xfs_sync.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_trans_priv.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_inode.h"
  31. #include "xfs_dinode.h"
  32. #include "xfs_error.h"
  33. #include "xfs_filestream.h"
  34. #include "xfs_vnodeops.h"
  35. #include "xfs_inode_item.h"
  36. #include "xfs_quota.h"
  37. #include "xfs_trace.h"
  38. #include "xfs_fsops.h"
  39. #include <linux/kthread.h>
  40. #include <linux/freezer.h>
  41. struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
  42. /*
  43. * The inode lookup is done in batches to keep the amount of lock traffic and
  44. * radix tree lookups to a minimum. The batch size is a trade off between
  45. * lookup reduction and stack usage. This is in the reclaim path, so we can't
  46. * be too greedy.
  47. */
  48. #define XFS_LOOKUP_BATCH 32
  49. STATIC int
  50. xfs_inode_ag_walk_grab(
  51. struct xfs_inode *ip)
  52. {
  53. struct inode *inode = VFS_I(ip);
  54. ASSERT(rcu_read_lock_held());
  55. /*
  56. * check for stale RCU freed inode
  57. *
  58. * If the inode has been reallocated, it doesn't matter if it's not in
  59. * the AG we are walking - we are walking for writeback, so if it
  60. * passes all the "valid inode" checks and is dirty, then we'll write
  61. * it back anyway. If it has been reallocated and still being
  62. * initialised, the XFS_INEW check below will catch it.
  63. */
  64. spin_lock(&ip->i_flags_lock);
  65. if (!ip->i_ino)
  66. goto out_unlock_noent;
  67. /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
  68. if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
  69. goto out_unlock_noent;
  70. spin_unlock(&ip->i_flags_lock);
  71. /* nothing to sync during shutdown */
  72. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  73. return EFSCORRUPTED;
  74. /* If we can't grab the inode, it must on it's way to reclaim. */
  75. if (!igrab(inode))
  76. return ENOENT;
  77. if (is_bad_inode(inode)) {
  78. IRELE(ip);
  79. return ENOENT;
  80. }
  81. /* inode is valid */
  82. return 0;
  83. out_unlock_noent:
  84. spin_unlock(&ip->i_flags_lock);
  85. return ENOENT;
  86. }
  87. STATIC int
  88. xfs_inode_ag_walk(
  89. struct xfs_mount *mp,
  90. struct xfs_perag *pag,
  91. int (*execute)(struct xfs_inode *ip,
  92. struct xfs_perag *pag, int flags),
  93. int flags)
  94. {
  95. uint32_t first_index;
  96. int last_error = 0;
  97. int skipped;
  98. int done;
  99. int nr_found;
  100. restart:
  101. done = 0;
  102. skipped = 0;
  103. first_index = 0;
  104. nr_found = 0;
  105. do {
  106. struct xfs_inode *batch[XFS_LOOKUP_BATCH];
  107. int error = 0;
  108. int i;
  109. rcu_read_lock();
  110. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
  111. (void **)batch, first_index,
  112. XFS_LOOKUP_BATCH);
  113. if (!nr_found) {
  114. rcu_read_unlock();
  115. break;
  116. }
  117. /*
  118. * Grab the inodes before we drop the lock. if we found
  119. * nothing, nr == 0 and the loop will be skipped.
  120. */
  121. for (i = 0; i < nr_found; i++) {
  122. struct xfs_inode *ip = batch[i];
  123. if (done || xfs_inode_ag_walk_grab(ip))
  124. batch[i] = NULL;
  125. /*
  126. * Update the index for the next lookup. Catch
  127. * overflows into the next AG range which can occur if
  128. * we have inodes in the last block of the AG and we
  129. * are currently pointing to the last inode.
  130. *
  131. * Because we may see inodes that are from the wrong AG
  132. * due to RCU freeing and reallocation, only update the
  133. * index if it lies in this AG. It was a race that lead
  134. * us to see this inode, so another lookup from the
  135. * same index will not find it again.
