fork.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/futex.h>
  39. #include <linux/compat.h>
  40. #include <linux/kthread.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/profile.h>
  49. #include <linux/rmap.h>
  50. #include <linux/ksm.h>
  51. #include <linux/acct.h>
  52. #include <linux/tsacct_kern.h>
  53. #include <linux/cn_proc.h>
  54. #include <linux/freezer.h>
  55. #include <linux/delayacct.h>
  56. #include <linux/taskstats_kern.h>
  57. #include <linux/random.h>
  58. #include <linux/tty.h>
  59. #include <linux/blkdev.h>
  60. #include <linux/fs_struct.h>
  61. #include <linux/magic.h>
  62. #include <linux/perf_event.h>
  63. #include <linux/posix-timers.h>
  64. #include <linux/user-return-notifier.h>
  65. #include <linux/oom.h>
  66. #include <linux/khugepaged.h>
  67. #include <asm/pgtable.h>
  68. #include <asm/pgalloc.h>
  69. #include <asm/uaccess.h>
  70. #include <asm/mmu_context.h>
  71. #include <asm/cacheflush.h>
  72. #include <asm/tlbflush.h>
  73. #include <trace/events/sched.h>
  74. /*
  75. * Protected counters by write_lock_irq(&tasklist_lock)
  76. */
  77. unsigned long total_forks; /* Handle normal Linux uptimes. */
  78. int nr_threads; /* The idle threads do not count.. */
  79. int max_threads; /* tunable limit on nr_threads */
  80. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  81. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  82. #ifdef CONFIG_PROVE_RCU
  83. int lockdep_tasklist_lock_is_held(void)
  84. {
  85. return lockdep_is_held(&tasklist_lock);
  86. }
  87. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  88. #endif /* #ifdef CONFIG_PROVE_RCU */
  89. int nr_processes(void)
  90. {
  91. int cpu;
  92. int total = 0;
  93. for_each_possible_cpu(cpu)
  94. total += per_cpu(process_counts, cpu);
  95. return total;
  96. }
  97. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  98. # define alloc_task_struct_node(node) \
  99. kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
  100. # define free_task_struct(tsk) \
  101. kmem_cache_free(task_struct_cachep, (tsk))
  102. static struct kmem_cache *task_struct_cachep;
  103. #endif
  104. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  105. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  106. int node)
  107. {
  108. #ifdef CONFIG_DEBUG_STACK_USAGE
  109. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  110. #else
  111. gfp_t mask = GFP_KERNEL;
  112. #endif
  113. struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
  114. return page ? page_address(page) : NULL;
  115. }
  116. static inline void free_thread_info(struct thread_info *ti)
  117. {
  118. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  119. }
  120. #endif
  121. /* SLAB cache for signal_struct structures (tsk->signal) */
  122. static struct kmem_cache *signal_cachep;
  123. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  124. struct kmem_cache *sighand_cachep;
  125. /* SLAB cache for files_struct structures (tsk->files) */
  126. struct kmem_cache *files_cachep;
  127. /* SLAB cache for fs_struct structures (tsk->fs) */
  128. struct kmem_cache *fs_cachep;
  129. /* SLAB cache for vm_area_struct structures */
  130. struct kmem_cache *vm_area_cachep;
  131. /* SLAB cache for mm_struct structures (tsk->mm) */
  132. static struct kmem_cache *mm_cachep;
  133. static void account_kernel_stack(struct thread_info *ti, int account)
  134. {
  135. struct zone *zone = page_zone(virt_to_page(ti));
  136. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  137. }
  138. void free_task(struct task_struct *tsk)
  139. {
  140. prop_local_destroy_single(&tsk->dirties);
  141. account_kernel_stack(tsk->stack, -1);
  142. free_thread_info(tsk->stack);
  143. rt_mutex_debug_task_free(tsk);
  144. ftrace_graph_exit_task(tsk);
  145. free_task_struct(tsk);
  146. }
  147. EXPORT_SYMBOL(free_task);
  148. static inline void free_signal_struct(struct signal_struct *sig)
  149. {
  150. taskstats_tgid_free(sig);
  151. sched_autogroup_exit(sig);
  152. kmem_cache_free(signal_cachep, sig);
  153. }
  154. static inline void put_signal_struct(struct signal_struct *sig)
  155. {
  156. if (atomic_dec_and_test(&sig->sigcnt))
  157. free_signal_struct(sig);
  158. }
  159. void __put_task_struct(struct task_struct *tsk)
  160. {
  161. WARN_ON(!tsk->exit_state);
  162. WARN_ON(atomic_read(&tsk->usage));
  163. WARN_ON(tsk == current);
  164. exit_creds(tsk);
  165. delayacct_tsk_free(tsk);
  166. put_signal_struct(tsk->signal);
  167. if (!profile_handoff_task(tsk))
  168. free_task(tsk);
  169. }
  170. EXPORT_SYMBOL_GPL(__put_task_struct);
  171. /*
  172. * macro override instead of weak attribute alias, to workaround
  173. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  174. */
  175. #ifndef arch_task_cache_init
  176. #define arch_task_cache_init()
  177. #endif
  178. void __init fork_init(unsigned long mempages)
  179. {
  180. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  181. #ifndef ARCH_MIN_TASKALIGN
  182. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  183. #endif
  184. /* create a slab on which task_structs can be allocated */
  185. task_struct_cachep =
  186. kmem_cache_create("task_struct", sizeof(struct task_struct),
  187. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  188. #endif
  189. /* do the arch specific task caches init */
  190. arch_task_cache_init();
  191. /*
  192. * The default maximum number of threads is set to a safe
  193. * value: the thread structures can take up at most half
  194. * of memory.
