af_key.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_pid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. };
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. int err;
  123. if (!capable(CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. err = -ENOMEM;
  130. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  131. if (sk == NULL)
  132. goto out;
  133. sock->ops = &pfkey_ops;
  134. sock_init_data(sock, sk);
  135. sk->sk_family = PF_KEY;
  136. sk->sk_destruct = pfkey_sock_destruct;
  137. atomic_inc(&net_pfkey->socks_nr);
  138. pfkey_insert(sk);
  139. return 0;
  140. out:
  141. return err;
  142. }
  143. static int pfkey_release(struct socket *sock)
  144. {
  145. struct sock *sk = sock->sk;
  146. if (!sk)
  147. return 0;
  148. pfkey_remove(sk);
  149. sock_orphan(sk);
  150. sock->sk = NULL;
  151. skb_queue_purge(&sk->sk_write_queue);
  152. synchronize_rcu();
  153. sock_put(sk);
  154. return 0;
  155. }
  156. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  157. gfp_t allocation, struct sock *sk)
  158. {
  159. int err = -ENOBUFS;
  160. sock_hold(sk);
  161. if (*skb2 == NULL) {
  162. if (atomic_read(&skb->users) != 1) {
  163. *skb2 = skb_clone(skb, allocation);
  164. } else {
  165. *skb2 = skb;
  166. atomic_inc(&skb->users);
  167. }
  168. }
  169. if (*skb2 != NULL) {
  170. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  171. skb_orphan(*skb2);
  172. skb_set_owner_r(*skb2, sk);
  173. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  174. sk->sk_data_ready(sk, (*skb2)->len);
  175. *skb2 = NULL;
  176. err = 0;
  177. }
  178. }
  179. sock_put(sk);
  180. return err;
  181. }
  182. /* Send SKB to all pfkey sockets matching selected criteria. */
  183. #define BROADCAST_ALL 0
  184. #define BROADCAST_ONE 1
  185. #define BROADCAST_REGISTERED 2
  186. #define BROADCAST_PROMISC_ONLY 4
  187. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  188. int broadcast_flags, struct sock *one_sk,
  189. struct net *net)
  190. {
  191. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  192. struct sock *sk;
  193. struct hlist_node *node;
  194. struct sk_buff *skb2 = NULL;
  195. int err = -ESRCH;
  196. /* XXX Do we need something like netlink_overrun? I think
  197. * XXX PF_KEY socket apps will not mind current behavior.
  198. */
  199. if (!skb)
  200. return -ENOMEM;
  201. rcu_read_lock();
  202. sk_for_each_rcu(sk, node, &net_pfkey->table) {
  203. struct pfkey_sock *pfk = pfkey_sk(sk);
  204. int err2;
  205. /* Yes, it means that if you are meant to receive this
  206. * pfkey message you receive it twice as promiscuous
  207. * socket.
  208. */
  209. if (pfk->promisc)
  210. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  211. /* the exact target will be processed later */
  212. if (sk == one_sk)
  213. continue;
  214. if (broadcast_flags != BROADCAST_ALL) {
  215. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  216. continue;
  217. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  218. !pfk->registered)
  219. continue;
  220. if (broadcast_flags & BROADCAST_ONE)
  221. continue;
  222. }
  223. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  224. /* Error is cleare after succecful sending to at least one
  225. * registered KM */
  226. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  227. err = err2;
  228. }
  229. rcu_read_unlock();
  230. if (one_sk != NULL)
  231. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  232. kfree_skb(skb2);
  233. kfree_skb(skb);
  234. return err;
  235. }
  236. static int pfkey_do_dump(struct pfkey_sock *pfk)
  237. {
  238. struct sadb_msg *hdr;
  239. int rc;
  240. rc = pfk->dump.dump(pfk);
  241. if (rc == -ENOBUFS)
  242. return 0;
  243. if (pfk->dump.skb) {
  244. if (!pfkey_can_dump(&pfk->sk))
  245. return 0;
  246. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  247. hdr->sadb_msg_seq = 0;
  248. hdr->sadb_msg_errno = rc;
  249. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  250. &pfk->sk, sock_net(&pfk->sk));
  251. pfk->dump.skb = NULL;
  252. }
  253. pfkey_terminate_dump(pfk);
  254. return rc;
  255. }
  256. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  257. const struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  284. return 0;
  285. }
  286. static u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  313. };
  314. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  315. static int verify_address_len(const void *p)
  316. {
  317. const struct sadb_address *sp = p;
  318. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  319. const struct sockaddr_in *sin;
  320. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  321. const struct sockaddr_in6 *sin6;
  322. #endif
  323. int len;
  324. switch (addr->sa_family) {
  325. case AF_INET:
  326. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  327. if (sp->sadb_address_len != len ||
  328. sp->sadb_address_prefixlen > 32)
  329. return -EINVAL;
  330. break;
  331. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  332. case AF_INET6:
  333. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  334. if (sp->sadb_address_len != len ||
  335. sp->sadb_address_prefixlen > 128)
  336. return -EINVAL;
  337. break;
  338. #endif
  339. default:
  340. /* It is user using kernel to keep track of security
  341. * associations for another protocol, such as
  342. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  343. * lengths.
  344. *
  345. * XXX Actually, association/policy database is not yet
  346. * XXX able to cope with arbitrary sockaddr families.
  347. * XXX When it can, remove this -EINVAL. -DaveM
  348. */
  349. return -EINVAL;
  350. break;
  351. }
  352. return 0;
  353. }
  354. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  355. {
  356. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  357. sec_ctx->sadb_x_ctx_len,
  358. sizeof(uint64_t));
  359. }
  360. static inline int verify_sec_ctx_len(const void *p)
  361. {
  362. const struct sadb_x_sec_ctx *sec_ctx = p;
  363. int len = sec_ctx->sadb_x_ctx_len;
  364. if (len > PAGE_SIZE)
  365. return -EINVAL;
  366. len = pfkey_sec_ctx_len(sec_ctx);
  367. if (sec_ctx->sadb_x_sec_len != len)
  368. return -EINVAL;
  369. return 0;
  370. }
  371. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx)
  372. {
  373. struct xfrm_user_sec_ctx *uctx = NULL;
  374. int ctx_size = sec_ctx->sadb_x_ctx_len;
  375. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  376. if (!uctx)
  377. return NULL;
  378. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  379. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  380. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  381. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  382. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  383. memcpy(uctx + 1, sec_ctx + 1,
  384. uctx->ctx_len);
  385. return uctx;
  386. }
  387. static int present_and_same_family(const struct sadb_address *src,
  388. const struct sadb_address *dst)
  389. {
  390. const struct sockaddr *s_addr, *d_addr;
  391. if (!src || !dst)
  392. return 0;
  393. s_addr = (const struct sockaddr *)(src + 1);
  394. d_addr = (const struct sockaddr *)(dst + 1);
  395. if (s_addr->sa_family != d_addr->sa_family)
  396. return 0;
  397. if (s_addr->sa_family != AF_INET
  398. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  399. && s_addr->sa_family != AF_INET6
  400. #endif
  401. )
  402. return 0;
  403. return 1;
  404. }
  405. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  406. {
  407. const char *p = (char *) hdr;
  408. int len = skb->len;
  409. len -= sizeof(*hdr);
  410. p += sizeof(*hdr);
  411. while (len > 0) {
  412. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  413. uint16_t ext_type;
  414. int ext_len;
  415. ext_len = ehdr->sadb_ext_len;
  416. ext_len *= sizeof(uint64_t);
  417. ext_type = ehdr->sadb_ext_type;
  418. if (ext_len < sizeof(uint64_t) ||
  419. ext_len > len ||
  420. ext_type == SADB_EXT_RESERVED)
  421. return -EINVAL;
  422. if (ext_type <= SADB_EXT_MAX) {
  423. int min = (int) sadb_ext_min_len[ext_type];
  424. if (ext_len < min)
  425. return -EINVAL;
  426. if (ext_hdrs[ext_type-1] != NULL)
  427. return -EINVAL;
  428. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  429. ext_type == SADB_EXT_ADDRESS_DST ||
  430. ext_type == SADB_EXT_ADDRESS_PROXY ||
  431. ext_type == SADB_X_EXT_NAT_T_OA) {
  432. if (verify_address_len(p))
  433. return -EINVAL;
  434. }
  435. if (ext_type == SADB_X_EXT_SEC_CTX) {
  436. if (verify_sec_ctx_len(p))
  437. return -EINVAL;
  438. }
  439. ext_hdrs[ext_type-1] = (void *) p;
  440. }
  441. p += ext_len;
  442. len -= ext_len;
  443. }
  444. return 0;
  445. }
  446. static uint16_t
  447. pfkey_satype2proto(uint8_t satype)
  448. {
  449. switch (satype) {
  450. case SADB_SATYPE_UNSPEC:
  451. return IPSEC_PROTO_ANY;
  452. case SADB_SATYPE_AH:
  453. return IPPROTO_AH;
  454. case SADB_SATYPE_ESP:
  455. return IPPROTO_ESP;
  456. case SADB_X_SATYPE_IPCOMP:
  457. return IPPROTO_COMP;
  458. break;
  459. default:
  460. return 0;
  461. }
  462. /* NOTREACHED */
  463. }
  464. static uint8_t
  465. pfkey_proto2satype(uint16_t proto)
  466. {
  467. switch (proto) {
  468. case IPPROTO_AH:
  469. return SADB_SATYPE_AH;
  470. case IPPROTO_ESP:
  471. return SADB_SATYPE_ESP;
  472. case IPPROTO_COMP:
  473. return SADB_X_SATYPE_IPCOMP;
  474. break;
  475. default:
  476. return 0;
  477. }
  478. /* NOTREACHED */
  479. }
  480. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  481. * say specifically 'just raw sockets' as we encode them as 255.
