bcache.h 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. #ifndef _BCACHE_H
  2. #define _BCACHE_H
  3. /*
  4. * SOME HIGH LEVEL CODE DOCUMENTATION:
  5. *
  6. * Bcache mostly works with cache sets, cache devices, and backing devices.
  7. *
  8. * Support for multiple cache devices hasn't quite been finished off yet, but
  9. * it's about 95% plumbed through. A cache set and its cache devices is sort of
  10. * like a md raid array and its component devices. Most of the code doesn't care
  11. * about individual cache devices, the main abstraction is the cache set.
  12. *
  13. * Multiple cache devices is intended to give us the ability to mirror dirty
  14. * cached data and metadata, without mirroring clean cached data.
  15. *
  16. * Backing devices are different, in that they have a lifetime independent of a
  17. * cache set. When you register a newly formatted backing device it'll come up
  18. * in passthrough mode, and then you can attach and detach a backing device from
  19. * a cache set at runtime - while it's mounted and in use. Detaching implicitly
  20. * invalidates any cached data for that backing device.
  21. *
  22. * A cache set can have multiple (many) backing devices attached to it.
  23. *
  24. * There's also flash only volumes - this is the reason for the distinction
  25. * between struct cached_dev and struct bcache_device. A flash only volume
  26. * works much like a bcache device that has a backing device, except the
  27. * "cached" data is always dirty. The end result is that we get thin
  28. * provisioning with very little additional code.
  29. *
  30. * Flash only volumes work but they're not production ready because the moving
  31. * garbage collector needs more work. More on that later.
  32. *
  33. * BUCKETS/ALLOCATION:
  34. *
  35. * Bcache is primarily designed for caching, which means that in normal
  36. * operation all of our available space will be allocated. Thus, we need an
  37. * efficient way of deleting things from the cache so we can write new things to
  38. * it.
  39. *
  40. * To do this, we first divide the cache device up into buckets. A bucket is the
  41. * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
  42. * works efficiently.
  43. *
  44. * Each bucket has a 16 bit priority, and an 8 bit generation associated with
  45. * it. The gens and priorities for all the buckets are stored contiguously and
  46. * packed on disk (in a linked list of buckets - aside from the superblock, all
  47. * of bcache's metadata is stored in buckets).
  48. *
  49. * The priority is used to implement an LRU. We reset a bucket's priority when
  50. * we allocate it or on cache it, and every so often we decrement the priority
  51. * of each bucket. It could be used to implement something more sophisticated,
  52. * if anyone ever gets around to it.
  53. *
  54. * The generation is used for invalidating buckets. Each pointer also has an 8
  55. * bit generation embedded in it; for a pointer to be considered valid, its gen
  56. * must match the gen of the bucket it points into. Thus, to reuse a bucket all
  57. * we have to do is increment its gen (and write its new gen to disk; we batch
  58. * this up).
  59. *
  60. * Bcache is entirely COW - we never write twice to a bucket, even buckets that
  61. * contain metadata (including btree nodes).
  62. *
  63. * THE BTREE:
  64. *
  65. * Bcache is in large part design around the btree.
  66. *
  67. * At a high level, the btree is just an index of key -> ptr tuples.
  68. *
  69. * Keys represent extents, and thus have a size field. Keys also have a variable
  70. * number of pointers attached to them (potentially zero, which is handy for
  71. * invalidating the cache).
  72. *
  73. * The key itself is an inode:offset pair. The inode number corresponds to a
  74. * backing device or a flash only volume. The offset is the ending offset of the
  75. * extent within the inode - not the starting offset; this makes lookups
  76. * slightly more convenient.
  77. *
  78. * Pointers contain the cache device id, the offset on that device, and an 8 bit
  79. * generation number. More on the gen later.
  80. *
  81. * Index lookups are not fully abstracted - cache lookups in particular are
  82. * still somewhat mixed in with the btree code, but things are headed in that
  83. * direction.
  84. *
  85. * Updates are fairly well abstracted, though. There are two different ways of
  86. * updating the btree; insert and replace.
  87. *
  88. * BTREE_INSERT will just take a list of keys and insert them into the btree -
  89. * overwriting (possibly only partially) any extents they overlap with. This is
  90. * used to update the index after a write.
  91. *
  92. * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
  93. * overwriting a key that matches another given key. This is used for inserting
  94. * data into the cache after a cache miss, and for background writeback, and for
  95. * the moving garbage collector.
  96. *
  97. * There is no "delete" operation; deleting things from the index is
  98. * accomplished by either by invalidating pointers (by incrementing a bucket's
  99. * gen) or by inserting a key with 0 pointers - which will overwrite anything
  100. * previously present at that location in the index.
  101. *
  102. * This means that there are always stale/invalid keys in the btree. They're
  103. * filtered out by the code that iterates through a btree node, and removed when
  104. * a btree node is rewritten.
  105. *
  106. * BTREE NODES:
  107. *
  108. * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
  109. * free smaller than a bucket - so, that's how big our btree nodes are.
  110. *
  111. * (If buckets are really big we'll only use part of the bucket for a btree node
  112. * - no less than 1/4th - but a bucket still contains no more than a single
  113. * btree node. I'd actually like to change this, but for now we rely on the
  114. * bucket's gen for deleting btree nodes when we rewrite/split a node.)
