW_OWNER) {
  1665. case OP_RXSTAT:
  1666. skb = sky2_receive(dev, length, status);
  1667. if (!skb)
  1668. break;
  1669. skb->protocol = eth_type_trans(skb, dev);
  1670. dev->last_rx = jiffies;
  1671. #ifdef SKY2_VLAN_TAG_USED
  1672. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1673. vlan_hwaccel_receive_skb(skb,
  1674. sky2->vlgrp,
  1675. be16_to_cpu(sky2->rx_tag));
  1676. } else
  1677. #endif
  1678. netif_receive_skb(skb);
  1679. /* Update receiver after 16 frames */
  1680. if (++buf_write[le->link] == RX_BUF_WRITE) {
  1681. sky2_put_idx(hw, rxqaddr[le->link],
  1682. sky2->rx_put);
  1683. buf_write[le->link] = 0;
  1684. }
  1685. /* Stop after net poll weight */
  1686. if (++work_done >= to_do)
  1687. goto exit_loop;
  1688. break;
  1689. #ifdef SKY2_VLAN_TAG_USED
  1690. case OP_RXVLAN:
  1691. sky2->rx_tag = length;
  1692. break;
  1693. case OP_RXCHKSVLAN:
  1694. sky2->rx_tag = length;
  1695. /* fall through */
  1696. #endif
  1697. case OP_RXCHKS:
  1698. skb = sky2->rx_ring[sky2->rx_next].skb;
  1699. skb->ip_summed = CHECKSUM_COMPLETE;
  1700. skb->csum = status & 0xffff;
  1701. break;
  1702. case OP_TXINDEXLE:
  1703. /* TX index reports status for both ports */
  1704. BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
  1705. sky2_tx_done(hw->dev[0], status & 0xfff);
  1706. if (hw->dev[1])
  1707. sky2_tx_done(hw->dev[1],
  1708. ((status >> 24) & 0xff)
  1709. | (u16)(length & 0xf) << 8);
  1710. break;
  1711. default:
  1712. if (net_ratelimit())
  1713. printk(KERN_WARNING PFX
  1714. "unknown status opcode 0x%x\n", le->opcode);
  1715. goto exit_loop;
  1716. }
  1717. }
  1718. /* Fully processed status ring so clear irq */
  1719. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1720. exit_loop:
  1721. if (buf_write[0]) {
  1722. sky2 = netdev_priv(hw->dev[0]);
  1723. sky2_put_idx(hw, Q_R1, sky2->rx_put);
  1724. }
  1725. if (buf_write[1]) {
  1726. sky2 = netdev_priv(hw->dev[1]);
  1727. sky2_put_idx(hw, Q_R2, sky2->rx_put);
  1728. }
  1729. return work_done;
  1730. }
  1731. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1732. {
  1733. struct net_device *dev = hw->dev[port];
  1734. if (net_ratelimit())
  1735. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1736. dev->name, status);
  1737. if (status & Y2_IS_PAR_RD1) {
  1738. if (net_ratelimit())
  1739. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1740. dev->name);
  1741. /* Clear IRQ */
  1742. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1743. }
  1744. if (status & Y2_IS_PAR_WR1) {
  1745. if (net_ratelimit())
  1746. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1747. dev->name);
  1748. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1749. }
  1750. if (status & Y2_IS_PAR_MAC1) {
  1751. if (net_ratelimit())
  1752. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1753. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1754. }
  1755. if (status & Y2_IS_PAR_RX1) {
  1756. if (net_ratelimit())
  1757. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1758. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1759. }
  1760. if (status & Y2_IS_TCP_TXA1) {
  1761. if (net_ratelimit())
  1762. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1763. dev->name);
  1764. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1765. }
  1766. }
  1767. static void sky2_hw_intr(struct sky2_hw *hw)
  1768. {
  1769. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1770. if (status & Y2_IS_TIST_OV)
  1771. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1772. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1773. u16 pci_err;
  1774. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1775. if (net_ratelimit())
  1776. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1777. pci_name(hw->pdev), pci_err);
  1778. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1779. sky2_pci_write16(hw, PCI_STATUS,
  1780. pci_err | PCI_STATUS_ERROR_BITS);
  1781. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1782. }
  1783. if (status & Y2_IS_PCI_EXP) {
  1784. /* PCI-Express uncorrectable Error occurred */
  1785. u32 pex_err;
  1786. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1787. if (net_ratelimit())
  1788. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1789. pci_name(hw->pdev), pex_err);
  1790. /* clear the interrupt */
  1791. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1792. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1793. 0xffffffffUL);
  1794. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1795. if (pex_err & PEX_FATAL_ERRORS) {
  1796. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1797. hwmsk &= ~Y2_IS_PCI_EXP;
  1798. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1799. }
  1800. }
  1801. if (status & Y2_HWE_L1_MASK)
  1802. sky2_hw_error(hw, 0, status);
  1803. status >>= 8;
  1804. if (status & Y2_HWE_L1_MASK)
  1805. sky2_hw_error(hw, 1, status);
  1806. }
  1807. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1808. {
  1809. struct net_device *dev = hw->dev[port];
  1810. struct sky2_port *sky2 = netdev_priv(dev);
  1811. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1812. if (netif_msg_intr(sky2))
  1813. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1814. dev->name, status);
  1815. if (status & GM_IS_RX_FF_OR) {
  1816. ++sky2->net_stats.rx_fifo_errors;
  1817. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1818. }
  1819. if (status & GM_IS_TX_FF_UR) {
  1820. ++sky2->net_stats.tx_fifo_errors;
  1821. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1822. }
  1823. }
  1824. /* This should never happen it is a fatal situation */
  1825. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1826. const char *rxtx, u32 mask)
  1827. {
  1828. struct net_device *dev = hw->dev[port];
  1829. struct sky2_port *sky2 = netdev_priv(dev);
  1830. u32 imask;
  1831. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1832. dev ? dev->name : "<not registered>", rxtx);
  1833. imask = sky2_read32(hw, B0_IMSK);
  1834. imask &= ~mask;
  1835. sky2_write32(hw, B0_IMSK, imask);
  1836. if (dev) {
  1837. spin_lock(&sky2->phy_lock);
  1838. sky2_link_down(sky2);
  1839. spin_unlock(&sky2->phy_lock);
  1840. }
  1841. }
  1842. /* If idle then force a fake soft NAPI poll once a second
  1843. * to work around cases where sharing an edge triggered interrupt.