  482. */
  483. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  484. {
  485. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  486. }
  487. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  488. {
  489. return proto ? proto : IPSEC_PROTO_ANY;
  490. }
  491. static inline int pfkey_sockaddr_len(sa_family_t family)
  492. {
  493. switch (family) {
  494. case AF_INET:
  495. return sizeof(struct sockaddr_in);
  496. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  497. case AF_INET6:
  498. return sizeof(struct sockaddr_in6);
  499. #endif
  500. }
  501. return 0;
  502. }
  503. static
  504. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  505. {
  506. switch (sa->sa_family) {
  507. case AF_INET:
  508. xaddr->a4 =
  509. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  510. return AF_INET;
  511. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  512. case AF_INET6:
  513. memcpy(xaddr->a6,
  514. &((struct sockaddr_in6 *)sa)->sin6_addr,
  515. sizeof(struct in6_addr));
  516. return AF_INET6;
  517. #endif
  518. }
  519. return 0;
  520. }
  521. static
  522. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  523. {
  524. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  525. xaddr);
  526. }
  527. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  528. {
  529. const struct sadb_sa *sa;
  530. const struct sadb_address *addr;
  531. uint16_t proto;
  532. unsigned short family;
  533. xfrm_address_t *xaddr;
  534. sa = ext_hdrs[SADB_EXT_SA - 1];
  535. if (sa == NULL)
  536. return NULL;
  537. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  538. if (proto == 0)
  539. return NULL;
  540. /* sadb_address_len should be checked by caller */
  541. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  542. if (addr == NULL)
  543. return NULL;
  544. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  545. switch (family) {
  546. case AF_INET:
  547. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  548. break;
  549. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  550. case AF_INET6:
  551. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  552. break;
  553. #endif
  554. default:
  555. xaddr = NULL;
  556. }
  557. if (!xaddr)
  558. return NULL;
  559. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  560. }
  561. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  562. static int
  563. pfkey_sockaddr_size(sa_family_t family)
  564. {
  565. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  566. }
  567. static inline int pfkey_mode_from_xfrm(int mode)
  568. {
  569. switch(mode) {
  570. case XFRM_MODE_TRANSPORT:
  571. return IPSEC_MODE_TRANSPORT;
  572. case XFRM_MODE_TUNNEL:
  573. return IPSEC_MODE_TUNNEL;
  574. case XFRM_MODE_BEET:
  575. return IPSEC_MODE_BEET;
  576. default:
  577. return -1;
  578. }
  579. }
  580. static inline int pfkey_mode_to_xfrm(int mode)
  581. {
  582. switch(mode) {
  583. case IPSEC_MODE_ANY: /*XXX*/
  584. case IPSEC_MODE_TRANSPORT:
  585. return XFRM_MODE_TRANSPORT;
  586. case IPSEC_MODE_TUNNEL:
  587. return XFRM_MODE_TUNNEL;
  588. case IPSEC_MODE_BEET:
  589. return XFRM_MODE_BEET;
  590. default:
  591. return -1;
  592. }
  593. }
  594. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  595. struct sockaddr *sa,
  596. unsigned short family)
  597. {
  598. switch (family) {
  599. case AF_INET:
  600. {
  601. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  602. sin->sin_family = AF_INET;
  603. sin->sin_port = port;
  604. sin->sin_addr.s_addr = xaddr->a4;
  605. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  606. return 32;
  607. }
  608. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  609. case AF_INET6:
  610. {
  611. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  612. sin6->sin6_family = AF_INET6;
  613. sin6->sin6_port = port;
  614. sin6->sin6_flowinfo = 0;
  615. ipv6_addr_copy(&sin6->sin6_addr, (const struct in6_addr *)xaddr->a6);
  616. sin6->sin6_scope_id = 0;
  617. return 128;
  618. }
  619. #endif
  620. }
  621. return 0;
  622. }
  623. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  624. int add_keys, int hsc)
  625. {
  626. struct sk_buff *skb;
  627. struct sadb_msg *hdr;
  628. struct sadb_sa *sa;
  629. struct sadb_lifetime *lifetime;
  630. struct sadb_address *addr;
  631. struct sadb_key *key;
  632. struct sadb_x_sa2 *sa2;
  633. struct sadb_x_sec_ctx *sec_ctx;
  634. struct xfrm_sec_ctx *xfrm_ctx;
  635. int ctx_size = 0;
  636. int size;
  637. int auth_key_size = 0;
  638. int encrypt_key_size = 0;
  639. int sockaddr_size;
  640. struct xfrm_encap_tmpl *natt = NULL;
  641. int mode;
  642. /* address family check */
  643. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  644. if (!sockaddr_size)
  645. return ERR_PTR(-EINVAL);
  646. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  647. key(AE), (identity(SD),) (sensitivity)> */
  648. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  649. sizeof(struct sadb_lifetime) +
  650. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  651. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  652. sizeof(struct sadb_address)*2 +
  653. sockaddr_size*2 +
  654. sizeof(struct sadb_x_sa2);
  655. if ((xfrm_ctx = x->security)) {
  656. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  657. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  658. }
  659. /* identity & sensitivity */
  660. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  661. size += sizeof(struct sadb_address) + sockaddr_size;
  662. if (add_keys) {
  663. if (x->aalg && x->aalg->alg_key_len) {
  664. auth_key_size =
  665. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  666. size += sizeof(struct sadb_key) + auth_key_size;
  667. }
  668. if (x->ealg && x->ealg->alg_key_len) {
  669. encrypt_key_size =
  670. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  671. size += sizeof(struct sadb_key) + encrypt_key_size;
  672. }
  673. }
  674. if (x->encap)
  675. natt = x->encap;
  676. if (natt && natt->encap_type) {
  677. size += sizeof(struct sadb_x_nat_t_type);
  678. size += sizeof(struct sadb_x_nat_t_port);
  679. size += sizeof(struct sadb_x_nat_t_port);
  680. }
  681. skb = alloc_skb(size + 16, GFP_ATOMIC);
  682. if (skb == NULL)
  683. return ERR_PTR(-ENOBUFS);
  684. /* call should fill header later */
  685. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  686. memset(hdr, 0, size); /* XXX do we need this ? */
  687. hdr->sadb_msg_len = size / sizeof(uint64_t);
  688. /* sa */
  689. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  690. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  691. sa->sadb_sa_exttype = SADB_EXT_SA;
  692. sa->sadb_sa_spi = x->id.spi;
  693. sa->sadb_sa_replay = x->props.replay_window;
  694. switch (x->km.state) {
  695. case XFRM_STATE_VALID:
  696. sa->sadb_sa_state = x->km.dying ?
  697. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  698. break;
  699. case XFRM_STATE_ACQ:
  700. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  701. break;
  702. default:
  703. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  704. break;
  705. }
  706. sa->sadb_sa_auth = 0;
  707. if (x->aalg) {
  708. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  709. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  710. }
  711. sa->sadb_sa_encrypt = 0;
  712. BUG_ON(x->ealg && x->calg);
  713. if (x->ealg) {
  714. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  715. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  716. }
  717. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  718. if (x->calg) {
  719. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  720. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  721. }
  722. sa->sadb_sa_flags = 0;
  723. if (x->props.flags & XFRM_STATE_NOECN)
  724. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  725. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  726. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  727. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  728. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  729. /* hard time */
  730. if (hsc & 2) {
  731. lifetime = (struct sadb_lifetime *) skb_put(skb,
  732. sizeof(struct sadb_lifetime));
  733. lifetime->sadb_lifetime_len =
  734. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  735. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  736. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  737. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  738. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  739. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  740. }
  741. /* soft time */
  742. if (hsc & 1) {
  743. lifetime = (struct sadb_lifetime *) skb_put(skb,
  744. sizeof(struct sadb_lifetime));
  745. lifetime->sadb_lifetime_len =
  746. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  747. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  748. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  749. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  750. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  751. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  752. }
  753. /* current time */
  754. lifetime = (struct sadb_lifetime *) skb_put(skb,
  755. sizeof(struct sadb_lifetime));
  756. lifetime->sadb_lifetime_len =
  757. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  758. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  759. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  760. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  761. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  762. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  763. /* src address */
  764. addr = (struct sadb_address*) skb_put(skb,
  765. sizeof(struct sadb_address)+sockaddr_size);
  766. addr->sadb_address_len =
  767. (sizeof(struct sadb_address)+sockaddr_size)/
  768. sizeof(uint64_t);
  769. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  770. /* "if the ports are non-zero, then the sadb_address_proto field,
  771. normally zero, MUST be filled in with the transport
  772. protocol's number." - RFC2367 */
  773. addr->sadb_address_proto = 0;
  774. addr->sadb_address_reserved = 0;
  775. addr->sadb_address_prefixlen =
  776. pfkey_sockaddr_fill(&x->props.saddr, 0,
  777. (struct sockaddr *) (addr + 1),
  778. x->props.family);
  779. if (!addr->sadb_address_prefixlen)
  780. BUG();
  781. /* dst address */
  782. addr = (struct sadb_address*) skb_put(skb,
  783. sizeof(struct sadb_address)+sockaddr_size);
  784. addr->sadb_address_len =
  785. (sizeof(struct sadb_address)+sockaddr_size)/
  786. sizeof(uint64_t);
  787. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  788. addr->sadb_address_proto = 0;
  789. addr->sadb_address_reserved = 0;
  790. addr->sadb_address_prefixlen =
  791. pfkey_sockaddr_fill(&x->id.daddr, 0,
  792. (struct sockaddr *) (addr + 1),
  793. x->props.family);
  794. if (!addr->sadb_address_prefixlen)
  795. BUG();
  796. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  797. x->props.family)) {
  798. addr = (struct sadb_address*) skb_put(skb,
  799. sizeof(struct sadb_address)+sockaddr_size);
  800. addr->sadb_address_len =
  801. (sizeof(struct sadb_address)+sockaddr_size)/
  802. sizeof(uint64_t);
  803. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  804. addr->sadb_address_proto =
  805. pfkey_proto_from_xfrm(x->sel.proto);
  806. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  807. addr->sadb_address_reserved = 0;
  808. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  809. (struct sockaddr *) (addr + 1),
  810. x->props.family);
  811. }
  812. /* auth key */
  813. if (add_keys && auth_key_size) {
  814. key = (struct sadb_key *) skb_put(skb,
  815. sizeof(struct sadb_key)+auth_key_size);
  816. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  817. sizeof(uint64_t);
  818. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  819. key->sadb_key_bits = x->aalg->alg_key_len;
  820. key->sadb_key_reserved = 0;
  821. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  822. }
  823. /* encrypt key */
  824. if (add_keys && encrypt_key_size) {
  825. key = (struct sadb_key *) skb_put(skb,
  826. sizeof(struct sadb_key)+encrypt_key_size);
  827. key->sadb_key_len = (sizeof(struct sadb_key) +
  828. encrypt_key_size) / sizeof(uint64_t);
  829. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  830. key->sadb_key_bits = x->ealg->alg_key_len;
  831. key->sadb_key_reserved = 0;
  832. memcpy(key + 1, x->ealg->alg_key,
  833. (x->ealg->alg_key_len+7)/8);
  834. }
  835. /* sa */
  836. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  837. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  838. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  839. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  840. kfree_skb(skb);
  841. return ERR_PTR(-EINVAL);
  842. }
  843. sa2->sadb_x_sa2_mode = mode;
  844. sa2->sadb_x_sa2_reserved1 = 0;
  845. sa2->sadb_x_sa2_reserved2 = 0;
  846. sa2->sadb_x_sa2_sequence = 0;
  847. sa2->sadb_x_sa2_reqid = x->props.reqid;
  848. if (natt && natt->encap_type) {
  849. struct sadb_x_nat_t_type *n_type;
  850. struct sadb_x_nat_t_port *n_port;
  851. /* type */
  852. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  853. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  854. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  855. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  856. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  857. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  858. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  859. /* source port */
  860. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  861. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  862. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  863. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  864. n_port->sadb_x_nat_t_port_reserved = 0;
  865. /* dest port */
  866. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  867. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  868. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  869. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  870. n_port->sadb_x_nat_t_port_reserved = 0;
  871. }
  872. /* security context */
  873. if (xfrm_ctx) {
  874. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  875. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  876. sec_ctx->sadb_x_sec_len =
  877. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  878. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  879. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  880. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  881. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  882. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  883. xfrm_ctx->ctx_len);
  884. }
  885. return skb;
  886. }
  887. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  888. {
  889. struct sk_buff *skb;
  890. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  891. return skb;
  892. }
  893. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  894. int hsc)
  895. {
  896. return __pfkey_xfrm_state2msg(x, 0, hsc);
  897. }
  898. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  899. const struct sadb_msg *hdr,
  900. void * const *ext_hdrs)
  901. {
  902. struct xfrm_state *x;
  903. const struct sadb_lifetime *lifetime;
  904. const struct sadb_sa *sa;
  905. const struct sadb_key *key;
  906. const struct sadb_x_sec_ctx *sec_ctx;
  907. uint16_t proto;
  908. int err;
  909. sa = ext_hdrs[SADB_EXT_SA - 1];
  910. if (!sa ||
  911. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  912. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  913. return ERR_PTR(-EINVAL);
  914. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  915. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  916. return ERR_PTR(-EINVAL);
  917. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  918. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  919. return ERR_PTR(-EINVAL);
  920. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  921. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  922. return ERR_PTR(-EINVAL);
  923. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  924. if (proto == 0)
  925. return ERR_PTR(-EINVAL);
  926. /* default error is no buffer space */
  927. err = -ENOBUFS;
  928. /* RFC2367:
  929. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  930. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  931. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  932. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  933. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  934. not true.