  115. *
  116. * Anyways, btree nodes are big - big enough to be inefficient with a textbook
  117. * btree implementation.
  118. *
  119. * The way this is solved is that btree nodes are internally log structured; we
  120. * can append new keys to an existing btree node without rewriting it. This
  121. * means each set of keys we write is sorted, but the node is not.
  122. *
  123. * We maintain this log structure in memory - keeping 1Mb of keys sorted would
  124. * be expensive, and we have to distinguish between the keys we have written and
  125. * the keys we haven't. So to do a lookup in a btree node, we have to search
  126. * each sorted set. But we do merge written sets together lazily, so the cost of
  127. * these extra searches is quite low (normally most of the keys in a btree node
  128. * will be in one big set, and then there'll be one or two sets that are much
  129. * smaller).
  130. *
  131. * This log structure makes bcache's btree more of a hybrid between a
  132. * conventional btree and a compacting data structure, with some of the
  133. * advantages of both.
  134. *
  135. * GARBAGE COLLECTION:
  136. *
  137. * We can't just invalidate any bucket - it might contain dirty data or
  138. * metadata. If it once contained dirty data, other writes might overwrite it
  139. * later, leaving no valid pointers into that bucket in the index.
  140. *
  141. * Thus, the primary purpose of garbage collection is to find buckets to reuse.
  142. * It also counts how much valid data it each bucket currently contains, so that
  143. * allocation can reuse buckets sooner when they've been mostly overwritten.
  144. *
  145. * It also does some things that are really internal to the btree
  146. * implementation. If a btree node contains pointers that are stale by more than
  147. * some threshold, it rewrites the btree node to avoid the bucket's generation
  148. * wrapping around. It also merges adjacent btree nodes if they're empty enough.
  149. *
  150. * THE JOURNAL:
  151. *
  152. * Bcache's journal is not necessary for consistency; we always strictly
  153. * order metadata writes so that the btree and everything else is consistent on
  154. * disk in the event of an unclean shutdown, and in fact bcache had writeback
  155. * caching (with recovery from unclean shutdown) before journalling was
  156. * implemented.
  157. *
  158. * Rather, the journal is purely a performance optimization; we can't complete a
  159. * write until we've updated the index on disk, otherwise the cache would be
  160. * inconsistent in the event of an unclean shutdown. This means that without the
  161. * journal, on random write workloads we constantly have to update all the leaf
  162. * nodes in the btree, and those writes will be mostly empty (appending at most
  163. * a few keys each) - highly inefficient in terms of amount of metadata writes,
  164. * and it puts more strain on the various btree resorting/compacting code.
  165. *
  166. * The journal is just a log of keys we've inserted; on startup we just reinsert
  167. * all the keys in the open journal entries. That means that when we're updating
  168. * a node in the btree, we can wait until a 4k block of keys fills up before
  169. * writing them out.
  170. *
  171. * For simplicity, we only journal updates to leaf nodes; updates to parent
  172. * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
  173. * the complexity to deal with journalling them (in particular, journal replay)
  174. * - updates to non leaf nodes just happen synchronously (see btree_split()).
  175. */
  176. #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
  177. #include <linux/bio.h>
  178. #include <linux/blktrace_api.h>
  179. #include <linux/kobject.h>
  180. #include <linux/list.h>
  181. #include <linux/mutex.h>
  182. #include <linux/rbtree.h>
  183. #include <linux/rwsem.h>
  184. #include <linux/types.h>
  185. #include <linux/workqueue.h>
  186. #include "util.h"
  187. #include "closure.h"
  188. struct bucket {
  189. atomic_t pin;
  190. uint16_t prio;
  191. uint8_t gen;
  192. uint8_t disk_gen;
  193. uint8_t last_gc; /* Most out of date gen in the btree */
  194. uint8_t gc_gen;
  195. uint16_t gc_mark;
  196. };
  197. /*
  198. * I'd use bitfields for these, but I don't trust the compiler not to screw me
  199. * as multiple threads touch struct bucket without locking
  200. */
  201. BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
  202. #define GC_MARK_RECLAIMABLE 0
  203. #define GC_MARK_DIRTY 1
  204. #define GC_MARK_METADATA 2
  205. BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
  206. struct bkey {
  207. uint64_t high;
  208. uint64_t low;
  209. uint64_t ptr[];
  210. };
  211. /* Enough for a key with 6 pointers */
  212. #define BKEY_PAD 8
  213. #define BKEY_PADDED(key) \
  214. union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
  215. /* Version 1: Backing device
  216. * Version 2: Seed pointer into btree node checksum
  217. * Version 3: New UUID format
  218. */
  219. #define BCACHE_SB_VERSION 3
  220. #define SB_SECTOR 8
  221. #define SB_SIZE 4096
  222. #define SB_LABEL_SIZE 32
  223. #define SB_JOURNAL_BUCKETS 256U
  224. /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
  225. #define MAX_CACHES_PER_SET 8
  226. #define BDEV_DATA_START 16 /* sectors */
  227. struct cache_sb {
  228. uint64_t csum;