  1844. */
  1845. static inline void sky2_idle_start(struct sky2_hw *hw)
  1846. {
  1847. if (idle_timeout > 0)
  1848. mod_timer(&hw->idle_timer,
  1849. jiffies + msecs_to_jiffies(idle_timeout));
  1850. }
  1851. static void sky2_idle(unsigned long arg)
  1852. {
  1853. struct sky2_hw *hw = (struct sky2_hw *) arg;
  1854. struct net_device *dev = hw->dev[0];
  1855. if (__netif_rx_schedule_prep(dev))
  1856. __netif_rx_schedule(dev);
  1857. mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
  1858. }
  1859. static int sky2_poll(struct net_device *dev0, int *budget)
  1860. {
  1861. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1862. int work_limit = min(dev0->quota, *budget);
  1863. int work_done = 0;
  1864. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1865. if (status & Y2_IS_HW_ERR)
  1866. sky2_hw_intr(hw);
  1867. if (status & Y2_IS_IRQ_PHY1)
  1868. sky2_phy_intr(hw, 0);
  1869. if (status & Y2_IS_IRQ_PHY2)
  1870. sky2_phy_intr(hw, 1);
  1871. if (status & Y2_IS_IRQ_MAC1)
  1872. sky2_mac_intr(hw, 0);
  1873. if (status & Y2_IS_IRQ_MAC2)
  1874. sky2_mac_intr(hw, 1);
  1875. if (status & Y2_IS_CHK_RX1)
  1876. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1877. if (status & Y2_IS_CHK_RX2)
  1878. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1879. if (status & Y2_IS_CHK_TXA1)
  1880. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1881. if (status & Y2_IS_CHK_TXA2)
  1882. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1883. work_done = sky2_status_intr(hw, work_limit);
  1884. if (work_done < work_limit) {
  1885. netif_rx_complete(dev0);
  1886. sky2_read32(hw, B0_Y2_SP_LISR);
  1887. return 0;
  1888. } else {
  1889. *budget -= work_done;
  1890. dev0->quota -= work_done;
  1891. return 1;
  1892. }
  1893. }
  1894. static irqreturn_t sky2_intr(int irq, void *dev_id)
  1895. {
  1896. struct sky2_hw *hw = dev_id;
  1897. struct net_device *dev0 = hw->dev[0];
  1898. u32 status;
  1899. /* Reading this mask interrupts as side effect */
  1900. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1901. if (status == 0 || status == ~0)
  1902. return IRQ_NONE;
  1903. prefetch(&hw->st_le[hw->st_idx]);
  1904. if (likely(__netif_rx_schedule_prep(dev0)))
  1905. __netif_rx_schedule(dev0);
  1906. return IRQ_HANDLED;
  1907. }
  1908. #ifdef CONFIG_NET_POLL_CONTROLLER
  1909. static void sky2_netpoll(struct net_device *dev)
  1910. {
  1911. struct sky2_port *sky2 = netdev_priv(dev);
  1912. struct net_device *dev0 = sky2->hw->dev[0];
  1913. if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
  1914. __netif_rx_schedule(dev0);
  1915. }
  1916. #endif
  1917. /* Chip internal frequency for clock calculations */
  1918. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1919. {
  1920. switch (hw->chip_id) {
  1921. case CHIP_ID_YUKON_EC:
  1922. case CHIP_ID_YUKON_EC_U:
  1923. return 125; /* 125 Mhz */
  1924. case CHIP_ID_YUKON_FE:
  1925. return 100; /* 100 Mhz */
  1926. default: /* YUKON_XL */
  1927. return 156; /* 156 Mhz */
  1928. }
  1929. }
  1930. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1931. {
  1932. return sky2_mhz(hw) * us;
  1933. }
  1934. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1935. {
  1936. return clk / sky2_mhz(hw);
  1937. }
  1938. static int sky2_reset(struct sky2_hw *hw)
  1939. {
  1940. u16 status;
  1941. u8 t8;
  1942. int i;
  1943. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1944. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1945. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1946. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1947. pci_name(hw->pdev), hw->chip_id);
  1948. return -EOPNOTSUPP;
  1949. }
  1950. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1951. /* This rev is really old, and requires untested workarounds */
  1952. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1953. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1954. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1955. hw->chip_id, hw->chip_rev);
  1956. return -EOPNOTSUPP;
  1957. }
  1958. /* disable ASF */
  1959. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1960. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1961. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1962. }
  1963. /* do a SW reset */
  1964. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1965. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1966. /* clear PCI errors, if any */
  1967. status = sky2_pci_read16(hw, PCI_STATUS);
  1968. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1969. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1970. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1971. /* clear any PEX errors */
  1972. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  1973. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  1974. hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1975. hw->ports = 1;
  1976. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1977. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1978. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1979. ++hw->ports;
  1980. }
  1981. sky2_set_power_state(hw, PCI_D0);
  1982. for (i = 0; i < hw->ports; i++) {
  1983. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1984. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1985. }
  1986. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1987. /* Clear I2C IRQ noise */
  1988. sky2_write32(hw, B2_I2C_IRQ, 1);
  1989. /* turn off hardware timer (unused) */
  1990. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1991. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1992. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1993. /* Turn off descriptor polling */
  1994. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1995. /* Turn off receive timestamp */
  1996. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  1997. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1998. /* enable the Tx Arbiters */