  136. */
  137. if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
  138. continue;
  139. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
  140. if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
  141. done = 1;
  142. }
  143. /* unlock now we've grabbed the inodes. */
  144. rcu_read_unlock();
  145. for (i = 0; i < nr_found; i++) {
  146. if (!batch[i])
  147. continue;
  148. error = execute(batch[i], pag, flags);
  149. IRELE(batch[i]);
  150. if (error == EAGAIN) {
  151. skipped++;
  152. continue;
  153. }
  154. if (error && last_error != EFSCORRUPTED)
  155. last_error = error;
  156. }
  157. /* bail out if the filesystem is corrupted. */
  158. if (error == EFSCORRUPTED)
  159. break;
  160. cond_resched();
  161. } while (nr_found && !done);
  162. if (skipped) {
  163. delay(1);
  164. goto restart;
  165. }
  166. return last_error;
  167. }
  168. int
  169. xfs_inode_ag_iterator(
  170. struct xfs_mount *mp,
  171. int (*execute)(struct xfs_inode *ip,
  172. struct xfs_perag *pag, int flags),
  173. int flags)
  174. {
  175. struct xfs_perag *pag;
  176. int error = 0;
  177. int last_error = 0;
  178. xfs_agnumber_t ag;
  179. ag = 0;
  180. while ((pag = xfs_perag_get(mp, ag))) {
  181. ag = pag->pag_agno + 1;
  182. error = xfs_inode_ag_walk(mp, pag, execute, flags);
  183. xfs_perag_put(pag);
  184. if (error) {
  185. last_error = error;
  186. if (error == EFSCORRUPTED)
  187. break;
  188. }
  189. }
  190. return XFS_ERROR(last_error);
  191. }
  192. STATIC int
  193. xfs_sync_inode_data(
  194. struct xfs_inode *ip,
  195. struct xfs_perag *pag,
  196. int flags)
  197. {
  198. struct inode *inode = VFS_I(ip);
  199. struct address_space *mapping = inode->i_mapping;
  200. int error = 0;
  201. if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  202. goto out_wait;
  203. if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
  204. if (flags & SYNC_TRYLOCK)
  205. goto out_wait;
  206. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  207. }
  208. error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
  209. 0 : XBF_ASYNC, FI_NONE);
  210. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  211. out_wait:
  212. if (flags & SYNC_WAIT)
  213. xfs_ioend_wait(ip);
  214. return error;
  215. }
  216. STATIC int
  217. xfs_sync_inode_attr(
  218. struct xfs_inode *ip,
  219. struct xfs_perag *pag,
  220. int flags)
  221. {
  222. int error = 0;
  223. xfs_ilock(ip, XFS_ILOCK_SHARED);
  224. if (xfs_inode_clean(ip))
  225. goto out_unlock;
  226. if (!xfs_iflock_nowait(ip)) {
  227. if (!(flags & SYNC_WAIT))
  228. goto out_unlock;
  229. xfs_iflock(ip);
  230. }
  231. if (xfs_inode_clean(ip)) {
  232. xfs_ifunlock(ip);
  233. goto out_unlock;
  234. }
  235. error = xfs_iflush(ip, flags);
  236. /*
  237. * We don't want to try again on non-blocking flushes that can't run
  238. * again immediately. If an inode really must be written, then that's
  239. * what the SYNC_WAIT flag is for.
  240. */
  241. if (error == EAGAIN) {
  242. ASSERT(!(flags & SYNC_WAIT));
  243. error = 0;
  244. }
  245. out_unlock:
  246. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  247. return error;
  248. }
  249. /*
  250. * Write out pagecache data for the whole filesystem.
  251. */
  252. STATIC int
  253. xfs_sync_data(
  254. struct xfs_mount *mp,
  255. int flags)
  256. {
  257. int error;
  258. ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
  259. error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
  260. if (error)
  261. return XFS_ERROR(error);
  262. xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
  263. return 0;
  264. }
  265. /*
  266. * Write out inode metadata (attributes) for the whole filesystem.
  267. */
  268. STATIC int
  269. xfs_sync_attr(
  270. struct xfs_mount *mp,
  271. int flags)
  272. {
  273. ASSERT((flags & ~SYNC_WAIT) == 0);
  274. return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
  275. }
  276. STATIC int
  277. xfs_sync_fsdata(
  278. struct xfs_mount *mp)
  279. {
  280. struct xfs_buf *bp;
  281. /*
  282. * If the buffer is pinned then push on the log so we won't get stuck
  283. * waiting in the write for someone, maybe ourselves, to flush the log.
  284. *
  285. * Even though we just pushed the log above, we did not have the
  286. * superblock buffer locked at that point so it can become pinned in
  287. * between there and here.