  935. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  936. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  937. */
  938. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  939. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  940. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  941. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  942. return ERR_PTR(-EINVAL);
  943. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  944. if (key != NULL &&
  945. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  946. ((key->sadb_key_bits+7) / 8 == 0 ||
  947. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  948. return ERR_PTR(-EINVAL);
  949. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  950. if (key != NULL &&
  951. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  952. ((key->sadb_key_bits+7) / 8 == 0 ||
  953. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  954. return ERR_PTR(-EINVAL);
  955. x = xfrm_state_alloc(net);
  956. if (x == NULL)
  957. return ERR_PTR(-ENOBUFS);
  958. x->id.proto = proto;
  959. x->id.spi = sa->sadb_sa_spi;
  960. x->props.replay_window = sa->sadb_sa_replay;
  961. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  962. x->props.flags |= XFRM_STATE_NOECN;
  963. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  964. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  965. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  966. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  967. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  968. if (lifetime != NULL) {
  969. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  970. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  971. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  972. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  973. }
  974. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  975. if (lifetime != NULL) {
  976. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  977. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  978. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  979. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  980. }
  981. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  982. if (sec_ctx != NULL) {
  983. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  984. if (!uctx)
  985. goto out;
  986. err = security_xfrm_state_alloc(x, uctx);
  987. kfree(uctx);
  988. if (err)
  989. goto out;
  990. }
  991. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  992. if (sa->sadb_sa_auth) {
  993. int keysize = 0;
  994. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  995. if (!a) {
  996. err = -ENOSYS;
  997. goto out;
  998. }
  999. if (key)
  1000. keysize = (key->sadb_key_bits + 7) / 8;
  1001. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1002. if (!x->aalg)
  1003. goto out;
  1004. strcpy(x->aalg->alg_name, a->name);
  1005. x->aalg->alg_key_len = 0;
  1006. if (key) {
  1007. x->aalg->alg_key_len = key->sadb_key_bits;
  1008. memcpy(x->aalg->alg_key, key+1, keysize);
  1009. }
  1010. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1011. x->props.aalgo = sa->sadb_sa_auth;
  1012. /* x->algo.flags = sa->sadb_sa_flags; */
  1013. }
  1014. if (sa->sadb_sa_encrypt) {
  1015. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1016. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1017. if (!a) {
  1018. err = -ENOSYS;
  1019. goto out;
  1020. }
  1021. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1022. if (!x->calg)
  1023. goto out;
  1024. strcpy(x->calg->alg_name, a->name);
  1025. x->props.calgo = sa->sadb_sa_encrypt;
  1026. } else {
  1027. int keysize = 0;
  1028. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1029. if (!a) {
  1030. err = -ENOSYS;
  1031. goto out;
  1032. }
  1033. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1034. if (key)
  1035. keysize = (key->sadb_key_bits + 7) / 8;
  1036. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1037. if (!x->ealg)
  1038. goto out;
  1039. strcpy(x->ealg->alg_name, a->name);
  1040. x->ealg->alg_key_len = 0;
  1041. if (key) {
  1042. x->ealg->alg_key_len = key->sadb_key_bits;
  1043. memcpy(x->ealg->alg_key, key+1, keysize);
  1044. }
  1045. x->props.ealgo = sa->sadb_sa_encrypt;
  1046. }
  1047. }
  1048. /* x->algo.flags = sa->sadb_sa_flags; */
  1049. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1050. &x->props.saddr);
  1051. if (!x->props.family) {
  1052. err = -EAFNOSUPPORT;
  1053. goto out;
  1054. }
  1055. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1056. &x->id.daddr);
  1057. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1058. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1059. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1060. if (mode < 0) {
  1061. err = -EINVAL;
  1062. goto out;
  1063. }
  1064. x->props.mode = mode;
  1065. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1066. }
  1067. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1068. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1069. /* Nobody uses this, but we try. */
  1070. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1071. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1072. }
  1073. if (!x->sel.family)
  1074. x->sel.family = x->props.family;
  1075. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1076. const struct sadb_x_nat_t_type* n_type;
  1077. struct xfrm_encap_tmpl *natt;
  1078. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1079. if (!x->encap)
  1080. goto out;
  1081. natt = x->encap;
  1082. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1083. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1084. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1085. const struct sadb_x_nat_t_port *n_port =
  1086. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1087. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1088. }
  1089. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1090. const struct sadb_x_nat_t_port *n_port =
  1091. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1092. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1093. }
  1094. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1095. }
  1096. err = xfrm_init_state(x);
  1097. if (err)
  1098. goto out;
  1099. x->km.seq = hdr->sadb_msg_seq;
  1100. return x;
  1101. out:
  1102. x->km.state = XFRM_STATE_DEAD;
  1103. xfrm_state_put(x);
  1104. return ERR_PTR(err);
  1105. }
  1106. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1107. {
  1108. return -EOPNOTSUPP;
  1109. }
  1110. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1111. {
  1112. struct net *net = sock_net(sk);
  1113. struct sk_buff *resp_skb;
  1114. struct sadb_x_sa2 *sa2;
  1115. struct sadb_address *saddr, *daddr;
  1116. struct sadb_msg *out_hdr;
  1117. struct sadb_spirange *range;
  1118. struct xfrm_state *x = NULL;
  1119. int mode;
  1120. int err;
  1121. u32 min_spi, max_spi;
  1122. u32 reqid;
  1123. u8 proto;
  1124. unsigned short family;
  1125. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1126. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1127. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1128. return -EINVAL;
  1129. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1130. if (proto == 0)
  1131. return -EINVAL;
  1132. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1133. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1134. if (mode < 0)
  1135. return -EINVAL;
  1136. reqid = sa2->sadb_x_sa2_reqid;
  1137. } else {
  1138. mode = 0;
  1139. reqid = 0;
  1140. }
  1141. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1142. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1143. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1144. switch (family) {
  1145. case AF_INET:
  1146. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1147. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1148. break;
  1149. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1150. case AF_INET6:
  1151. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1152. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1153. break;
  1154. #endif
  1155. }
  1156. if (hdr->sadb_msg_seq) {
  1157. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1158. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1159. xfrm_state_put(x);
  1160. x = NULL;
  1161. }
  1162. }
  1163. if (!x)
  1164. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1165. if (x == NULL)
  1166. return -ENOENT;
  1167. min_spi = 0x100;
  1168. max_spi = 0x0fffffff;
  1169. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1170. if (range) {
  1171. min_spi = range->sadb_spirange_min;
  1172. max_spi = range->sadb_spirange_max;
  1173. }
  1174. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1175. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1176. if (IS_ERR(resp_skb)) {
  1177. xfrm_state_put(x);
  1178. return PTR_ERR(resp_skb);
  1179. }
  1180. out_hdr = (struct sadb_msg *) resp_skb->data;
  1181. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1182. out_hdr->sadb_msg_type = SADB_GETSPI;
  1183. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1184. out_hdr->sadb_msg_errno = 0;
  1185. out_hdr->sadb_msg_reserved = 0;
  1186. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1187. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1188. xfrm_state_put(x);
  1189. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1190. return 0;
  1191. }
  1192. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1193. {
  1194. struct net *net = sock_net(sk);
  1195. struct xfrm_state *x;
  1196. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1197. return -EOPNOTSUPP;
  1198. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1199. return 0;
  1200. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1201. if (x == NULL)
  1202. return 0;
  1203. spin_lock_bh(&x->lock);
  1204. if (x->km.state == XFRM_STATE_ACQ) {
  1205. x->km.state = XFRM_STATE_ERROR;
  1206. wake_up(&net->xfrm.km_waitq);
  1207. }
  1208. spin_unlock_bh(&x->lock);
  1209. xfrm_state_put(x);
  1210. return 0;
  1211. }
  1212. static inline int event2poltype(int event)
  1213. {
  1214. switch (event) {
  1215. case XFRM_MSG_DELPOLICY:
  1216. return SADB_X_SPDDELETE;
  1217. case XFRM_MSG_NEWPOLICY:
  1218. return SADB_X_SPDADD;
  1219. case XFRM_MSG_UPDPOLICY:
  1220. return SADB_X_SPDUPDATE;
  1221. case XFRM_MSG_POLEXPIRE:
  1222. // return SADB_X_SPDEXPIRE;
  1223. default:
  1224. pr_err("pfkey: Unknown policy event %d\n", event);
  1225. break;
  1226. }
  1227. return 0;
  1228. }
  1229. static inline int event2keytype(int event)
  1230. {
  1231. switch (event) {
  1232. case XFRM_MSG_DELSA:
  1233. return SADB_DELETE;
  1234. case XFRM_MSG_NEWSA:
  1235. return SADB_ADD;
  1236. case XFRM_MSG_UPDSA:
  1237. return SADB_UPDATE;
  1238. case XFRM_MSG_EXPIRE:
  1239. return SADB_EXPIRE;
  1240. default:
  1241. pr_err("pfkey: Unknown SA event %d\n", event);
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. /* ADD/UPD/DEL */
  1247. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1248. {
  1249. struct sk_buff *skb;
  1250. struct sadb_msg *hdr;
  1251. skb = pfkey_xfrm_state2msg(x);
  1252. if (IS_ERR(skb))
  1253. return PTR_ERR(skb);
  1254. hdr = (struct sadb_msg *) skb->data;
  1255. hdr->sadb_msg_version = PF_KEY_V2;
  1256. hdr->sadb_msg_type = event2keytype(c->event);
  1257. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1258. hdr->sadb_msg_errno = 0;
  1259. hdr->sadb_msg_reserved = 0;
  1260. hdr->sadb_msg_seq = c->seq;
  1261. hdr->sadb_msg_pid = c->pid;
  1262. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1263. return 0;
  1264. }
  1265. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1266. {
  1267. struct net *net = sock_net(sk);
  1268. struct xfrm_state *x;
  1269. int err;
  1270. struct km_event c;
  1271. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1272. if (IS_ERR(x))
  1273. return PTR_ERR(x);
  1274. xfrm_state_hold(x);
  1275. if (hdr->sadb_msg_type == SADB_ADD)
  1276. err = xfrm_state_add(x);
  1277. else
  1278. err = xfrm_state_update(x);
  1279. xfrm_audit_state_add(x, err ? 0 : 1,
  1280. audit_get_loginuid(current),
  1281. audit_get_sessionid(current), 0);
  1282. if (err < 0) {
  1283. x->km.state = XFRM_STATE_DEAD;
  1284. __xfrm_state_put(x);
  1285. goto out;
  1286. }
  1287. if (hdr->sadb_msg_type == SADB_ADD)
  1288. c.event = XFRM_MSG_NEWSA;
  1289. else
  1290. c.event = XFRM_MSG_UPDSA;
  1291. c.seq = hdr->sadb_msg_seq;
  1292. c.pid = hdr->sadb_msg_pid;
  1293. km_state_notify(x, &c);
  1294. out:
  1295. xfrm_state_put(x);
  1296. return err;
  1297. }
  1298. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1299. {
  1300. struct net *net = sock_net(sk);
  1301. struct xfrm_state *x;
  1302. struct km_event c;
  1303. int err;
  1304. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1305. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1306. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1307. return -EINVAL;
  1308. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1309. if (x == NULL)
  1310. return -ESRCH;
  1311. if ((err = security_xfrm_state_delete(x)))
  1312. goto out;
  1313. if (xfrm_state_kern(x)) {
  1314. err = -EPERM;
  1315. goto out;
  1316. }
  1317. err = xfrm_state_delete(x);
  1318. if (err < 0)
  1319. goto out;
  1320. c.seq = hdr->sadb_msg_seq;
  1321. c.pid = hdr->sadb_msg_pid;
  1322. c.event = XFRM_MSG_DELSA;
  1323. km_state_notify(x, &c);
  1324. out:
  1325. xfrm_audit_state_delete(x, err ? 0 : 1,
  1326. audit_get_loginuid(current),
  1327. audit_get_sessionid(current), 0);
  1328. xfrm_state_put(x);
  1329. return err;
  1330. }
  1331. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1332. {
  1333. struct net *net = sock_net(sk);
  1334. __u8 proto;
  1335. struct sk_buff *out_skb;
  1336. struct sadb_msg *out_hdr;