  1999. for (i = 0; i < hw->ports; i++)
  2000. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2001. /* Initialize ram interface */
  2002. for (i = 0; i < hw->ports; i++) {
  2003. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  2004. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  2005. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  2006. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  2007. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  2008. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  2009. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  2010. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  2011. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  2012. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  2013. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  2014. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  2015. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  2016. }
  2017. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  2018. for (i = 0; i < hw->ports; i++)
  2019. sky2_gmac_reset(hw, i);
  2020. memset(hw->st_le, 0, STATUS_LE_BYTES);
  2021. hw->st_idx = 0;
  2022. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  2023. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  2024. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  2025. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  2026. /* Set the list last index */
  2027. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  2028. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  2029. sky2_write8(hw, STAT_FIFO_WM, 16);
  2030. /* set Status-FIFO ISR watermark */
  2031. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  2032. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  2033. else
  2034. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  2035. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  2036. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  2037. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  2038. /* enable status unit */
  2039. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  2040. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2041. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2042. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2043. return 0;
  2044. }
  2045. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  2046. {
  2047. if (sky2_is_copper(hw)) {
  2048. u32 modes = SUPPORTED_10baseT_Half
  2049. | SUPPORTED_10baseT_Full
  2050. | SUPPORTED_100baseT_Half
  2051. | SUPPORTED_100baseT_Full
  2052. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2053. if (hw->chip_id != CHIP_ID_YUKON_FE)
  2054. modes |= SUPPORTED_1000baseT_Half
  2055. | SUPPORTED_1000baseT_Full;
  2056. return modes;
  2057. } else
  2058. return SUPPORTED_1000baseT_Half
  2059. | SUPPORTED_1000baseT_Full
  2060. | SUPPORTED_Autoneg
  2061. | SUPPORTED_FIBRE;
  2062. }
  2063. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2064. {
  2065. struct sky2_port *sky2 = netdev_priv(dev);
  2066. struct sky2_hw *hw = sky2->hw;
  2067. ecmd->transceiver = XCVR_INTERNAL;
  2068. ecmd->supported = sky2_supported_modes(hw);
  2069. ecmd->phy_address = PHY_ADDR_MARV;
  2070. if (sky2_is_copper(hw)) {
  2071. ecmd->supported = SUPPORTED_10baseT_Half
  2072. | SUPPORTED_10baseT_Full
  2073. | SUPPORTED_100baseT_Half
  2074. | SUPPORTED_100baseT_Full
  2075. | SUPPORTED_1000baseT_Half
  2076. | SUPPORTED_1000baseT_Full
  2077. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2078. ecmd->port = PORT_TP;
  2079. ecmd->speed = sky2->speed;
  2080. } else {
  2081. ecmd->speed = SPEED_1000;
  2082. ecmd->port = PORT_FIBRE;
  2083. }
  2084. ecmd->advertising = sky2->advertising;
  2085. ecmd->autoneg = sky2->autoneg;
  2086. ecmd->duplex = sky2->duplex;
  2087. return 0;
  2088. }
  2089. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2090. {
  2091. struct sky2_port *sky2 = netdev_priv(dev);
  2092. const struct sky2_hw *hw = sky2->hw;
  2093. u32 supported = sky2_supported_modes(hw);
  2094. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2095. ecmd->advertising = supported;
  2096. sky2->duplex = -1;
  2097. sky2->speed = -1;
  2098. } else {
  2099. u32 setting;
  2100. switch (ecmd->speed) {
  2101. case SPEED_1000:
  2102. if (ecmd->duplex == DUPLEX_FULL)
  2103. setting = SUPPORTED_1000baseT_Full;
  2104. else if (ecmd->duplex == DUPLEX_HALF)
  2105. setting = SUPPORTED_1000baseT_Half;
  2106. else
  2107. return -EINVAL;
  2108. break;
  2109. case SPEED_100:
  2110. if (ecmd->duplex == DUPLEX_FULL)
  2111. setting = SUPPORTED_100baseT_Full;
  2112. else if (ecmd->duplex == DUPLEX_HALF)
  2113. setting = SUPPORTED_100baseT_Half;
  2114. else
  2115. return -EINVAL;
  2116. break;
  2117. case SPEED_10:
  2118. if (ecmd->duplex == DUPLEX_FULL)
  2119. setting = SUPPORTED_10baseT_Full;
  2120. else if (ecmd->duplex == DUPLEX_HALF)
  2121. setting = SUPPORTED_10baseT_Half;
  2122. else
  2123. return -EINVAL;
  2124. break;
  2125. default:
  2126. return -EINVAL;
  2127. }
  2128. if ((setting & supported) == 0)
  2129. return -EINVAL;
  2130. sky2->speed = ecmd->speed;
  2131. sky2->duplex = ecmd->duplex;
  2132. }
  2133. sky2->autoneg = ecmd->autoneg;
  2134. sky2->advertising = ecmd->advertising;
  2135. if (netif_running(dev))
  2136. sky2_phy_reinit(sky2);
  2137. return 0;
  2138. }
  2139. static void sky2_get_drvinfo(struct net_device *dev,
  2140. struct ethtool_drvinfo *info)
  2141. {
  2142. struct sky2_port *sky2 = netdev_priv(dev);
  2143. strcpy(info->driver, DRV_NAME);
  2144. strcpy(info->version, DRV_VERSION);
  2145. strcpy(info->fw_version, "N/A");
  2146. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2147. }
  2148. static const struct sky2_stat {
  2149. char name[ETH_GSTRING_LEN];
  2150. u16 offset;
  2151. } sky2_stats[] = {
