vmalloc.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static LIST_HEAD(vmap_area_list);
  231. static struct rb_root vmap_area_root = RB_ROOT;
  232. /* The vmap cache globals are protected by vmap_area_lock */
  233. static struct rb_node *free_vmap_cache;
  234. static unsigned long cached_hole_size;
  235. static unsigned long cached_vstart;
  236. static unsigned long cached_align;
  237. static unsigned long vmap_area_pcpu_hole;
  238. static struct vmap_area *__find_vmap_area(unsigned long addr)
  239. {
  240. struct rb_node *n = vmap_area_root.rb_node;
  241. while (n) {
  242. struct vmap_area *va;
  243. va = rb_entry(n, struct vmap_area, rb_node);
  244. if (addr < va->va_start)
  245. n = n->rb_left;
  246. else if (addr > va->va_start)
  247. n = n->rb_right;
  248. else
  249. return va;
  250. }
  251. return NULL;
  252. }
  253. static void __insert_vmap_area(struct vmap_area *va)
  254. {
  255. struct rb_node **p = &vmap_area_root.rb_node;
  256. struct rb_node *parent = NULL;
  257. struct rb_node *tmp;
  258. while (*p) {
  259. struct vmap_area *tmp_va;
  260. parent = *p;
  261. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  262. if (va->va_start < tmp_va->va_end)
  263. p = &(*p)->rb_left;
  264. else if (va->va_end > tmp_va->va_start)
  265. p = &(*p)->rb_right;
  266. else
  267. BUG();
  268. }
  269. rb_link_node(&va->rb_node, parent, p);
  270. rb_insert_color(&va->rb_node, &vmap_area_root);
  271. /* address-sort this list so it is usable like the vmlist */
  272. tmp = rb_prev(&va->rb_node);
  273. if (tmp) {
  274. struct vmap_area *prev;
  275. prev = rb_entry(tmp, struct vmap_area, rb_node);
  276. list_add_rcu(&va->list, &prev->list);
  277. } else
  278. list_add_rcu(&va->list, &vmap_area_list);
  279. }
  280. static void purge_vmap_area_lazy(void);
  281. /*
  282. * Allocate a region of KVA of the specified size and alignment, within the
  283. * vstart and vend.
  284. */
  285. static struct vmap_area *alloc_vmap_area(unsigned long size,
  286. unsigned long align,
  287. unsigned long vstart, unsigned long vend,
  288. int node, gfp_t gfp_mask)
  289. {
  290. struct vmap_area *va;
  291. struct rb_node *n;
  292. unsigned long addr;
  293. int purged = 0;
  294. struct vmap_area *first;
  295. BUG_ON(!size);
  296. BUG_ON(size & ~PAGE_MASK);
  297. BUG_ON(!is_power_of_2(align));
  298. va = kmalloc_node(sizeof(struct vmap_area),
  299. gfp_mask & GFP_RECLAIM_MASK, node);
  300. if (unlikely(!va))
  301. return ERR_PTR(-ENOMEM);
  302. retry:
  303. spin_lock(&vmap_area_lock);
  304. /*
  305. * Invalidate cache if we have more permissive parameters.
  306. * cached_hole_size notes the largest hole noticed _below_
  307. * the vmap_area cached in free_vmap_cache: if size fits
  308. * into that hole, we want to scan from vstart to reuse
  309. * the hole instead of allocating above free_vmap_cache.
  310. * Note that __free_vmap_area may update free_vmap_cache
  311. * without updating cached_hole_size or cached_align.
  312. */
  313. if (!free_vmap_cache ||
  314. size < cached_hole_size ||
  315. vstart < cached_vstart ||
  316. align < cached_align) {
  317. nocache:
  318. cached_hole_size = 0;
  319. free_vmap_cache = NULL;
  320. }
  321. /* record if we encounter less permissive parameters */
  322. cached_vstart = vstart;
  323. cached_align = align;
  324. /* find starting point for our search */
  325. if (free_vmap_cache) {
  326. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  327. addr = ALIGN(first->va_end, align);
  328. if (addr < vstart)
  329. goto nocache;
  330. if (addr + size - 1 < addr)
  331. goto overflow;
  332. } else {
  333. addr = ALIGN(vstart, align);
  334. if (addr + size - 1 < addr)
  335. goto overflow;
  336. n = vmap_area_root.rb_node;
  337. first = NULL;
  338. while (n) {
  339. struct vmap_area *tmp;
  340. tmp = rb_entry(n, struct vmap_area, rb_node);
  341. if (tmp->va_end >= addr) {
  342. first = tmp;
  343. if (tmp->va_start <= addr)
  344. break;
  345. n = n->rb_left;
  346. } else
  347. n = n->rb_right;
  348. }
  349. if (!first)
  350. goto found;
  351. }
  352. /* from the starting point, walk areas until a suitable hole is found */
  353. while (addr + size > first->va_start && addr + size <= vend) {
  354. if (addr + cached_hole_size < first->va_start)
  355. cached_hole_size = first->va_start - addr;
  356. addr = ALIGN(first->va_end, align);
  357. if (addr + size - 1 < addr)
  358. goto overflow;
  359. n = rb_next(&first->rb_node);
  360. if (n)
  361. first = rb_entry(n, struct vmap_area, rb_node);
  362. else
  363. goto found;
  364. }
  365. found:
  366. if (addr + size > vend)
  367. goto overflow;
  368. va->va_start = addr;
  369. va->va_end = addr + size;
  370. va->flags = 0;
  371. __insert_vmap_area(va);
  372. free_vmap_cache = &va->rb_node;
  373. spin_unlock(&vmap_area_lock);
  374. BUG_ON(va->va_start & (align-1));
  375. BUG_ON(va->va_start < vstart);
  376. BUG_ON(va->va_end > vend);
  377. return va;
  378. overflow:
  379. spin_unlock(&vmap_area_lock);
  380. if (!purged) {
  381. purge_vmap_area_lazy();
  382. purged = 1;
  383. goto retry;
  384. }
  385. if (printk_ratelimit())
  386. printk(KERN_WARNING
  387. "vmap allocation for size %lu failed: "
  388. "use vmalloc=<size> to increase size.\n", size);
  389. kfree(va);
  390. return ERR_PTR(-EBUSY);
  391. }
  392. static void __free_vmap_area(struct vmap_area *va)
  393. {
  394. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  395. if (free_vmap_cache) {
  396. if (va->va_end < cached_vstart) {
  397. free_vmap_cache = NULL;
  398. } else {
  399. struct vmap_area *cache;
  400. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  401. if (va->va_start <= cache->va_start) {
  402. free_vmap_cache = rb_prev(&va->rb_node);
  403. /*
  404. * We don't try to update cached_hole_size or
  405. * cached_align, but it won't go very wrong.
  406. */
  407. }
  408. }
  409. }
  410. rb_erase(&va->rb_node, &vmap_area_root);
  411. RB_CLEAR_NODE(&va->rb_node);
  412. list_del_rcu(&va->list);
  413. /*
  414. * Track the highest possible candidate for pcpu area
  415. * allocation. Areas outside of vmalloc area can be returned
  416. * here too, consider only end addresses which fall inside
  417. * vmalloc area proper.
  418. */
  419. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  420. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  421. kfree_rcu(va, rcu_head);
  422. }
  423. /*
  424. * Free a region of KVA allocated by alloc_vmap_area
  425. */
  426. static void free_vmap_area(struct vmap_area *va)
  427. {
  428. spin_lock(&vmap_area_lock);
  429. __free_vmap_area(va);
  430. spin_unlock(&vmap_area_lock);
  431. }
  432. /*
  433. * Clear the pagetable entries of a given vmap_area
  434. */
  435. static void unmap_vmap_area(struct vmap_area *va)
  436. {
  437. vunmap_page_range(va->va_start, va->va_end);
  438. }
  439. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  440. {
  441. /*
  442. * Unmap page tables and force a TLB flush immediately if
  443. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  444. * bugs similarly to those in linear kernel virtual address
  445. * space after a page has been freed.
  446. *
  447. * All the lazy freeing logic is still retained, in order to
  448. * minimise intrusiveness of this debugging feature.
  449. *
  450. * This is going to be *slow* (linear kernel virtual address
  451. * debugging doesn't do a broadcast TLB flush so it is a lot
  452. * faster).
  453. */
  454. #ifdef CONFIG_DEBUG_PAGEALLOC
  455. vunmap_page_range(start, end);
  456. flush_tlb_kernel_range(start, end);
  457. #endif
  458. }
  459. /*
  460. * lazy_max_pages is the maximum amount of virtual address space we gather up
  461. * before attempting to purge with a TLB flush.