  229. uint64_t offset; /* sector where this sb was written */
  230. uint64_t version;
  231. #define CACHE_BACKING_DEV 1
  232. uint8_t magic[16];
  233. uint8_t uuid[16];
  234. union {
  235. uint8_t set_uuid[16];
  236. uint64_t set_magic;
  237. };
  238. uint8_t label[SB_LABEL_SIZE];
  239. uint64_t flags;
  240. uint64_t seq;
  241. uint64_t pad[8];
  242. uint64_t nbuckets; /* device size */
  243. uint16_t block_size; /* sectors */
  244. uint16_t bucket_size; /* sectors */
  245. uint16_t nr_in_set;
  246. uint16_t nr_this_dev;
  247. uint32_t last_mount; /* time_t */
  248. uint16_t first_bucket;
  249. union {
  250. uint16_t njournal_buckets;
  251. uint16_t keys;
  252. };
  253. uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */
  254. };
  255. BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
  256. BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1);
  257. BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3);
  258. #define CACHE_REPLACEMENT_LRU 0U
  259. #define CACHE_REPLACEMENT_FIFO 1U
  260. #define CACHE_REPLACEMENT_RANDOM 2U
  261. BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
  262. #define CACHE_MODE_WRITETHROUGH 0U
  263. #define CACHE_MODE_WRITEBACK 1U
  264. #define CACHE_MODE_WRITEAROUND 2U
  265. #define CACHE_MODE_NONE 3U
  266. BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2);
  267. #define BDEV_STATE_NONE 0U
  268. #define BDEV_STATE_CLEAN 1U
  269. #define BDEV_STATE_DIRTY 2U
  270. #define BDEV_STATE_STALE 3U
  271. /* Version 1: Seed pointer into btree node checksum
  272. */
  273. #define BCACHE_BSET_VERSION 1
  274. /*
  275. * This is the on disk format for btree nodes - a btree node on disk is a list
  276. * of these; within each set the keys are sorted
  277. */
  278. struct bset {
  279. uint64_t csum;
  280. uint64_t magic;
  281. uint64_t seq;
  282. uint32_t version;
  283. uint32_t keys;
  284. union {
  285. struct bkey start[0];
  286. uint64_t d[0];
  287. };
  288. };
  289. /*
  290. * On disk format for priorities and gens - see super.c near prio_write() for
  291. * more.
  292. */
  293. struct prio_set {
  294. uint64_t csum;
  295. uint64_t magic;
  296. uint64_t seq;
  297. uint32_t version;
  298. uint32_t pad;
  299. uint64_t next_bucket;
  300. struct bucket_disk {
  301. uint16_t prio;
  302. uint8_t gen;
  303. } __attribute((packed)) data[];
  304. };
  305. struct uuid_entry {
  306. union {
  307. struct {
  308. uint8_t uuid[16];
  309. uint8_t label[32];
  310. uint32_t first_reg;
  311. uint32_t last_reg;
  312. uint32_t invalidated;
  313. uint32_t flags;
  314. /* Size of flash only volumes */
  315. uint64_t sectors;
  316. };
  317. uint8_t pad[128];
  318. };
  319. };
  320. BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
  321. #include "journal.h"
  322. #include "stats.h"
  323. struct search;
  324. struct btree;
  325. struct keybuf;
  326. struct keybuf_key {
  327. struct rb_node node;
  328. BKEY_PADDED(key);
  329. void *private;
  330. };
  331. typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
  332. struct keybuf {
  333. keybuf_pred_fn *key_predicate;
  334. struct bkey last_scanned;
  335. spinlock_t lock;
  336. /*
  337. * Beginning and end of range in rb tree - so that we can skip taking
  338. * lock and checking the rb tree when we need to check for overlapping
  339. * keys.
  340. */
  341. struct bkey start;
  342. struct bkey end;
  343. struct rb_root keys;
  344. #define KEYBUF_NR 100
  345. DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
  346. };
  347. struct bio_split_pool {
  348. struct bio_set *bio_split;
  349. mempool_t *bio_split_hook;
  350. };
  351. struct bio_split_hook {
  352. struct closure cl;
  353. struct bio_split_pool *p;
  354. struct bio *bio;
  355. bio_end_io_t *bi_end_io;
  356. void *bi_private;
  357. };
  358. struct bcache_device {
  359. struct closure cl;
  360. struct kobject kobj;
  361. struct cache_set *c;
  362. unsigned id;
  363. #define BCACHEDEVNAME_SIZE 12
  364. char name[BCACHEDEVNAME_SIZE];
  365. struct gendisk *disk;
  366. /* If nonzero, we're closing */
  367. atomic_t closing;
  368. /* If nonzero, we're detaching/unregistering from cache set */
  369. atomic_t detaching;
  370. atomic_long_t sectors_dirty;
  371. unsigned long sectors_dirty_gc;
  372. unsigned long sectors_dirty_last;
  373. long sectors_dirty_derivative;
  374. mempool_t *unaligned_bvec;
  375. struct bio_set *bio_split;
  376. unsigned data_csum:1;
  377. int (*cache_miss)(struct btree *, struct search *,
  378. struct bio *, unsigned);
  379. int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
  380. struct bio_split_pool bio_split_hook;
  381. };
  382. struct io {
  383. /* Used to track sequential IO so it can be skipped */
  384. struct hlist_node hash;
  385. struct list_head lru;
  386. unsigned long jiffies;
  387. unsigned sequential;
  388. sector_t last;
  389. };
  390. struct cached_dev {
  391. struct list_head list;
  392. struct bcache_device disk;
  393. struct block_device *bdev;
  394. struct cache_sb sb;
  395. struct bio sb_bio;
  396. struct bio_vec sb_bv[1];
  397. struct closure_with_waitlist sb_write;
  398. /* Refcount on the cache set. Always nonzero when we're caching. */
  399. atomic_t count;
  400. struct work_struct detach;
  401. /*
  402. * Device might not be running if it's dirty and the cache set hasn't
  403. * showed up yet.
