spi-topcliff-pch.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_MAX_BAUDRATE 5000000
  47. #define PCH_MAX_FIFO_DEPTH 16
  48. #define STATUS_RUNNING 1
  49. #define STATUS_EXITING 2
  50. #define PCH_SLEEP_TIME 10
  51. #define SSN_LOW 0x02U
  52. #define SSN_NO_CONTROL 0x00U
  53. #define PCH_MAX_CS 0xFF
  54. #define PCI_DEVICE_ID_GE_SPI 0x8816
  55. #define SPCR_SPE_BIT (1 << 0)
  56. #define SPCR_MSTR_BIT (1 << 1)
  57. #define SPCR_LSBF_BIT (1 << 4)
  58. #define SPCR_CPHA_BIT (1 << 5)
  59. #define SPCR_CPOL_BIT (1 << 6)
  60. #define SPCR_TFIE_BIT (1 << 8)
  61. #define SPCR_RFIE_BIT (1 << 9)
  62. #define SPCR_FIE_BIT (1 << 10)
  63. #define SPCR_ORIE_BIT (1 << 11)
  64. #define SPCR_MDFIE_BIT (1 << 12)
  65. #define SPCR_FICLR_BIT (1 << 24)
  66. #define SPSR_TFI_BIT (1 << 0)
  67. #define SPSR_RFI_BIT (1 << 1)
  68. #define SPSR_FI_BIT (1 << 2)
  69. #define SPSR_ORF_BIT (1 << 3)
  70. #define SPBRR_SIZE_BIT (1 << 10)
  71. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  72. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  73. #define SPCR_RFIC_FIELD 20
  74. #define SPCR_TFIC_FIELD 16
  75. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  76. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  77. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  78. #define PCH_CLOCK_HZ 50000000
  79. #define PCH_MAX_SPBR 1023
  80. /* Definition for ML7213 by OKI SEMICONDUCTOR */
  81. #define PCI_VENDOR_ID_ROHM 0x10DB
  82. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  83. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  84. /*
  85. * Set the number of SPI instance max
  86. * Intel EG20T PCH : 1ch
  87. * OKI SEMICONDUCTOR ML7213 IOH : 2ch
  88. * OKI SEMICONDUCTOR ML7223 IOH : 1ch
  89. */
  90. #define PCH_SPI_MAX_DEV 2
  91. #define PCH_BUF_SIZE 4096
  92. #define PCH_DMA_TRANS_SIZE 12
  93. static int use_dma = 1;
  94. struct pch_spi_dma_ctrl {
  95. struct dma_async_tx_descriptor *desc_tx;
  96. struct dma_async_tx_descriptor *desc_rx;
  97. struct pch_dma_slave param_tx;
  98. struct pch_dma_slave param_rx;
  99. struct dma_chan *chan_tx;
  100. struct dma_chan *chan_rx;
  101. struct scatterlist *sg_tx_p;
  102. struct scatterlist *sg_rx_p;
  103. struct scatterlist sg_tx;
  104. struct scatterlist sg_rx;
  105. int nent;
  106. void *tx_buf_virt;
  107. void *rx_buf_virt;
  108. dma_addr_t tx_buf_dma;
  109. dma_addr_t rx_buf_dma;
  110. };
  111. /**
  112. * struct pch_spi_data - Holds the SPI channel specific details
  113. * @io_remap_addr: The remapped PCI base address
  114. * @master: Pointer to the SPI master structure
  115. * @work: Reference to work queue handler
  116. * @wk: Workqueue for carrying out execution of the
  117. * requests
  118. * @wait: Wait queue for waking up upon receiving an
  119. * interrupt.