  462. *
  463. * There is a tradeoff here: a larger number will cover more kernel page tables
  464. * and take slightly longer to purge, but it will linearly reduce the number of
  465. * global TLB flushes that must be performed. It would seem natural to scale
  466. * this number up linearly with the number of CPUs (because vmapping activity
  467. * could also scale linearly with the number of CPUs), however it is likely
  468. * that in practice, workloads might be constrained in other ways that mean
  469. * vmap activity will not scale linearly with CPUs. Also, I want to be
  470. * conservative and not introduce a big latency on huge systems, so go with
  471. * a less aggressive log scale. It will still be an improvement over the old
  472. * code, and it will be simple to change the scale factor if we find that it
  473. * becomes a problem on bigger systems.
  474. */
  475. static unsigned long lazy_max_pages(void)
  476. {
  477. unsigned int log;
  478. log = fls(num_online_cpus());
  479. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  480. }
  481. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  482. /* for per-CPU blocks */
  483. static void purge_fragmented_blocks_allcpus(void);
  484. /*
  485. * called before a call to iounmap() if the caller wants vm_area_struct's
  486. * immediately freed.
  487. */
  488. void set_iounmap_nonlazy(void)
  489. {
  490. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  491. }
  492. /*
  493. * Purges all lazily-freed vmap areas.
  494. *
  495. * If sync is 0 then don't purge if there is already a purge in progress.
  496. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  497. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  498. * their own TLB flushing).
  499. * Returns with *start = min(*start, lowest purged address)
  500. * *end = max(*end, highest purged address)
  501. */
  502. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  503. int sync, int force_flush)
  504. {
  505. static DEFINE_SPINLOCK(purge_lock);
  506. LIST_HEAD(valist);
  507. struct vmap_area *va;
  508. struct vmap_area *n_va;
  509. int nr = 0;
  510. /*
  511. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  512. * should not expect such behaviour. This just simplifies locking for
  513. * the case that isn't actually used at the moment anyway.
  514. */
  515. if (!sync && !force_flush) {
  516. if (!spin_trylock(&purge_lock))
  517. return;
  518. } else
  519. spin_lock(&purge_lock);
  520. if (sync)
  521. purge_fragmented_blocks_allcpus();
  522. rcu_read_lock();
  523. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  524. if (va->flags & VM_LAZY_FREE) {
  525. if (va->va_start < *start)
  526. *start = va->va_start;
  527. if (va->va_end > *end)
  528. *end = va->va_end;
  529. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  530. list_add_tail(&va->purge_list, &valist);
  531. va->flags |= VM_LAZY_FREEING;
  532. va->flags &= ~VM_LAZY_FREE;
  533. }
  534. }
  535. rcu_read_unlock();
  536. if (nr)
  537. atomic_sub(nr, &vmap_lazy_nr);
  538. if (nr || force_flush)
  539. flush_tlb_kernel_range(*start, *end);
  540. if (nr) {
  541. spin_lock(&vmap_area_lock);
  542. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  543. __free_vmap_area(va);
  544. spin_unlock(&vmap_area_lock);
  545. }
  546. spin_unlock(&purge_lock);
  547. }
  548. /*
  549. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  550. * is already purging.
  551. */
  552. static void try_purge_vmap_area_lazy(void)
  553. {
  554. unsigned long start = ULONG_MAX, end = 0;
  555. __purge_vmap_area_lazy(&start, &end, 0, 0);
  556. }
  557. /*
  558. * Kick off a purge of the outstanding lazy areas.
  559. */
  560. static void purge_vmap_area_lazy(void)
  561. {
  562. unsigned long start = ULONG_MAX, end = 0;
  563. __purge_vmap_area_lazy(&start, &end, 1, 0);
  564. }
  565. /*
  566. * Free a vmap area, caller ensuring that the area has been unmapped
  567. * and flush_cache_vunmap had been called for the correct range
  568. * previously.
  569. */
  570. static void free_vmap_area_noflush(struct vmap_area *va)
  571. {
  572. va->flags |= VM_LAZY_FREE;
  573. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  574. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  575. try_purge_vmap_area_lazy();
  576. }
  577. /*
  578. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  579. * called for the correct range previously.
  580. */
  581. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  582. {
  583. unmap_vmap_area(va);
  584. free_vmap_area_noflush(va);
  585. }
  586. /*
  587. * Free and unmap a vmap area
  588. */
  589. static void free_unmap_vmap_area(struct vmap_area *va)
  590. {
  591. flush_cache_vunmap(va->va_start, va->va_end);
  592. free_unmap_vmap_area_noflush(va);
  593. }
  594. static struct vmap_area *find_vmap_area(unsigned long addr)
  595. {
  596. struct vmap_area *va;
  597. spin_lock(&vmap_area_lock);
  598. va = __find_vmap_area(addr);
  599. spin_unlock(&vmap_area_lock);
  600. return va;
  601. }
  602. static void free_unmap_vmap_area_addr(unsigned long addr)
  603. {
  604. struct vmap_area *va;
  605. va = find_vmap_area(addr);
  606. BUG_ON(!va);
  607. free_unmap_vmap_area(va);
  608. }
  609. /*** Per cpu kva allocator ***/
  610. /*
  611. * vmap space is limited especially on 32 bit architectures. Ensure there is
  612. * room for at least 16 percpu vmap blocks per CPU.
  613. */
  614. /*
  615. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  616. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  617. * instead (we just need a rough idea)
  618. */
  619. #if BITS_PER_LONG == 32
  620. #define VMALLOC_SPACE (128UL*1024*1024)
  621. #else
  622. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  623. #endif
  624. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  625. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  626. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  627. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  628. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  629. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  630. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  631. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  632. VMALLOC_PAGES / NR_CPUS / 16))
  633. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  634. static bool vmap_initialized __read_mostly = false;
  635. struct vmap_block_queue {
  636. spinlock_t lock;
  637. struct list_head free;
  638. };
  639. struct vmap_block {
  640. spinlock_t lock;
  641. struct vmap_area *va;
  642. struct vmap_block_queue *vbq;
  643. unsigned long free, dirty;
  644. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  645. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  646. struct list_head free_list;
  647. struct rcu_head rcu_head;
  648. struct list_head purge;
  649. };
  650. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  651. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  652. /*
  653. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  654. * in the free path. Could get rid of this if we change the API to return a
  655. * "cookie" from alloc, to be passed to free. But no big deal yet.
  656. */
  657. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  658. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  659. /*
  660. * We should probably have a fallback mechanism to allocate virtual memory
  661. * out of partially filled vmap blocks. However vmap block sizing should be
  662. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  663. * big problem.