  1337. struct xfrm_state *x;
  1338. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1339. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1340. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1341. return -EINVAL;
  1342. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1343. if (x == NULL)
  1344. return -ESRCH;
  1345. out_skb = pfkey_xfrm_state2msg(x);
  1346. proto = x->id.proto;
  1347. xfrm_state_put(x);
  1348. if (IS_ERR(out_skb))
  1349. return PTR_ERR(out_skb);
  1350. out_hdr = (struct sadb_msg *) out_skb->data;
  1351. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1352. out_hdr->sadb_msg_type = SADB_GET;
  1353. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1354. out_hdr->sadb_msg_errno = 0;
  1355. out_hdr->sadb_msg_reserved = 0;
  1356. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1357. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1358. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1359. return 0;
  1360. }
  1361. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1362. gfp_t allocation)
  1363. {
  1364. struct sk_buff *skb;
  1365. struct sadb_msg *hdr;
  1366. int len, auth_len, enc_len, i;
  1367. auth_len = xfrm_count_auth_supported();
  1368. if (auth_len) {
  1369. auth_len *= sizeof(struct sadb_alg);
  1370. auth_len += sizeof(struct sadb_supported);
  1371. }
  1372. enc_len = xfrm_count_enc_supported();
  1373. if (enc_len) {
  1374. enc_len *= sizeof(struct sadb_alg);
  1375. enc_len += sizeof(struct sadb_supported);
  1376. }
  1377. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1378. skb = alloc_skb(len + 16, allocation);
  1379. if (!skb)
  1380. goto out_put_algs;
  1381. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1382. pfkey_hdr_dup(hdr, orig);
  1383. hdr->sadb_msg_errno = 0;
  1384. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1385. if (auth_len) {
  1386. struct sadb_supported *sp;
  1387. struct sadb_alg *ap;
  1388. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1389. ap = (struct sadb_alg *) (sp + 1);
  1390. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1391. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1392. for (i = 0; ; i++) {
  1393. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1394. if (!aalg)
  1395. break;
  1396. if (aalg->available)
  1397. *ap++ = aalg->desc;
  1398. }
  1399. }
  1400. if (enc_len) {
  1401. struct sadb_supported *sp;
  1402. struct sadb_alg *ap;
  1403. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1404. ap = (struct sadb_alg *) (sp + 1);
  1405. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1406. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1407. for (i = 0; ; i++) {
  1408. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1409. if (!ealg)
  1410. break;
  1411. if (ealg->available)
  1412. *ap++ = ealg->desc;
  1413. }
  1414. }
  1415. out_put_algs:
  1416. return skb;
  1417. }
  1418. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1419. {
  1420. struct pfkey_sock *pfk = pfkey_sk(sk);
  1421. struct sk_buff *supp_skb;
  1422. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1423. return -EINVAL;
  1424. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1425. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1426. return -EEXIST;
  1427. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1428. }
  1429. xfrm_probe_algs();
  1430. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1431. if (!supp_skb) {
  1432. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1433. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1434. return -ENOBUFS;
  1435. }
  1436. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1437. return 0;
  1438. }
  1439. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1440. {
  1441. struct sk_buff *skb;
  1442. struct sadb_msg *hdr;
  1443. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1444. if (!skb)
  1445. return -ENOBUFS;
  1446. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1447. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1448. hdr->sadb_msg_errno = (uint8_t) 0;
  1449. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1450. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1451. }
  1452. static int key_notify_sa_flush(const struct km_event *c)
  1453. {
  1454. struct sk_buff *skb;
  1455. struct sadb_msg *hdr;
  1456. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1457. if (!skb)
  1458. return -ENOBUFS;
  1459. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1460. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1461. hdr->sadb_msg_type = SADB_FLUSH;
  1462. hdr->sadb_msg_seq = c->seq;
  1463. hdr->sadb_msg_pid = c->pid;
  1464. hdr->sadb_msg_version = PF_KEY_V2;
  1465. hdr->sadb_msg_errno = (uint8_t) 0;
  1466. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1467. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1468. return 0;
  1469. }
  1470. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1471. {
  1472. struct net *net = sock_net(sk);
  1473. unsigned proto;
  1474. struct km_event c;
  1475. struct xfrm_audit audit_info;
  1476. int err, err2;
  1477. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1478. if (proto == 0)
  1479. return -EINVAL;
  1480. audit_info.loginuid = audit_get_loginuid(current);
  1481. audit_info.sessionid = audit_get_sessionid(current);
  1482. audit_info.secid = 0;
  1483. err = xfrm_state_flush(net, proto, &audit_info);
  1484. err2 = unicast_flush_resp(sk, hdr);
  1485. if (err || err2) {
  1486. if (err == -ESRCH) /* empty table - go quietly */
  1487. err = 0;
  1488. return err ? err : err2;
  1489. }
  1490. c.data.proto = proto;
  1491. c.seq = hdr->sadb_msg_seq;
  1492. c.pid = hdr->sadb_msg_pid;
  1493. c.event = XFRM_MSG_FLUSHSA;
  1494. c.net = net;
  1495. km_state_notify(NULL, &c);
  1496. return 0;
  1497. }
  1498. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1499. {
  1500. struct pfkey_sock *pfk = ptr;
  1501. struct sk_buff *out_skb;
  1502. struct sadb_msg *out_hdr;
  1503. if (!pfkey_can_dump(&pfk->sk))
  1504. return -ENOBUFS;
  1505. out_skb = pfkey_xfrm_state2msg(x);
  1506. if (IS_ERR(out_skb))
  1507. return PTR_ERR(out_skb);
  1508. out_hdr = (struct sadb_msg *) out_skb->data;
  1509. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1510. out_hdr->sadb_msg_type = SADB_DUMP;
  1511. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1512. out_hdr->sadb_msg_errno = 0;
  1513. out_hdr->sadb_msg_reserved = 0;
  1514. out_hdr->sadb_msg_seq = count + 1;
  1515. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1516. if (pfk->dump.skb)
  1517. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1518. &pfk->sk, sock_net(&pfk->sk));
  1519. pfk->dump.skb = out_skb;
  1520. return 0;
  1521. }
  1522. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1523. {
  1524. struct net *net = sock_net(&pfk->sk);
  1525. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1526. }
  1527. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1528. {
  1529. xfrm_state_walk_done(&pfk->dump.u.state);
  1530. }
  1531. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1532. {
  1533. u8 proto;
  1534. struct pfkey_sock *pfk = pfkey_sk(sk);
  1535. if (pfk->dump.dump != NULL)
  1536. return -EBUSY;
  1537. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1538. if (proto == 0)
  1539. return -EINVAL;
  1540. pfk->dump.msg_version = hdr->sadb_msg_version;
  1541. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1542. pfk->dump.dump = pfkey_dump_sa;
  1543. pfk->dump.done = pfkey_dump_sa_done;
  1544. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1545. return pfkey_do_dump(pfk);
  1546. }
  1547. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1548. {
  1549. struct pfkey_sock *pfk = pfkey_sk(sk);
  1550. int satype = hdr->sadb_msg_satype;
  1551. bool reset_errno = false;
  1552. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1553. reset_errno = true;
  1554. if (satype != 0 && satype != 1)
  1555. return -EINVAL;
  1556. pfk->promisc = satype;
  1557. }
  1558. if (reset_errno && skb_cloned(skb))
  1559. skb = skb_copy(skb, GFP_KERNEL);
  1560. else
  1561. skb = skb_clone(skb, GFP_KERNEL);
  1562. if (reset_errno && skb) {
  1563. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1564. new_hdr->sadb_msg_errno = 0;
  1565. }
  1566. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1567. return 0;
  1568. }
  1569. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1570. {
  1571. int i;
  1572. u32 reqid = *(u32*)ptr;
  1573. for (i=0; i<xp->xfrm_nr; i++) {
  1574. if (xp->xfrm_vec[i].reqid == reqid)
  1575. return -EEXIST;
  1576. }
  1577. return 0;
  1578. }
  1579. static u32 gen_reqid(struct net *net)
  1580. {
  1581. struct xfrm_policy_walk walk;
  1582. u32 start;
  1583. int rc;
  1584. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1585. start = reqid;
  1586. do {
  1587. ++reqid;
  1588. if (reqid == 0)
  1589. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1590. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1591. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1592. xfrm_policy_walk_done(&walk);
  1593. if (rc != -EEXIST)
  1594. return reqid;
  1595. } while (reqid != start);
  1596. return 0;
  1597. }
  1598. static int
  1599. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1600. {
  1601. struct net *net = xp_net(xp);
  1602. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1603. int mode;
  1604. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1605. return -ELOOP;
  1606. if (rq->sadb_x_ipsecrequest_mode == 0)
  1607. return -EINVAL;
  1608. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1609. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1610. return -EINVAL;
  1611. t->mode = mode;
  1612. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1613. t->optional = 1;
  1614. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1615. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1616. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1617. t->reqid = 0;
  1618. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1619. return -ENOBUFS;
  1620. }
  1621. /* addresses present only in tunnel mode */
  1622. if (t->mode == XFRM_MODE_TUNNEL) {
  1623. u8 *sa = (u8 *) (rq + 1);
  1624. int family, socklen;
  1625. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1626. &t->saddr);
  1627. if (!family)
  1628. return -EINVAL;
  1629. socklen = pfkey_sockaddr_len(family);
  1630. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1631. &t->id.daddr) != family)
  1632. return -EINVAL;
  1633. t->encap_family = family;
  1634. } else
  1635. t->encap_family = xp->family;
  1636. /* No way to set this via kame pfkey */
  1637. t->allalgs = 1;
  1638. xp->xfrm_nr++;
  1639. return 0;
  1640. }
  1641. static int
  1642. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1643. {
  1644. int err;
  1645. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1646. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1647. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1648. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1649. return err;
  1650. len -= rq->sadb_x_ipsecrequest_len;
  1651. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1652. }
  1653. return 0;
  1654. }
  1655. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1656. {
  1657. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1658. if (xfrm_ctx) {
  1659. int len = sizeof(struct sadb_x_sec_ctx);
  1660. len += xfrm_ctx->ctx_len;
  1661. return PFKEY_ALIGN8(len);
  1662. }
  1663. return 0;
  1664. }
  1665. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1666. {
  1667. const struct xfrm_tmpl *t;
  1668. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1669. int socklen = 0;
  1670. int i;
  1671. for (i=0; i<xp->xfrm_nr; i++) {
  1672. t = xp->xfrm_vec + i;
  1673. socklen += pfkey_sockaddr_len(t->encap_family);
  1674. }
  1675. return sizeof(struct sadb_msg) +
  1676. (sizeof(struct sadb_lifetime) * 3) +
  1677. (sizeof(struct sadb_address) * 2) +
  1678. (sockaddr_size * 2) +
  1679. sizeof(struct sadb_x_policy) +
  1680. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1681. (socklen * 2) +
  1682. pfkey_xfrm_policy2sec_ctx_size(xp);
  1683. }
  1684. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1685. {
  1686. struct sk_buff *skb;
  1687. int size;
  1688. size = pfkey_xfrm_policy2msg_size(xp);
  1689. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1690. if (skb == NULL)
  1691. return ERR_PTR(-ENOBUFS);
  1692. return skb;
  1693. }
  1694. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1695. {
  1696. struct sadb_msg *hdr;
  1697. struct sadb_address *addr;
  1698. struct sadb_lifetime *lifetime;
  1699. struct sadb_x_policy *pol;
  1700. struct sadb_x_sec_ctx *sec_ctx;
  1701. struct xfrm_sec_ctx *xfrm_ctx;
  1702. int i;
  1703. int size;
  1704. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1705. int socklen = pfkey_sockaddr_len(xp->family);
  1706. size = pfkey_xfrm_policy2msg_size(xp);
  1707. /* call should fill header later */
  1708. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1709. memset(hdr, 0, size); /* XXX do we need this ? */
  1710. /* src address */
  1711. addr = (struct sadb_address*) skb_put(skb,
  1712. sizeof(struct sadb_address)+sockaddr_size);
  1713. addr->sadb_address_len =
  1714. (sizeof(struct sadb_address)+sockaddr_size)/
  1715. sizeof(uint64_t);
  1716. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1717. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1718. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1719. addr->sadb_address_reserved = 0;
  1720. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1721. xp->selector.sport,
  1722. (struct sockaddr *) (addr + 1),
  1723. xp->family))
  1724. BUG();
  1725. /* dst address */
  1726. addr = (struct sadb_address*) skb_put(skb,