  195. */
  196. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  197. /*
  198. * we need to allow at least 20 threads to boot a system
  199. */
  200. if (max_threads < 20)
  201. max_threads = 20;
  202. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  203. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  204. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  205. init_task.signal->rlim[RLIMIT_NPROC];
  206. }
  207. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  208. struct task_struct *src)
  209. {
  210. *dst = *src;
  211. return 0;
  212. }
  213. static struct task_struct *dup_task_struct(struct task_struct *orig)
  214. {
  215. struct task_struct *tsk;
  216. struct thread_info *ti;
  217. unsigned long *stackend;
  218. int node = tsk_fork_get_node(orig);
  219. int err;
  220. prepare_to_copy(orig);
  221. tsk = alloc_task_struct_node(node);
  222. if (!tsk)
  223. return NULL;
  224. ti = alloc_thread_info_node(tsk, node);
  225. if (!ti) {
  226. free_task_struct(tsk);
  227. return NULL;
  228. }
  229. err = arch_dup_task_struct(tsk, orig);
  230. if (err)
  231. goto out;
  232. tsk->stack = ti;
  233. err = prop_local_init_single(&tsk->dirties);
  234. if (err)
  235. goto out;
  236. setup_thread_stack(tsk, orig);
  237. clear_user_return_notifier(tsk);
  238. clear_tsk_need_resched(tsk);
  239. stackend = end_of_stack(tsk);
  240. *stackend = STACK_END_MAGIC; /* for overflow detection */
  241. #ifdef CONFIG_CC_STACKPROTECTOR
  242. tsk->stack_canary = get_random_int();
  243. #endif
  244. /*
  245. * One for us, one for whoever does the "release_task()" (usually
  246. * parent)
  247. */
  248. atomic_set(&tsk->usage, 2);
  249. #ifdef CONFIG_BLK_DEV_IO_TRACE
  250. tsk->btrace_seq = 0;
  251. #endif
  252. tsk->splice_pipe = NULL;
  253. account_kernel_stack(ti, 1);
  254. return tsk;
  255. out:
  256. free_thread_info(ti);
  257. free_task_struct(tsk);
  258. return NULL;
  259. }
  260. #ifdef CONFIG_MMU
  261. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  262. {
  263. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  264. struct rb_node **rb_link, *rb_parent;
  265. int retval;
  266. unsigned long charge;
  267. struct mempolicy *pol;
  268. down_write(&oldmm->mmap_sem);
  269. flush_cache_dup_mm(oldmm);
  270. /*
  271. * Not linked in yet - no deadlock potential:
  272. */
  273. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  274. mm->locked_vm = 0;
  275. mm->mmap = NULL;
  276. mm->mmap_cache = NULL;
  277. mm->free_area_cache = oldmm->mmap_base;
  278. mm->cached_hole_size = ~0UL;
  279. mm->map_count = 0;
  280. cpumask_clear(mm_cpumask(mm));
  281. mm->mm_rb = RB_ROOT;
  282. rb_link = &mm->mm_rb.rb_node;
  283. rb_parent = NULL;
  284. pprev = &mm->mmap;
  285. retval = ksm_fork(mm, oldmm);
  286. if (retval)
  287. goto out;
  288. retval = khugepaged_fork(mm, oldmm);
  289. if (retval)
  290. goto out;
  291. prev = NULL;
  292. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  293. struct file *file;
  294. if (mpnt->vm_flags & VM_DONTCOPY) {
  295. long pages = vma_pages(mpnt);
  296. mm->total_vm -= pages;
  297. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  298. -pages);
  299. continue;
  300. }
  301. charge = 0;
  302. if (mpnt->vm_flags & VM_ACCOUNT) {
  303. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  304. if (security_vm_enough_memory(len))
  305. goto fail_nomem;
  306. charge = len;
  307. }
  308. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  309. if (!tmp)
  310. goto fail_nomem;
  311. *tmp = *mpnt;
  312. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  313. pol = mpol_dup(vma_policy(mpnt));
  314. retval = PTR_ERR(pol);
  315. if (IS_ERR(pol))
  316. goto fail_nomem_policy;
  317. vma_set_policy(tmp, pol);
  318. tmp->vm_mm = mm;
  319. if (anon_vma_fork(tmp, mpnt))
  320. goto fail_nomem_anon_vma_fork;
  321. tmp->vm_flags &= ~VM_LOCKED;
  322. tmp->vm_next = tmp->vm_prev = NULL;
  323. file = tmp->vm_file;
  324. if (file) {
  325. struct inode *inode = file->f_path.dentry->d_inode;
  326. struct address_space *mapping = file->f_mapping;
  327. get_file(file);
  328. if (tmp->vm_flags & VM_DENYWRITE)
  329. atomic_dec(&inode->i_writecount);
  330. mutex_lock(&mapping->i_mmap_mutex);
  331. if (tmp->vm_flags & VM_SHARED)
  332. mapping->i_mmap_writable++;
  333. flush_dcache_mmap_lock(mapping);
  334. /* insert tmp into the share list, just after mpnt */
  335. vma_prio_tree_add(tmp, mpnt);
  336. flush_dcache_mmap_unlock(mapping);
  337. mutex_unlock(&mapping->i_mmap_mutex);
  338. }
  339. /*
  340. * Clear hugetlb-related page reserves for children. This only
  341. * affects MAP_PRIVATE mappings. Faults generated by the child
  342. * are not guaranteed to succeed, even if read-only
  343. */
  344. if (is_vm_hugetlb_page(tmp))
  345. reset_vma_resv_huge_pages(tmp);
  346. /*
  347. * Link in the new vma and copy the page table entries.
  348. */
  349. *pprev = tmp;
  350. pprev = &tmp->vm_next;
  351. tmp->vm_prev = prev;
  352. prev = tmp;
  353. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  354. rb_link = &tmp->vm_rb.rb_right;
  355. rb_parent = &tmp->vm_rb;
  356. mm->map_count++;
  357. retval = copy_page_range(mm, oldmm, mpnt);
  358. if (tmp->vm_ops && tmp->vm_ops->open)
  359. tmp->vm_ops->open(tmp);
  360. if (retval)
  361. goto out;
  362. }
  363. /* a new mm has just been created */
  364. arch_dup_mmap(oldmm, mm);
  365. retval = 0;
  366. out:
  367. up_write(&mm->mmap_sem);
  368. flush_tlb_mm(oldmm);
  369. up_write(&oldmm->mmap_sem);
  370. return retval;
  371. fail_nomem_anon_vma_fork:
  372. mpol_put(pol);
  373. fail_nomem_policy:
  374. kmem_cache_free(vm_area_cachep, tmp);
  375. fail_nomem:
  376. retval = -ENOMEM;
  377. vm_unacct_memory(charge);
  378. goto out;
  379. }
  380. static inline int mm_alloc_pgd(struct mm_struct *mm)
  381. {
  382. mm->pgd = pgd_alloc(mm);
  383. if (unlikely(!mm->pgd))
  384. return -ENOMEM;
  385. return 0;
  386. }
  387. static inline void mm_free_pgd(struct mm_struct *mm)
  388. {
  389. pgd_free(mm, mm->pgd);
  390. }
  391. #else
  392. #define dup_mmap(mm, oldmm) (0)
  393. #define mm_alloc_pgd(mm) (0)
  394. #define mm_free_pgd(mm)
  395. #endif /* CONFIG_MMU */
  396. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  397. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  398. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  399. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  400. static int __init coredump_filter_setup(char *s)
  401. {
  402. default_dump_filter =
  403. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  404. MMF_DUMP_FILTER_MASK;
  405. return 1;
  406. }
  407. __setup("coredump_filter=", coredump_filter_setup);
  408. #include <linux/init_task.h>
  409. static void mm_init_aio(struct mm_struct *mm)
  410. {
  411. #ifdef CONFIG_AIO
  412. spin_lock_init(&mm->ioctx_lock);
  413. INIT_HLIST_HEAD(&mm->ioctx_list);
  414. #endif
  415. }
  416. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  417. {
  418. atomic_set(&mm->mm_users, 1);
  419. atomic_set(&mm->mm_count, 1);
  420. init_rwsem(&mm->mmap_sem);
  421. INIT_LIST_HEAD(&mm->mmlist);
  422. mm->flags = (current->mm) ?