  404. */
  405. atomic_t running;
  406. /*
  407. * Writes take a shared lock from start to finish; scanning for dirty
  408. * data to refill the rb tree requires an exclusive lock.
  409. */
  410. struct rw_semaphore writeback_lock;
  411. /*
  412. * Nonzero, and writeback has a refcount (d->count), iff there is dirty
  413. * data in the cache. Protected by writeback_lock; must have an
  414. * shared lock to set and exclusive lock to clear.
  415. */
  416. atomic_t has_dirty;
  417. struct ratelimit writeback_rate;
  418. struct delayed_work writeback_rate_update;
  419. /*
  420. * Internal to the writeback code, so read_dirty() can keep track of
  421. * where it's at.
  422. */
  423. sector_t last_read;
  424. /* Number of writeback bios in flight */
  425. atomic_t in_flight;
  426. struct closure_with_timer writeback;
  427. struct closure_waitlist writeback_wait;
  428. struct keybuf writeback_keys;
  429. /* For tracking sequential IO */
  430. #define RECENT_IO_BITS 7
  431. #define RECENT_IO (1 << RECENT_IO_BITS)
  432. struct io io[RECENT_IO];
  433. struct hlist_head io_hash[RECENT_IO + 1];
  434. struct list_head io_lru;
  435. spinlock_t io_lock;
  436. struct cache_accounting accounting;
  437. /* The rest of this all shows up in sysfs */
  438. unsigned sequential_cutoff;
  439. unsigned readahead;
  440. unsigned sequential_merge:1;
  441. unsigned verify:1;
  442. unsigned writeback_metadata:1;
  443. unsigned writeback_running:1;
  444. unsigned char writeback_percent;
  445. unsigned writeback_delay;
  446. int writeback_rate_change;
  447. int64_t writeback_rate_derivative;
  448. uint64_t writeback_rate_target;
  449. unsigned writeback_rate_update_seconds;
  450. unsigned writeback_rate_d_term;
  451. unsigned writeback_rate_p_term_inverse;
  452. unsigned writeback_rate_d_smooth;
  453. };
  454. enum alloc_watermarks {
  455. WATERMARK_PRIO,
  456. WATERMARK_METADATA,
  457. WATERMARK_MOVINGGC,
  458. WATERMARK_NONE,
  459. WATERMARK_MAX
  460. };
  461. struct cache {
  462. struct cache_set *set;
  463. struct cache_sb sb;
  464. struct bio sb_bio;
  465. struct bio_vec sb_bv[1];
  466. struct kobject kobj;
  467. struct block_device *bdev;
  468. unsigned watermark[WATERMARK_MAX];
  469. struct closure alloc;
  470. struct workqueue_struct *alloc_workqueue;
  471. struct closure prio;
  472. struct prio_set *disk_buckets;
  473. /*
  474. * When allocating new buckets, prio_write() gets first dibs - since we
  475. * may not be allocate at all without writing priorities and gens.
  476. * prio_buckets[] contains the last buckets we wrote priorities to (so
  477. * gc can mark them as metadata), prio_next[] contains the buckets
  478. * allocated for the next prio write.
  479. */
  480. uint64_t *prio_buckets;
  481. uint64_t *prio_last_buckets;
  482. /*
  483. * free: Buckets that are ready to be used
  484. *
  485. * free_inc: Incoming buckets - these are buckets that currently have
  486. * cached data in them, and we can't reuse them until after we write
  487. * their new gen to disk. After prio_write() finishes writing the new
  488. * gens/prios, they'll be moved to the free list (and possibly discarded
  489. * in the process)
  490. *
  491. * unused: GC found nothing pointing into these buckets (possibly
  492. * because all the data they contained was overwritten), so we only
  493. * need to discard them before they can be moved to the free list.
  494. */
  495. DECLARE_FIFO(long, free);
  496. DECLARE_FIFO(long, free_inc);
  497. DECLARE_FIFO(long, unused);
  498. size_t fifo_last_bucket;
  499. /* Allocation stuff: */
  500. struct bucket *buckets;
  501. DECLARE_HEAP(struct bucket *, heap);
  502. /*
  503. * max(gen - disk_gen) for all buckets. When it gets too big we have to
  504. * call prio_write() to keep gens from wrapping.
  505. */
  506. uint8_t need_save_prio;
  507. unsigned gc_move_threshold;
  508. /*
  509. * If nonzero, we know we aren't going to find any buckets to invalidate
  510. * until a gc finishes - otherwise we could pointlessly burn a ton of
  511. * cpu
  512. */
  513. unsigned invalidate_needs_gc:1;
  514. bool discard; /* Get rid of? */
  515. /*
  516. * We preallocate structs for issuing discards to buckets, and keep them
  517. * on this list when they're not in use; do_discard() issues discards
  518. * whenever there's work to do and is called by free_some_buckets() and
  519. * when a discard finishes.