  288. */
  289. bp = xfs_getsb(mp, 0);
  290. if (XFS_BUF_ISPINNED(bp))
  291. xfs_log_force(mp, 0);
  292. return xfs_bwrite(mp, bp);
  293. }
  294. /*
  295. * When remounting a filesystem read-only or freezing the filesystem, we have
  296. * two phases to execute. This first phase is syncing the data before we
  297. * quiesce the filesystem, and the second is flushing all the inodes out after
  298. * we've waited for all the transactions created by the first phase to
  299. * complete. The second phase ensures that the inodes are written to their
  300. * location on disk rather than just existing in transactions in the log. This
  301. * means after a quiesce there is no log replay required to write the inodes to
  302. * disk (this is the main difference between a sync and a quiesce).
  303. */
  304. /*
  305. * First stage of freeze - no writers will make progress now we are here,
  306. * so we flush delwri and delalloc buffers here, then wait for all I/O to
  307. * complete. Data is frozen at that point. Metadata is not frozen,
  308. * transactions can still occur here so don't bother flushing the buftarg
  309. * because it'll just get dirty again.
  310. */
  311. int
  312. xfs_quiesce_data(
  313. struct xfs_mount *mp)
  314. {
  315. int error, error2 = 0;
  316. xfs_qm_sync(mp, SYNC_TRYLOCK);
  317. xfs_qm_sync(mp, SYNC_WAIT);
  318. /* force out the newly dirtied log buffers */
  319. xfs_log_force(mp, XFS_LOG_SYNC);
  320. /* write superblock and hoover up shutdown errors */
  321. error = xfs_sync_fsdata(mp);
  322. /* make sure all delwri buffers are written out */
  323. xfs_flush_buftarg(mp->m_ddev_targp, 1);
  324. /* mark the log as covered if needed */
  325. if (xfs_log_need_covered(mp))
  326. error2 = xfs_fs_log_dummy(mp);
  327. /* flush data-only devices */
  328. if (mp->m_rtdev_targp)
  329. XFS_bflush(mp->m_rtdev_targp);
  330. return error ? error : error2;
  331. }
  332. STATIC void
  333. xfs_quiesce_fs(
  334. struct xfs_mount *mp)
  335. {
  336. int count = 0, pincount;
  337. xfs_reclaim_inodes(mp, 0);
  338. xfs_flush_buftarg(mp->m_ddev_targp, 0);
  339. /*
  340. * This loop must run at least twice. The first instance of the loop
  341. * will flush most meta data but that will generate more meta data
  342. * (typically directory updates). Which then must be flushed and
  343. * logged before we can write the unmount record. We also so sync
  344. * reclaim of inodes to catch any that the above delwri flush skipped.
  345. */
  346. do {
  347. xfs_reclaim_inodes(mp, SYNC_WAIT);
  348. xfs_sync_attr(mp, SYNC_WAIT);
  349. pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
  350. if (!pincount) {
  351. delay(50);
  352. count++;
  353. }
  354. } while (count < 2);
  355. }
  356. /*
  357. * Second stage of a quiesce. The data is already synced, now we have to take
  358. * care of the metadata. New transactions are already blocked, so we need to
  359. * wait for any remaining transactions to drain out before proceeding.
  360. */
  361. void
  362. xfs_quiesce_attr(
  363. struct xfs_mount *mp)
  364. {
  365. int error = 0;
  366. /* wait for all modifications to complete */
  367. while (atomic_read(&mp->m_active_trans) > 0)
  368. delay(100);
  369. /* flush inodes and push all remaining buffers out to disk */
  370. xfs_quiesce_fs(mp);
  371. /*
  372. * Just warn here till VFS can correctly support
  373. * read-only remount without racing.
  374. */
  375. WARN_ON(atomic_read(&mp->m_active_trans) != 0);
  376. /* Push the superblock and write an unmount record */
  377. error = xfs_log_sbcount(mp);
  378. if (error)
  379. xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
  380. "Frozen image may not be consistent.");
  381. xfs_log_unmount_write(mp);
  382. xfs_unmountfs_writesb(mp);
  383. }
  384. static void
  385. xfs_syncd_queue_sync(
  386. struct xfs_mount *mp)
  387. {
  388. queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
  389. msecs_to_jiffies(xfs_syncd_centisecs * 10));
  390. }
  391. /*
  392. * Every sync period we need to unpin all items, reclaim inodes and sync
  393. * disk quotas. We might need to cover the log to indicate that the
  394. * filesystem is idle and not frozen.