  1727. sizeof(struct sadb_address)+sockaddr_size);
  1728. addr->sadb_address_len =
  1729. (sizeof(struct sadb_address)+sockaddr_size)/
  1730. sizeof(uint64_t);
  1731. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1732. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1733. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1734. addr->sadb_address_reserved = 0;
  1735. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1736. (struct sockaddr *) (addr + 1),
  1737. xp->family);
  1738. /* hard time */
  1739. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1740. sizeof(struct sadb_lifetime));
  1741. lifetime->sadb_lifetime_len =
  1742. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1743. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1744. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1745. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1746. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1747. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1748. /* soft time */
  1749. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1750. sizeof(struct sadb_lifetime));
  1751. lifetime->sadb_lifetime_len =
  1752. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1753. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1754. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1755. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1756. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1757. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1758. /* current time */
  1759. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1760. sizeof(struct sadb_lifetime));
  1761. lifetime->sadb_lifetime_len =
  1762. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1763. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1764. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1765. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1766. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1767. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1768. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1769. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1770. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1771. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1772. if (xp->action == XFRM_POLICY_ALLOW) {
  1773. if (xp->xfrm_nr)
  1774. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1775. else
  1776. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1777. }
  1778. pol->sadb_x_policy_dir = dir+1;
  1779. pol->sadb_x_policy_id = xp->index;
  1780. pol->sadb_x_policy_priority = xp->priority;
  1781. for (i=0; i<xp->xfrm_nr; i++) {
  1782. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1783. struct sadb_x_ipsecrequest *rq;
  1784. int req_size;
  1785. int mode;
  1786. req_size = sizeof(struct sadb_x_ipsecrequest);
  1787. if (t->mode == XFRM_MODE_TUNNEL) {
  1788. socklen = pfkey_sockaddr_len(t->encap_family);
  1789. req_size += socklen * 2;
  1790. } else {
  1791. size -= 2*socklen;
  1792. }
  1793. rq = (void*)skb_put(skb, req_size);
  1794. pol->sadb_x_policy_len += req_size/8;
  1795. memset(rq, 0, sizeof(*rq));
  1796. rq->sadb_x_ipsecrequest_len = req_size;
  1797. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1798. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1799. return -EINVAL;
  1800. rq->sadb_x_ipsecrequest_mode = mode;
  1801. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1802. if (t->reqid)
  1803. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1804. if (t->optional)
  1805. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1806. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1807. if (t->mode == XFRM_MODE_TUNNEL) {
  1808. u8 *sa = (void *)(rq + 1);
  1809. pfkey_sockaddr_fill(&t->saddr, 0,
  1810. (struct sockaddr *)sa,
  1811. t->encap_family);
  1812. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1813. (struct sockaddr *) (sa + socklen),
  1814. t->encap_family);
  1815. }
  1816. }
  1817. /* security context */
  1818. if ((xfrm_ctx = xp->security)) {
  1819. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1820. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1821. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1822. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1823. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1824. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1825. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1826. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1827. xfrm_ctx->ctx_len);
  1828. }
  1829. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1830. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1831. return 0;
  1832. }
  1833. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1834. {
  1835. struct sk_buff *out_skb;
  1836. struct sadb_msg *out_hdr;
  1837. int err;
  1838. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1839. if (IS_ERR(out_skb))
  1840. return PTR_ERR(out_skb);
  1841. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1842. if (err < 0)
  1843. return err;
  1844. out_hdr = (struct sadb_msg *) out_skb->data;
  1845. out_hdr->sadb_msg_version = PF_KEY_V2;
  1846. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1847. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1848. else
  1849. out_hdr->sadb_msg_type = event2poltype(c->event);
  1850. out_hdr->sadb_msg_errno = 0;
  1851. out_hdr->sadb_msg_seq = c->seq;
  1852. out_hdr->sadb_msg_pid = c->pid;
  1853. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1854. return 0;
  1855. }
  1856. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1857. {
  1858. struct net *net = sock_net(sk);
  1859. int err = 0;
  1860. struct sadb_lifetime *lifetime;
  1861. struct sadb_address *sa;
  1862. struct sadb_x_policy *pol;
  1863. struct xfrm_policy *xp;
  1864. struct km_event c;
  1865. struct sadb_x_sec_ctx *sec_ctx;
  1866. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1867. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1868. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1869. return -EINVAL;
  1870. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1871. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1872. return -EINVAL;
  1873. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1874. return -EINVAL;
  1875. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1876. if (xp == NULL)
  1877. return -ENOBUFS;
  1878. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1879. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1880. xp->priority = pol->sadb_x_policy_priority;
  1881. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1882. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1883. if (!xp->family) {
  1884. err = -EINVAL;
  1885. goto out;
  1886. }
  1887. xp->selector.family = xp->family;
  1888. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1889. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1890. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1891. if (xp->selector.sport)
  1892. xp->selector.sport_mask = htons(0xffff);
  1893. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1894. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1895. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1896. /* Amusing, we set this twice. KAME apps appear to set same value
  1897. * in both addresses.
  1898. */
  1899. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1900. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1901. if (xp->selector.dport)
  1902. xp->selector.dport_mask = htons(0xffff);
  1903. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1904. if (sec_ctx != NULL) {
  1905. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1906. if (!uctx) {
  1907. err = -ENOBUFS;
  1908. goto out;
  1909. }
  1910. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1911. kfree(uctx);
  1912. if (err)
  1913. goto out;
  1914. }
  1915. xp->lft.soft_byte_limit = XFRM_INF;
  1916. xp->lft.hard_byte_limit = XFRM_INF;
  1917. xp->lft.soft_packet_limit = XFRM_INF;
  1918. xp->lft.hard_packet_limit = XFRM_INF;
  1919. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1920. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1921. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1922. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1923. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1924. }
  1925. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1926. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1927. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1928. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1929. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1930. }
  1931. xp->xfrm_nr = 0;
  1932. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1933. (err = parse_ipsecrequests(xp, pol)) < 0)
  1934. goto out;
  1935. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1936. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1937. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1938. audit_get_loginuid(current),
  1939. audit_get_sessionid(current), 0);
  1940. if (err)
  1941. goto out;
  1942. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1943. c.event = XFRM_MSG_UPDPOLICY;
  1944. else
  1945. c.event = XFRM_MSG_NEWPOLICY;
  1946. c.seq = hdr->sadb_msg_seq;
  1947. c.pid = hdr->sadb_msg_pid;
  1948. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1949. xfrm_pol_put(xp);
  1950. return 0;
  1951. out:
  1952. xp->walk.dead = 1;
  1953. xfrm_policy_destroy(xp);
  1954. return err;
  1955. }
  1956. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1957. {
  1958. struct net *net = sock_net(sk);
  1959. int err;
  1960. struct sadb_address *sa;
  1961. struct sadb_x_policy *pol;
  1962. struct xfrm_policy *xp;
  1963. struct xfrm_selector sel;
  1964. struct km_event c;
  1965. struct sadb_x_sec_ctx *sec_ctx;
  1966. struct xfrm_sec_ctx *pol_ctx = NULL;
  1967. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1968. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1969. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1970. return -EINVAL;
  1971. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1972. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1973. return -EINVAL;
  1974. memset(&sel, 0, sizeof(sel));
  1975. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1976. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1977. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1978. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1979. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1980. if (sel.sport)
  1981. sel.sport_mask = htons(0xffff);
  1982. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1983. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1984. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1985. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1986. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1987. if (sel.dport)
  1988. sel.dport_mask = htons(0xffff);
  1989. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1990. if (sec_ctx != NULL) {
  1991. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1992. if (!uctx)
  1993. return -ENOMEM;
  1994. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1995. kfree(uctx);
  1996. if (err)
  1997. return err;
  1998. }
  1999. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2000. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2001. 1, &err);
  2002. security_xfrm_policy_free(pol_ctx);
  2003. if (xp == NULL)
  2004. return -ENOENT;
  2005. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2006. audit_get_loginuid(current),
  2007. audit_get_sessionid(current), 0);
  2008. if (err)
  2009. goto out;
  2010. c.seq = hdr->sadb_msg_seq;
  2011. c.pid = hdr->sadb_msg_pid;
  2012. c.data.byid = 0;
  2013. c.event = XFRM_MSG_DELPOLICY;
  2014. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2015. out:
  2016. xfrm_pol_put(xp);
  2017. return err;
  2018. }
  2019. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2020. {
  2021. int err;
  2022. struct sk_buff *out_skb;
  2023. struct sadb_msg *out_hdr;
  2024. err = 0;
  2025. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2026. if (IS_ERR(out_skb)) {
  2027. err = PTR_ERR(out_skb);
  2028. goto out;
  2029. }
  2030. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2031. if (err < 0)
  2032. goto out;
  2033. out_hdr = (struct sadb_msg *) out_skb->data;
  2034. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2035. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2036. out_hdr->sadb_msg_satype = 0;
  2037. out_hdr->sadb_msg_errno = 0;
  2038. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2039. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2040. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2041. err = 0;
  2042. out:
  2043. return err;
  2044. }
  2045. #ifdef CONFIG_NET_KEY_MIGRATE
  2046. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2047. {
  2048. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2049. }
  2050. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2051. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2052. u16 *family)
  2053. {
  2054. int af, socklen;
  2055. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2056. return -EINVAL;
  2057. af = pfkey_sockaddr_extract(sa, saddr);
  2058. if (!af)
  2059. return -EINVAL;
  2060. socklen = pfkey_sockaddr_len(af);
  2061. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2062. daddr) != af)
  2063. return -EINVAL;
  2064. *family = af;
  2065. return 0;
  2066. }
  2067. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2068. struct xfrm_migrate *m)
  2069. {
  2070. int err;
  2071. struct sadb_x_ipsecrequest *rq2;
  2072. int mode;
  2073. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2074. len < rq1->sadb_x_ipsecrequest_len)
  2075. return -EINVAL;
  2076. /* old endoints */