  664. */
  665. static unsigned long addr_to_vb_idx(unsigned long addr)
  666. {
  667. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  668. addr /= VMAP_BLOCK_SIZE;
  669. return addr;
  670. }
  671. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  672. {
  673. struct vmap_block_queue *vbq;
  674. struct vmap_block *vb;
  675. struct vmap_area *va;
  676. unsigned long vb_idx;
  677. int node, err;
  678. node = numa_node_id();
  679. vb = kmalloc_node(sizeof(struct vmap_block),
  680. gfp_mask & GFP_RECLAIM_MASK, node);
  681. if (unlikely(!vb))
  682. return ERR_PTR(-ENOMEM);
  683. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  684. VMALLOC_START, VMALLOC_END,
  685. node, gfp_mask);
  686. if (IS_ERR(va)) {
  687. kfree(vb);
  688. return ERR_CAST(va);
  689. }
  690. err = radix_tree_preload(gfp_mask);
  691. if (unlikely(err)) {
  692. kfree(vb);
  693. free_vmap_area(va);
  694. return ERR_PTR(err);
  695. }
  696. spin_lock_init(&vb->lock);
  697. vb->va = va;
  698. vb->free = VMAP_BBMAP_BITS;
  699. vb->dirty = 0;
  700. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  701. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  702. INIT_LIST_HEAD(&vb->free_list);
  703. vb_idx = addr_to_vb_idx(va->va_start);
  704. spin_lock(&vmap_block_tree_lock);
  705. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  706. spin_unlock(&vmap_block_tree_lock);
  707. BUG_ON(err);
  708. radix_tree_preload_end();
  709. vbq = &get_cpu_var(vmap_block_queue);
  710. vb->vbq = vbq;
  711. spin_lock(&vbq->lock);
  712. list_add_rcu(&vb->free_list, &vbq->free);
  713. spin_unlock(&vbq->lock);
  714. put_cpu_var(vmap_block_queue);
  715. return vb;
  716. }
  717. static void free_vmap_block(struct vmap_block *vb)
  718. {
  719. struct vmap_block *tmp;
  720. unsigned long vb_idx;
  721. vb_idx = addr_to_vb_idx(vb->va->va_start);
  722. spin_lock(&vmap_block_tree_lock);
  723. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  724. spin_unlock(&vmap_block_tree_lock);
  725. BUG_ON(tmp != vb);
  726. free_vmap_area_noflush(vb->va);
  727. kfree_rcu(vb, rcu_head);
  728. }
  729. static void purge_fragmented_blocks(int cpu)
  730. {
  731. LIST_HEAD(purge);
  732. struct vmap_block *vb;
  733. struct vmap_block *n_vb;
  734. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  735. rcu_read_lock();
  736. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  737. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  738. continue;
  739. spin_lock(&vb->lock);
  740. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  741. vb->free = 0; /* prevent further allocs after releasing lock */
  742. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  743. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  744. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  745. spin_lock(&vbq->lock);
  746. list_del_rcu(&vb->free_list);
  747. spin_unlock(&vbq->lock);
  748. spin_unlock(&vb->lock);
  749. list_add_tail(&vb->purge, &purge);
  750. } else
  751. spin_unlock(&vb->lock);
  752. }
  753. rcu_read_unlock();
  754. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  755. list_del(&vb->purge);
  756. free_vmap_block(vb);
  757. }
  758. }
  759. static void purge_fragmented_blocks_thiscpu(void)
  760. {
  761. purge_fragmented_blocks(smp_processor_id());
  762. }
  763. static void purge_fragmented_blocks_allcpus(void)
  764. {
  765. int cpu;
  766. for_each_possible_cpu(cpu)
  767. purge_fragmented_blocks(cpu);
  768. }
  769. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  770. {
  771. struct vmap_block_queue *vbq;
  772. struct vmap_block *vb;
  773. unsigned long addr = 0;
  774. unsigned int order;
  775. int purge = 0;
  776. BUG_ON(size & ~PAGE_MASK);
  777. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  778. order = get_order(size);
  779. again:
  780. rcu_read_lock();
  781. vbq = &get_cpu_var(vmap_block_queue);
  782. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  783. int i;
  784. spin_lock(&vb->lock);
  785. if (vb->free < 1UL << order)
  786. goto next;
  787. i = bitmap_find_free_region(vb->alloc_map,
  788. VMAP_BBMAP_BITS, order);
  789. if (i < 0) {
  790. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  791. /* fragmented and no outstanding allocations */
  792. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  793. purge = 1;
  794. }
  795. goto next;
  796. }
  797. addr = vb->va->va_start + (i << PAGE_SHIFT);
  798. BUG_ON(addr_to_vb_idx(addr) !=
  799. addr_to_vb_idx(vb->va->va_start));
  800. vb->free -= 1UL << order;
  801. if (vb->free == 0) {
  802. spin_lock(&vbq->lock);
  803. list_del_rcu(&vb->free_list);
  804. spin_unlock(&vbq->lock);
  805. }
  806. spin_unlock(&vb->lock);
  807. break;
  808. next:
  809. spin_unlock(&vb->lock);
  810. }
  811. if (purge)
  812. purge_fragmented_blocks_thiscpu();
  813. put_cpu_var(vmap_block_queue);
  814. rcu_read_unlock();
  815. if (!addr) {
  816. vb = new_vmap_block(gfp_mask);
  817. if (IS_ERR(vb))
  818. return vb;
  819. goto again;
  820. }
  821. return (void *)addr;
  822. }
  823. static void vb_free(const void *addr, unsigned long size)
  824. {
  825. unsigned long offset;
  826. unsigned long vb_idx;
  827. unsigned int order;
  828. struct vmap_block *vb;
  829. BUG_ON(size & ~PAGE_MASK);
  830. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  831. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  832. order = get_order(size);
  833. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  834. vb_idx = addr_to_vb_idx((unsigned long)addr);
  835. rcu_read_lock();
  836. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  837. rcu_read_unlock();
  838. BUG_ON(!vb);
  839. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  840. spin_lock(&vb->lock);
  841. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  842. vb->dirty += 1UL << order;
  843. if (vb->dirty == VMAP_BBMAP_BITS) {
  844. BUG_ON(vb->free);
  845. spin_unlock(&vb->lock);
  846. free_vmap_block(vb);
  847. } else
  848. spin_unlock(&vb->lock);
  849. }
  850. /**
  851. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  852. *
  853. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  854. * to amortize TLB flushing overheads. What this means is that any page you
  855. * have now, may, in a former life, have been mapped into kernel virtual
  856. * address by the vmap layer and so there might be some CPUs with TLB entries
  857. * still referencing that page (additional to the regular 1:1 kernel mapping).
  858. *
  859. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  860. * be sure that none of the pages we have control over will have any aliases
  861. * from the vmap layer.
  862. */
  863. void vm_unmap_aliases(void)
  864. {
  865. unsigned long start = ULONG_MAX, end = 0;
  866. int cpu;
  867. int flush = 0;
  868. if (unlikely(!vmap_initialized))
  869. return;
  870. for_each_possible_cpu(cpu) {
  871. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  872. struct vmap_block *vb;
  873. rcu_read_lock();
  874. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  875. int i;
  876. spin_lock(&vb->lock);
  877. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  878. while (i < VMAP_BBMAP_BITS) {
  879. unsigned long s, e;
  880. int j;
  881. j = find_next_zero_bit(vb->dirty_map,
  882. VMAP_BBMAP_BITS, i);
  883. s = vb->va->va_start + (i << PAGE_SHIFT);
  884. e = vb->va->va_start + (j << PAGE_SHIFT);
  885. flush = 1;
  886. if (s < start)
  887. start = s;
  888. if (e > end)
  889. end = e;
  890. i = j;
  891. i = find_next_bit(vb->dirty_map,
  892. VMAP_BBMAP_BITS, i);
  893. }
  894. spin_unlock(&vb->lock);
  895. }
  896. rcu_read_unlock();
  897. }
  898. __purge_vmap_area_lazy(&start, &end, 1, flush);
  899. }
  900. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  901. /**
  902. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  903. * @mem: the pointer returned by vm_map_ram
  904. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  905. */
  906. void vm_unmap_ram(const void *mem, unsigned int count)
  907. {
  908. unsigned long size = count << PAGE_SHIFT;
  909. unsigned long addr = (unsigned long)mem;
  910. BUG_ON(!addr);
  911. BUG_ON(addr < VMALLOC_START);
  912. BUG_ON(addr > VMALLOC_END);
  913. BUG_ON(addr & (PAGE_SIZE-1));
  914. debug_check_no_locks_freed(mem, size);
  915. vmap_debug_free_range(addr, addr+size);
  916. if (likely(count <= VMAP_MAX_ALLOC))
  917. vb_free(mem, size);
  918. else
  919. free_unmap_vmap_area_addr(addr);
  920. }
  921. EXPORT_SYMBOL(vm_unmap_ram);
  922. /**
  923. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  924. * @pages: an array of pointers to the pages to be mapped
  925. * @count: number of pages
  926. * @node: prefer to allocate data structures on this node
  927. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  928. *
  929. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  930. */
  931. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  932. {
  933. unsigned long size = count << PAGE_SHIFT;
  934. unsigned long addr;
  935. void *mem;
  936. if (likely(count <= VMAP_MAX_ALLOC)) {
  937. mem = vb_alloc(size, GFP_KERNEL);
  938. if (IS_ERR(mem))
  939. return NULL;
  940. addr = (unsigned long)mem;
  941. } else {
  942. struct vmap_area *va;
  943. va = alloc_vmap_area(size, PAGE_SIZE,
  944. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  945. if (IS_ERR(va))
  946. return NULL;
  947. addr = va->va_start;
  948. mem = (void *)addr;
  949. }
  950. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  951. vm_unmap_ram(mem, count);
  952. return NULL;
  953. }
  954. return mem;
  955. }
  956. EXPORT_SYMBOL(vm_map_ram);
  957. /**
  958. * vm_area_register_early - register vmap area early during boot
  959. * @vm: vm_struct to register
  960. * @align: requested alignment
  961. *
  962. * This function is used to register kernel vm area before
  963. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  964. * proper values on entry and other fields should be zero. On return,
  965. * vm->addr contains the allocated address.