  2152. { "tx_bytes", GM_TXO_OK_HI },
  2153. { "rx_bytes", GM_RXO_OK_HI },
  2154. { "tx_broadcast", GM_TXF_BC_OK },
  2155. { "rx_broadcast", GM_RXF_BC_OK },
  2156. { "tx_multicast", GM_TXF_MC_OK },
  2157. { "rx_multicast", GM_RXF_MC_OK },
  2158. { "tx_unicast", GM_TXF_UC_OK },
  2159. { "rx_unicast", GM_RXF_UC_OK },
  2160. { "tx_mac_pause", GM_TXF_MPAUSE },
  2161. { "rx_mac_pause", GM_RXF_MPAUSE },
  2162. { "collisions", GM_TXF_COL },
  2163. { "late_collision",GM_TXF_LAT_COL },
  2164. { "aborted", GM_TXF_ABO_COL },
  2165. { "single_collisions", GM_TXF_SNG_COL },
  2166. { "multi_collisions", GM_TXF_MUL_COL },
  2167. { "rx_short", GM_RXF_SHT },
  2168. { "rx_runt", GM_RXE_FRAG },
  2169. { "rx_64_byte_packets", GM_RXF_64B },
  2170. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2171. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2172. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2173. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2174. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2175. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2176. { "rx_too_long", GM_RXF_LNG_ERR },
  2177. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2178. { "rx_jabber", GM_RXF_JAB_PKT },
  2179. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2180. { "tx_64_byte_packets", GM_TXF_64B },
  2181. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2182. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2183. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2184. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2185. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2186. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2187. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2188. };
  2189. static u32 sky2_get_rx_csum(struct net_device *dev)
  2190. {
  2191. struct sky2_port *sky2 = netdev_priv(dev);
  2192. return sky2->rx_csum;
  2193. }
  2194. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2195. {
  2196. struct sky2_port *sky2 = netdev_priv(dev);
  2197. sky2->rx_csum = data;
  2198. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2199. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2200. return 0;
  2201. }
  2202. static u32 sky2_get_msglevel(struct net_device *netdev)
  2203. {
  2204. struct sky2_port *sky2 = netdev_priv(netdev);
  2205. return sky2->msg_enable;
  2206. }
  2207. static int sky2_nway_reset(struct net_device *dev)
  2208. {
  2209. struct sky2_port *sky2 = netdev_priv(dev);
  2210. if (!netif_running(dev) || sky2->autoneg != AUTONEG_ENABLE)
  2211. return -EINVAL;
  2212. sky2_phy_reinit(sky2);
  2213. return 0;
  2214. }
  2215. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2216. {
  2217. struct sky2_hw *hw = sky2->hw;
  2218. unsigned port = sky2->port;
  2219. int i;
  2220. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2221. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2222. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2223. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2224. for (i = 2; i < count; i++)
  2225. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2226. }
  2227. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2228. {
  2229. struct sky2_port *sky2 = netdev_priv(netdev);
  2230. sky2->msg_enable = value;
  2231. }
  2232. static int sky2_get_stats_count(struct net_device *dev)
  2233. {
  2234. return ARRAY_SIZE(sky2_stats);
  2235. }
  2236. static void sky2_get_ethtool_stats(struct net_device *dev,
  2237. struct ethtool_stats *stats, u64 * data)
  2238. {
  2239. struct sky2_port *sky2 = netdev_priv(dev);
  2240. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2241. }
  2242. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2243. {
  2244. int i;
  2245. switch (stringset) {
  2246. case ETH_SS_STATS:
  2247. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2248. memcpy(data + i * ETH_GSTRING_LEN,
  2249. sky2_stats[i].name, ETH_GSTRING_LEN);
  2250. break;
  2251. }
  2252. }
  2253. /* Use hardware MIB variables for critical path statistics and
  2254. * transmit feedback not reported at interrupt.
  2255. * Other errors are accounted for in interrupt handler.
  2256. */
  2257. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2258. {
  2259. struct sky2_port *sky2 = netdev_priv(dev);
  2260. u64 data[13];
  2261. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2262. sky2->net_stats.tx_bytes = data[0];
  2263. sky2->net_stats.rx_bytes = data[1];
  2264. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2265. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2266. sky2->net_stats.multicast = data[3] + data[5];
  2267. sky2->net_stats.collisions = data[10];
  2268. sky2->net_stats.tx_aborted_errors = data[12];
  2269. return &sky2->net_stats;
  2270. }
  2271. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2272. {
  2273. struct sky2_port *sky2 = netdev_priv(dev);
  2274. struct sky2_hw *hw = sky2->hw;
  2275. unsigned port = sky2->port;
  2276. const struct sockaddr *addr = p;
  2277. if (!is_valid_ether_addr(addr->sa_data))
  2278. return -EADDRNOTAVAIL;
  2279. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2280. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2281. dev->dev_addr, ETH_ALEN);
  2282. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2283. dev->dev_addr, ETH_ALEN);
  2284. /* virtual address for data */
  2285. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2286. /* physical address: used for pause frames */
  2287. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2288. return 0;
  2289. }
  2290. static void sky2_set_multicast(struct net_device *dev)
  2291. {
  2292. struct sky2_port *sky2 = netdev_priv(dev);
  2293. struct sky2_hw *hw = sky2->hw;
  2294. unsigned port = sky2->port;
  2295. struct dev_mc_list *list = dev->mc_list;
  2296. u16 reg;
  2297. u8 filter[8];
  2298. memset(filter, 0, sizeof(filter));