  2077. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2078. rq1->sadb_x_ipsecrequest_len,
  2079. &m->old_saddr, &m->old_daddr,
  2080. &m->old_family);
  2081. if (err)
  2082. return err;
  2083. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2084. len -= rq1->sadb_x_ipsecrequest_len;
  2085. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2086. len < rq2->sadb_x_ipsecrequest_len)
  2087. return -EINVAL;
  2088. /* new endpoints */
  2089. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2090. rq2->sadb_x_ipsecrequest_len,
  2091. &m->new_saddr, &m->new_daddr,
  2092. &m->new_family);
  2093. if (err)
  2094. return err;
  2095. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2096. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2097. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2098. return -EINVAL;
  2099. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2100. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2101. return -EINVAL;
  2102. m->mode = mode;
  2103. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2104. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2105. rq2->sadb_x_ipsecrequest_len));
  2106. }
  2107. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2108. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2109. {
  2110. int i, len, ret, err = -EINVAL;
  2111. u8 dir;
  2112. struct sadb_address *sa;
  2113. struct sadb_x_kmaddress *kma;
  2114. struct sadb_x_policy *pol;
  2115. struct sadb_x_ipsecrequest *rq;
  2116. struct xfrm_selector sel;
  2117. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2118. struct xfrm_kmaddress k;
  2119. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2120. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2121. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2122. err = -EINVAL;
  2123. goto out;
  2124. }
  2125. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2126. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2127. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2128. err = -EINVAL;
  2129. goto out;
  2130. }
  2131. if (kma) {
  2132. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2133. k.reserved = kma->sadb_x_kmaddress_reserved;
  2134. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2135. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2136. &k.local, &k.remote, &k.family);
  2137. if (ret < 0) {
  2138. err = ret;
  2139. goto out;
  2140. }
  2141. }
  2142. dir = pol->sadb_x_policy_dir - 1;
  2143. memset(&sel, 0, sizeof(sel));
  2144. /* set source address info of selector */
  2145. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2146. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2147. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2148. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2149. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2150. if (sel.sport)
  2151. sel.sport_mask = htons(0xffff);
  2152. /* set destination address info of selector */
  2153. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2154. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2155. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2156. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2157. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2158. if (sel.dport)
  2159. sel.dport_mask = htons(0xffff);
  2160. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2161. /* extract ipsecrequests */
  2162. i = 0;
  2163. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2164. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2165. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2166. if (ret < 0) {
  2167. err = ret;
  2168. goto out;
  2169. } else {
  2170. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2171. len -= ret;
  2172. i++;
  2173. }
  2174. }
  2175. if (!i || len > 0) {
  2176. err = -EINVAL;
  2177. goto out;
  2178. }
  2179. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2180. kma ? &k : NULL);
  2181. out:
  2182. return err;
  2183. }
  2184. #else
  2185. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2186. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2187. {
  2188. return -ENOPROTOOPT;
  2189. }
  2190. #endif
  2191. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2192. {
  2193. struct net *net = sock_net(sk);
  2194. unsigned int dir;
  2195. int err = 0, delete;
  2196. struct sadb_x_policy *pol;
  2197. struct xfrm_policy *xp;
  2198. struct km_event c;
  2199. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2200. return -EINVAL;
  2201. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2202. if (dir >= XFRM_POLICY_MAX)
  2203. return -EINVAL;
  2204. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2205. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2206. dir, pol->sadb_x_policy_id, delete, &err);
  2207. if (xp == NULL)
  2208. return -ENOENT;
  2209. if (delete) {
  2210. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2211. audit_get_loginuid(current),
  2212. audit_get_sessionid(current), 0);
  2213. if (err)
  2214. goto out;
  2215. c.seq = hdr->sadb_msg_seq;
  2216. c.pid = hdr->sadb_msg_pid;
  2217. c.data.byid = 1;
  2218. c.event = XFRM_MSG_DELPOLICY;
  2219. km_policy_notify(xp, dir, &c);
  2220. } else {
  2221. err = key_pol_get_resp(sk, xp, hdr, dir);
  2222. }
  2223. out:
  2224. xfrm_pol_put(xp);
  2225. return err;
  2226. }
  2227. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2228. {
  2229. struct pfkey_sock *pfk = ptr;
  2230. struct sk_buff *out_skb;
  2231. struct sadb_msg *out_hdr;
  2232. int err;
  2233. if (!pfkey_can_dump(&pfk->sk))
  2234. return -ENOBUFS;
  2235. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2236. if (IS_ERR(out_skb))
  2237. return PTR_ERR(out_skb);
  2238. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2239. if (err < 0)
  2240. return err;
  2241. out_hdr = (struct sadb_msg *) out_skb->data;
  2242. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2243. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2244. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2245. out_hdr->sadb_msg_errno = 0;
  2246. out_hdr->sadb_msg_seq = count + 1;
  2247. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2248. if (pfk->dump.skb)
  2249. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2250. &pfk->sk, sock_net(&pfk->sk));
  2251. pfk->dump.skb = out_skb;
  2252. return 0;
  2253. }
  2254. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2255. {
  2256. struct net *net = sock_net(&pfk->sk);
  2257. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2258. }
  2259. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2260. {
  2261. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2262. }
  2263. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2264. {
  2265. struct pfkey_sock *pfk = pfkey_sk(sk);
  2266. if (pfk->dump.dump != NULL)
  2267. return -EBUSY;
  2268. pfk->dump.msg_version = hdr->sadb_msg_version;
  2269. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2270. pfk->dump.dump = pfkey_dump_sp;
  2271. pfk->dump.done = pfkey_dump_sp_done;
  2272. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2273. return pfkey_do_dump(pfk);
  2274. }
  2275. static int key_notify_policy_flush(const struct km_event *c)
  2276. {
  2277. struct sk_buff *skb_out;
  2278. struct sadb_msg *hdr;
  2279. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2280. if (!skb_out)
  2281. return -ENOBUFS;
  2282. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2283. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2284. hdr->sadb_msg_seq = c->seq;
  2285. hdr->sadb_msg_pid = c->pid;
  2286. hdr->sadb_msg_version = PF_KEY_V2;
  2287. hdr->sadb_msg_errno = (uint8_t) 0;
  2288. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2289. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2290. return 0;
  2291. }
  2292. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2293. {
  2294. struct net *net = sock_net(sk);
  2295. struct km_event c;
  2296. struct xfrm_audit audit_info;
  2297. int err, err2;
  2298. audit_info.loginuid = audit_get_loginuid(current);
  2299. audit_info.sessionid = audit_get_sessionid(current);
  2300. audit_info.secid = 0;
  2301. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2302. err2 = unicast_flush_resp(sk, hdr);
  2303. if (err || err2) {
  2304. if (err == -ESRCH) /* empty table - old silent behavior */
  2305. return 0;
  2306. return err;
  2307. }
  2308. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2309. c.event = XFRM_MSG_FLUSHPOLICY;
  2310. c.pid = hdr->sadb_msg_pid;
  2311. c.seq = hdr->sadb_msg_seq;
  2312. c.net = net;
  2313. km_policy_notify(NULL, 0, &c);
  2314. return 0;
  2315. }
  2316. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2317. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2318. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2319. [SADB_RESERVED] = pfkey_reserved,
  2320. [SADB_GETSPI] = pfkey_getspi,
  2321. [SADB_UPDATE] = pfkey_add,
  2322. [SADB_ADD] = pfkey_add,
  2323. [SADB_DELETE] = pfkey_delete,
  2324. [SADB_GET] = pfkey_get,
  2325. [SADB_ACQUIRE] = pfkey_acquire,
  2326. [SADB_REGISTER] = pfkey_register,
  2327. [SADB_EXPIRE] = NULL,
  2328. [SADB_FLUSH] = pfkey_flush,
  2329. [SADB_DUMP] = pfkey_dump,
  2330. [SADB_X_PROMISC] = pfkey_promisc,
  2331. [SADB_X_PCHANGE] = NULL,
  2332. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2333. [SADB_X_SPDADD] = pfkey_spdadd,
  2334. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2335. [SADB_X_SPDGET] = pfkey_spdget,
  2336. [SADB_X_SPDACQUIRE] = NULL,
  2337. [SADB_X_SPDDUMP] = pfkey_spddump,
  2338. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2339. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2340. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2341. [SADB_X_MIGRATE] = pfkey_migrate,
  2342. };
  2343. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2344. {
  2345. void *ext_hdrs[SADB_EXT_MAX];
  2346. int err;
  2347. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2348. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2349. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2350. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2351. if (!err) {
  2352. err = -EOPNOTSUPP;
  2353. if (pfkey_funcs[hdr->sadb_msg_type])
  2354. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2355. }
  2356. return err;
  2357. }
  2358. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2359. {
  2360. struct sadb_msg *hdr = NULL;
  2361. if (skb->len < sizeof(*hdr)) {
  2362. *errp = -EMSGSIZE;
  2363. } else {
  2364. hdr = (struct sadb_msg *) skb->data;
  2365. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2366. hdr->sadb_msg_reserved != 0 ||
  2367. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2368. hdr->sadb_msg_type > SADB_MAX)) {
  2369. hdr = NULL;
  2370. *errp = -EINVAL;
  2371. } else if (hdr->sadb_msg_len != (skb->len /
  2372. sizeof(uint64_t)) ||
  2373. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2374. sizeof(uint64_t))) {
  2375. hdr = NULL;
  2376. *errp = -EMSGSIZE;
  2377. } else {
  2378. *errp = 0;
  2379. }
  2380. }
  2381. return hdr;
  2382. }
  2383. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2384. const struct xfrm_algo_desc *d)
  2385. {
  2386. unsigned int id = d->desc.sadb_alg_id;
  2387. if (id >= sizeof(t->aalgos) * 8)
  2388. return 0;
  2389. return (t->aalgos >> id) & 1;
  2390. }
  2391. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2392. const struct xfrm_algo_desc *d)
  2393. {
  2394. unsigned int id = d->desc.sadb_alg_id;
  2395. if (id >= sizeof(t->ealgos) * 8)
  2396. return 0;
  2397. return (t->ealgos >> id) & 1;
  2398. }
  2399. static int count_ah_combs(const struct xfrm_tmpl *t)
  2400. {
  2401. int i, sz = 0;
  2402. for (i = 0; ; i++) {
  2403. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2404. if (!aalg)
  2405. break;
  2406. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2407. sz += sizeof(struct sadb_comb);
  2408. }
  2409. return sz + sizeof(struct sadb_prop);
  2410. }
  2411. static int count_esp_combs(const struct xfrm_tmpl *t)
  2412. {
  2413. int i, k, sz = 0;
  2414. for (i = 0; ; i++) {
  2415. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2416. if (!ealg)
  2417. break;
  2418. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2419. continue;
  2420. for (k = 1; ; k++) {
  2421. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2422. if (!aalg)
  2423. break;
  2424. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2425. sz += sizeof(struct sadb_comb);
  2426. }
  2427. }
  2428. return sz + sizeof(struct sadb_prop);
  2429. }
  2430. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2431. {
  2432. struct sadb_prop *p;
  2433. int i;
  2434. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2435. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2436. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2437. p->sadb_prop_replay = 32;
  2438. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2439. for (i = 0; ; i++) {
  2440. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2441. if (!aalg)
  2442. break;
  2443. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2444. struct sadb_comb *c;
  2445. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2446. memset(c, 0, sizeof(*c));
  2447. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2448. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2449. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2450. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2451. c->sadb_comb_hard_addtime = 24*60*60;
  2452. c->sadb_comb_soft_addtime = 20*60*60;
  2453. c->sadb_comb_hard_usetime = 8*60*60;
  2454. c->sadb_comb_soft_usetime = 7*60*60;
  2455. }
  2456. }
  2457. }
  2458. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2459. {
  2460. struct sadb_prop *p;
  2461. int i, k;