  966. *
  967. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  968. */
  969. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  970. {
  971. static size_t vm_init_off __initdata;
  972. unsigned long addr;
  973. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  974. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  975. vm->addr = (void *)addr;
  976. vm->next = vmlist;
  977. vmlist = vm;
  978. }
  979. void __init vmalloc_init(void)
  980. {
  981. struct vmap_area *va;
  982. struct vm_struct *tmp;
  983. int i;
  984. for_each_possible_cpu(i) {
  985. struct vmap_block_queue *vbq;
  986. vbq = &per_cpu(vmap_block_queue, i);
  987. spin_lock_init(&vbq->lock);
  988. INIT_LIST_HEAD(&vbq->free);
  989. }
  990. /* Import existing vmlist entries. */
  991. for (tmp = vmlist; tmp; tmp = tmp->next) {
  992. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  993. va->flags = tmp->flags | VM_VM_AREA;
  994. va->va_start = (unsigned long)tmp->addr;
  995. va->va_end = va->va_start + tmp->size;
  996. __insert_vmap_area(va);
  997. }
  998. vmap_area_pcpu_hole = VMALLOC_END;
  999. vmap_initialized = true;
  1000. }
  1001. /**
  1002. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1003. * @addr: start of the VM area to map
  1004. * @size: size of the VM area to map
  1005. * @prot: page protection flags to use
  1006. * @pages: pages to map
  1007. *
  1008. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1009. * specify should have been allocated using get_vm_area() and its
  1010. * friends.
  1011. *
  1012. * NOTE:
  1013. * This function does NOT do any cache flushing. The caller is
  1014. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1015. * before calling this function.
  1016. *
  1017. * RETURNS:
  1018. * The number of pages mapped on success, -errno on failure.
  1019. */
  1020. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1021. pgprot_t prot, struct page **pages)
  1022. {
  1023. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1024. }
  1025. /**
  1026. * unmap_kernel_range_noflush - unmap kernel VM area
  1027. * @addr: start of the VM area to unmap
  1028. * @size: size of the VM area to unmap
  1029. *
  1030. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1031. * specify should have been allocated using get_vm_area() and its
  1032. * friends.
  1033. *
  1034. * NOTE:
  1035. * This function does NOT do any cache flushing. The caller is
  1036. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1037. * before calling this function and flush_tlb_kernel_range() after.
  1038. */
  1039. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1040. {
  1041. vunmap_page_range(addr, addr + size);
  1042. }
  1043. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1044. /**
  1045. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1046. * @addr: start of the VM area to unmap
  1047. * @size: size of the VM area to unmap
  1048. *
  1049. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1050. * the unmapping and tlb after.
  1051. */
  1052. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1053. {
  1054. unsigned long end = addr + size;
  1055. flush_cache_vunmap(addr, end);
  1056. vunmap_page_range(addr, end);
  1057. flush_tlb_kernel_range(addr, end);
  1058. }
  1059. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1060. {
  1061. unsigned long addr = (unsigned long)area->addr;
  1062. unsigned long end = addr + area->size - PAGE_SIZE;
  1063. int err;
  1064. err = vmap_page_range(addr, end, prot, *pages);
  1065. if (err > 0) {
  1066. *pages += err;
  1067. err = 0;
  1068. }
  1069. return err;
  1070. }
  1071. EXPORT_SYMBOL_GPL(map_vm_area);
  1072. /*** Old vmalloc interfaces ***/
  1073. DEFINE_RWLOCK(vmlist_lock);
  1074. struct vm_struct *vmlist;
  1075. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1076. unsigned long flags, void *caller)
  1077. {
  1078. struct vm_struct *tmp, **p;
  1079. vm->flags = flags;
  1080. vm->addr = (void *)va->va_start;
  1081. vm->size = va->va_end - va->va_start;
  1082. vm->caller = caller;
  1083. va->private = vm;
  1084. va->flags |= VM_VM_AREA;
  1085. write_lock(&vmlist_lock);
  1086. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1087. if (tmp->addr >= vm->addr)
  1088. break;
  1089. }
  1090. vm->next = *p;
  1091. *p = vm;
  1092. write_unlock(&vmlist_lock);
  1093. }
  1094. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1095. unsigned long align, unsigned long flags, unsigned long start,
  1096. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  1097. {
  1098. static struct vmap_area *va;
  1099. struct vm_struct *area;
  1100. BUG_ON(in_interrupt());
  1101. if (flags & VM_IOREMAP) {
  1102. int bit = fls(size);
  1103. if (bit > IOREMAP_MAX_ORDER)
  1104. bit = IOREMAP_MAX_ORDER;
  1105. else if (bit < PAGE_SHIFT)
  1106. bit = PAGE_SHIFT;
  1107. align = 1ul << bit;
  1108. }
  1109. size = PAGE_ALIGN(size);
  1110. if (unlikely(!size))
  1111. return NULL;
  1112. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1113. if (unlikely(!area))
  1114. return NULL;
  1115. /*
  1116. * We always allocate a guard page.
  1117. */
  1118. size += PAGE_SIZE;
  1119. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1120. if (IS_ERR(va)) {
  1121. kfree(area);
  1122. return NULL;
  1123. }
  1124. insert_vmalloc_vm(area, va, flags, caller);
  1125. return area;
  1126. }
  1127. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1128. unsigned long start, unsigned long end)
  1129. {
  1130. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1131. __builtin_return_address(0));
  1132. }
  1133. EXPORT_SYMBOL_GPL(__get_vm_area);
  1134. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1135. unsigned long start, unsigned long end,
  1136. void *caller)
  1137. {
  1138. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1139. caller);
  1140. }
  1141. /**
  1142. * get_vm_area - reserve a contiguous kernel virtual area
  1143. * @size: size of the area
  1144. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1145. *
  1146. * Search an area of @size in the kernel virtual mapping area,
  1147. * and reserved it for out purposes. Returns the area descriptor
  1148. * on success or %NULL on failure.
  1149. */
  1150. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1151. {
  1152. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1153. -1, GFP_KERNEL, __builtin_return_address(0));
  1154. }
  1155. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1156. void *caller)
  1157. {
  1158. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1159. -1, GFP_KERNEL, caller);
  1160. }
  1161. static struct vm_struct *find_vm_area(const void *addr)
  1162. {
  1163. struct vmap_area *va;
  1164. va = find_vmap_area((unsigned long)addr);
  1165. if (va && va->flags & VM_VM_AREA)
  1166. return va->private;
  1167. return NULL;
  1168. }
  1169. /**
  1170. * remove_vm_area - find and remove a continuous kernel virtual area
  1171. * @addr: base address
  1172. *
  1173. * Search for the kernel VM area starting at @addr, and remove it.
  1174. * This function returns the found VM area, but using it is NOT safe
  1175. * on SMP machines, except for its size or flags.
  1176. */
  1177. struct vm_struct *remove_vm_area(const void *addr)
  1178. {
  1179. struct vmap_area *va;
  1180. va = find_vmap_area((unsigned long)addr);
  1181. if (va && va->flags & VM_VM_AREA) {
  1182. struct vm_struct *vm = va->private;
  1183. struct vm_struct *tmp, **p;
  1184. /*
  1185. * remove from list and disallow access to this vm_struct
  1186. * before unmap. (address range confliction is maintained by
  1187. * vmap.)
  1188. */
  1189. write_lock(&vmlist_lock);
  1190. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1191. ;
  1192. *p = tmp->next;
  1193. write_unlock(&vmlist_lock);
  1194. vmap_debug_free_range(va->va_start, va->va_end);
  1195. free_unmap_vmap_area(va);
  1196. vm->size -= PAGE_SIZE;
  1197. return vm;
  1198. }
  1199. return NULL;
  1200. }
  1201. static void __vunmap(const void *addr, int deallocate_pages)
  1202. {
  1203. struct vm_struct *area;
  1204. if (!addr)
  1205. return;
  1206. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1207. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1208. return;
  1209. }
  1210. area = remove_vm_area(addr);
  1211. if (unlikely(!area)) {
  1212. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1213. addr);
  1214. return;
  1215. }
  1216. debug_check_no_locks_freed(addr, area->size);
  1217. debug_check_no_obj_freed(addr, area->size);
  1218. if (deallocate_pages) {
  1219. int i;
  1220. for (i = 0; i < area->nr_pages; i++) {
  1221. struct page *page = area->pages[i];
  1222. BUG_ON(!page);
  1223. __free_page(page);
  1224. }
  1225. if (area->flags & VM_VPAGES)
  1226. vfree(area->pages);
  1227. else
  1228. kfree(area->pages);
  1229. }
  1230. kfree(area);
  1231. return;
  1232. }
  1233. /**
  1234. * vfree - release memory allocated by vmalloc()
  1235. * @addr: memory base address
  1236. *
  1237. * Free the virtually continuous memory area starting at @addr, as
  1238. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1239. * NULL, no operation is performed.