  395. */
  396. STATIC void
  397. xfs_sync_worker(
  398. struct work_struct *work)
  399. {
  400. struct xfs_mount *mp = container_of(to_delayed_work(work),
  401. struct xfs_mount, m_sync_work);
  402. int error;
  403. if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
  404. /* dgc: errors ignored here */
  405. if (mp->m_super->s_frozen == SB_UNFROZEN &&
  406. xfs_log_need_covered(mp))
  407. error = xfs_fs_log_dummy(mp);
  408. else
  409. xfs_log_force(mp, 0);
  410. error = xfs_qm_sync(mp, SYNC_TRYLOCK);
  411. /* start pushing all the metadata that is currently dirty */
  412. xfs_ail_push_all(mp->m_ail);
  413. }
  414. /* queue us up again */
  415. xfs_syncd_queue_sync(mp);
  416. }
  417. /*
  418. * Queue a new inode reclaim pass if there are reclaimable inodes and there
  419. * isn't a reclaim pass already in progress. By default it runs every 5s based
  420. * on the xfs syncd work default of 30s. Perhaps this should have it's own
  421. * tunable, but that can be done if this method proves to be ineffective or too
  422. * aggressive.
  423. */
  424. static void
  425. xfs_syncd_queue_reclaim(
  426. struct xfs_mount *mp)
  427. {
  428. /*
  429. * We can have inodes enter reclaim after we've shut down the syncd
  430. * workqueue during unmount, so don't allow reclaim work to be queued
  431. * during unmount.
  432. */
  433. if (!(mp->m_super->s_flags & MS_ACTIVE))
  434. return;
  435. rcu_read_lock();
  436. if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
  437. queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
  438. msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
  439. }
  440. rcu_read_unlock();
  441. }
  442. /*
  443. * This is a fast pass over the inode cache to try to get reclaim moving on as
  444. * many inodes as possible in a short period of time. It kicks itself every few
  445. * seconds, as well as being kicked by the inode cache shrinker when memory
  446. * goes low. It scans as quickly as possible avoiding locked inodes or those
  447. * already being flushed, and once done schedules a future pass.
  448. */
  449. STATIC void
  450. xfs_reclaim_worker(
  451. struct work_struct *work)
  452. {
  453. struct xfs_mount *mp = container_of(to_delayed_work(work),
  454. struct xfs_mount, m_reclaim_work);
  455. xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
  456. xfs_syncd_queue_reclaim(mp);
  457. }
  458. /*
  459. * Flush delayed allocate data, attempting to free up reserved space
  460. * from existing allocations. At this point a new allocation attempt
  461. * has failed with ENOSPC and we are in the process of scratching our
  462. * heads, looking about for more room.
  463. *
  464. * Queue a new data flush if there isn't one already in progress and
  465. * wait for completion of the flush. This means that we only ever have one
  466. * inode flush in progress no matter how many ENOSPC events are occurring and
  467. * so will prevent the system from bogging down due to every concurrent
  468. * ENOSPC event scanning all the active inodes in the system for writeback.