  423. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  424. mm->core_state = NULL;
  425. mm->nr_ptes = 0;
  426. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  427. spin_lock_init(&mm->page_table_lock);
  428. mm->free_area_cache = TASK_UNMAPPED_BASE;
  429. mm->cached_hole_size = ~0UL;
  430. mm_init_aio(mm);
  431. mm_init_owner(mm, p);
  432. atomic_set(&mm->oom_disable_count, 0);
  433. if (likely(!mm_alloc_pgd(mm))) {
  434. mm->def_flags = 0;
  435. mmu_notifier_mm_init(mm);
  436. return mm;
  437. }
  438. free_mm(mm);
  439. return NULL;
  440. }
  441. /*
  442. * Allocate and initialize an mm_struct.
  443. */
  444. struct mm_struct *mm_alloc(void)
  445. {
  446. struct mm_struct *mm;
  447. mm = allocate_mm();
  448. if (!mm)
  449. return NULL;
  450. memset(mm, 0, sizeof(*mm));
  451. mm_init_cpumask(mm);
  452. return mm_init(mm, current);
  453. }
  454. /*
  455. * Called when the last reference to the mm
  456. * is dropped: either by a lazy thread or by
  457. * mmput. Free the page directory and the mm.
  458. */
  459. void __mmdrop(struct mm_struct *mm)
  460. {
  461. BUG_ON(mm == &init_mm);
  462. mm_free_pgd(mm);
  463. destroy_context(mm);
  464. mmu_notifier_mm_destroy(mm);
  465. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  466. VM_BUG_ON(mm->pmd_huge_pte);
  467. #endif
  468. free_mm(mm);
  469. }
  470. EXPORT_SYMBOL_GPL(__mmdrop);
  471. /*
  472. * Decrement the use count and release all resources for an mm.
  473. */
  474. void mmput(struct mm_struct *mm)
  475. {
  476. might_sleep();
  477. if (atomic_dec_and_test(&mm->mm_users)) {
  478. exit_aio(mm);
  479. ksm_exit(mm);
  480. khugepaged_exit(mm); /* must run before exit_mmap */
  481. exit_mmap(mm);
  482. set_mm_exe_file(mm, NULL);
  483. if (!list_empty(&mm->mmlist)) {
  484. spin_lock(&mmlist_lock);
  485. list_del(&mm->mmlist);
  486. spin_unlock(&mmlist_lock);
  487. }
  488. put_swap_token(mm);
  489. if (mm->binfmt)
  490. module_put(mm->binfmt->module);
  491. mmdrop(mm);
  492. }
  493. }
  494. EXPORT_SYMBOL_GPL(mmput);
  495. /*
  496. * We added or removed a vma mapping the executable. The vmas are only mapped
  497. * during exec and are not mapped with the mmap system call.
  498. * Callers must hold down_write() on the mm's mmap_sem for these
  499. */
  500. void added_exe_file_vma(struct mm_struct *mm)
  501. {
  502. mm->num_exe_file_vmas++;
  503. }
  504. void removed_exe_file_vma(struct mm_struct *mm)
  505. {
  506. mm->num_exe_file_vmas--;
  507. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  508. fput(mm->exe_file);
  509. mm->exe_file = NULL;
  510. }
  511. }
  512. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  513. {
  514. if (new_exe_file)
  515. get_file(new_exe_file);
  516. if (mm->exe_file)
  517. fput(mm->exe_file);
  518. mm->exe_file = new_exe_file;
  519. mm->num_exe_file_vmas = 0;
  520. }
  521. struct file *get_mm_exe_file(struct mm_struct *mm)
  522. {
  523. struct file *exe_file;
  524. /* We need mmap_sem to protect against races with removal of
  525. * VM_EXECUTABLE vmas */
  526. down_read(&mm->mmap_sem);
  527. exe_file = mm->exe_file;
  528. if (exe_file)
  529. get_file(exe_file);
  530. up_read(&mm->mmap_sem);
  531. return exe_file;
  532. }
  533. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  534. {
  535. /* It's safe to write the exe_file pointer without exe_file_lock because
  536. * this is called during fork when the task is not yet in /proc */
  537. newmm->exe_file = get_mm_exe_file(oldmm);
  538. }
  539. /**
  540. * get_task_mm - acquire a reference to the task's mm
  541. *
  542. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  543. * this kernel workthread has transiently adopted a user mm with use_mm,
  544. * to do its AIO) is not set and if so returns a reference to it, after
  545. * bumping up the use count. User must release the mm via mmput()
  546. * after use. Typically used by /proc and ptrace.
  547. */
  548. struct mm_struct *get_task_mm(struct task_struct *task)
  549. {
  550. struct mm_struct *mm;
  551. task_lock(task);
  552. mm = task->mm;
  553. if (mm) {
  554. if (task->flags & PF_KTHREAD)
  555. mm = NULL;
  556. else
  557. atomic_inc(&mm->mm_users);
  558. }
  559. task_unlock(task);
  560. return mm;
  561. }
  562. EXPORT_SYMBOL_GPL(get_task_mm);
  563. /* Please note the differences between mmput and mm_release.
  564. * mmput is called whenever we stop holding onto a mm_struct,
  565. * error success whatever.
  566. *
  567. * mm_release is called after a mm_struct has been removed
  568. * from the current process.
  569. *
  570. * This difference is important for error handling, when we
  571. * only half set up a mm_struct for a new process and need to restore
  572. * the old one. Because we mmput the new mm_struct before
  573. * restoring the old one. . .
  574. * Eric Biederman 10 January 1998
  575. */
  576. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  577. {
  578. struct completion *vfork_done = tsk->vfork_done;
  579. /* Get rid of any futexes when releasing the mm */
  580. #ifdef CONFIG_FUTEX
  581. if (unlikely(tsk->robust_list)) {
  582. exit_robust_list(tsk);
  583. tsk->robust_list = NULL;
  584. }
  585. #ifdef CONFIG_COMPAT
  586. if (unlikely(tsk->compat_robust_list)) {
  587. compat_exit_robust_list(tsk);
  588. tsk->compat_robust_list = NULL;
  589. }
  590. #endif
  591. if (unlikely(!list_empty(&tsk->pi_state_list)))
  592. exit_pi_state_list(tsk);
  593. #endif
  594. /* Get rid of any cached register state */
  595. deactivate_mm(tsk, mm);
  596. /* notify parent sleeping on vfork() */
  597. if (vfork_done) {
  598. tsk->vfork_done = NULL;
  599. complete(vfork_done);
  600. }
  601. /*
  602. * If we're exiting normally, clear a user-space tid field if
  603. * requested. We leave this alone when dying by signal, to leave
  604. * the value intact in a core dump, and to save the unnecessary
  605. * trouble otherwise. Userland only wants this done for a sys_exit.