  1240. *
  1241. * Must not be called in interrupt context.
  1242. */
  1243. void vfree(const void *addr)
  1244. {
  1245. BUG_ON(in_interrupt());
  1246. kmemleak_free(addr);
  1247. __vunmap(addr, 1);
  1248. }
  1249. EXPORT_SYMBOL(vfree);
  1250. /**
  1251. * vunmap - release virtual mapping obtained by vmap()
  1252. * @addr: memory base address
  1253. *
  1254. * Free the virtually contiguous memory area starting at @addr,
  1255. * which was created from the page array passed to vmap().
  1256. *
  1257. * Must not be called in interrupt context.
  1258. */
  1259. void vunmap(const void *addr)
  1260. {
  1261. BUG_ON(in_interrupt());
  1262. might_sleep();
  1263. __vunmap(addr, 0);
  1264. }
  1265. EXPORT_SYMBOL(vunmap);
  1266. /**
  1267. * vmap - map an array of pages into virtually contiguous space
  1268. * @pages: array of page pointers
  1269. * @count: number of pages to map
  1270. * @flags: vm_area->flags
  1271. * @prot: page protection for the mapping
  1272. *
  1273. * Maps @count pages from @pages into contiguous kernel virtual
  1274. * space.
  1275. */
  1276. void *vmap(struct page **pages, unsigned int count,
  1277. unsigned long flags, pgprot_t prot)
  1278. {
  1279. struct vm_struct *area;
  1280. might_sleep();
  1281. if (count > totalram_pages)
  1282. return NULL;
  1283. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1284. __builtin_return_address(0));
  1285. if (!area)
  1286. return NULL;
  1287. if (map_vm_area(area, prot, &pages)) {
  1288. vunmap(area->addr);
  1289. return NULL;
  1290. }
  1291. return area->addr;
  1292. }
  1293. EXPORT_SYMBOL(vmap);
  1294. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1295. gfp_t gfp_mask, pgprot_t prot,
  1296. int node, void *caller);
  1297. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1298. pgprot_t prot, int node, void *caller)
  1299. {
  1300. const int order = 0;
  1301. struct page **pages;
  1302. unsigned int nr_pages, array_size, i;
  1303. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1304. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1305. array_size = (nr_pages * sizeof(struct page *));
  1306. area->nr_pages = nr_pages;
  1307. /* Please note that the recursion is strictly bounded. */
  1308. if (array_size > PAGE_SIZE) {
  1309. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1310. PAGE_KERNEL, node, caller);
  1311. area->flags |= VM_VPAGES;
  1312. } else {
  1313. pages = kmalloc_node(array_size, nested_gfp, node);
  1314. }
  1315. area->pages = pages;
  1316. area->caller = caller;
  1317. if (!area->pages) {
  1318. remove_vm_area(area->addr);
  1319. kfree(area);
  1320. return NULL;
  1321. }
  1322. for (i = 0; i < area->nr_pages; i++) {
  1323. struct page *page;
  1324. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1325. if (node < 0)
  1326. page = alloc_page(tmp_mask);
  1327. else
  1328. page = alloc_pages_node(node, tmp_mask, order);
  1329. if (unlikely(!page)) {
  1330. /* Successfully allocated i pages, free them in __vunmap() */
  1331. area->nr_pages = i;
  1332. goto fail;
  1333. }
  1334. area->pages[i] = page;
  1335. }
  1336. if (map_vm_area(area, prot, &pages))
  1337. goto fail;
  1338. return area->addr;
  1339. fail:
  1340. warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
  1341. "allocated %ld of %ld bytes\n",
  1342. (area->nr_pages*PAGE_SIZE), area->size);
  1343. vfree(area->addr);
  1344. return NULL;
  1345. }
  1346. /**
  1347. * __vmalloc_node_range - allocate virtually contiguous memory
  1348. * @size: allocation size
  1349. * @align: desired alignment
  1350. * @start: vm area range start
  1351. * @end: vm area range end
  1352. * @gfp_mask: flags for the page level allocator
  1353. * @prot: protection mask for the allocated pages
  1354. * @node: node to use for allocation or -1
  1355. * @caller: caller's return address
  1356. *
  1357. * Allocate enough pages to cover @size from the page level
  1358. * allocator with @gfp_mask flags. Map them into contiguous
  1359. * kernel virtual space, using a pagetable protection of @prot.
  1360. */
  1361. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1362. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1363. pgprot_t prot, int node, void *caller)
  1364. {
  1365. struct vm_struct *area;
  1366. void *addr;
  1367. unsigned long real_size = size;
  1368. size = PAGE_ALIGN(size);
  1369. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1370. return NULL;
  1371. area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
  1372. gfp_mask, caller);
  1373. if (!area)
  1374. return NULL;
  1375. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1376. /*
  1377. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1378. * structures allocated in the __get_vm_area_node() function contain
  1379. * references to the virtual address of the vmalloc'ed block.
  1380. */
  1381. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1382. return addr;
  1383. }
  1384. /**
  1385. * __vmalloc_node - allocate virtually contiguous memory
  1386. * @size: allocation size
  1387. * @align: desired alignment
  1388. * @gfp_mask: flags for the page level allocator
  1389. * @prot: protection mask for the allocated pages
  1390. * @node: node to use for allocation or -1
  1391. * @caller: caller's return address
  1392. *
  1393. * Allocate enough pages to cover @size from the page level
  1394. * allocator with @gfp_mask flags. Map them into contiguous
  1395. * kernel virtual space, using a pagetable protection of @prot.
  1396. */
  1397. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1398. gfp_t gfp_mask, pgprot_t prot,
  1399. int node, void *caller)
  1400. {
  1401. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1402. gfp_mask, prot, node, caller);
  1403. }
  1404. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1405. {
  1406. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1407. __builtin_return_address(0));
  1408. }
  1409. EXPORT_SYMBOL(__vmalloc);
  1410. static inline void *__vmalloc_node_flags(unsigned long size,
  1411. int node, gfp_t flags)
  1412. {
  1413. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1414. node, __builtin_return_address(0));
  1415. }
  1416. /**
  1417. * vmalloc - allocate virtually contiguous memory
  1418. * @size: allocation size
  1419. * Allocate enough pages to cover @size from the page level
  1420. * allocator and map them into contiguous kernel virtual space.
  1421. *
  1422. * For tight control over page level allocator and protection flags
  1423. * use __vmalloc() instead.
  1424. */
  1425. void *vmalloc(unsigned long size)
  1426. {
  1427. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1428. }
  1429. EXPORT_SYMBOL(vmalloc);
  1430. /**
  1431. * vzalloc - allocate virtually contiguous memory with zero fill
  1432. * @size: allocation size
  1433. * Allocate enough pages to cover @size from the page level
  1434. * allocator and map them into contiguous kernel virtual space.
  1435. * The memory allocated is set to zero.
  1436. *
  1437. * For tight control over page level allocator and protection flags
  1438. * use __vmalloc() instead.
  1439. */
  1440. void *vzalloc(unsigned long size)
  1441. {
  1442. return __vmalloc_node_flags(size, -1,
  1443. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1444. }
  1445. EXPORT_SYMBOL(vzalloc);
  1446. /**
  1447. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1448. * @size: allocation size
  1449. *
  1450. * The resulting memory area is zeroed so it can be mapped to userspace
  1451. * without leaking data.
  1452. */
  1453. void *vmalloc_user(unsigned long size)
  1454. {
  1455. struct vm_struct *area;
  1456. void *ret;
  1457. ret = __vmalloc_node(size, SHMLBA,
  1458. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1459. PAGE_KERNEL, -1, __builtin_return_address(0));
  1460. if (ret) {
  1461. area = find_vm_area(ret);
  1462. area->flags |= VM_USERMAP;
  1463. }
  1464. return ret;
  1465. }
  1466. EXPORT_SYMBOL(vmalloc_user);
  1467. /**
  1468. * vmalloc_node - allocate memory on a specific node
  1469. * @size: allocation size
  1470. * @node: numa node
  1471. *
  1472. * Allocate enough pages to cover @size from the page level
  1473. * allocator and map them into contiguous kernel virtual space.