  469. */
  470. void
  471. xfs_flush_inodes(
  472. struct xfs_inode *ip)
  473. {
  474. struct xfs_mount *mp = ip->i_mount;
  475. queue_work(xfs_syncd_wq, &mp->m_flush_work);
  476. flush_work_sync(&mp->m_flush_work);
  477. }
  478. STATIC void
  479. xfs_flush_worker(
  480. struct work_struct *work)
  481. {
  482. struct xfs_mount *mp = container_of(work,
  483. struct xfs_mount, m_flush_work);
  484. xfs_sync_data(mp, SYNC_TRYLOCK);
  485. xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
  486. }
  487. int
  488. xfs_syncd_init(
  489. struct xfs_mount *mp)
  490. {
  491. INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
  492. INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
  493. INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
  494. xfs_syncd_queue_sync(mp);
  495. xfs_syncd_queue_reclaim(mp);
  496. return 0;
  497. }
  498. void
  499. xfs_syncd_stop(
  500. struct xfs_mount *mp)
  501. {
  502. cancel_delayed_work_sync(&mp->m_sync_work);
  503. cancel_delayed_work_sync(&mp->m_reclaim_work);
  504. cancel_work_sync(&mp->m_flush_work);
  505. }
  506. void
  507. __xfs_inode_set_reclaim_tag(
  508. struct xfs_perag *pag,
  509. struct xfs_inode *ip)
  510. {
  511. radix_tree_tag_set(&pag->pag_ici_root,
  512. XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
  513. XFS_ICI_RECLAIM_TAG);
  514. if (!pag->pag_ici_reclaimable) {
  515. /* propagate the reclaim tag up into the perag radix tree */
  516. spin_lock(&ip->i_mount->m_perag_lock);
  517. radix_tree_tag_set(&ip->i_mount->m_perag_tree,
  518. XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
  519. XFS_ICI_RECLAIM_TAG);
  520. spin_unlock(&ip->i_mount->m_perag_lock);
  521. /* schedule periodic background inode reclaim */
  522. xfs_syncd_queue_reclaim(ip->i_mount);
  523. trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
  524. -1, _RET_IP_);
  525. }
  526. pag->pag_ici_reclaimable++;
  527. }
  528. /*
  529. * We set the inode flag atomically with the radix tree tag.
  530. * Once we get tag lookups on the radix tree, this inode flag
  531. * can go away.
  532. */
  533. void
  534. xfs_inode_set_reclaim_tag(
  535. xfs_inode_t *ip)
  536. {
  537. struct xfs_mount *mp = ip->i_mount;
  538. struct xfs_perag *pag;
  539. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  540. spin_lock(&pag->pag_ici_lock);
  541. spin_lock(&ip->i_flags_lock);
  542. __xfs_inode_set_reclaim_tag(pag, ip);
  543. __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
  544. spin_unlock(&ip->i_flags_lock);
  545. spin_unlock(&pag->pag_ici_lock);
  546. xfs_perag_put(pag);
  547. }
  548. STATIC void
  549. __xfs_inode_clear_reclaim(
  550. xfs_perag_t *pag,
  551. xfs_inode_t *ip)
  552. {
  553. pag->pag_ici_reclaimable--;
  554. if (!pag->pag_ici_reclaimable) {
  555. /* clear the reclaim tag from the perag radix tree */
  556. spin_lock(&ip->i_mount->m_perag_lock);
  557. radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
  558. XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
  559. XFS_ICI_RECLAIM_TAG);
  560. spin_unlock(&ip->i_mount->m_perag_lock);
  561. trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
  562. -1, _RET_IP_);
  563. }
  564. }
  565. void
  566. __xfs_inode_clear_reclaim_tag(
  567. xfs_mount_t *mp,
  568. xfs_perag_t *pag,
  569. xfs_inode_t *ip)
  570. {
  571. radix_tree_tag_clear(&pag->pag_ici_root,
  572. XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
  573. __xfs_inode_clear_reclaim(pag, ip);
  574. }
  575. /*
  576. * Grab the inode for reclaim exclusively.
  577. * Return 0 if we grabbed it, non-zero otherwise.
  578. */
  579. STATIC int
  580. xfs_reclaim_inode_grab(
  581. struct xfs_inode *ip,
  582. int flags)
  583. {
  584. ASSERT(rcu_read_lock_held());
  585. /* quick check for stale RCU freed inode */
  586. if (!ip->i_ino)
  587. return 1;
  588. /*
  589. * do some unlocked checks first to avoid unnecessary lock traffic.
  590. * The first is a flush lock check, the second is a already in reclaim
  591. * check. Only do these checks if we are not going to block on locks.
  592. */
  593. if ((flags & SYNC_TRYLOCK) &&
  594. (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
  595. return 1;
  596. }
  597. /*
  598. * The radix tree lock here protects a thread in xfs_iget from racing
  599. * with us starting reclaim on the inode. Once we have the
  600. * XFS_IRECLAIM flag set it will not touch us.