  606. */
  607. if (tsk->clear_child_tid) {
  608. if (!(tsk->flags & PF_SIGNALED) &&
  609. atomic_read(&mm->mm_users) > 1) {
  610. /*
  611. * We don't check the error code - if userspace has
  612. * not set up a proper pointer then tough luck.
  613. */
  614. put_user(0, tsk->clear_child_tid);
  615. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  616. 1, NULL, NULL, 0);
  617. }
  618. tsk->clear_child_tid = NULL;
  619. }
  620. }
  621. /*
  622. * Allocate a new mm structure and copy contents from the
  623. * mm structure of the passed in task structure.
  624. */
  625. struct mm_struct *dup_mm(struct task_struct *tsk)
  626. {
  627. struct mm_struct *mm, *oldmm = current->mm;
  628. int err;
  629. if (!oldmm)
  630. return NULL;
  631. mm = allocate_mm();
  632. if (!mm)
  633. goto fail_nomem;
  634. memcpy(mm, oldmm, sizeof(*mm));
  635. mm_init_cpumask(mm);
  636. /* Initializing for Swap token stuff */
  637. mm->token_priority = 0;
  638. mm->last_interval = 0;
  639. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  640. mm->pmd_huge_pte = NULL;
  641. #endif
  642. if (!mm_init(mm, tsk))
  643. goto fail_nomem;
  644. if (init_new_context(tsk, mm))
  645. goto fail_nocontext;
  646. dup_mm_exe_file(oldmm, mm);
  647. err = dup_mmap(mm, oldmm);
  648. if (err)
  649. goto free_pt;
  650. mm->hiwater_rss = get_mm_rss(mm);
  651. mm->hiwater_vm = mm->total_vm;
  652. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  653. goto free_pt;
  654. return mm;
  655. free_pt:
  656. /* don't put binfmt in mmput, we haven't got module yet */
  657. mm->binfmt = NULL;
  658. mmput(mm);
  659. fail_nomem:
  660. return NULL;
  661. fail_nocontext:
  662. /*
  663. * If init_new_context() failed, we cannot use mmput() to free the mm
  664. * because it calls destroy_context()
  665. */
  666. mm_free_pgd(mm);
  667. free_mm(mm);
  668. return NULL;
  669. }
  670. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  671. {
  672. struct mm_struct *mm, *oldmm;
  673. int retval;
  674. tsk->min_flt = tsk->maj_flt = 0;
  675. tsk->nvcsw = tsk->nivcsw = 0;
  676. #ifdef CONFIG_DETECT_HUNG_TASK
  677. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  678. #endif
  679. tsk->mm = NULL;
  680. tsk->active_mm = NULL;
  681. /*
  682. * Are we cloning a kernel thread?
  683. *
  684. * We need to steal a active VM for that..
  685. */
  686. oldmm = current->mm;
  687. if (!oldmm)
  688. return 0;
  689. if (clone_flags & CLONE_VM) {
  690. atomic_inc(&oldmm->mm_users);
  691. mm = oldmm;
  692. goto good_mm;
  693. }
  694. retval = -ENOMEM;
  695. mm = dup_mm(tsk);
  696. if (!mm)
  697. goto fail_nomem;
  698. good_mm:
  699. /* Initializing for Swap token stuff */
  700. mm->token_priority = 0;
  701. mm->last_interval = 0;
  702. if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
  703. atomic_inc(&mm->oom_disable_count);
  704. tsk->mm = mm;
  705. tsk->active_mm = mm;
  706. return 0;
  707. fail_nomem:
  708. return retval;
  709. }
  710. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  711. {
  712. struct fs_struct *fs = current->fs;
  713. if (clone_flags & CLONE_FS) {
  714. /* tsk->fs is already what we want */
  715. spin_lock(&fs->lock);
  716. if (fs->in_exec) {
  717. spin_unlock(&fs->lock);
  718. return -EAGAIN;
  719. }
  720. fs->users++;
  721. spin_unlock(&fs->lock);
  722. return 0;
  723. }
  724. tsk->fs = copy_fs_struct(fs);
  725. if (!tsk->fs)
  726. return -ENOMEM;
  727. return 0;
  728. }
  729. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  730. {
  731. struct files_struct *oldf, *newf;
  732. int error = 0;
  733. /*
  734. * A background process may not have any files ...
  735. */
  736. oldf = current->files;
  737. if (!oldf)
  738. goto out;
  739. if (clone_flags & CLONE_FILES) {
  740. atomic_inc(&oldf->count);
  741. goto out;
  742. }
  743. newf = dup_fd(oldf, &error);
  744. if (!newf)
  745. goto out;
  746. tsk->files = newf;
  747. error = 0;
  748. out:
  749. return error;
  750. }
  751. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  752. {
  753. #ifdef CONFIG_BLOCK
  754. struct io_context *ioc = current->io_context;
  755. if (!ioc)
  756. return 0;
  757. /*
  758. * Share io context with parent, if CLONE_IO is set
  759. */
  760. if (clone_flags & CLONE_IO) {
  761. tsk->io_context = ioc_task_link(ioc);
  762. if (unlikely(!tsk->io_context))
  763. return -ENOMEM;
  764. } else if (ioprio_valid(ioc->ioprio)) {
  765. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  766. if (unlikely(!tsk->io_context))
  767. return -ENOMEM;
  768. tsk->io_context->ioprio = ioc->ioprio;
  769. }
  770. #endif
  771. return 0;
  772. }
  773. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  774. {
  775. struct sighand_struct *sig;
  776. if (clone_flags & CLONE_SIGHAND) {
  777. atomic_inc(&current->sighand->count);
  778. return 0;
  779. }
  780. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  781. rcu_assign_pointer(tsk->sighand, sig);
  782. if (!sig)
  783. return -ENOMEM;
  784. atomic_set(&sig->count, 1);
  785. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  786. return 0;
  787. }
  788. void __cleanup_sighand(struct sighand_struct *sighand)
  789. {
  790. if (atomic_dec_and_test(&sighand->count))
  791. kmem_cache_free(sighand_cachep, sighand);
  792. }
  793. /*
  794. * Initialize POSIX timer handling for a thread group.