  1474. *
  1475. * For tight control over page level allocator and protection flags
  1476. * use __vmalloc() instead.
  1477. */
  1478. void *vmalloc_node(unsigned long size, int node)
  1479. {
  1480. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1481. node, __builtin_return_address(0));
  1482. }
  1483. EXPORT_SYMBOL(vmalloc_node);
  1484. /**
  1485. * vzalloc_node - allocate memory on a specific node with zero fill
  1486. * @size: allocation size
  1487. * @node: numa node
  1488. *
  1489. * Allocate enough pages to cover @size from the page level
  1490. * allocator and map them into contiguous kernel virtual space.
  1491. * The memory allocated is set to zero.
  1492. *
  1493. * For tight control over page level allocator and protection flags
  1494. * use __vmalloc_node() instead.
  1495. */
  1496. void *vzalloc_node(unsigned long size, int node)
  1497. {
  1498. return __vmalloc_node_flags(size, node,
  1499. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1500. }
  1501. EXPORT_SYMBOL(vzalloc_node);
  1502. #ifndef PAGE_KERNEL_EXEC
  1503. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1504. #endif
  1505. /**
  1506. * vmalloc_exec - allocate virtually contiguous, executable memory
  1507. * @size: allocation size
  1508. *
  1509. * Kernel-internal function to allocate enough pages to cover @size
  1510. * the page level allocator and map them into contiguous and
  1511. * executable kernel virtual space.
  1512. *
  1513. * For tight control over page level allocator and protection flags
  1514. * use __vmalloc() instead.
  1515. */
  1516. void *vmalloc_exec(unsigned long size)
  1517. {
  1518. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1519. -1, __builtin_return_address(0));
  1520. }
  1521. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1522. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1523. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1524. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1525. #else
  1526. #define GFP_VMALLOC32 GFP_KERNEL
  1527. #endif
  1528. /**
  1529. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1530. * @size: allocation size
  1531. *
  1532. * Allocate enough 32bit PA addressable pages to cover @size from the
  1533. * page level allocator and map them into contiguous kernel virtual space.
  1534. */
  1535. void *vmalloc_32(unsigned long size)
  1536. {
  1537. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1538. -1, __builtin_return_address(0));
  1539. }
  1540. EXPORT_SYMBOL(vmalloc_32);
  1541. /**
  1542. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1543. * @size: allocation size
  1544. *
  1545. * The resulting memory area is 32bit addressable and zeroed so it can be
  1546. * mapped to userspace without leaking data.
  1547. */
  1548. void *vmalloc_32_user(unsigned long size)
  1549. {
  1550. struct vm_struct *area;
  1551. void *ret;
  1552. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1553. -1, __builtin_return_address(0));
  1554. if (ret) {
  1555. area = find_vm_area(ret);
  1556. area->flags |= VM_USERMAP;
  1557. }
  1558. return ret;
  1559. }
  1560. EXPORT_SYMBOL(vmalloc_32_user);
  1561. /*
  1562. * small helper routine , copy contents to buf from addr.
  1563. * If the page is not present, fill zero.
  1564. */
  1565. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1566. {
  1567. struct page *p;
  1568. int copied = 0;
  1569. while (count) {
  1570. unsigned long offset, length;
  1571. offset = (unsigned long)addr & ~PAGE_MASK;
  1572. length = PAGE_SIZE - offset;
  1573. if (length > count)
  1574. length = count;
  1575. p = vmalloc_to_page(addr);
  1576. /*
  1577. * To do safe access to this _mapped_ area, we need
  1578. * lock. But adding lock here means that we need to add
  1579. * overhead of vmalloc()/vfree() calles for this _debug_
  1580. * interface, rarely used. Instead of that, we'll use
  1581. * kmap() and get small overhead in this access function.
  1582. */
  1583. if (p) {
  1584. /*
  1585. * we can expect USER0 is not used (see vread/vwrite's
  1586. * function description)
  1587. */
  1588. void *map = kmap_atomic(p, KM_USER0);
  1589. memcpy(buf, map + offset, length);
  1590. kunmap_atomic(map, KM_USER0);
  1591. } else
  1592. memset(buf, 0, length);
  1593. addr += length;
  1594. buf += length;
  1595. copied += length;
  1596. count -= length;
  1597. }
  1598. return copied;
  1599. }
  1600. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1601. {
  1602. struct page *p;
  1603. int copied = 0;
  1604. while (count) {
  1605. unsigned long offset, length;
  1606. offset = (unsigned long)addr & ~PAGE_MASK;
  1607. length = PAGE_SIZE - offset;
  1608. if (length > count)
  1609. length = count;
  1610. p = vmalloc_to_page(addr);
  1611. /*
  1612. * To do safe access to this _mapped_ area, we need
  1613. * lock. But adding lock here means that we need to add
  1614. * overhead of vmalloc()/vfree() calles for this _debug_
  1615. * interface, rarely used. Instead of that, we'll use
  1616. * kmap() and get small overhead in this access function.
  1617. */
  1618. if (p) {
  1619. /*
  1620. * we can expect USER0 is not used (see vread/vwrite's
  1621. * function description)
  1622. */
  1623. void *map = kmap_atomic(p, KM_USER0);
  1624. memcpy(map + offset, buf, length);
  1625. kunmap_atomic(map, KM_USER0);
  1626. }
  1627. addr += length;
  1628. buf += length;
  1629. copied += length;
  1630. count -= length;
  1631. }
  1632. return copied;
  1633. }
  1634. /**
  1635. * vread() - read vmalloc area in a safe way.
  1636. * @buf: buffer for reading data
  1637. * @addr: vm address.
  1638. * @count: number of bytes to be read.
  1639. *
  1640. * Returns # of bytes which addr and buf should be increased.
  1641. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1642. * includes any intersect with alive vmalloc area.
  1643. *
  1644. * This function checks that addr is a valid vmalloc'ed area, and
  1645. * copy data from that area to a given buffer. If the given memory range
  1646. * of [addr...addr+count) includes some valid address, data is copied to
  1647. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1648. * IOREMAP area is treated as memory hole and no copy is done.
  1649. *
  1650. * If [addr...addr+count) doesn't includes any intersects with alive
  1651. * vm_struct area, returns 0.
  1652. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1653. * the caller should guarantee KM_USER0 is not used.
  1654. *
  1655. * Note: In usual ops, vread() is never necessary because the caller
  1656. * should know vmalloc() area is valid and can use memcpy().
  1657. * This is for routines which have to access vmalloc area without
  1658. * any informaion, as /dev/kmem.
  1659. *
  1660. */
  1661. long vread(char *buf, char *addr, unsigned long count)
  1662. {
  1663. struct vm_struct *tmp;
  1664. char *vaddr, *buf_start = buf;
  1665. unsigned long buflen = count;
  1666. unsigned long n;
  1667. /* Don't allow overflow */
  1668. if ((unsigned long) addr + count < count)
  1669. count = -(unsigned long) addr;
  1670. read_lock(&vmlist_lock);
  1671. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1672. vaddr = (char *) tmp->addr;
  1673. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1674. continue;
  1675. while (addr < vaddr) {
  1676. if (count == 0)
  1677. goto finished;
  1678. *buf = '\0';
  1679. buf++;
  1680. addr++;
  1681. count--;
  1682. }
  1683. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1684. if (n > count)
  1685. n = count;
  1686. if (!(tmp->flags & VM_IOREMAP))
  1687. aligned_vread(buf, addr, n);
  1688. else /* IOREMAP area is treated as memory hole */
  1689. memset(buf, 0, n);
  1690. buf += n;
  1691. addr += n;
  1692. count -= n;
  1693. }
  1694. finished:
  1695. read_unlock(&vmlist_lock);
  1696. if (buf == buf_start)
  1697. return 0;
  1698. /* zero-fill memory holes */
  1699. if (buf != buf_start + buflen)
  1700. memset(buf, 0, buflen - (buf - buf_start));
  1701. return buflen;
  1702. }
  1703. /**
  1704. * vwrite() - write vmalloc area in a safe way.
  1705. * @buf: buffer for source data
  1706. * @addr: vm address.
  1707. * @count: number of bytes to be read.
  1708. *
  1709. * Returns # of bytes which addr and buf should be incresed.
  1710. * (same number to @count).
  1711. * If [addr...addr+count) doesn't includes any intersect with valid
  1712. * vmalloc area, returns 0.
  1713. *
  1714. * This function checks that addr is a valid vmalloc'ed area, and
  1715. * copy data from a buffer to the given addr. If specified range of
  1716. * [addr...addr+count) includes some valid address, data is copied from
  1717. * proper area of @buf. If there are memory holes, no copy to hole.