  2299. reg = gma_read16(hw, port, GM_RX_CTRL);
  2300. reg |= GM_RXCR_UCF_ENA;
  2301. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2302. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2303. else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */
  2304. memset(filter, 0xff, sizeof(filter));
  2305. else if (dev->mc_count == 0) /* no multicast */
  2306. reg &= ~GM_RXCR_MCF_ENA;
  2307. else {
  2308. int i;
  2309. reg |= GM_RXCR_MCF_ENA;
  2310. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2311. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2312. filter[bit / 8] |= 1 << (bit % 8);
  2313. }
  2314. }
  2315. gma_write16(hw, port, GM_MC_ADDR_H1,
  2316. (u16) filter[0] | ((u16) filter[1] << 8));
  2317. gma_write16(hw, port, GM_MC_ADDR_H2,
  2318. (u16) filter[2] | ((u16) filter[3] << 8));
  2319. gma_write16(hw, port, GM_MC_ADDR_H3,
  2320. (u16) filter[4] | ((u16) filter[5] << 8));
  2321. gma_write16(hw, port, GM_MC_ADDR_H4,
  2322. (u16) filter[6] | ((u16) filter[7] << 8));
  2323. gma_write16(hw, port, GM_RX_CTRL, reg);
  2324. }
  2325. /* Can have one global because blinking is controlled by
  2326. * ethtool and that is always under RTNL mutex
  2327. */
  2328. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2329. {
  2330. u16 pg;
  2331. switch (hw->chip_id) {
  2332. case CHIP_ID_YUKON_XL:
  2333. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2334. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2335. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2336. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2337. PHY_M_LEDC_INIT_CTRL(7) |
  2338. PHY_M_LEDC_STA1_CTRL(7) |
  2339. PHY_M_LEDC_STA0_CTRL(7))
  2340. : 0);
  2341. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2342. break;
  2343. default:
  2344. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2345. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2346. on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
  2347. PHY_M_LED_MO_10(MO_LED_ON) |
  2348. PHY_M_LED_MO_100(MO_LED_ON) |
  2349. PHY_M_LED_MO_1000(MO_LED_ON) |
  2350. PHY_M_LED_MO_RX(MO_LED_ON)
  2351. : PHY_M_LED_MO_DUP(MO_LED_OFF) |
  2352. PHY_M_LED_MO_10(MO_LED_OFF) |
  2353. PHY_M_LED_MO_100(MO_LED_OFF) |
  2354. PHY_M_LED_MO_1000(MO_LED_OFF) |
  2355. PHY_M_LED_MO_RX(MO_LED_OFF));
  2356. }
  2357. }
  2358. /* blink LED's for finding board */
  2359. static int sky2_phys_id(struct net_device *dev, u32 data)
  2360. {
  2361. struct sky2_port *sky2 = netdev_priv(dev);
  2362. struct sky2_hw *hw = sky2->hw;
  2363. unsigned port = sky2->port;
  2364. u16 ledctrl, ledover = 0;
  2365. long ms;
  2366. int interrupted;
  2367. int onoff = 1;
  2368. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2369. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2370. else
  2371. ms = data * 1000;
  2372. /* save initial values */
  2373. spin_lock_bh(&sky2->phy_lock);
  2374. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2375. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2376. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2377. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2378. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2379. } else {
  2380. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2381. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2382. }
  2383. interrupted = 0;
  2384. while (!interrupted && ms > 0) {
  2385. sky2_led(hw, port, onoff);
  2386. onoff = !onoff;
  2387. spin_unlock_bh(&sky2->phy_lock);
  2388. interrupted = msleep_interruptible(250);
  2389. spin_lock_bh(&sky2->phy_lock);
  2390. ms -= 250;
  2391. }
  2392. /* resume regularly scheduled programming */
  2393. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2394. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2395. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2396. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2397. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2398. } else {
  2399. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2400. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2401. }
  2402. spin_unlock_bh(&sky2->phy_lock);
  2403. return 0;
  2404. }
  2405. static void sky2_get_pauseparam(struct net_device *dev,
  2406. struct ethtool_pauseparam *ecmd)
  2407. {
  2408. struct sky2_port *sky2 = netdev_priv(dev);
  2409. switch (sky2->flow_mode) {
  2410. case FC_NONE:
  2411. ecmd->tx_pause = ecmd->rx_pause = 0;
  2412. break;
  2413. case FC_TX:
  2414. ecmd->tx_pause = 1, ecmd->rx_pause = 0;
  2415. break;
  2416. case FC_RX:
  2417. ecmd->tx_pause = 0, ecmd->rx_pause = 1;
  2418. break;
  2419. case FC_BOTH:
  2420. ecmd->tx_pause = ecmd->rx_pause = 1;
  2421. }
  2422. ecmd->autoneg = sky2->autoneg;
  2423. }
  2424. static int sky2_set_pauseparam(struct net_device *dev,
  2425. struct ethtool_pauseparam *ecmd)
  2426. {
  2427. struct sky2_port *sky2 = netdev_priv(dev);
  2428. sky2->autoneg = ecmd->autoneg;
  2429. sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
  2430. if (netif_running(dev))
  2431. sky2_phy_reinit(sky2);
  2432. return 0;
  2433. }
  2434. static int sky2_get_coalesce(struct net_device *dev,
  2435. struct ethtool_coalesce *ecmd)
  2436. {
  2437. struct sky2_port *sky2 = netdev_priv(dev);
  2438. struct sky2_hw *hw = sky2->hw;
  2439. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2440. ecmd->tx_coalesce_usecs = 0;
  2441. else {
  2442. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2443. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2444. }
  2445. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2446. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2447. ecmd->rx_coalesce_usecs = 0;
  2448. else {
  2449. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2450. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2451. }
  2452. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2453. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2454. ecmd->rx_coalesce_usecs_irq = 0;