  795. */
  796. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  797. {
  798. unsigned long cpu_limit;
  799. /* Thread group counters. */
  800. thread_group_cputime_init(sig);
  801. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  802. if (cpu_limit != RLIM_INFINITY) {
  803. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  804. sig->cputimer.running = 1;
  805. }
  806. /* The timer lists. */
  807. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  808. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  809. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  810. }
  811. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  812. {
  813. struct signal_struct *sig;
  814. if (clone_flags & CLONE_THREAD)
  815. return 0;
  816. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  817. tsk->signal = sig;
  818. if (!sig)
  819. return -ENOMEM;
  820. sig->nr_threads = 1;
  821. atomic_set(&sig->live, 1);
  822. atomic_set(&sig->sigcnt, 1);
  823. init_waitqueue_head(&sig->wait_chldexit);
  824. if (clone_flags & CLONE_NEWPID)
  825. sig->flags |= SIGNAL_UNKILLABLE;
  826. sig->curr_target = tsk;
  827. init_sigpending(&sig->shared_pending);
  828. INIT_LIST_HEAD(&sig->posix_timers);
  829. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  830. sig->real_timer.function = it_real_fn;
  831. task_lock(current->group_leader);
  832. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  833. task_unlock(current->group_leader);
  834. posix_cpu_timers_init_group(sig);
  835. tty_audit_fork(sig);
  836. sched_autogroup_fork(sig);
  837. #ifdef CONFIG_CGROUPS
  838. init_rwsem(&sig->threadgroup_fork_lock);
  839. #endif
  840. sig->oom_adj = current->signal->oom_adj;
  841. sig->oom_score_adj = current->signal->oom_score_adj;
  842. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  843. mutex_init(&sig->cred_guard_mutex);
  844. return 0;
  845. }
  846. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  847. {
  848. unsigned long new_flags = p->flags;
  849. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  850. new_flags |= PF_FORKNOEXEC;
  851. new_flags |= PF_STARTING;
  852. p->flags = new_flags;
  853. clear_freeze_flag(p);
  854. }
  855. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  856. {
  857. current->clear_child_tid = tidptr;
  858. return task_pid_vnr(current);
  859. }
  860. static void rt_mutex_init_task(struct task_struct *p)
  861. {
  862. raw_spin_lock_init(&p->pi_lock);
  863. #ifdef CONFIG_RT_MUTEXES
  864. plist_head_init(&p->pi_waiters);
  865. p->pi_blocked_on = NULL;
  866. #endif
  867. }
  868. #ifdef CONFIG_MM_OWNER
  869. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  870. {
  871. mm->owner = p;
  872. }
  873. #endif /* CONFIG_MM_OWNER */
  874. /*
  875. * Initialize POSIX timer handling for a single task.
  876. */
  877. static void posix_cpu_timers_init(struct task_struct *tsk)
  878. {
  879. tsk->cputime_expires.prof_exp = cputime_zero;
  880. tsk->cputime_expires.virt_exp = cputime_zero;
  881. tsk->cputime_expires.sched_exp = 0;
  882. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  883. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  884. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  885. }
  886. /*
  887. * This creates a new process as a copy of the old one,
  888. * but does not actually start it yet.
  889. *
  890. * It copies the registers, and all the appropriate
  891. * parts of the process environment (as per the clone
  892. * flags). The actual kick-off is left to the caller.
  893. */
  894. static struct task_struct *copy_process(unsigned long clone_flags,
  895. unsigned long stack_start,
  896. struct pt_regs *regs,
  897. unsigned long stack_size,
  898. int __user *child_tidptr,
  899. struct pid *pid,
  900. int trace)
  901. {
  902. int retval;
  903. struct task_struct *p;
  904. int cgroup_callbacks_done = 0;
  905. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  906. return ERR_PTR(-EINVAL);
  907. /*
  908. * Thread groups must share signals as well, and detached threads
  909. * can only be started up within the thread group.
  910. */
  911. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  912. return ERR_PTR(-EINVAL);
  913. /*
  914. * Shared signal handlers imply shared VM. By way of the above,
  915. * thread groups also imply shared VM. Blocking this case allows
  916. * for various simplifications in other code.
  917. */
  918. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  919. return ERR_PTR(-EINVAL);
  920. /*
  921. * Siblings of global init remain as zombies on exit since they are
  922. * not reaped by their parent (swapper). To solve this and to avoid
  923. * multi-rooted process trees, prevent global and container-inits
  924. * from creating siblings.
  925. */
  926. if ((clone_flags & CLONE_PARENT) &&
  927. current->signal->flags & SIGNAL_UNKILLABLE)
  928. return ERR_PTR(-EINVAL);
  929. retval = security_task_create(clone_flags);
  930. if (retval)
  931. goto fork_out;
  932. retval = -ENOMEM;
  933. p = dup_task_struct(current);
  934. if (!p)
  935. goto fork_out;
  936. ftrace_graph_init_task(p);
  937. rt_mutex_init_task(p);
  938. #ifdef CONFIG_PROVE_LOCKING
  939. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  940. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  941. #endif
  942. retval = -EAGAIN;
  943. if (atomic_read(&p->real_cred->user->processes) >=
  944. task_rlimit(p, RLIMIT_NPROC)) {
  945. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  946. p->real_cred->user != INIT_USER)
  947. goto bad_fork_free;
  948. }
  949. retval = copy_creds(p, clone_flags);
  950. if (retval < 0)
  951. goto bad_fork_free;
  952. /*
  953. * If multiple threads are within copy_process(), then this check
  954. * triggers too late. This doesn't hurt, the check is only there
  955. * to stop root fork bombs.