  1718. * IOREMAP area is treated as memory hole and no copy is done.
  1719. *
  1720. * If [addr...addr+count) doesn't includes any intersects with alive
  1721. * vm_struct area, returns 0.
  1722. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1723. * the caller should guarantee KM_USER0 is not used.
  1724. *
  1725. * Note: In usual ops, vwrite() is never necessary because the caller
  1726. * should know vmalloc() area is valid and can use memcpy().
  1727. * This is for routines which have to access vmalloc area without
  1728. * any informaion, as /dev/kmem.
  1729. */
  1730. long vwrite(char *buf, char *addr, unsigned long count)
  1731. {
  1732. struct vm_struct *tmp;
  1733. char *vaddr;
  1734. unsigned long n, buflen;
  1735. int copied = 0;
  1736. /* Don't allow overflow */
  1737. if ((unsigned long) addr + count < count)
  1738. count = -(unsigned long) addr;
  1739. buflen = count;
  1740. read_lock(&vmlist_lock);
  1741. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1742. vaddr = (char *) tmp->addr;
  1743. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1744. continue;
  1745. while (addr < vaddr) {
  1746. if (count == 0)
  1747. goto finished;
  1748. buf++;
  1749. addr++;
  1750. count--;
  1751. }
  1752. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1753. if (n > count)
  1754. n = count;
  1755. if (!(tmp->flags & VM_IOREMAP)) {
  1756. aligned_vwrite(buf, addr, n);
  1757. copied++;
  1758. }
  1759. buf += n;
  1760. addr += n;
  1761. count -= n;
  1762. }
  1763. finished:
  1764. read_unlock(&vmlist_lock);
  1765. if (!copied)
  1766. return 0;
  1767. return buflen;
  1768. }
  1769. /**
  1770. * remap_vmalloc_range - map vmalloc pages to userspace
  1771. * @vma: vma to cover (map full range of vma)
  1772. * @addr: vmalloc memory
  1773. * @pgoff: number of pages into addr before first page to map
  1774. *
  1775. * Returns: 0 for success, -Exxx on failure
  1776. *
  1777. * This function checks that addr is a valid vmalloc'ed area, and
  1778. * that it is big enough to cover the vma. Will return failure if
  1779. * that criteria isn't met.
  1780. *
  1781. * Similar to remap_pfn_range() (see mm/memory.c)
  1782. */
  1783. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1784. unsigned long pgoff)
  1785. {
  1786. struct vm_struct *area;
  1787. unsigned long uaddr = vma->vm_start;
  1788. unsigned long usize = vma->vm_end - vma->vm_start;
  1789. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1790. return -EINVAL;
  1791. area = find_vm_area(addr);
  1792. if (!area)
  1793. return -EINVAL;
  1794. if (!(area->flags & VM_USERMAP))
  1795. return -EINVAL;
  1796. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1797. return -EINVAL;
  1798. addr += pgoff << PAGE_SHIFT;
  1799. do {
  1800. struct page *page = vmalloc_to_page(addr);
  1801. int ret;
  1802. ret = vm_insert_page(vma, uaddr, page);
  1803. if (ret)
  1804. return ret;
  1805. uaddr += PAGE_SIZE;
  1806. addr += PAGE_SIZE;
  1807. usize -= PAGE_SIZE;
  1808. } while (usize > 0);
  1809. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1810. vma->vm_flags |= VM_RESERVED;
  1811. return 0;
  1812. }
  1813. EXPORT_SYMBOL(remap_vmalloc_range);
  1814. /*
  1815. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1816. * have one.
  1817. */
  1818. void __attribute__((weak)) vmalloc_sync_all(void)
  1819. {
  1820. }
  1821. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1822. {
  1823. /* apply_to_page_range() does all the hard work. */
  1824. return 0;
  1825. }
  1826. /**
  1827. * alloc_vm_area - allocate a range of kernel address space
  1828. * @size: size of the area
  1829. *
  1830. * Returns: NULL on failure, vm_struct on success
  1831. *
  1832. * This function reserves a range of kernel address space, and
  1833. * allocates pagetables to map that range. No actual mappings
  1834. * are created. If the kernel address space is not shared
  1835. * between processes, it syncs the pagetable across all
  1836. * processes.
  1837. */
  1838. struct vm_struct *alloc_vm_area(size_t size)
  1839. {
  1840. struct vm_struct *area;
  1841. area = get_vm_area_caller(size, VM_IOREMAP,
  1842. __builtin_return_address(0));
  1843. if (area == NULL)
  1844. return NULL;
  1845. /*
  1846. * This ensures that page tables are constructed for this region
  1847. * of kernel virtual address space and mapped into init_mm.
  1848. */
  1849. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1850. area->size, f, NULL)) {
  1851. free_vm_area(area);
  1852. return NULL;
  1853. }
  1854. return area;
  1855. }
  1856. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1857. void free_vm_area(struct vm_struct *area)
  1858. {
  1859. struct vm_struct *ret;
  1860. ret = remove_vm_area(area->addr);
  1861. BUG_ON(ret != area);
  1862. kfree(area);
  1863. }
  1864. EXPORT_SYMBOL_GPL(free_vm_area);
  1865. #ifdef CONFIG_SMP
  1866. static struct vmap_area *node_to_va(struct rb_node *n)
  1867. {
  1868. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1869. }
  1870. /**
  1871. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1872. * @end: target address
  1873. * @pnext: out arg for the next vmap_area
  1874. * @pprev: out arg for the previous vmap_area
  1875. *
  1876. * Returns: %true if either or both of next and prev are found,
  1877. * %false if no vmap_area exists
  1878. *
  1879. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1880. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1881. */
  1882. static bool pvm_find_next_prev(unsigned long end,
  1883. struct vmap_area **pnext,
  1884. struct vmap_area **pprev)
  1885. {
  1886. struct rb_node *n = vmap_area_root.rb_node;
  1887. struct vmap_area *va = NULL;
  1888. while (n) {
  1889. va = rb_entry(n, struct vmap_area, rb_node);
  1890. if (end < va->va_end)
  1891. n = n->rb_left;
  1892. else if (end > va->va_end)
  1893. n = n->rb_right;
  1894. else
  1895. break;
  1896. }
  1897. if (!va)
  1898. return false;
  1899. if (va->va_end > end) {
  1900. *pnext = va;
  1901. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1902. } else {
  1903. *pprev = va;
  1904. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1905. }
  1906. return true;
  1907. }
  1908. /**
  1909. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1910. * @pnext: in/out arg for the next vmap_area
  1911. * @pprev: in/out arg for the previous vmap_area
  1912. * @align: alignment
  1913. *
  1914. * Returns: determined end address
  1915. *
  1916. * Find the highest aligned address between *@pnext and *@pprev below
  1917. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1918. * down address is between the end addresses of the two vmap_areas.
  1919. *
  1920. * Please note that the address returned by this function may fall
  1921. * inside *@pnext vmap_area. The caller is responsible for checking
  1922. * that.
  1923. */
  1924. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1925. struct vmap_area **pprev,
  1926. unsigned long align)
  1927. {
  1928. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1929. unsigned long addr;
  1930. if (*pnext)
  1931. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1932. else
  1933. addr = vmalloc_end;
  1934. while (*pprev && (*pprev)->va_end > addr) {
  1935. *pnext = *pprev;
  1936. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1937. }
  1938. return addr;
  1939. }
  1940. /**
  1941. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1942. * @offsets: array containing offset of each area
  1943. * @sizes: array containing size of each area
  1944. * @nr_vms: the number of areas to allocate
  1945. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1946. *
  1947. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1948. * vm_structs on success, %NULL on failure
  1949. *
  1950. * Percpu allocator wants to use congruent vm areas so that it can
  1951. * maintain the offsets among percpu areas. This function allocates
  1952. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  1953. * be scattered pretty far, distance between two areas easily going up
  1954. * to gigabytes. To avoid interacting with regular vmallocs, these
  1955. * areas are allocated from top.
  1956. *
  1957. * Despite its complicated look, this allocator is rather simple. It
  1958. * does everything top-down and scans areas from the end looking for
  1959. * matching slot. While scanning, if any of the areas overlaps with
  1960. * existing vmap_area, the base address is pulled down to fit the
  1961. * area. Scanning is repeated till all the areas fit and then all
  1962. * necessary data structres are inserted and the result is returned.