  520. */
  521. atomic_t discards_in_flight;
  522. struct list_head discards;
  523. struct journal_device journal;
  524. /* The rest of this all shows up in sysfs */
  525. #define IO_ERROR_SHIFT 20
  526. atomic_t io_errors;
  527. atomic_t io_count;
  528. atomic_long_t meta_sectors_written;
  529. atomic_long_t btree_sectors_written;
  530. atomic_long_t sectors_written;
  531. struct bio_split_pool bio_split_hook;
  532. };
  533. struct gc_stat {
  534. size_t nodes;
  535. size_t key_bytes;
  536. size_t nkeys;
  537. uint64_t data; /* sectors */
  538. uint64_t dirty; /* sectors */
  539. unsigned in_use; /* percent */
  540. };
  541. /*
  542. * Flag bits, for how the cache set is shutting down, and what phase it's at:
  543. *
  544. * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
  545. * all the backing devices first (their cached data gets invalidated, and they
  546. * won't automatically reattach).
  547. *
  548. * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
  549. * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
  550. * flushing dirty data).
  551. *
  552. * CACHE_SET_STOPPING_2 gets set at the last phase, when it's time to shut down
  553. * the allocation thread.
  554. */
  555. #define CACHE_SET_UNREGISTERING 0
  556. #define CACHE_SET_STOPPING 1
  557. #define CACHE_SET_STOPPING_2 2
  558. struct cache_set {
  559. struct closure cl;
  560. struct list_head list;
  561. struct kobject kobj;
  562. struct kobject internal;
  563. struct dentry *debug;
  564. struct cache_accounting accounting;
  565. unsigned long flags;
  566. struct cache_sb sb;
  567. struct cache *cache[MAX_CACHES_PER_SET];
  568. struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
  569. int caches_loaded;
  570. struct bcache_device **devices;
  571. struct list_head cached_devs;
  572. uint64_t cached_dev_sectors;
  573. struct closure caching;
  574. struct closure_with_waitlist sb_write;
  575. mempool_t *search;
  576. mempool_t *bio_meta;
  577. struct bio_set *bio_split;
  578. /* For the btree cache */
  579. struct shrinker shrink;
  580. /* For the allocator itself */
  581. wait_queue_head_t alloc_wait;
  582. /* For the btree cache and anything allocation related */
  583. struct mutex bucket_lock;
  584. /* log2(bucket_size), in sectors */
  585. unsigned short bucket_bits;
  586. /* log2(block_size), in sectors */
  587. unsigned short block_bits;
  588. /*
  589. * Default number of pages for a new btree node - may be less than a
  590. * full bucket
  591. */
  592. unsigned btree_pages;
  593. /*
  594. * Lists of struct btrees; lru is the list for structs that have memory
  595. * allocated for actual btree node, freed is for structs that do not.
  596. *
  597. * We never free a struct btree, except on shutdown - we just put it on
  598. * the btree_cache_freed list and reuse it later. This simplifies the
  599. * code, and it doesn't cost us much memory as the memory usage is
  600. * dominated by buffers that hold the actual btree node data and those
  601. * can be freed - and the number of struct btrees allocated is
  602. * effectively bounded.
  603. *
  604. * btree_cache_freeable effectively is a small cache - we use it because
  605. * high order page allocations can be rather expensive, and it's quite
  606. * common to delete and allocate btree nodes in quick succession. It
  607. * should never grow past ~2-3 nodes in practice.
  608. */
  609. struct list_head btree_cache;
  610. struct list_head btree_cache_freeable;
  611. struct list_head btree_cache_freed;
  612. /* Number of elements in btree_cache + btree_cache_freeable lists */
  613. unsigned bucket_cache_used;
  614. /*
  615. * If we need to allocate memory for a new btree node and that
  616. * allocation fails, we can cannibalize another node in the btree cache
  617. * to satisfy the allocation. However, only one thread can be doing this
  618. * at a time, for obvious reasons - try_harder and try_wait are
  619. * basically a lock for this that we can wait on asynchronously. The
  620. * btree_root() macro releases the lock when it returns.
  621. */
  622. struct closure *try_harder;
  623. struct closure_waitlist try_wait;
  624. uint64_t try_harder_start;
  625. /*
  626. * When we free a btree node, we increment the gen of the bucket the
  627. * node is in - but we can't rewrite the prios and gens until we
  628. * finished whatever it is we were doing, otherwise after a crash the
  629. * btree node would be freed but for say a split, we might not have the
  630. * pointers to the new nodes inserted into the btree yet.
  631. *
  632. * This is a refcount that blocks prio_write() until the new keys are
  633. * written.
  634. */
  635. atomic_t prio_blocked;
  636. struct closure_waitlist bucket_wait;
  637. /*
  638. * For any bio we don't skip we subtract the number of sectors from
  639. * rescale; when it hits 0 we rescale all the bucket priorities.
  640. */
  641. atomic_t rescale;
  642. /*
  643. * When we invalidate buckets, we use both the priority and the amount
  644. * of good data to determine which buckets to reuse first - to weight
  645. * those together consistently we keep track of the smallest nonzero
  646. * priority of any bucket.