  956. */
  957. retval = -EAGAIN;
  958. if (nr_threads >= max_threads)
  959. goto bad_fork_cleanup_count;
  960. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  961. goto bad_fork_cleanup_count;
  962. p->did_exec = 0;
  963. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  964. copy_flags(clone_flags, p);
  965. INIT_LIST_HEAD(&p->children);
  966. INIT_LIST_HEAD(&p->sibling);
  967. rcu_copy_process(p);
  968. p->vfork_done = NULL;
  969. spin_lock_init(&p->alloc_lock);
  970. init_sigpending(&p->pending);
  971. p->utime = cputime_zero;
  972. p->stime = cputime_zero;
  973. p->gtime = cputime_zero;
  974. p->utimescaled = cputime_zero;
  975. p->stimescaled = cputime_zero;
  976. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  977. p->prev_utime = cputime_zero;
  978. p->prev_stime = cputime_zero;
  979. #endif
  980. #if defined(SPLIT_RSS_COUNTING)
  981. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  982. #endif
  983. p->default_timer_slack_ns = current->timer_slack_ns;
  984. task_io_accounting_init(&p->ioac);
  985. acct_clear_integrals(p);
  986. posix_cpu_timers_init(p);
  987. do_posix_clock_monotonic_gettime(&p->start_time);
  988. p->real_start_time = p->start_time;
  989. monotonic_to_bootbased(&p->real_start_time);
  990. p->io_context = NULL;
  991. p->audit_context = NULL;
  992. if (clone_flags & CLONE_THREAD)
  993. threadgroup_fork_read_lock(current);
  994. cgroup_fork(p);
  995. #ifdef CONFIG_NUMA
  996. p->mempolicy = mpol_dup(p->mempolicy);
  997. if (IS_ERR(p->mempolicy)) {
  998. retval = PTR_ERR(p->mempolicy);
  999. p->mempolicy = NULL;
  1000. goto bad_fork_cleanup_cgroup;
  1001. }
  1002. mpol_fix_fork_child_flag(p);
  1003. #endif
  1004. #ifdef CONFIG_CPUSETS
  1005. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1006. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1007. #endif
  1008. #ifdef CONFIG_TRACE_IRQFLAGS
  1009. p->irq_events = 0;
  1010. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1011. p->hardirqs_enabled = 1;
  1012. #else
  1013. p->hardirqs_enabled = 0;
  1014. #endif
  1015. p->hardirq_enable_ip = 0;
  1016. p->hardirq_enable_event = 0;
  1017. p->hardirq_disable_ip = _THIS_IP_;
  1018. p->hardirq_disable_event = 0;
  1019. p->softirqs_enabled = 1;
  1020. p->softirq_enable_ip = _THIS_IP_;
  1021. p->softirq_enable_event = 0;
  1022. p->softirq_disable_ip = 0;
  1023. p->softirq_disable_event = 0;
  1024. p->hardirq_context = 0;
  1025. p->softirq_context = 0;
  1026. #endif
  1027. #ifdef CONFIG_LOCKDEP
  1028. p->lockdep_depth = 0; /* no locks held yet */
  1029. p->curr_chain_key = 0;
  1030. p->lockdep_recursion = 0;
  1031. #endif
  1032. #ifdef CONFIG_DEBUG_MUTEXES
  1033. p->blocked_on = NULL; /* not blocked yet */
  1034. #endif
  1035. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1036. p->memcg_batch.do_batch = 0;
  1037. p->memcg_batch.memcg = NULL;
  1038. #endif
  1039. /* Perform scheduler related setup. Assign this task to a CPU. */
  1040. sched_fork(p);
  1041. retval = perf_event_init_task(p);
  1042. if (retval)
  1043. goto bad_fork_cleanup_policy;
  1044. retval = audit_alloc(p);
  1045. if (retval)
  1046. goto bad_fork_cleanup_policy;
  1047. /* copy all the process information */
  1048. retval = copy_semundo(clone_flags, p);
  1049. if (retval)
  1050. goto bad_fork_cleanup_audit;
  1051. retval = copy_files(clone_flags, p);
  1052. if (retval)
  1053. goto bad_fork_cleanup_semundo;
  1054. retval = copy_fs(clone_flags, p);
  1055. if (retval)
  1056. goto bad_fork_cleanup_files;
  1057. retval = copy_sighand(clone_flags, p);
  1058. if (retval)
  1059. goto bad_fork_cleanup_fs;
  1060. retval = copy_signal(clone_flags, p);
  1061. if (retval)
  1062. goto bad_fork_cleanup_sighand;
  1063. retval = copy_mm(clone_flags, p);
  1064. if (retval)
  1065. goto bad_fork_cleanup_signal;
  1066. retval = copy_namespaces(clone_flags, p);
  1067. if (retval)
  1068. goto bad_fork_cleanup_mm;
  1069. retval = copy_io(clone_flags, p);
  1070. if (retval)
  1071. goto bad_fork_cleanup_namespaces;
  1072. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1073. if (retval)
  1074. goto bad_fork_cleanup_io;
  1075. if (pid != &init_struct_pid) {
  1076. retval = -ENOMEM;
  1077. pid = alloc_pid(p->nsproxy->pid_ns);
  1078. if (!pid)
  1079. goto bad_fork_cleanup_io;
  1080. }
  1081. p->pid = pid_nr(pid);
  1082. p->tgid = p->pid;
  1083. if (clone_flags & CLONE_THREAD)
  1084. p->tgid = current->tgid;
  1085. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1086. /*
  1087. * Clear TID on mm_release()?
  1088. */
  1089. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1090. #ifdef CONFIG_BLOCK
  1091. p->plug = NULL;
  1092. #endif
  1093. #ifdef CONFIG_FUTEX
  1094. p->robust_list = NULL;
  1095. #ifdef CONFIG_COMPAT
  1096. p->compat_robust_list = NULL;
  1097. #endif
  1098. INIT_LIST_HEAD(&p->pi_state_list);
  1099. p->pi_state_cache = NULL;
  1100. #endif
  1101. /*
  1102. * sigaltstack should be cleared when sharing the same VM
  1103. */
  1104. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1105. p->sas_ss_sp = p->sas_ss_size = 0;
  1106. /*
  1107. * Syscall tracing and stepping should be turned off in the
  1108. * child regardless of CLONE_PTRACE.
  1109. */
  1110. user_disable_single_step(p);
  1111. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1112. #ifdef TIF_SYSCALL_EMU
  1113. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1114. #endif
  1115. clear_all_latency_tracing(p);
  1116. /* ok, now we should be set up.. */
  1117. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1118. p->pdeath_signal = 0;
  1119. p->exit_state = 0;
  1120. /*
  1121. * Ok, make it visible to the rest of the system.
  1122. * We dont wake it up yet.
  1123. */
  1124. p->group_leader = p;
  1125. INIT_LIST_HEAD(&p->thread_group);
  1126. /* Now that the task is set up, run cgroup callbacks if
  1127. * necessary. We need to run them before the task is visible
  1128. * on the tasklist. */
  1129. cgroup_fork_callbacks(p);
  1130. cgroup_callbacks_done = 1;
  1131. /* Need tasklist lock for parent etc handling! */
  1132. write_lock_irq(&tasklist_lock);
  1133. /* CLONE_PARENT re-uses the old parent */
  1134. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1135. p->real_parent = current->real_parent;
  1136. p->parent_exec_id = current->parent_exec_id;
  1137. } else {
  1138. p->real_parent = current;
  1139. p->parent_exec_id = current->self_exec_id;
  1140. }
  1141. spin_lock(&current->sighand->siglock);
  1142. /*
  1143. * Process group and session signals need to be delivered to just the
  1144. * parent before the fork or both the parent and the child after the
  1145. * fork. Restart if a signal comes in before we add the new process to
  1146. * it's process group.