  120. * @transfer_complete: Status of SPI Transfer
  121. * @bcurrent_msg_processing: Status flag for message processing
  122. * @lock: Lock for protecting this structure
  123. * @queue: SPI Message queue
  124. * @status: Status of the SPI driver
  125. * @bpw_len: Length of data to be transferred in bits per
  126. * word
  127. * @transfer_active: Flag showing active transfer
  128. * @tx_index: Transmit data count; for bookkeeping during
  129. * transfer
  130. * @rx_index: Receive data count; for bookkeeping during
  131. * transfer
  132. * @tx_buff: Buffer for data to be transmitted
  133. * @rx_index: Buffer for Received data
  134. * @n_curnt_chip: The chip number that this SPI driver currently
  135. * operates on
  136. * @current_chip: Reference to the current chip that this SPI
  137. * driver currently operates on
  138. * @current_msg: The current message that this SPI driver is
  139. * handling
  140. * @cur_trans: The current transfer that this SPI driver is
  141. * handling
  142. * @board_dat: Reference to the SPI device data structure
  143. * @plat_dev: platform_device structure
  144. * @ch: SPI channel number
  145. * @irq_reg_sts: Status of IRQ registration
  146. */
  147. struct pch_spi_data {
  148. void __iomem *io_remap_addr;
  149. unsigned long io_base_addr;
  150. struct spi_master *master;
  151. struct work_struct work;
  152. struct workqueue_struct *wk;
  153. wait_queue_head_t wait;
  154. u8 transfer_complete;
  155. u8 bcurrent_msg_processing;
  156. spinlock_t lock;
  157. struct list_head queue;
  158. u8 status;
  159. u32 bpw_len;
  160. u8 transfer_active;
  161. u32 tx_index;
  162. u32 rx_index;
  163. u16 *pkt_tx_buff;
  164. u16 *pkt_rx_buff;
  165. u8 n_curnt_chip;
  166. struct spi_device *current_chip;
  167. struct spi_message *current_msg;
  168. struct spi_transfer *cur_trans;
  169. struct pch_spi_board_data *board_dat;
  170. struct platform_device *plat_dev;
  171. int ch;
  172. struct pch_spi_dma_ctrl dma;
  173. int use_dma;
  174. u8 irq_reg_sts;
  175. };
  176. /**
  177. * struct pch_spi_board_data - Holds the SPI device specific details
  178. * @pdev: Pointer to the PCI device
  179. * @suspend_sts: Status of suspend
  180. * @num: The number of SPI device instance
  181. */
  182. struct pch_spi_board_data {
  183. struct pci_dev *pdev;
  184. u8 suspend_sts;
  185. int num;
  186. };
  187. struct pch_pd_dev_save {
  188. int num;
  189. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  190. struct pch_spi_board_data *board_dat;
  191. };
  192. static struct pci_device_id pch_spi_pcidev_id[] = {
  193. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  194. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  195. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  196. { }
  197. };
  198. /**
  199. * pch_spi_writereg() - Performs register writes
  200. * @master: Pointer to struct spi_master.
  201. * @idx: Register offset.
  202. * @val: Value to be written to register.
  203. */
  204. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  205. {
  206. struct pch_spi_data *data = spi_master_get_devdata(master);
  207. iowrite32(val, (data->io_remap_addr + idx));
  208. }
  209. /**
  210. * pch_spi_readreg() - Performs register reads
  211. * @master: Pointer to struct spi_master.
  212. * @idx: Register offset.
  213. */
  214. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  215. {
  216. struct pch_spi_data *data = spi_master_get_devdata(master);
  217. return ioread32(data->io_remap_addr + idx);
  218. }
  219. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  220. u32 set, u32 clr)
  221. {
  222. u32 tmp = pch_spi_readreg(master, idx);
  223. tmp = (tmp & ~clr) | set;
  224. pch_spi_writereg(master, idx, tmp);
  225. }
  226. static void pch_spi_set_master_mode(struct spi_master *master)
  227. {
  228. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  229. }
  230. /**
  231. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  232. * @master: Pointer to struct spi_master.
  233. */
  234. static void pch_spi_clear_fifo(struct spi_master *master)
  235. {
  236. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  237. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  238. }
  239. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  240. void __iomem *io_remap_addr)
  241. {
  242. u32 n_read, tx_index, rx_index, bpw_len;
  243. u16 *pkt_rx_buffer, *pkt_tx_buff;
  244. int read_cnt;
  245. u32 reg_spcr_val;
  246. void __iomem *spsr;
  247. void __iomem *spdrr;
  248. void __iomem *spdwr;
  249. spsr = io_remap_addr + PCH_SPSR;
  250. iowrite32(reg_spsr_val, spsr);
  251. if (data->transfer_active) {
  252. rx_index = data->rx_index;
  253. tx_index = data->tx_index;
  254. bpw_len = data->bpw_len;
  255. pkt_rx_buffer = data->pkt_rx_buff;
  256. pkt_tx_buff = data->pkt_tx_buff;
  257. spdrr = io_remap_addr + PCH_SPDRR;
  258. spdwr = io_remap_addr + PCH_SPDWR;
  259. n_read = PCH_READABLE(reg_spsr_val);
  260. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  261. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  262. if (tx_index < bpw_len)
  263. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  264. }
  265. /* disable RFI if not needed */
  266. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  267. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  268. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  269. /* reset rx threshold */
  270. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  271. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  272. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  273. }
  274. /* update counts */
  275. data->tx_index = tx_index;
  276. data->rx_index = rx_index;
  277. }
  278. /* if transfer complete interrupt */
  279. if (reg_spsr_val & SPSR_FI_BIT) {
  280. if (tx_index < bpw_len)
  281. dev_err(&data->master->dev,
  282. "%s : Transfer is not completed", __func__);
  283. /* disable interrupts */
  284. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  285. /* transfer is completed;inform pch_spi_process_messages */
  286. data->transfer_complete = true;
  287. data->transfer_active = false;
  288. wake_up(&data->wait);
  289. }
  290. }
  291. /**
  292. * pch_spi_handler() - Interrupt handler
  293. * @irq: The interrupt number.