  601. *
  602. * Due to RCU lookup, we may find inodes that have been freed and only
  603. * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
  604. * aren't candidates for reclaim at all, so we must check the
  605. * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
  606. */
  607. spin_lock(&ip->i_flags_lock);
  608. if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
  609. __xfs_iflags_test(ip, XFS_IRECLAIM)) {
  610. /* not a reclaim candidate. */
  611. spin_unlock(&ip->i_flags_lock);
  612. return 1;
  613. }
  614. __xfs_iflags_set(ip, XFS_IRECLAIM);
  615. spin_unlock(&ip->i_flags_lock);
  616. return 0;
  617. }
  618. /*
  619. * Inodes in different states need to be treated differently, and the return
  620. * value of xfs_iflush is not sufficient to get this right. The following table
  621. * lists the inode states and the reclaim actions necessary for non-blocking
  622. * reclaim:
  623. *
  624. *
  625. * inode state iflush ret required action
  626. * --------------- ---------- ---------------
  627. * bad - reclaim
  628. * shutdown EIO unpin and reclaim
  629. * clean, unpinned 0 reclaim
  630. * stale, unpinned 0 reclaim
  631. * clean, pinned(*) 0 requeue
  632. * stale, pinned EAGAIN requeue
  633. * dirty, delwri ok 0 requeue
  634. * dirty, delwri blocked EAGAIN requeue
  635. * dirty, sync flush 0 reclaim
  636. *
  637. * (*) dgc: I don't think the clean, pinned state is possible but it gets
  638. * handled anyway given the order of checks implemented.
  639. *
  640. * As can be seen from the table, the return value of xfs_iflush() is not
  641. * sufficient to correctly decide the reclaim action here. The checks in
  642. * xfs_iflush() might look like duplicates, but they are not.
  643. *
  644. * Also, because we get the flush lock first, we know that any inode that has
  645. * been flushed delwri has had the flush completed by the time we check that
  646. * the inode is clean. The clean inode check needs to be done before flushing
  647. * the inode delwri otherwise we would loop forever requeuing clean inodes as
  648. * we cannot tell apart a successful delwri flush and a clean inode from the
  649. * return value of xfs_iflush().
  650. *
  651. * Note that because the inode is flushed delayed write by background
  652. * writeback, the flush lock may already be held here and waiting on it can
  653. * result in very long latencies. Hence for sync reclaims, where we wait on the
  654. * flush lock, the caller should push out delayed write inodes first before
  655. * trying to reclaim them to minimise the amount of time spent waiting. For
  656. * background relaim, we just requeue the inode for the next pass.
  657. *
  658. * Hence the order of actions after gaining the locks should be:
  659. * bad => reclaim
  660. * shutdown => unpin and reclaim
  661. * pinned, delwri => requeue
  662. * pinned, sync => unpin
  663. * stale => reclaim
  664. * clean => reclaim
  665. * dirty, delwri => flush and requeue
  666. * dirty, sync => flush, wait and reclaim
  667. */
  668. STATIC int
  669. xfs_reclaim_inode(
  670. struct xfs_inode *ip,
  671. struct xfs_perag *pag,
  672. int sync_mode)
  673. {
  674. int error;
  675. restart:
  676. error = 0;
  677. xfs_ilock(ip, XFS_ILOCK_EXCL);
  678. if (!xfs_iflock_nowait(ip)) {
  679. if (!(sync_mode & SYNC_WAIT))
  680. goto out;
  681. xfs_iflock(ip);
  682. }
  683. if (is_bad_inode(VFS_I(ip)))
  684. goto reclaim;
  685. if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  686. xfs_iunpin_wait(ip);
  687. goto reclaim;
  688. }
  689. if (xfs_ipincount(ip)) {
  690. if (!(sync_mode & SYNC_WAIT)) {
  691. xfs_ifunlock(ip);
  692. goto out;
  693. }
  694. xfs_iunpin_wait(ip);
  695. }
  696. if (xfs_iflags_test(ip, XFS_ISTALE))
  697. goto reclaim;
  698. if (xfs_inode_clean(ip))
  699. goto reclaim;
  700. /*
  701. * Now we have an inode that needs flushing.
  702. *
  703. * We do a nonblocking flush here even if we are doing a SYNC_WAIT
  704. * reclaim as we can deadlock with inode cluster removal.
  705. * xfs_ifree_cluster() can lock the inode buffer before it locks the
  706. * ip->i_lock, and we are doing the exact opposite here. As a result,
  707. * doing a blocking xfs_itobp() to get the cluster buffer will result
  708. * in an ABBA deadlock with xfs_ifree_cluster().