  2455. else {
  2456. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2457. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2458. }
  2459. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2460. return 0;
  2461. }
  2462. /* Note: this affect both ports */
  2463. static int sky2_set_coalesce(struct net_device *dev,
  2464. struct ethtool_coalesce *ecmd)
  2465. {
  2466. struct sky2_port *sky2 = netdev_priv(dev);
  2467. struct sky2_hw *hw = sky2->hw;
  2468. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2469. if (ecmd->tx_coalesce_usecs > tmax ||
  2470. ecmd->rx_coalesce_usecs > tmax ||
  2471. ecmd->rx_coalesce_usecs_irq > tmax)
  2472. return -EINVAL;
  2473. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2474. return -EINVAL;
  2475. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2476. return -EINVAL;
  2477. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2478. return -EINVAL;
  2479. if (ecmd->tx_coalesce_usecs == 0)
  2480. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2481. else {
  2482. sky2_write32(hw, STAT_TX_TIMER_INI,
  2483. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2484. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2485. }
  2486. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2487. if (ecmd->rx_coalesce_usecs == 0)
  2488. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2489. else {
  2490. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2491. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2492. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2493. }
  2494. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2495. if (ecmd->rx_coalesce_usecs_irq == 0)
  2496. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2497. else {
  2498. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2499. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2500. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2501. }
  2502. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2503. return 0;
  2504. }
  2505. static void sky2_get_ringparam(struct net_device *dev,
  2506. struct ethtool_ringparam *ering)
  2507. {
  2508. struct sky2_port *sky2 = netdev_priv(dev);
  2509. ering->rx_max_pending = RX_MAX_PENDING;
  2510. ering->rx_mini_max_pending = 0;
  2511. ering->rx_jumbo_max_pending = 0;
  2512. ering->tx_max_pending = TX_RING_SIZE - 1;
  2513. ering->rx_pending = sky2->rx_pending;
  2514. ering->rx_mini_pending = 0;
  2515. ering->rx_jumbo_pending = 0;
  2516. ering->tx_pending = sky2->tx_pending;
  2517. }
  2518. static int sky2_set_ringparam(struct net_device *dev,
  2519. struct ethtool_ringparam *ering)
  2520. {
  2521. struct sky2_port *sky2 = netdev_priv(dev);
  2522. int err = 0;
  2523. if (ering->rx_pending > RX_MAX_PENDING ||
  2524. ering->rx_pending < 8 ||
  2525. ering->tx_pending < MAX_SKB_TX_LE ||
  2526. ering->tx_pending > TX_RING_SIZE - 1)
  2527. return -EINVAL;
  2528. if (netif_running(dev))
  2529. sky2_down(dev);
  2530. sky2->rx_pending = ering->rx_pending;
  2531. sky2->tx_pending = ering->tx_pending;
  2532. if (netif_running(dev)) {
  2533. err = sky2_up(dev);
  2534. if (err)
  2535. dev_close(dev);
  2536. else
  2537. sky2_set_multicast(dev);
  2538. }
  2539. return err;
  2540. }
  2541. static int sky2_get_regs_len(struct net_device *dev)
  2542. {
  2543. return 0x4000;
  2544. }
  2545. /*
  2546. * Returns copy of control register region
  2547. * Note: access to the RAM address register set will cause timeouts.
  2548. */
  2549. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2550. void *p)
  2551. {
  2552. const struct sky2_port *sky2 = netdev_priv(dev);
  2553. const void __iomem *io = sky2->hw->regs;
  2554. BUG_ON(regs->len < B3_RI_WTO_R1);
  2555. regs->version = 1;
  2556. memset(p, 0, regs->len);
  2557. memcpy_fromio(p, io, B3_RAM_ADDR);
  2558. memcpy_fromio(p + B3_RI_WTO_R1,
  2559. io + B3_RI_WTO_R1,
  2560. regs->len - B3_RI_WTO_R1);
  2561. }
  2562. static const struct ethtool_ops sky2_ethtool_ops = {
  2563. .get_settings = sky2_get_settings,
  2564. .set_settings = sky2_set_settings,
  2565. .get_drvinfo = sky2_get_drvinfo,
  2566. .get_msglevel = sky2_get_msglevel,
  2567. .set_msglevel = sky2_set_msglevel,
  2568. .nway_reset = sky2_nway_reset,
  2569. .get_regs_len = sky2_get_regs_len,
  2570. .get_regs = sky2_get_regs,
  2571. .get_link = ethtool_op_get_link,
  2572. .get_sg = ethtool_op_get_sg,
  2573. .set_sg = ethtool_op_set_sg,
  2574. .get_tx_csum = ethtool_op_get_tx_csum,
  2575. .set_tx_csum = ethtool_op_set_tx_csum,
  2576. .get_tso = ethtool_op_get_tso,
  2577. .set_tso = ethtool_op_set_tso,
  2578. .get_rx_csum = sky2_get_rx_csum,
  2579. .set_rx_csum = sky2_set_rx_csum,
  2580. .get_strings = sky2_get_strings,
  2581. .get_coalesce = sky2_get_coalesce,
  2582. .set_coalesce = sky2_set_coalesce,
  2583. .get_ringparam = sky2_get_ringparam,
  2584. .set_ringparam = sky2_set_ringparam,
  2585. .get_pauseparam = sky2_get_pauseparam,
  2586. .set_pauseparam = sky2_set_pauseparam,
  2587. .phys_id = sky2_phys_id,
  2588. .get_stats_count = sky2_get_stats_count,
  2589. .get_ethtool_stats = sky2_get_ethtool_stats,
  2590. .get_perm_addr = ethtool_op_get_perm_addr,
  2591. };
  2592. /* Initialize network device */
  2593. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2594. unsigned port, int highmem)
  2595. {
  2596. struct sky2_port *sky2;
  2597. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2598. if (!dev) {
  2599. printk(KERN_ERR "sky2 etherdev alloc failed");
  2600. return NULL;
  2601. }
  2602. SET_MODULE_OWNER(dev);
  2603. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2604. dev->irq = hw->pdev->irq;
  2605. dev->open = sky2_up;
  2606. dev->stop = sky2_down;
  2607. dev->do_ioctl = sky2_ioctl;
  2608. dev->hard_start_xmit = sky2_xmit_frame;
  2609. dev->get_stats = sky2_get_stats;