  647. */
  648. uint16_t min_prio;
  649. /*
  650. * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
  651. * to keep gens from wrapping around.
  652. */
  653. uint8_t need_gc;
  654. struct gc_stat gc_stats;
  655. size_t nbuckets;
  656. struct closure_with_waitlist gc;
  657. /* Where in the btree gc currently is */
  658. struct bkey gc_done;
  659. /*
  660. * The allocation code needs gc_mark in struct bucket to be correct, but
  661. * it's not while a gc is in progress. Protected by bucket_lock.
  662. */
  663. int gc_mark_valid;
  664. /* Counts how many sectors bio_insert has added to the cache */
  665. atomic_t sectors_to_gc;
  666. struct closure moving_gc;
  667. struct closure_waitlist moving_gc_wait;
  668. struct keybuf moving_gc_keys;
  669. /* Number of moving GC bios in flight */
  670. atomic_t in_flight;
  671. struct btree *root;
  672. #ifdef CONFIG_BCACHE_DEBUG
  673. struct btree *verify_data;
  674. struct mutex verify_lock;
  675. #endif
  676. unsigned nr_uuids;
  677. struct uuid_entry *uuids;
  678. BKEY_PADDED(uuid_bucket);
  679. struct closure_with_waitlist uuid_write;
  680. /*
  681. * A btree node on disk could have too many bsets for an iterator to fit
  682. * on the stack - this is a single element mempool for btree_read_work()
  683. */
  684. struct mutex fill_lock;
  685. struct btree_iter *fill_iter;
  686. /*
  687. * btree_sort() is a merge sort and requires temporary space - single
  688. * element mempool
  689. */
  690. struct mutex sort_lock;
  691. struct bset *sort;
  692. /* List of buckets we're currently writing data to */
  693. struct list_head data_buckets;
  694. spinlock_t data_bucket_lock;
  695. struct journal journal;
  696. #define CONGESTED_MAX 1024
  697. unsigned congested_last_us;
  698. atomic_t congested;
  699. /* The rest of this all shows up in sysfs */
  700. unsigned congested_read_threshold_us;
  701. unsigned congested_write_threshold_us;
  702. spinlock_t sort_time_lock;
  703. struct time_stats sort_time;
  704. struct time_stats btree_gc_time;
  705. struct time_stats btree_split_time;
  706. spinlock_t btree_read_time_lock;
  707. struct time_stats btree_read_time;
  708. struct time_stats try_harder_time;
  709. atomic_long_t cache_read_races;
  710. atomic_long_t writeback_keys_done;
  711. atomic_long_t writeback_keys_failed;
  712. unsigned error_limit;
  713. unsigned error_decay;
  714. unsigned short journal_delay_ms;
  715. unsigned verify:1;
  716. unsigned key_merging_disabled:1;
  717. unsigned gc_always_rewrite:1;
  718. unsigned shrinker_disabled:1;
  719. unsigned copy_gc_enabled:1;
  720. #define BUCKET_HASH_BITS 12
  721. struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
  722. };
  723. static inline bool key_merging_disabled(struct cache_set *c)
  724. {
  725. #ifdef CONFIG_BCACHE_DEBUG
  726. return c->key_merging_disabled;
  727. #else
  728. return 0;
  729. #endif
  730. }
  731. struct bbio {
  732. unsigned submit_time_us;
  733. union {
  734. struct bkey key;
  735. uint64_t _pad[3];
  736. /*
  737. * We only need pad = 3 here because we only ever carry around a
  738. * single pointer - i.e. the pointer we're doing io to/from.
  739. */
  740. };
  741. struct bio bio;
  742. };
  743. static inline unsigned local_clock_us(void)
  744. {
  745. return local_clock() >> 10;
  746. }
  747. #define MAX_BSETS 4U
  748. #define BTREE_PRIO USHRT_MAX
  749. #define INITIAL_PRIO 32768
  750. #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
  751. #define btree_blocks(b) \
  752. ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
  753. #define btree_default_blocks(c) \
  754. ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
  755. #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
  756. #define bucket_bytes(c) ((c)->sb.bucket_size << 9)
  757. #define block_bytes(c) ((c)->sb.block_size << 9)
  758. #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
  759. #define set_bytes(i) __set_bytes(i, i->keys)
  760. #define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
  761. #define set_blocks(i, c) __set_blocks(i, (i)->keys, c)
  762. #define node(i, j) ((struct bkey *) ((i)->d + (j)))
  763. #define end(i) node(i, (i)->keys)
  764. #define index(i, b) \
  765. ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \
  766. block_bytes(b->c)))
  767. #define btree_data_space(b) (PAGE_SIZE << (b)->page_order)
  768. #define prios_per_bucket(c) \
  769. ((bucket_bytes(c) - sizeof(struct prio_set)) / \
  770. sizeof(struct bucket_disk))
  771. #define prio_buckets(c) \
  772. DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
  773. #define JSET_MAGIC 0x245235c1a3625032ULL
  774. #define PSET_MAGIC 0x6750e15f87337f91ULL
  775. #define BSET_MAGIC 0x90135c78b99e07f5ULL
  776. #define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC)
  777. #define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC)
  778. #define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC)
  779. /* Bkey fields: all units are in sectors */
  780. #define KEY_FIELD(name, field, offset, size) \
  781. BITMASK(name, struct bkey, field, offset, size)
  782. #define PTR_FIELD(name, offset, size) \
  783. static inline uint64_t name(const struct bkey *k, unsigned i) \
  784. { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \
  785. \
  786. static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
  787. { \
  788. k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \
  789. k->ptr[i] |= v << offset; \
  790. }
  791. KEY_FIELD(KEY_PTRS, high, 60, 3)
  792. KEY_FIELD(HEADER_SIZE, high, 58, 2)
  793. KEY_FIELD(KEY_CSUM, high, 56, 2)
  794. KEY_FIELD(KEY_PINNED, high, 55, 1)
  795. KEY_FIELD(KEY_DIRTY, high, 36, 1)
  796. KEY_FIELD(KEY_SIZE, high, 20, 16)
  797. KEY_FIELD(KEY_INODE, high, 0, 20)
  798. /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
  799. static inline uint64_t KEY_OFFSET(const struct bkey *k)
  800. {
  801. return k->low;
  802. }
  803. static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
  804. {
  805. k->low = v;
  806. }
  807. PTR_FIELD(PTR_DEV, 51, 12)
  808. PTR_FIELD(PTR_OFFSET, 8, 43)
  809. PTR_FIELD(PTR_GEN, 0, 8)
  810. #define PTR_CHECK_DEV ((1 << 12) - 1)
  811. #define PTR(gen, offset, dev) \
  812. ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
  813. static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
  814. {
  815. return s >> c->bucket_bits;
  816. }
  817. static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
  818. {
  819. return ((sector_t) b) << c->bucket_bits;
  820. }
  821. static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
  822. {
  823. return s & (c->sb.bucket_size - 1);
  824. }
  825. static inline struct cache *PTR_CACHE(struct cache_set *c,
  826. const struct bkey *k,
  827. unsigned ptr)
  828. {
  829. return c->cache[PTR_DEV(k, ptr)];
  830. }
  831. static inline size_t PTR_BUCKET_NR(struct cache_set *c,
  832. const struct bkey *k,
  833. unsigned ptr)
  834. {
  835. return sector_to_bucket(c, PTR_OFFSET(k, ptr));
  836. }
  837. static inline struct bucket *PTR_BUCKET(struct cache_set *c,
  838. const struct bkey *k,
  839. unsigned ptr)
  840. {
  841. return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
  842. }
  843. /* Btree key macros */
  844. /*
  845. * The high bit being set is a relic from when we used it to do binary
  846. * searches - it told you where a key started. It's not used anymore,
  847. * and can probably be safely dropped.
  848. */
  849. #define KEY(dev, sector, len) \
  850. ((struct bkey) { \
  851. .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \
  852. .low = (sector) \
  853. })
  854. static inline void bkey_init(struct bkey *k)
  855. {
  856. *k = KEY(0, 0, 0);
  857. }
  858. #define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k))
  859. #define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0)
  860. #define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0)
  861. #define ZERO_KEY KEY(0, 0, 0)
  862. /*
  863. * This is used for various on disk data structures - cache_sb, prio_set, bset,
  864. * jset: The checksum is _always_ the first 8 bytes of these structs
  865. */
  866. #define csum_set(i) \
  867. bch_crc64(((void *) (i)) + sizeof(uint64_t), \
  868. ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
  869. /* Error handling macros */
  870. #define btree_bug(b, ...) \
  871. do { \
  872. if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
  873. dump_stack(); \
  874. } while (0)
  875. #define cache_bug(c, ...) \
  876. do { \
  877. if (bch_cache_set_error(c, __VA_ARGS__)) \
  878. dump_stack(); \
  879. } while (0)
  880. #define btree_bug_on(cond, b, ...) \
  881. do { \
  882. if (cond) \
  883. btree_bug(b, __VA_ARGS__); \
  884. } while (0)
  885. #define cache_bug_on(cond, c, ...) \
  886. do { \
  887. if (cond) \
  888. cache_bug(c, __VA_ARGS__); \
  889. } while (0)
  890. #define cache_set_err_on(cond, c, ...) \
  891. do { \
  892. if (cond) \
  893. bch_cache_set_error(c, __VA_ARGS__); \
  894. } while (0)
  895. /* Looping macros */
  896. #define for_each_cache(ca, cs, iter) \
  897. for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
  898. #define for_each_bucket(b, ca) \
  899. for (b = (ca)->buckets + (ca)->sb.first_bucket; \
  900. b < (ca)->buckets + (ca)->sb.nbuckets; b++)
  901. static inline void __bkey_put(struct cache_set *c, struct bkey *k)
  902. {
  903. unsigned i;
  904. for (i = 0; i < KEY_PTRS(k); i++)
  905. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  906. }
  907. /* Blktrace macros */
  908. #define blktrace_msg(c, fmt, ...) \
  909. do { \
  910. struct request_queue *q = bdev_get_queue(c->bdev); \
  911. if (q) \
  912. blk_add_trace_msg(q, fmt, ##__VA_ARGS__); \
  913. } while (0)
  914. #define blktrace_msg_all(s, fmt, ...) \
  915. do { \
  916. struct cache *_c; \
  917. unsigned i; \
  918. for_each_cache(_c, (s), i) \
  919. blktrace_msg(_c, fmt, ##__VA_ARGS__); \
  920. } while (0)
  921. static inline void cached_dev_put(struct cached_dev *dc)
  922. {
  923. if (atomic_dec_and_test(&dc->count))
  924. schedule_work(&dc->detach);
  925. }
  926. static inline bool cached_dev_get(struct cached_dev *dc)
  927. {
  928. if (!atomic_inc_not_zero(&dc->count))
  929. return false;
  930. /* Paired with the mb in cached_dev_attach */
  931. smp_mb__after_atomic_inc();
  932. return true;
  933. }
  934. /*
  935. * bucket_gc_gen() returns the difference between the bucket's current gen and
  936. * the oldest gen of any pointer into that bucket in the btree (last_gc).