  709. *
  710. * As xfs_ifree_cluser() must gather all inodes that are active in the
  711. * cache to mark them stale, if we hit this case we don't actually want
  712. * to do IO here - we want the inode marked stale so we can simply
  713. * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
  714. * just unlock the inode, back off and try again. Hopefully the next
  715. * pass through will see the stale flag set on the inode.
  716. */
  717. error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
  718. if (sync_mode & SYNC_WAIT) {
  719. if (error == EAGAIN) {
  720. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  721. /* backoff longer than in xfs_ifree_cluster */
  722. delay(2);
  723. goto restart;
  724. }
  725. xfs_iflock(ip);
  726. goto reclaim;
  727. }
  728. /*
  729. * When we have to flush an inode but don't have SYNC_WAIT set, we
  730. * flush the inode out using a delwri buffer and wait for the next
  731. * call into reclaim to find it in a clean state instead of waiting for
  732. * it now. We also don't return errors here - if the error is transient
  733. * then the next reclaim pass will flush the inode, and if the error
  734. * is permanent then the next sync reclaim will reclaim the inode and
  735. * pass on the error.
  736. */
  737. if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
  738. xfs_warn(ip->i_mount,
  739. "inode 0x%llx background reclaim flush failed with %d",
  740. (long long)ip->i_ino, error);
  741. }
  742. out:
  743. xfs_iflags_clear(ip, XFS_IRECLAIM);
  744. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  745. /*
  746. * We could return EAGAIN here to make reclaim rescan the inode tree in
  747. * a short while. However, this just burns CPU time scanning the tree
  748. * waiting for IO to complete and xfssyncd never goes back to the idle
  749. * state. Instead, return 0 to let the next scheduled background reclaim
  750. * attempt to reclaim the inode again.
  751. */
  752. return 0;
  753. reclaim:
  754. xfs_ifunlock(ip);
  755. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  756. XFS_STATS_INC(xs_ig_reclaims);
  757. /*
  758. * Remove the inode from the per-AG radix tree.
  759. *
  760. * Because radix_tree_delete won't complain even if the item was never
  761. * added to the tree assert that it's been there before to catch
  762. * problems with the inode life time early on.
  763. */
  764. spin_lock(&pag->pag_ici_lock);
  765. if (!radix_tree_delete(&pag->pag_ici_root,
  766. XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
  767. ASSERT(0);
  768. __xfs_inode_clear_reclaim(pag, ip);
  769. spin_unlock(&pag->pag_ici_lock);
  770. /*
  771. * Here we do an (almost) spurious inode lock in order to coordinate
  772. * with inode cache radix tree lookups. This is because the lookup
  773. * can reference the inodes in the cache without taking references.
  774. *
  775. * We make that OK here by ensuring that we wait until the inode is
  776. * unlocked after the lookup before we go ahead and free it. We get
  777. * both the ilock and the iolock because the code may need to drop the
  778. * ilock one but will still hold the iolock.
  779. */
  780. xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  781. xfs_qm_dqdetach(ip);
  782. xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  783. xfs_inode_free(ip);
  784. return error;
  785. }
  786. /*
  787. * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
  788. * corrupted, we still want to try to reclaim all the inodes. If we don't,
  789. * then a shut down during filesystem unmount reclaim walk leak all the
  790. * unreclaimed inodes.
  791. */
  792. int
  793. xfs_reclaim_inodes_ag(
  794. struct xfs_mount *mp,
  795. int flags,
  796. int *nr_to_scan)
  797. {
  798. struct xfs_perag *pag;
  799. int error = 0;
  800. int last_error = 0;
  801. xfs_agnumber_t ag;
  802. int trylock = flags & SYNC_TRYLOCK;
  803. int skipped;
  804. restart:
  805. ag = 0;
  806. skipped = 0;
  807. while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
  808. unsigned long first_index = 0;
  809. int done = 0;
  810. int nr_found = 0;
  811. ag = pag->pag_agno + 1;
  812. if (trylock) {
  813. if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
  814. skipped++;
  815. xfs_perag_put(pag);
  816. continue;
  817. }
  818. first_index = pag->pag_ici_reclaim_cursor;
  819. } else
  820. mutex_lock(&pag->pag_ici_reclaim_lock);
  821. do {
  822. struct xfs_inode *batch[XFS_LOOKUP_BATCH];
  823. int i;
  824. rcu_read_lock();
  825. nr_found = radix_tree_gang_lookup_tag(
  826. &pag->pag_ici_root,
  827. (void **)batch, first_index,
  828. XFS_LOOKUP_BATCH,
  829. XFS_ICI_RECLAIM_TAG);
  830. if (!nr_found) {
  831. done = 1;
  832. rcu_read_unlock();
  833. break;
  834. }
  835. /*
  836. * Grab the inodes before we drop the lock. if we found
  837. * nothing, nr == 0 and the loop will be skipped.