  1147. * A fatal signal pending means that current will exit, so the new
  1148. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1149. */
  1150. recalc_sigpending();
  1151. if (signal_pending(current)) {
  1152. spin_unlock(&current->sighand->siglock);
  1153. write_unlock_irq(&tasklist_lock);
  1154. retval = -ERESTARTNOINTR;
  1155. goto bad_fork_free_pid;
  1156. }
  1157. if (clone_flags & CLONE_THREAD) {
  1158. current->signal->nr_threads++;
  1159. atomic_inc(&current->signal->live);
  1160. atomic_inc(&current->signal->sigcnt);
  1161. p->group_leader = current->group_leader;
  1162. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1163. }
  1164. if (likely(p->pid)) {
  1165. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1166. if (thread_group_leader(p)) {
  1167. if (is_child_reaper(pid))
  1168. p->nsproxy->pid_ns->child_reaper = p;
  1169. p->signal->leader_pid = pid;
  1170. p->signal->tty = tty_kref_get(current->signal->tty);
  1171. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1172. attach_pid(p, PIDTYPE_SID, task_session(current));
  1173. list_add_tail(&p->sibling, &p->real_parent->children);
  1174. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1175. __this_cpu_inc(process_counts);
  1176. }
  1177. attach_pid(p, PIDTYPE_PID, pid);
  1178. nr_threads++;
  1179. }
  1180. total_forks++;
  1181. spin_unlock(&current->sighand->siglock);
  1182. write_unlock_irq(&tasklist_lock);
  1183. proc_fork_connector(p);
  1184. cgroup_post_fork(p);
  1185. if (clone_flags & CLONE_THREAD)
  1186. threadgroup_fork_read_unlock(current);
  1187. perf_event_fork(p);
  1188. return p;
  1189. bad_fork_free_pid:
  1190. if (pid != &init_struct_pid)
  1191. free_pid(pid);
  1192. bad_fork_cleanup_io:
  1193. if (p->io_context)
  1194. exit_io_context(p);
  1195. bad_fork_cleanup_namespaces:
  1196. exit_task_namespaces(p);
  1197. bad_fork_cleanup_mm:
  1198. if (p->mm) {
  1199. task_lock(p);
  1200. if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
  1201. atomic_dec(&p->mm->oom_disable_count);
  1202. task_unlock(p);
  1203. mmput(p->mm);
  1204. }
  1205. bad_fork_cleanup_signal:
  1206. if (!(clone_flags & CLONE_THREAD))
  1207. free_signal_struct(p->signal);
  1208. bad_fork_cleanup_sighand:
  1209. __cleanup_sighand(p->sighand);
  1210. bad_fork_cleanup_fs:
  1211. exit_fs(p); /* blocking */
  1212. bad_fork_cleanup_files:
  1213. exit_files(p); /* blocking */
  1214. bad_fork_cleanup_semundo:
  1215. exit_sem(p);
  1216. bad_fork_cleanup_audit:
  1217. audit_free(p);
  1218. bad_fork_cleanup_policy:
  1219. perf_event_free_task(p);
  1220. #ifdef CONFIG_NUMA
  1221. mpol_put(p->mempolicy);
  1222. bad_fork_cleanup_cgroup:
  1223. #endif
  1224. if (clone_flags & CLONE_THREAD)
  1225. threadgroup_fork_read_unlock(current);
  1226. cgroup_exit(p, cgroup_callbacks_done);
  1227. delayacct_tsk_free(p);
  1228. module_put(task_thread_info(p)->exec_domain->module);
  1229. bad_fork_cleanup_count:
  1230. atomic_dec(&p->cred->user->processes);
  1231. exit_creds(p);
  1232. bad_fork_free:
  1233. free_task(p);
  1234. fork_out:
  1235. return ERR_PTR(retval);
  1236. }
  1237. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1238. {
  1239. memset(regs, 0, sizeof(struct pt_regs));
  1240. return regs;
  1241. }
  1242. static inline void init_idle_pids(struct pid_link *links)
  1243. {
  1244. enum pid_type type;
  1245. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1246. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1247. links[type].pid = &init_struct_pid;
  1248. }
  1249. }
  1250. struct task_struct * __cpuinit fork_idle(int cpu)
  1251. {
  1252. struct task_struct *task;
  1253. struct pt_regs regs;
  1254. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1255. &init_struct_pid, 0);
  1256. if (!IS_ERR(task)) {
  1257. init_idle_pids(task->pids);
  1258. init_idle(task, cpu);
  1259. }
  1260. return task;
  1261. }
  1262. /*
  1263. * Ok, this is the main fork-routine.
  1264. *
  1265. * It copies the process, and if successful kick-starts
  1266. * it and waits for it to finish using the VM if required.
  1267. */
  1268. long do_fork(unsigned long clone_flags,
  1269. unsigned long stack_start,
  1270. struct pt_regs *regs,
  1271. unsigned long stack_size,
  1272. int __user *parent_tidptr,
  1273. int __user *child_tidptr)
  1274. {
  1275. struct task_struct *p;
  1276. int trace = 0;
  1277. long nr;
  1278. /*
  1279. * Do some preliminary argument and permissions checking before we
  1280. * actually start allocating stuff
  1281. */
  1282. if (clone_flags & CLONE_NEWUSER) {
  1283. if (clone_flags & CLONE_THREAD)
  1284. return -EINVAL;
  1285. /* hopefully this check will go away when userns support is
  1286. * complete
  1287. */
  1288. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1289. !capable(CAP_SETGID))
  1290. return -EPERM;
  1291. }
  1292. /*
  1293. * Determine whether and which event to report to ptracer. When
  1294. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1295. * requested, no event is reported; otherwise, report if the event
  1296. * for the type of forking is enabled.
  1297. */
  1298. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1299. if (clone_flags & CLONE_VFORK)
  1300. trace = PTRACE_EVENT_VFORK;
  1301. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1302. trace = PTRACE_EVENT_CLONE;
  1303. else
  1304. trace = PTRACE_EVENT_FORK;
  1305. if (likely(!ptrace_event_enabled(current, trace)))
  1306. trace = 0;
  1307. }
  1308. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1309. child_tidptr, NULL, trace);
  1310. /*
  1311. * Do this prior waking up the new thread - the thread pointer
  1312. * might get invalid after that point, if the thread exits quickly.
  1313. */
  1314. if (!IS_ERR(p)) {
  1315. struct completion vfork;
  1316. trace_sched_process_fork(current, p);
  1317. nr = task_pid_vnr(p);
  1318. if (clone_flags & CLONE_PARENT_SETTID)
  1319. put_user(nr, parent_tidptr);
  1320. if (clone_flags & CLONE_VFORK) {
  1321. p->vfork_done = &vfork;
  1322. init_completion(&vfork);
  1323. }
  1324. audit_finish_fork(p);
  1325. /*
  1326. * We set PF_STARTING at creation in case tracing wants to
  1327. * use this to distinguish a fully live task from one that
  1328. * hasn't finished SIGSTOP raising yet. Now we clear it
  1329. * and set the child going.