  2610. dev->set_multicast_list = sky2_set_multicast;
  2611. dev->set_mac_address = sky2_set_mac_address;
  2612. dev->change_mtu = sky2_change_mtu;
  2613. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2614. dev->tx_timeout = sky2_tx_timeout;
  2615. dev->watchdog_timeo = TX_WATCHDOG;
  2616. if (port == 0)
  2617. dev->poll = sky2_poll;
  2618. dev->weight = NAPI_WEIGHT;
  2619. #ifdef CONFIG_NET_POLL_CONTROLLER
  2620. dev->poll_controller = sky2_netpoll;
  2621. #endif
  2622. sky2 = netdev_priv(dev);
  2623. sky2->netdev = dev;
  2624. sky2->hw = hw;
  2625. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2626. /* Auto speed and flow control */
  2627. sky2->autoneg = AUTONEG_ENABLE;
  2628. sky2->flow_mode = FC_BOTH;
  2629. sky2->duplex = -1;
  2630. sky2->speed = -1;
  2631. sky2->advertising = sky2_supported_modes(hw);
  2632. sky2->rx_csum = 1;
  2633. spin_lock_init(&sky2->phy_lock);
  2634. sky2->tx_pending = TX_DEF_PENDING;
  2635. sky2->rx_pending = RX_DEF_PENDING;
  2636. hw->dev[port] = dev;
  2637. sky2->port = port;
  2638. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2639. dev->features |= NETIF_F_TSO;
  2640. if (highmem)
  2641. dev->features |= NETIF_F_HIGHDMA;
  2642. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2643. #ifdef SKY2_VLAN_TAG_USED
  2644. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2645. dev->vlan_rx_register = sky2_vlan_rx_register;
  2646. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2647. #endif
  2648. /* read the mac address */
  2649. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2650. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2651. /* device is off until link detection */
  2652. netif_carrier_off(dev);
  2653. netif_stop_queue(dev);
  2654. return dev;
  2655. }
  2656. static void __devinit sky2_show_addr(struct net_device *dev)
  2657. {
  2658. const struct sky2_port *sky2 = netdev_priv(dev);
  2659. if (netif_msg_probe(sky2))
  2660. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2661. dev->name,
  2662. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2663. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2664. }
  2665. /* Handle software interrupt used during MSI test */
  2666. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id)
  2667. {
  2668. struct sky2_hw *hw = dev_id;
  2669. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2670. if (status == 0)
  2671. return IRQ_NONE;
  2672. if (status & Y2_IS_IRQ_SW) {
  2673. hw->msi_detected = 1;
  2674. wake_up(&hw->msi_wait);
  2675. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2676. }
  2677. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2678. return IRQ_HANDLED;
  2679. }
  2680. /* Test interrupt path by forcing a a software IRQ */
  2681. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2682. {
  2683. struct pci_dev *pdev = hw->pdev;
  2684. int err;
  2685. init_waitqueue_head (&hw->msi_wait);
  2686. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2687. err = request_irq(pdev->irq, sky2_test_intr, IRQF_SHARED, DRV_NAME, hw);
  2688. if (err) {
  2689. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2690. pci_name(pdev), pdev->irq);
  2691. return err;
  2692. }
  2693. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2694. sky2_read8(hw, B0_CTST);
  2695. wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
  2696. if (!hw->msi_detected) {
  2697. /* MSI test failed, go back to INTx mode */
  2698. printk(KERN_INFO PFX "%s: No interrupt generated using MSI, "
  2699. "switching to INTx mode.\n",
  2700. pci_name(pdev));
  2701. err = -EOPNOTSUPP;
  2702. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2703. }
  2704. sky2_write32(hw, B0_IMSK, 0);
  2705. sky2_read32(hw, B0_IMSK);
  2706. free_irq(pdev->irq, hw);
  2707. return err;
  2708. }
  2709. static int __devinit sky2_probe(struct pci_dev *pdev,
  2710. const struct pci_device_id *ent)
  2711. {
  2712. struct net_device *dev, *dev1 = NULL;
  2713. struct sky2_hw *hw;
  2714. int err, pm_cap, using_dac = 0;
  2715. err = pci_enable_device(pdev);
  2716. if (err) {
  2717. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2718. pci_name(pdev));
  2719. goto err_out;
  2720. }
  2721. err = pci_request_regions(pdev, DRV_NAME);
  2722. if (err) {
  2723. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2724. pci_name(pdev));
  2725. goto err_out;
  2726. }
  2727. pci_set_master(pdev);
  2728. /* Find power-management capability. */
  2729. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2730. if (pm_cap == 0) {
  2731. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2732. "aborting.\n");
  2733. err = -EIO;
  2734. goto err_out_free_regions;
  2735. }
  2736. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2737. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2738. using_dac = 1;
  2739. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2740. if (err < 0) {
  2741. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2742. "for consistent allocations\n", pci_name(pdev));
  2743. goto err_out_free_regions;
  2744. }
  2745. } else {
  2746. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2747. if (err) {
  2748. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2749. pci_name(pdev));
  2750. goto err_out_free_regions;
  2751. }
  2752. }
  2753. err = -ENOMEM;
  2754. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2755. if (!hw) {
  2756. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2757. pci_name(pdev));
  2758. goto err_out_free_regions;
  2759. }
  2760. hw->pdev = pdev;
  2761. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2762. if (!hw->regs) {
  2763. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2764. pci_name(pdev));
  2765. goto err_out_free_hw;
  2766. }
  2767. hw->pm_cap = pm_cap;
  2768. #ifdef __BIG_ENDIAN
  2769. /* The sk98lin vendor driver uses hardware byte swapping but
  2770. * this driver uses software swapping.