  937. *
  938. * bucket_disk_gen() returns the difference between the current gen and the gen
  939. * on disk; they're both used to make sure gens don't wrap around.
  940. */
  941. static inline uint8_t bucket_gc_gen(struct bucket *b)
  942. {
  943. return b->gen - b->last_gc;
  944. }
  945. static inline uint8_t bucket_disk_gen(struct bucket *b)
  946. {
  947. return b->gen - b->disk_gen;
  948. }
  949. #define BUCKET_GC_GEN_MAX 96U
  950. #define BUCKET_DISK_GEN_MAX 64U
  951. #define kobj_attribute_write(n, fn) \
  952. static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
  953. #define kobj_attribute_rw(n, show, store) \
  954. static struct kobj_attribute ksysfs_##n = \
  955. __ATTR(n, S_IWUSR|S_IRUSR, show, store)
  956. /* Forward declarations */
  957. void bch_writeback_queue(struct cached_dev *);
  958. void bch_writeback_add(struct cached_dev *, unsigned);
  959. void bch_count_io_errors(struct cache *, int, const char *);
  960. void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
  961. int, const char *);
  962. void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
  963. void bch_bbio_free(struct bio *, struct cache_set *);
  964. struct bio *bch_bbio_alloc(struct cache_set *);
  965. struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
  966. void bch_generic_make_request(struct bio *, struct bio_split_pool *);
  967. void __bch_submit_bbio(struct bio *, struct cache_set *);
  968. void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
  969. uint8_t bch_inc_gen(struct cache *, struct bucket *);
  970. void bch_rescale_priorities(struct cache_set *, int);
  971. bool bch_bucket_add_unused(struct cache *, struct bucket *);
  972. void bch_allocator_thread(struct closure *);
  973. long bch_bucket_alloc(struct cache *, unsigned, struct closure *);
  974. void bch_bucket_free(struct cache_set *, struct bkey *);
  975. int __bch_bucket_alloc_set(struct cache_set *, unsigned,
  976. struct bkey *, int, struct closure *);
  977. int bch_bucket_alloc_set(struct cache_set *, unsigned,
  978. struct bkey *, int, struct closure *);
  979. __printf(2, 3)
  980. bool bch_cache_set_error(struct cache_set *, const char *, ...);
  981. void bch_prio_write(struct cache *);
  982. void bch_write_bdev_super(struct cached_dev *, struct closure *);
  983. extern struct workqueue_struct *bcache_wq, *bch_gc_wq;
  984. extern const char * const bch_cache_modes[];
  985. extern struct mutex bch_register_lock;
  986. extern struct list_head bch_cache_sets;
  987. extern struct kobj_type bch_cached_dev_ktype;
  988. extern struct kobj_type bch_flash_dev_ktype;
  989. extern struct kobj_type bch_cache_set_ktype;
  990. extern struct kobj_type bch_cache_set_internal_ktype;
  991. extern struct kobj_type bch_cache_ktype;
  992. void bch_cached_dev_release(struct kobject *);
  993. void bch_flash_dev_release(struct kobject *);
  994. void bch_cache_set_release(struct kobject *);
  995. void bch_cache_release(struct kobject *);
  996. int bch_uuid_write(struct cache_set *);
  997. void bcache_write_super(struct cache_set *);
  998. int bch_flash_dev_create(struct cache_set *c, uint64_t size);
  999. int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
  1000. void bch_cached_dev_detach(struct cached_dev *);
  1001. void bch_cached_dev_run(struct cached_dev *);
  1002. void bcache_device_stop(struct bcache_device *);
  1003. void bch_cache_set_unregister(struct cache_set *);
  1004. void bch_cache_set_stop(struct cache_set *);
  1005. struct cache_set *bch_cache_set_alloc(struct cache_sb *);
  1006. void bch_btree_cache_free(struct cache_set *);
  1007. int bch_btree_cache_alloc(struct cache_set *);
  1008. void bch_writeback_init_cached_dev(struct cached_dev *);
  1009. void bch_moving_init_cache_set(struct cache_set *);
  1010. void bch_cache_allocator_exit(struct cache *ca);
  1011. int bch_cache_allocator_init(struct cache *ca);
  1012. void bch_debug_exit(void);
  1013. int bch_debug_init(struct kobject *);
  1014. void bch_writeback_exit(void);
  1015. int bch_writeback_init(void);
  1016. void bch_request_exit(void);
  1017. int bch_request_init(void);
  1018. void bch_btree_exit(void);
  1019. int bch_btree_init(void);
  1020. #endif /* _BCACHE_H */