  2462. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2463. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2464. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2465. p->sadb_prop_replay = 32;
  2466. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2467. for (i=0; ; i++) {
  2468. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2469. if (!ealg)
  2470. break;
  2471. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2472. continue;
  2473. for (k = 1; ; k++) {
  2474. struct sadb_comb *c;
  2475. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2476. if (!aalg)
  2477. break;
  2478. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2479. continue;
  2480. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2481. memset(c, 0, sizeof(*c));
  2482. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2483. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2484. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2485. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2486. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2487. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2488. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2489. c->sadb_comb_hard_addtime = 24*60*60;
  2490. c->sadb_comb_soft_addtime = 20*60*60;
  2491. c->sadb_comb_hard_usetime = 8*60*60;
  2492. c->sadb_comb_soft_usetime = 7*60*60;
  2493. }
  2494. }
  2495. }
  2496. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2497. {
  2498. return 0;
  2499. }
  2500. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2501. {
  2502. struct sk_buff *out_skb;
  2503. struct sadb_msg *out_hdr;
  2504. int hard;
  2505. int hsc;
  2506. hard = c->data.hard;
  2507. if (hard)
  2508. hsc = 2;
  2509. else
  2510. hsc = 1;
  2511. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2512. if (IS_ERR(out_skb))
  2513. return PTR_ERR(out_skb);
  2514. out_hdr = (struct sadb_msg *) out_skb->data;
  2515. out_hdr->sadb_msg_version = PF_KEY_V2;
  2516. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2517. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2518. out_hdr->sadb_msg_errno = 0;
  2519. out_hdr->sadb_msg_reserved = 0;
  2520. out_hdr->sadb_msg_seq = 0;
  2521. out_hdr->sadb_msg_pid = 0;
  2522. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2523. return 0;
  2524. }
  2525. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2526. {
  2527. struct net *net = x ? xs_net(x) : c->net;
  2528. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2529. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2530. return 0;
  2531. switch (c->event) {
  2532. case XFRM_MSG_EXPIRE:
  2533. return key_notify_sa_expire(x, c);
  2534. case XFRM_MSG_DELSA:
  2535. case XFRM_MSG_NEWSA:
  2536. case XFRM_MSG_UPDSA:
  2537. return key_notify_sa(x, c);
  2538. case XFRM_MSG_FLUSHSA:
  2539. return key_notify_sa_flush(c);
  2540. case XFRM_MSG_NEWAE: /* not yet supported */
  2541. break;
  2542. default:
  2543. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2544. break;
  2545. }
  2546. return 0;
  2547. }
  2548. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2549. {
  2550. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2551. return 0;
  2552. switch (c->event) {
  2553. case XFRM_MSG_POLEXPIRE:
  2554. return key_notify_policy_expire(xp, c);
  2555. case XFRM_MSG_DELPOLICY:
  2556. case XFRM_MSG_NEWPOLICY:
  2557. case XFRM_MSG_UPDPOLICY:
  2558. return key_notify_policy(xp, dir, c);
  2559. case XFRM_MSG_FLUSHPOLICY:
  2560. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2561. break;
  2562. return key_notify_policy_flush(c);
  2563. default:
  2564. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2565. break;
  2566. }
  2567. return 0;
  2568. }
  2569. static u32 get_acqseq(void)
  2570. {
  2571. u32 res;
  2572. static atomic_t acqseq;
  2573. do {
  2574. res = atomic_inc_return(&acqseq);
  2575. } while (!res);
  2576. return res;
  2577. }
  2578. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2579. {
  2580. struct sk_buff *skb;
  2581. struct sadb_msg *hdr;
  2582. struct sadb_address *addr;
  2583. struct sadb_x_policy *pol;
  2584. int sockaddr_size;
  2585. int size;
  2586. struct sadb_x_sec_ctx *sec_ctx;
  2587. struct xfrm_sec_ctx *xfrm_ctx;
  2588. int ctx_size = 0;
  2589. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2590. if (!sockaddr_size)
  2591. return -EINVAL;
  2592. size = sizeof(struct sadb_msg) +
  2593. (sizeof(struct sadb_address) * 2) +
  2594. (sockaddr_size * 2) +
  2595. sizeof(struct sadb_x_policy);
  2596. if (x->id.proto == IPPROTO_AH)
  2597. size += count_ah_combs(t);
  2598. else if (x->id.proto == IPPROTO_ESP)
  2599. size += count_esp_combs(t);
  2600. if ((xfrm_ctx = x->security)) {
  2601. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2602. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2603. }
  2604. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2605. if (skb == NULL)
  2606. return -ENOMEM;
  2607. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2608. hdr->sadb_msg_version = PF_KEY_V2;
  2609. hdr->sadb_msg_type = SADB_ACQUIRE;
  2610. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2611. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2612. hdr->sadb_msg_errno = 0;
  2613. hdr->sadb_msg_reserved = 0;
  2614. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2615. hdr->sadb_msg_pid = 0;
  2616. /* src address */
  2617. addr = (struct sadb_address*) skb_put(skb,
  2618. sizeof(struct sadb_address)+sockaddr_size);
  2619. addr->sadb_address_len =
  2620. (sizeof(struct sadb_address)+sockaddr_size)/
  2621. sizeof(uint64_t);
  2622. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2623. addr->sadb_address_proto = 0;
  2624. addr->sadb_address_reserved = 0;
  2625. addr->sadb_address_prefixlen =
  2626. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2627. (struct sockaddr *) (addr + 1),
  2628. x->props.family);
  2629. if (!addr->sadb_address_prefixlen)
  2630. BUG();
  2631. /* dst address */
  2632. addr = (struct sadb_address*) skb_put(skb,
  2633. sizeof(struct sadb_address)+sockaddr_size);
  2634. addr->sadb_address_len =
  2635. (sizeof(struct sadb_address)+sockaddr_size)/
  2636. sizeof(uint64_t);
  2637. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2638. addr->sadb_address_proto = 0;
  2639. addr->sadb_address_reserved = 0;
  2640. addr->sadb_address_prefixlen =
  2641. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2642. (struct sockaddr *) (addr + 1),
  2643. x->props.family);
  2644. if (!addr->sadb_address_prefixlen)
  2645. BUG();
  2646. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2647. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2648. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2649. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2650. pol->sadb_x_policy_dir = dir+1;
  2651. pol->sadb_x_policy_id = xp->index;
  2652. /* Set sadb_comb's. */
  2653. if (x->id.proto == IPPROTO_AH)
  2654. dump_ah_combs(skb, t);
  2655. else if (x->id.proto == IPPROTO_ESP)
  2656. dump_esp_combs(skb, t);
  2657. /* security context */
  2658. if (xfrm_ctx) {
  2659. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2660. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2661. sec_ctx->sadb_x_sec_len =
  2662. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2663. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2664. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2665. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2666. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2667. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2668. xfrm_ctx->ctx_len);
  2669. }
  2670. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2671. }
  2672. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2673. u8 *data, int len, int *dir)
  2674. {
  2675. struct net *net = sock_net(sk);
  2676. struct xfrm_policy *xp;
  2677. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2678. struct sadb_x_sec_ctx *sec_ctx;
  2679. switch (sk->sk_family) {
  2680. case AF_INET:
  2681. if (opt != IP_IPSEC_POLICY) {
  2682. *dir = -EOPNOTSUPP;
  2683. return NULL;
  2684. }
  2685. break;
  2686. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2687. case AF_INET6:
  2688. if (opt != IPV6_IPSEC_POLICY) {
  2689. *dir = -EOPNOTSUPP;
  2690. return NULL;
  2691. }
  2692. break;
  2693. #endif
  2694. default:
  2695. *dir = -EINVAL;
  2696. return NULL;
  2697. }
  2698. *dir = -EINVAL;
  2699. if (len < sizeof(struct sadb_x_policy) ||
  2700. pol->sadb_x_policy_len*8 > len ||
  2701. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2702. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2703. return NULL;
  2704. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2705. if (xp == NULL) {
  2706. *dir = -ENOBUFS;
  2707. return NULL;
  2708. }
  2709. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2710. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2711. xp->lft.soft_byte_limit = XFRM_INF;
  2712. xp->lft.hard_byte_limit = XFRM_INF;
  2713. xp->lft.soft_packet_limit = XFRM_INF;
  2714. xp->lft.hard_packet_limit = XFRM_INF;
  2715. xp->family = sk->sk_family;
  2716. xp->xfrm_nr = 0;
  2717. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2718. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2719. goto out;
  2720. /* security context too */
  2721. if (len >= (pol->sadb_x_policy_len*8 +
  2722. sizeof(struct sadb_x_sec_ctx))) {
  2723. char *p = (char *)pol;
  2724. struct xfrm_user_sec_ctx *uctx;
  2725. p += pol->sadb_x_policy_len*8;
  2726. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2727. if (len < pol->sadb_x_policy_len*8 +
  2728. sec_ctx->sadb_x_sec_len) {
  2729. *dir = -EINVAL;
  2730. goto out;
  2731. }
  2732. if ((*dir = verify_sec_ctx_len(p)))
  2733. goto out;
  2734. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2735. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2736. kfree(uctx);
  2737. if (*dir)
  2738. goto out;
  2739. }
  2740. *dir = pol->sadb_x_policy_dir-1;
  2741. return xp;
  2742. out:
  2743. xp->walk.dead = 1;
  2744. xfrm_policy_destroy(xp);
  2745. return NULL;
  2746. }
  2747. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2748. {
  2749. struct sk_buff *skb;
  2750. struct sadb_msg *hdr;
  2751. struct sadb_sa *sa;
  2752. struct sadb_address *addr;
  2753. struct sadb_x_nat_t_port *n_port;
  2754. int sockaddr_size;
  2755. int size;
  2756. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2757. struct xfrm_encap_tmpl *natt = NULL;
  2758. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2759. if (!sockaddr_size)
  2760. return -EINVAL;
  2761. if (!satype)
  2762. return -EINVAL;
  2763. if (!x->encap)
  2764. return -EINVAL;
  2765. natt = x->encap;
  2766. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2767. *
  2768. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2769. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2770. */
  2771. size = sizeof(struct sadb_msg) +
  2772. sizeof(struct sadb_sa) +
  2773. (sizeof(struct sadb_address) * 2) +
  2774. (sockaddr_size * 2) +
  2775. (sizeof(struct sadb_x_nat_t_port) * 2);
  2776. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2777. if (skb == NULL)
  2778. return -ENOMEM;
  2779. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2780. hdr->sadb_msg_version = PF_KEY_V2;
  2781. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2782. hdr->sadb_msg_satype = satype;
  2783. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2784. hdr->sadb_msg_errno = 0;
  2785. hdr->sadb_msg_reserved = 0;
  2786. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2787. hdr->sadb_msg_pid = 0;
  2788. /* SA */
  2789. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2790. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2791. sa->sadb_sa_exttype = SADB_EXT_SA;
  2792. sa->sadb_sa_spi = x->id.spi;
  2793. sa->sadb_sa_replay = 0;
  2794. sa->sadb_sa_state = 0;
  2795. sa->sadb_sa_auth = 0;
  2796. sa->sadb_sa_encrypt = 0;
  2797. sa->sadb_sa_flags = 0;
  2798. /* ADDRESS_SRC (old addr) */
  2799. addr = (struct sadb_address*)
  2800. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2801. addr->sadb_address_len =
  2802. (sizeof(struct sadb_address)+sockaddr_size)/
  2803. sizeof(uint64_t);
  2804. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2805. addr->sadb_address_proto = 0;
  2806. addr->sadb_address_reserved = 0;
  2807. addr->sadb_address_prefixlen =
  2808. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2809. (struct sockaddr *) (addr + 1),
  2810. x->props.family);
  2811. if (!addr->sadb_address_prefixlen)
  2812. BUG();
  2813. /* NAT_T_SPORT (old port) */
  2814. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2815. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2816. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2817. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2818. n_port->sadb_x_nat_t_port_reserved = 0;
  2819. /* ADDRESS_DST (new addr) */
  2820. addr = (struct sadb_address*)
  2821. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2822. addr->sadb_address_len =
  2823. (sizeof(struct sadb_address)+sockaddr_size)/
  2824. sizeof(uint64_t);
  2825. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2826. addr->sadb_address_proto = 0;
  2827. addr->sadb_address_reserved = 0;
  2828. addr->sadb_address_prefixlen =
  2829. pfkey_sockaddr_fill(ipaddr, 0,
  2830. (struct sockaddr *) (addr + 1),
  2831. x->props.family);
  2832. if (!addr->sadb_address_prefixlen)
  2833. BUG();
  2834. /* NAT_T_DPORT (new port) */
  2835. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2836. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2837. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2838. n_port->sadb_x_nat_t_port_port = sport;
  2839. n_port->sadb_x_nat_t_port_reserved = 0;
  2840. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2841. }
  2842. #ifdef CONFIG_NET_KEY_MIGRATE