  838. */
  839. for (i = 0; i < nr_found; i++) {
  840. struct xfs_inode *ip = batch[i];
  841. if (done || xfs_reclaim_inode_grab(ip, flags))
  842. batch[i] = NULL;
  843. /*
  844. * Update the index for the next lookup. Catch
  845. * overflows into the next AG range which can
  846. * occur if we have inodes in the last block of
  847. * the AG and we are currently pointing to the
  848. * last inode.
  849. *
  850. * Because we may see inodes that are from the
  851. * wrong AG due to RCU freeing and
  852. * reallocation, only update the index if it
  853. * lies in this AG. It was a race that lead us
  854. * to see this inode, so another lookup from
  855. * the same index will not find it again.
  856. */
  857. if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
  858. pag->pag_agno)
  859. continue;
  860. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
  861. if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
  862. done = 1;
  863. }
  864. /* unlock now we've grabbed the inodes. */
  865. rcu_read_unlock();
  866. for (i = 0; i < nr_found; i++) {
  867. if (!batch[i])
  868. continue;
  869. error = xfs_reclaim_inode(batch[i], pag, flags);
  870. if (error && last_error != EFSCORRUPTED)
  871. last_error = error;
  872. }
  873. *nr_to_scan -= XFS_LOOKUP_BATCH;
  874. cond_resched();
  875. } while (nr_found && !done && *nr_to_scan > 0);
  876. if (trylock && !done)
  877. pag->pag_ici_reclaim_cursor = first_index;
  878. else
  879. pag->pag_ici_reclaim_cursor = 0;
  880. mutex_unlock(&pag->pag_ici_reclaim_lock);
  881. xfs_perag_put(pag);
  882. }
  883. /*
  884. * if we skipped any AG, and we still have scan count remaining, do
  885. * another pass this time using blocking reclaim semantics (i.e
  886. * waiting on the reclaim locks and ignoring the reclaim cursors). This
  887. * ensure that when we get more reclaimers than AGs we block rather
  888. * than spin trying to execute reclaim.
  889. */
  890. if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
  891. trylock = 0;
  892. goto restart;
  893. }
  894. return XFS_ERROR(last_error);
  895. }
  896. int
  897. xfs_reclaim_inodes(
  898. xfs_mount_t *mp,
  899. int mode)
  900. {
  901. int nr_to_scan = INT_MAX;
  902. return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
  903. }
  904. /*
  905. * Scan a certain number of inodes for reclaim.
  906. *
  907. * When called we make sure that there is a background (fast) inode reclaim in
  908. * progress, while we will throttle the speed of reclaim via doing synchronous
  909. * reclaim of inodes. That means if we come across dirty inodes, we wait for
  910. * them to be cleaned, which we hope will not be very long due to the
  911. * background walker having already kicked the IO off on those dirty inodes.
  912. */
  913. void
  914. xfs_reclaim_inodes_nr(
  915. struct xfs_mount *mp,
  916. int nr_to_scan)
  917. {
  918. /* kick background reclaimer and push the AIL */
  919. xfs_syncd_queue_reclaim(mp);
  920. xfs_ail_push_all(mp->m_ail);
  921. xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
  922. }
  923. /*
  924. * Return the number of reclaimable inodes in the filesystem for
  925. * the shrinker to determine how much to reclaim.
  926. */
  927. int
  928. xfs_reclaim_inodes_count(
  929. struct xfs_mount *mp)
  930. {
  931. struct xfs_perag *pag;
  932. xfs_agnumber_t ag = 0;
  933. int reclaimable = 0;
  934. while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
  935. ag = pag->pag_agno + 1;
  936. reclaimable += pag->pag_ici_reclaimable;
  937. xfs_perag_put(pag);
  938. }
  939. return reclaimable;
  940. }