  2771. */
  2772. {
  2773. u32 reg;
  2774. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2775. reg &= ~PCI_REV_DESC;
  2776. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2777. }
  2778. #endif
  2779. /* ring for status responses */
  2780. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2781. &hw->st_dma);
  2782. if (!hw->st_le)
  2783. goto err_out_iounmap;
  2784. err = sky2_reset(hw);
  2785. if (err)
  2786. goto err_out_iounmap;
  2787. printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
  2788. DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
  2789. pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2790. hw->chip_id, hw->chip_rev);
  2791. dev = sky2_init_netdev(hw, 0, using_dac);
  2792. if (!dev)
  2793. goto err_out_free_pci;
  2794. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2795. err = sky2_test_msi(hw);
  2796. if (err == -EOPNOTSUPP)
  2797. pci_disable_msi(pdev);
  2798. else if (err)
  2799. goto err_out_free_netdev;
  2800. }
  2801. err = register_netdev(dev);
  2802. if (err) {
  2803. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2804. pci_name(pdev));
  2805. goto err_out_free_netdev;
  2806. }
  2807. err = request_irq(pdev->irq, sky2_intr, IRQF_SHARED, dev->name, hw);
  2808. if (err) {
  2809. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2810. pci_name(pdev), pdev->irq);
  2811. goto err_out_unregister;
  2812. }
  2813. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2814. sky2_show_addr(dev);
  2815. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2816. if (register_netdev(dev1) == 0)
  2817. sky2_show_addr(dev1);
  2818. else {
  2819. /* Failure to register second port need not be fatal */
  2820. printk(KERN_WARNING PFX
  2821. "register of second port failed\n");
  2822. hw->dev[1] = NULL;
  2823. free_netdev(dev1);
  2824. }
  2825. }
  2826. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
  2827. sky2_idle_start(hw);
  2828. pci_set_drvdata(pdev, hw);
  2829. return 0;
  2830. err_out_unregister:
  2831. pci_disable_msi(pdev);
  2832. unregister_netdev(dev);
  2833. err_out_free_netdev:
  2834. free_netdev(dev);
  2835. err_out_free_pci:
  2836. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2837. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2838. err_out_iounmap:
  2839. iounmap(hw->regs);
  2840. err_out_free_hw:
  2841. kfree(hw);
  2842. err_out_free_regions:
  2843. pci_release_regions(pdev);
  2844. pci_disable_device(pdev);
  2845. err_out:
  2846. return err;
  2847. }
  2848. static void __devexit sky2_remove(struct pci_dev *pdev)
  2849. {
  2850. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2851. struct net_device *dev0, *dev1;
  2852. if (!hw)
  2853. return;
  2854. del_timer_sync(&hw->idle_timer);
  2855. sky2_write32(hw, B0_IMSK, 0);
  2856. synchronize_irq(hw->pdev->irq);
  2857. dev0 = hw->dev[0];
  2858. dev1 = hw->dev[1];
  2859. if (dev1)
  2860. unregister_netdev(dev1);
  2861. unregister_netdev(dev0);
  2862. sky2_set_power_state(hw, PCI_D3hot);
  2863. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2864. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2865. sky2_read8(hw, B0_CTST);
  2866. free_irq(pdev->irq, hw);
  2867. pci_disable_msi(pdev);
  2868. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2869. pci_release_regions(pdev);
  2870. pci_disable_device(pdev);
  2871. if (dev1)
  2872. free_netdev(dev1);
  2873. free_netdev(dev0);
  2874. iounmap(hw->regs);
  2875. kfree(hw);
  2876. pci_set_drvdata(pdev, NULL);
  2877. }
  2878. #ifdef CONFIG_PM
  2879. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2880. {
  2881. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2882. int i;
  2883. pci_power_t pstate = pci_choose_state(pdev, state);
  2884. if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
  2885. return -EINVAL;
  2886. del_timer_sync(&hw->idle_timer);
  2887. netif_poll_disable(hw->dev[0]);
  2888. for (i = 0; i < hw->ports; i++) {
  2889. struct net_device *dev = hw->dev[i];
  2890. if (netif_running(dev)) {
  2891. sky2_down(dev);
  2892. netif_device_detach(dev);
  2893. }
  2894. }
  2895. sky2_write32(hw, B0_IMSK, 0);
  2896. pci_save_state(pdev);
  2897. sky2_set_power_state(hw, pstate);
  2898. return 0;
  2899. }
  2900. static int sky2_resume(struct pci_dev *pdev)
  2901. {
  2902. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2903. int i, err;
  2904. pci_restore_state(pdev);
  2905. pci_enable_wake(pdev, PCI_D0, 0);
  2906. sky2_set_power_state(hw, PCI_D0);
  2907. err = sky2_reset(hw);
  2908. if (err)
  2909. goto out;
  2910. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2911. for (i = 0; i < hw->ports; i++) {
  2912. struct net_device *dev = hw->dev[i];
  2913. if (netif_running(dev)) {
  2914. netif_device_attach(dev);
  2915. err = sky2_up(dev);
  2916. if (err) {
  2917. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2918. dev->name, err);
  2919. dev_close(dev);
  2920. goto out;
  2921. }
  2922. }
  2923. }
  2924. netif_poll_enable(hw->dev[0]);
  2925. sky2_idle_start(hw);
  2926. out:
  2927. return err;
  2928. }
  2929. #endif
  2930. static struct pci_driver sky2_driver = {
  2931. .name = DRV_NAME,
  2932. .id_table = sky2_id_table,
  2933. .probe = sky2_probe,
  2934. .remove = __devexit_p(sky2_remove),
  2935. #ifdef CONFIG_PM
  2936. .suspend = sky2_suspend,
  2937. .resume = sky2_resume,
  2938. #endif
  2939. };
  2940. static int __init sky2_init_module(void)
  2941. {
  2942. return pci_register_driver(&sky2_driver);
  2943. }
  2944. static void __exit sky2_cleanup_module(void)
  2945. {
  2946. pci_unregister_driver(&sky2_driver);
  2947. }
  2948. module_init(sky2_init_module);
  2949. module_exit(sky2_cleanup_module);
  2950. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2951. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2952. MODULE_LICENSE("GPL");
  2953. MODULE_VERSION(DRV_VERSION);