  2843. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2844. const struct xfrm_selector *sel)
  2845. {
  2846. struct sadb_address *addr;
  2847. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2848. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2849. addr->sadb_address_exttype = type;
  2850. addr->sadb_address_proto = sel->proto;
  2851. addr->sadb_address_reserved = 0;
  2852. switch (type) {
  2853. case SADB_EXT_ADDRESS_SRC:
  2854. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2855. pfkey_sockaddr_fill(&sel->saddr, 0,
  2856. (struct sockaddr *)(addr + 1),
  2857. sel->family);
  2858. break;
  2859. case SADB_EXT_ADDRESS_DST:
  2860. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2861. pfkey_sockaddr_fill(&sel->daddr, 0,
  2862. (struct sockaddr *)(addr + 1),
  2863. sel->family);
  2864. break;
  2865. default:
  2866. return -EINVAL;
  2867. }
  2868. return 0;
  2869. }
  2870. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2871. {
  2872. struct sadb_x_kmaddress *kma;
  2873. u8 *sa;
  2874. int family = k->family;
  2875. int socklen = pfkey_sockaddr_len(family);
  2876. int size_req;
  2877. size_req = (sizeof(struct sadb_x_kmaddress) +
  2878. pfkey_sockaddr_pair_size(family));
  2879. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2880. memset(kma, 0, size_req);
  2881. kma->sadb_x_kmaddress_len = size_req / 8;
  2882. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2883. kma->sadb_x_kmaddress_reserved = k->reserved;
  2884. sa = (u8 *)(kma + 1);
  2885. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2886. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2887. return -EINVAL;
  2888. return 0;
  2889. }
  2890. static int set_ipsecrequest(struct sk_buff *skb,
  2891. uint8_t proto, uint8_t mode, int level,
  2892. uint32_t reqid, uint8_t family,
  2893. const xfrm_address_t *src, const xfrm_address_t *dst)
  2894. {
  2895. struct sadb_x_ipsecrequest *rq;
  2896. u8 *sa;
  2897. int socklen = pfkey_sockaddr_len(family);
  2898. int size_req;
  2899. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2900. pfkey_sockaddr_pair_size(family);
  2901. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2902. memset(rq, 0, size_req);
  2903. rq->sadb_x_ipsecrequest_len = size_req;
  2904. rq->sadb_x_ipsecrequest_proto = proto;
  2905. rq->sadb_x_ipsecrequest_mode = mode;
  2906. rq->sadb_x_ipsecrequest_level = level;
  2907. rq->sadb_x_ipsecrequest_reqid = reqid;
  2908. sa = (u8 *) (rq + 1);
  2909. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2910. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2911. return -EINVAL;
  2912. return 0;
  2913. }
  2914. #endif
  2915. #ifdef CONFIG_NET_KEY_MIGRATE
  2916. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  2917. const struct xfrm_migrate *m, int num_bundles,
  2918. const struct xfrm_kmaddress *k)
  2919. {
  2920. int i;
  2921. int sasize_sel;
  2922. int size = 0;
  2923. int size_pol = 0;
  2924. struct sk_buff *skb;
  2925. struct sadb_msg *hdr;
  2926. struct sadb_x_policy *pol;
  2927. const struct xfrm_migrate *mp;
  2928. if (type != XFRM_POLICY_TYPE_MAIN)
  2929. return 0;
  2930. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2931. return -EINVAL;
  2932. if (k != NULL) {
  2933. /* addresses for KM */
  2934. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2935. pfkey_sockaddr_pair_size(k->family));
  2936. }
  2937. /* selector */
  2938. sasize_sel = pfkey_sockaddr_size(sel->family);
  2939. if (!sasize_sel)
  2940. return -EINVAL;
  2941. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2942. /* policy info */
  2943. size_pol += sizeof(struct sadb_x_policy);
  2944. /* ipsecrequests */
  2945. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2946. /* old locator pair */
  2947. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2948. pfkey_sockaddr_pair_size(mp->old_family);
  2949. /* new locator pair */
  2950. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2951. pfkey_sockaddr_pair_size(mp->new_family);
  2952. }
  2953. size += sizeof(struct sadb_msg) + size_pol;
  2954. /* alloc buffer */
  2955. skb = alloc_skb(size, GFP_ATOMIC);
  2956. if (skb == NULL)
  2957. return -ENOMEM;
  2958. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2959. hdr->sadb_msg_version = PF_KEY_V2;
  2960. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2961. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2962. hdr->sadb_msg_len = size / 8;
  2963. hdr->sadb_msg_errno = 0;
  2964. hdr->sadb_msg_reserved = 0;
  2965. hdr->sadb_msg_seq = 0;
  2966. hdr->sadb_msg_pid = 0;
  2967. /* Addresses to be used by KM for negotiation, if ext is available */
  2968. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2969. return -EINVAL;
  2970. /* selector src */
  2971. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2972. /* selector dst */
  2973. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2974. /* policy information */
  2975. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2976. pol->sadb_x_policy_len = size_pol / 8;
  2977. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2978. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2979. pol->sadb_x_policy_dir = dir + 1;
  2980. pol->sadb_x_policy_id = 0;
  2981. pol->sadb_x_policy_priority = 0;
  2982. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2983. /* old ipsecrequest */
  2984. int mode = pfkey_mode_from_xfrm(mp->mode);
  2985. if (mode < 0)
  2986. goto err;
  2987. if (set_ipsecrequest(skb, mp->proto, mode,
  2988. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2989. mp->reqid, mp->old_family,
  2990. &mp->old_saddr, &mp->old_daddr) < 0)
  2991. goto err;
  2992. /* new ipsecrequest */
  2993. if (set_ipsecrequest(skb, mp->proto, mode,
  2994. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2995. mp->reqid, mp->new_family,
  2996. &mp->new_saddr, &mp->new_daddr) < 0)
  2997. goto err;
  2998. }
  2999. /* broadcast migrate message to sockets */
  3000. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3001. return 0;
  3002. err:
  3003. kfree_skb(skb);
  3004. return -EINVAL;
  3005. }
  3006. #else
  3007. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3008. const struct xfrm_migrate *m, int num_bundles,
  3009. const struct xfrm_kmaddress *k)
  3010. {
  3011. return -ENOPROTOOPT;
  3012. }
  3013. #endif
  3014. static int pfkey_sendmsg(struct kiocb *kiocb,
  3015. struct socket *sock, struct msghdr *msg, size_t len)
  3016. {
  3017. struct sock *sk = sock->sk;
  3018. struct sk_buff *skb = NULL;
  3019. struct sadb_msg *hdr = NULL;
  3020. int err;
  3021. err = -EOPNOTSUPP;
  3022. if (msg->msg_flags & MSG_OOB)
  3023. goto out;
  3024. err = -EMSGSIZE;
  3025. if ((unsigned)len > sk->sk_sndbuf - 32)
  3026. goto out;
  3027. err = -ENOBUFS;
  3028. skb = alloc_skb(len, GFP_KERNEL);
  3029. if (skb == NULL)
  3030. goto out;
  3031. err = -EFAULT;
  3032. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3033. goto out;
  3034. hdr = pfkey_get_base_msg(skb, &err);
  3035. if (!hdr)
  3036. goto out;
  3037. mutex_lock(&xfrm_cfg_mutex);
  3038. err = pfkey_process(sk, skb, hdr);
  3039. mutex_unlock(&xfrm_cfg_mutex);
  3040. out:
  3041. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3042. err = 0;
  3043. kfree_skb(skb);
  3044. return err ? : len;
  3045. }
  3046. static int pfkey_recvmsg(struct kiocb *kiocb,
  3047. struct socket *sock, struct msghdr *msg, size_t len,
  3048. int flags)
  3049. {
  3050. struct sock *sk = sock->sk;
  3051. struct pfkey_sock *pfk = pfkey_sk(sk);
  3052. struct sk_buff *skb;
  3053. int copied, err;
  3054. err = -EINVAL;
  3055. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3056. goto out;
  3057. msg->msg_namelen = 0;
  3058. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3059. if (skb == NULL)
  3060. goto out;
  3061. copied = skb->len;
  3062. if (copied > len) {
  3063. msg->msg_flags |= MSG_TRUNC;
  3064. copied = len;
  3065. }
  3066. skb_reset_transport_header(skb);
  3067. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3068. if (err)
  3069. goto out_free;
  3070. sock_recv_ts_and_drops(msg, sk, skb);
  3071. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3072. if (pfk->dump.dump != NULL &&
  3073. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3074. pfkey_do_dump(pfk);
  3075. out_free:
  3076. skb_free_datagram(sk, skb);
  3077. out:
  3078. return err;
  3079. }
  3080. static const struct proto_ops pfkey_ops = {
  3081. .family = PF_KEY,
  3082. .owner = THIS_MODULE,
  3083. /* Operations that make no sense on pfkey sockets. */
  3084. .bind = sock_no_bind,
  3085. .connect = sock_no_connect,
  3086. .socketpair = sock_no_socketpair,
  3087. .accept = sock_no_accept,
  3088. .getname = sock_no_getname,
  3089. .ioctl = sock_no_ioctl,
  3090. .listen = sock_no_listen,
  3091. .shutdown = sock_no_shutdown,
  3092. .setsockopt = sock_no_setsockopt,
  3093. .getsockopt = sock_no_getsockopt,
  3094. .mmap = sock_no_mmap,
  3095. .sendpage = sock_no_sendpage,
  3096. /* Now the operations that really occur. */
  3097. .release = pfkey_release,
  3098. .poll = datagram_poll,
  3099. .sendmsg = pfkey_sendmsg,
  3100. .recvmsg = pfkey_recvmsg,
  3101. };
  3102. static const struct net_proto_family pfkey_family_ops = {
  3103. .family = PF_KEY,
  3104. .create = pfkey_create,
  3105. .owner = THIS_MODULE,
  3106. };
  3107. #ifdef CONFIG_PROC_FS
  3108. static int pfkey_seq_show(struct seq_file *f, void *v)
  3109. {
  3110. struct sock *s = sk_entry(v);
  3111. if (v == SEQ_START_TOKEN)
  3112. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3113. else
  3114. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3115. s,
  3116. atomic_read(&s->sk_refcnt),
  3117. sk_rmem_alloc_get(s),
  3118. sk_wmem_alloc_get(s),
  3119. sock_i_uid(s),
  3120. sock_i_ino(s)
  3121. );
  3122. return 0;
  3123. }
  3124. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3125. __acquires(rcu)
  3126. {
  3127. struct net *net = seq_file_net(f);
  3128. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3129. rcu_read_lock();
  3130. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3131. }
  3132. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3133. {
  3134. struct net *net = seq_file_net(f);
  3135. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3136. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3137. }
  3138. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3139. __releases(rcu)
  3140. {
  3141. rcu_read_unlock();
  3142. }
  3143. static const struct seq_operations pfkey_seq_ops = {
  3144. .start = pfkey_seq_start,
  3145. .next = pfkey_seq_next,
  3146. .stop = pfkey_seq_stop,
  3147. .show = pfkey_seq_show,
  3148. };
  3149. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3150. {
  3151. return seq_open_net(inode, file, &pfkey_seq_ops,
  3152. sizeof(struct seq_net_private));
  3153. }
  3154. static const struct file_operations pfkey_proc_ops = {
  3155. .open = pfkey_seq_open,
  3156. .read = seq_read,
  3157. .llseek = seq_lseek,
  3158. .release = seq_release_net,
  3159. };
  3160. static int __net_init pfkey_init_proc(struct net *net)
  3161. {
  3162. struct proc_dir_entry *e;
  3163. e = proc_net_fops_create(net, "pfkey", 0, &pfkey_proc_ops);
  3164. if (e == NULL)
  3165. return -ENOMEM;
  3166. return 0;
  3167. }
  3168. static void __net_exit pfkey_exit_proc(struct net *net)
  3169. {
  3170. proc_net_remove(net, "pfkey");
  3171. }
  3172. #else
  3173. static inline int pfkey_init_proc(struct net *net)
  3174. {
  3175. return 0;
  3176. }
  3177. static inline void pfkey_exit_proc(struct net *net)
  3178. {
  3179. }
  3180. #endif
  3181. static struct xfrm_mgr pfkeyv2_mgr =
  3182. {
  3183. .id = "pfkeyv2",
  3184. .notify = pfkey_send_notify,
  3185. .acquire = pfkey_send_acquire,
  3186. .compile_policy = pfkey_compile_policy,
  3187. .new_mapping = pfkey_send_new_mapping,
  3188. .notify_policy = pfkey_send_policy_notify,
  3189. .migrate = pfkey_send_migrate,
  3190. };
  3191. static int __net_init pfkey_net_init(struct net *net)
  3192. {
  3193. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3194. int rv;
  3195. INIT_HLIST_HEAD(&net_pfkey->table);
  3196. atomic_set(&net_pfkey->socks_nr, 0);
  3197. rv = pfkey_init_proc(net);
  3198. return rv;
  3199. }
  3200. static void __net_exit pfkey_net_exit(struct net *net)
  3201. {
  3202. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3203. pfkey_exit_proc(net);
  3204. BUG_ON(!hlist_empty(&net_pfkey->table));
  3205. }
  3206. static struct pernet_operations pfkey_net_ops = {
  3207. .init = pfkey_net_init,
  3208. .exit = pfkey_net_exit,
  3209. .id = &pfkey_net_id,
  3210. .size = sizeof(struct netns_pfkey),
  3211. };
  3212. static void __exit ipsec_pfkey_exit(void)
  3213. {
  3214. xfrm_unregister_km(&pfkeyv2_mgr);
  3215. sock_unregister(PF_KEY);
  3216. unregister_pernet_subsys(&pfkey_net_ops);
  3217. proto_unregister(&key_proto);
  3218. }
  3219. static int __init ipsec_pfkey_init(void)
  3220. {
  3221. int err = proto_register(&key_proto, 0);
  3222. if (err != 0)
  3223. goto out;
  3224. err = register_pernet_subsys(&pfkey_net_ops);
  3225. if (err != 0)
  3226. goto out_unregister_key_proto;
  3227. err = sock_register(&pfkey_family_ops);
  3228. if (err != 0)
  3229. goto out_unregister_pernet;
  3230. err = xfrm_register_km(&pfkeyv2_mgr);
  3231. if (err != 0)
  3232. goto out_sock_unregister;
  3233. out:
  3234. return err;
  3235. out_sock_unregister:
  3236. sock_unregister(PF_KEY);
  3237. out_unregister_pernet:
  3238. unregister_pernet_subsys(&pfkey_net_ops);
  3239. out_unregister_key_proto:
  3240. proto_unregister(&key_proto);
  3241. goto out;
  3242. }
  3243. module_init(ipsec_pfkey_init);
  3244. module_exit(ipsec_pfkey_exit);
  3245. MODULE_LICENSE("GPL");
  3246. MODULE_ALIAS_NETPROTO(PF_KEY);