  1330. */
  1331. p->flags &= ~PF_STARTING;
  1332. wake_up_new_task(p);
  1333. /* forking complete and child started to run, tell ptracer */
  1334. if (unlikely(trace))
  1335. ptrace_event(trace, nr);
  1336. if (clone_flags & CLONE_VFORK) {
  1337. freezer_do_not_count();
  1338. wait_for_completion(&vfork);
  1339. freezer_count();
  1340. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1341. }
  1342. } else {
  1343. nr = PTR_ERR(p);
  1344. }
  1345. return nr;
  1346. }
  1347. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1348. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1349. #endif
  1350. static void sighand_ctor(void *data)
  1351. {
  1352. struct sighand_struct *sighand = data;
  1353. spin_lock_init(&sighand->siglock);
  1354. init_waitqueue_head(&sighand->signalfd_wqh);
  1355. }
  1356. void __init proc_caches_init(void)
  1357. {
  1358. sighand_cachep = kmem_cache_create("sighand_cache",
  1359. sizeof(struct sighand_struct), 0,
  1360. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1361. SLAB_NOTRACK, sighand_ctor);
  1362. signal_cachep = kmem_cache_create("signal_cache",
  1363. sizeof(struct signal_struct), 0,
  1364. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1365. files_cachep = kmem_cache_create("files_cache",
  1366. sizeof(struct files_struct), 0,
  1367. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1368. fs_cachep = kmem_cache_create("fs_cache",
  1369. sizeof(struct fs_struct), 0,
  1370. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1371. /*
  1372. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1373. * whole struct cpumask for the OFFSTACK case. We could change
  1374. * this to *only* allocate as much of it as required by the
  1375. * maximum number of CPU's we can ever have. The cpumask_allocation
  1376. * is at the end of the structure, exactly for that reason.
  1377. */
  1378. mm_cachep = kmem_cache_create("mm_struct",
  1379. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1380. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1381. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1382. mmap_init();
  1383. nsproxy_cache_init();
  1384. }
  1385. /*
  1386. * Check constraints on flags passed to the unshare system call.
  1387. */
  1388. static int check_unshare_flags(unsigned long unshare_flags)
  1389. {
  1390. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1391. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1392. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1393. return -EINVAL;
  1394. /*
  1395. * Not implemented, but pretend it works if there is nothing to
  1396. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1397. * needs to unshare vm.
  1398. */
  1399. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1400. /* FIXME: get_task_mm() increments ->mm_users */
  1401. if (atomic_read(&current->mm->mm_users) > 1)
  1402. return -EINVAL;
  1403. }
  1404. return 0;
  1405. }
  1406. /*
  1407. * Unshare the filesystem structure if it is being shared
  1408. */
  1409. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1410. {
  1411. struct fs_struct *fs = current->fs;
  1412. if (!(unshare_flags & CLONE_FS) || !fs)
  1413. return 0;
  1414. /* don't need lock here; in the worst case we'll do useless copy */
  1415. if (fs->users == 1)
  1416. return 0;
  1417. *new_fsp = copy_fs_struct(fs);
  1418. if (!*new_fsp)
  1419. return -ENOMEM;
  1420. return 0;
  1421. }
  1422. /*
  1423. * Unshare file descriptor table if it is being shared
  1424. */
  1425. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1426. {
  1427. struct files_struct *fd = current->files;
  1428. int error = 0;
  1429. if ((unshare_flags & CLONE_FILES) &&
  1430. (fd && atomic_read(&fd->count) > 1)) {
  1431. *new_fdp = dup_fd(fd, &error);
  1432. if (!*new_fdp)
  1433. return error;
  1434. }
  1435. return 0;
  1436. }
  1437. /*
  1438. * unshare allows a process to 'unshare' part of the process
  1439. * context which was originally shared using clone. copy_*
  1440. * functions used by do_fork() cannot be used here directly
  1441. * because they modify an inactive task_struct that is being
  1442. * constructed. Here we are modifying the current, active,
  1443. * task_struct.
  1444. */
  1445. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1446. {
  1447. struct fs_struct *fs, *new_fs = NULL;
  1448. struct files_struct *fd, *new_fd = NULL;
  1449. struct nsproxy *new_nsproxy = NULL;
  1450. int do_sysvsem = 0;
  1451. int err;
  1452. err = check_unshare_flags(unshare_flags);
  1453. if (err)
  1454. goto bad_unshare_out;
  1455. /*
  1456. * If unsharing namespace, must also unshare filesystem information.
  1457. */
  1458. if (unshare_flags & CLONE_NEWNS)
  1459. unshare_flags |= CLONE_FS;
  1460. /*
  1461. * CLONE_NEWIPC must also detach from the undolist: after switching
  1462. * to a new ipc namespace, the semaphore arrays from the old
  1463. * namespace are unreachable.
  1464. */
  1465. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1466. do_sysvsem = 1;
  1467. err = unshare_fs(unshare_flags, &new_fs);
  1468. if (err)
  1469. goto bad_unshare_out;
  1470. err = unshare_fd(unshare_flags, &new_fd);
  1471. if (err)
  1472. goto bad_unshare_cleanup_fs;
  1473. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1474. if (err)
  1475. goto bad_unshare_cleanup_fd;
  1476. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1477. if (do_sysvsem) {
  1478. /*
  1479. * CLONE_SYSVSEM is equivalent to sys_exit().
  1480. */
  1481. exit_sem(current);
  1482. }
  1483. if (new_nsproxy) {
  1484. switch_task_namespaces(current, new_nsproxy);
  1485. new_nsproxy = NULL;
  1486. }
  1487. task_lock(current);
  1488. if (new_fs) {
  1489. fs = current->fs;
  1490. spin_lock(&fs->lock);
  1491. current->fs = new_fs;
  1492. if (--fs->users)
  1493. new_fs = NULL;
  1494. else
  1495. new_fs = fs;
  1496. spin_unlock(&fs->lock);
  1497. }
  1498. if (new_fd) {
  1499. fd = current->files;
  1500. current->files = new_fd;
  1501. new_fd = fd;
  1502. }
  1503. task_unlock(current);
  1504. }
  1505. if (new_nsproxy)
  1506. put_nsproxy(new_nsproxy);
  1507. bad_unshare_cleanup_fd:
  1508. if (new_fd)
  1509. put_files_struct(new_fd);
  1510. bad_unshare_cleanup_fs:
  1511. if (new_fs)
  1512. free_fs_struct(new_fs);
  1513. bad_unshare_out:
  1514. return err;
  1515. }
  1516. /*
  1517. * Helper to unshare the files of the current task.
  1518. * We don't want to expose copy_files internals to
  1519. * the exec layer of the kernel.
  1520. */
  1521. int unshare_files(struct files_struct **displaced)
  1522. {
  1523. struct task_struct *task = current;
  1524. struct files_struct *copy = NULL;
  1525. int error;
  1526. error = unshare_fd(CLONE_FILES, &copy);
  1527. if (error || !copy) {
  1528. *displaced = NULL;
  1529. return error;
  1530. }
  1531. *displaced = task->files;
  1532. task_lock(task);
  1533. task->files = copy;
  1534. task_unlock(task);
  1535. return 0;
  1536. }