  1963. */
  1964. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1965. const size_t *sizes, int nr_vms,
  1966. size_t align)
  1967. {
  1968. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1969. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1970. struct vmap_area **vas, *prev, *next;
  1971. struct vm_struct **vms;
  1972. int area, area2, last_area, term_area;
  1973. unsigned long base, start, end, last_end;
  1974. bool purged = false;
  1975. /* verify parameters and allocate data structures */
  1976. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1977. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1978. start = offsets[area];
  1979. end = start + sizes[area];
  1980. /* is everything aligned properly? */
  1981. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1982. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1983. /* detect the area with the highest address */
  1984. if (start > offsets[last_area])
  1985. last_area = area;
  1986. for (area2 = 0; area2 < nr_vms; area2++) {
  1987. unsigned long start2 = offsets[area2];
  1988. unsigned long end2 = start2 + sizes[area2];
  1989. if (area2 == area)
  1990. continue;
  1991. BUG_ON(start2 >= start && start2 < end);
  1992. BUG_ON(end2 <= end && end2 > start);
  1993. }
  1994. }
  1995. last_end = offsets[last_area] + sizes[last_area];
  1996. if (vmalloc_end - vmalloc_start < last_end) {
  1997. WARN_ON(true);
  1998. return NULL;
  1999. }
  2000. vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
  2001. vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
  2002. if (!vas || !vms)
  2003. goto err_free;
  2004. for (area = 0; area < nr_vms; area++) {
  2005. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2006. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2007. if (!vas[area] || !vms[area])
  2008. goto err_free;
  2009. }
  2010. retry:
  2011. spin_lock(&vmap_area_lock);
  2012. /* start scanning - we scan from the top, begin with the last area */
  2013. area = term_area = last_area;
  2014. start = offsets[area];
  2015. end = start + sizes[area];
  2016. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2017. base = vmalloc_end - last_end;
  2018. goto found;
  2019. }
  2020. base = pvm_determine_end(&next, &prev, align) - end;
  2021. while (true) {
  2022. BUG_ON(next && next->va_end <= base + end);
  2023. BUG_ON(prev && prev->va_end > base + end);
  2024. /*
  2025. * base might have underflowed, add last_end before
  2026. * comparing.
  2027. */
  2028. if (base + last_end < vmalloc_start + last_end) {
  2029. spin_unlock(&vmap_area_lock);
  2030. if (!purged) {
  2031. purge_vmap_area_lazy();
  2032. purged = true;
  2033. goto retry;
  2034. }
  2035. goto err_free;
  2036. }
  2037. /*
  2038. * If next overlaps, move base downwards so that it's
  2039. * right below next and then recheck.
  2040. */
  2041. if (next && next->va_start < base + end) {
  2042. base = pvm_determine_end(&next, &prev, align) - end;
  2043. term_area = area;
  2044. continue;
  2045. }
  2046. /*
  2047. * If prev overlaps, shift down next and prev and move
  2048. * base so that it's right below new next and then
  2049. * recheck.
  2050. */
  2051. if (prev && prev->va_end > base + start) {
  2052. next = prev;
  2053. prev = node_to_va(rb_prev(&next->rb_node));
  2054. base = pvm_determine_end(&next, &prev, align) - end;
  2055. term_area = area;
  2056. continue;
  2057. }
  2058. /*
  2059. * This area fits, move on to the previous one. If
  2060. * the previous one is the terminal one, we're done.
  2061. */
  2062. area = (area + nr_vms - 1) % nr_vms;
  2063. if (area == term_area)
  2064. break;
  2065. start = offsets[area];
  2066. end = start + sizes[area];
  2067. pvm_find_next_prev(base + end, &next, &prev);
  2068. }
  2069. found:
  2070. /* we've found a fitting base, insert all va's */
  2071. for (area = 0; area < nr_vms; area++) {
  2072. struct vmap_area *va = vas[area];
  2073. va->va_start = base + offsets[area];
  2074. va->va_end = va->va_start + sizes[area];
  2075. __insert_vmap_area(va);
  2076. }
  2077. vmap_area_pcpu_hole = base + offsets[last_area];
  2078. spin_unlock(&vmap_area_lock);
  2079. /* insert all vm's */
  2080. for (area = 0; area < nr_vms; area++)
  2081. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2082. pcpu_get_vm_areas);
  2083. kfree(vas);
  2084. return vms;
  2085. err_free:
  2086. for (area = 0; area < nr_vms; area++) {
  2087. if (vas)
  2088. kfree(vas[area]);
  2089. if (vms)
  2090. kfree(vms[area]);
  2091. }
  2092. kfree(vas);
  2093. kfree(vms);
  2094. return NULL;
  2095. }
  2096. /**
  2097. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2098. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2099. * @nr_vms: the number of allocated areas
  2100. *
  2101. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2102. */
  2103. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2104. {
  2105. int i;
  2106. for (i = 0; i < nr_vms; i++)
  2107. free_vm_area(vms[i]);
  2108. kfree(vms);
  2109. }
  2110. #endif /* CONFIG_SMP */
  2111. #ifdef CONFIG_PROC_FS
  2112. static void *s_start(struct seq_file *m, loff_t *pos)
  2113. __acquires(&vmlist_lock)
  2114. {
  2115. loff_t n = *pos;
  2116. struct vm_struct *v;
  2117. read_lock(&vmlist_lock);
  2118. v = vmlist;
  2119. while (n > 0 && v) {
  2120. n--;
  2121. v = v->next;
  2122. }
  2123. if (!n)
  2124. return v;
  2125. return NULL;
  2126. }
  2127. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2128. {
  2129. struct vm_struct *v = p;
  2130. ++*pos;
  2131. return v->next;
  2132. }
  2133. static void s_stop(struct seq_file *m, void *p)
  2134. __releases(&vmlist_lock)
  2135. {
  2136. read_unlock(&vmlist_lock);
  2137. }
  2138. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2139. {
  2140. if (NUMA_BUILD) {
  2141. unsigned int nr, *counters = m->private;
  2142. if (!counters)
  2143. return;
  2144. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2145. for (nr = 0; nr < v->nr_pages; nr++)
  2146. counters[page_to_nid(v->pages[nr])]++;
  2147. for_each_node_state(nr, N_HIGH_MEMORY)
  2148. if (counters[nr])
  2149. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2150. }
  2151. }
  2152. static int s_show(struct seq_file *m, void *p)
  2153. {
  2154. struct vm_struct *v = p;
  2155. seq_printf(m, "0x%p-0x%p %7ld",
  2156. v->addr, v->addr + v->size, v->size);
  2157. if (v->caller)
  2158. seq_printf(m, " %pS", v->caller);
  2159. if (v->nr_pages)
  2160. seq_printf(m, " pages=%d", v->nr_pages);
  2161. if (v->phys_addr)
  2162. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2163. if (v->flags & VM_IOREMAP)
  2164. seq_printf(m, " ioremap");
  2165. if (v->flags & VM_ALLOC)
  2166. seq_printf(m, " vmalloc");
  2167. if (v->flags & VM_MAP)
  2168. seq_printf(m, " vmap");
  2169. if (v->flags & VM_USERMAP)
  2170. seq_printf(m, " user");
  2171. if (v->flags & VM_VPAGES)
  2172. seq_printf(m, " vpages");
  2173. show_numa_info(m, v);
  2174. seq_putc(m, '\n');
  2175. return 0;
  2176. }
  2177. static const struct seq_operations vmalloc_op = {
  2178. .start = s_start,
  2179. .next = s_next,
  2180. .stop = s_stop,
  2181. .show = s_show,
  2182. };
  2183. static int vmalloc_open(struct inode *inode, struct file *file)
  2184. {
  2185. unsigned int *ptr = NULL;
  2186. int ret;
  2187. if (NUMA_BUILD) {
  2188. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2189. if (ptr == NULL)
  2190. return -ENOMEM;
  2191. }
  2192. ret = seq_open(file, &vmalloc_op);
  2193. if (!ret) {
  2194. struct seq_file *m = file->private_data;
  2195. m->private = ptr;
  2196. } else
  2197. kfree(ptr);
  2198. return ret;
  2199. }
  2200. static const struct file_operations proc_vmalloc_operations = {
  2201. .open = vmalloc_open,
  2202. .read = seq_read,
  2203. .llseek = seq_lseek,
  2204. .release = seq_release_private,
  2205. };
  2206. static int __init proc_vmalloc_init(void)
  2207. {
  2208. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2209. return 0;
  2210. }
  2211. module_init(proc_vmalloc_init);
  2212. #endif