  294. * @dev_id: Pointer to struct pch_spi_board_data.
  295. */
  296. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  297. {
  298. u32 reg_spsr_val;
  299. void __iomem *spsr;
  300. void __iomem *io_remap_addr;
  301. irqreturn_t ret = IRQ_NONE;
  302. struct pch_spi_data *data = dev_id;
  303. struct pch_spi_board_data *board_dat = data->board_dat;
  304. if (board_dat->suspend_sts) {
  305. dev_dbg(&board_dat->pdev->dev,
  306. "%s returning due to suspend\n", __func__);
  307. return IRQ_NONE;
  308. }
  309. if (data->use_dma)
  310. return IRQ_NONE;
  311. io_remap_addr = data->io_remap_addr;
  312. spsr = io_remap_addr + PCH_SPSR;
  313. reg_spsr_val = ioread32(spsr);
  314. if (reg_spsr_val & SPSR_ORF_BIT)
  315. dev_err(&board_dat->pdev->dev, "%s Over run error", __func__);
  316. /* Check if the interrupt is for SPI device */
  317. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  318. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  319. ret = IRQ_HANDLED;
  320. }
  321. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  322. __func__, ret);
  323. return ret;
  324. }
  325. /**
  326. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  327. * @master: Pointer to struct spi_master.
  328. * @speed_hz: Baud rate.
  329. */
  330. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  331. {
  332. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  333. /* if baud rate is less than we can support limit it */
  334. if (n_spbr > PCH_MAX_SPBR)
  335. n_spbr = PCH_MAX_SPBR;
  336. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  337. }
  338. /**
  339. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  340. * @master: Pointer to struct spi_master.
  341. * @bits_per_word: Bits per word for SPI transfer.
  342. */
  343. static void pch_spi_set_bits_per_word(struct spi_master *master,
  344. u8 bits_per_word)
  345. {
  346. if (bits_per_word == 8)
  347. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  348. else
  349. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  350. }
  351. /**
  352. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  353. * @spi: Pointer to struct spi_device.
  354. */
  355. static void pch_spi_setup_transfer(struct spi_device *spi)
  356. {
  357. u32 flags = 0;
  358. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  359. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  360. spi->max_speed_hz);
  361. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  362. /* set bits per word */
  363. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  364. if (!(spi->mode & SPI_LSB_FIRST))
  365. flags |= SPCR_LSBF_BIT;
  366. if (spi->mode & SPI_CPOL)
  367. flags |= SPCR_CPOL_BIT;
  368. if (spi->mode & SPI_CPHA)
  369. flags |= SPCR_CPHA_BIT;
  370. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  371. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  372. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  373. pch_spi_clear_fifo(spi->master);
  374. }
  375. /**
  376. * pch_spi_reset() - Clears SPI registers
  377. * @master: Pointer to struct spi_master.
  378. */
  379. static void pch_spi_reset(struct spi_master *master)
  380. {
  381. /* write 1 to reset SPI */
  382. pch_spi_writereg(master, PCH_SRST, 0x1);
  383. /* clear reset */
  384. pch_spi_writereg(master, PCH_SRST, 0x0);
  385. }
  386. static int pch_spi_setup(struct spi_device *pspi)
  387. {
  388. /* check bits per word */
  389. if (pspi->bits_per_word == 0) {
  390. pspi->bits_per_word = 8;
  391. dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
  392. }
  393. if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
  394. dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
  395. return -EINVAL;
  396. }
  397. /* Check baud rate setting */
  398. /* if baud rate of chip is greater than
  399. max we can support,return error */
  400. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  401. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  402. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  403. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  404. return 0;
  405. }
  406. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  407. {
  408. struct spi_transfer *transfer;
  409. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  410. int retval;
  411. unsigned long flags;
  412. /* validate spi message and baud rate */
  413. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  414. dev_err(&pspi->dev, "%s list empty\n", __func__);
  415. retval = -EINVAL;
  416. goto err_out;
  417. }
  418. if (unlikely(pspi->max_speed_hz == 0)) {
  419. dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
  420. __func__, pspi->max_speed_hz);
  421. retval = -EINVAL;
  422. goto err_out;
  423. }
  424. dev_dbg(&pspi->dev, "%s Transfer List not empty. "
  425. "Transfer Speed is set.\n", __func__);
  426. spin_lock_irqsave(&data->lock, flags);
  427. /* validate Tx/Rx buffers and Transfer length */
  428. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  429. if (!transfer->tx_buf && !transfer->rx_buf) {
  430. dev_err(&pspi->dev,
  431. "%s Tx and Rx buffer NULL\n", __func__);
  432. retval = -EINVAL;
  433. goto err_return_spinlock;
  434. }
  435. if (!transfer->len) {
  436. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  437. __func__);
  438. retval = -EINVAL;
  439. goto err_return_spinlock;
  440. }
  441. dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
  442. " valid\n", __func__);
  443. /* if baud rate has been specified validate the same */
  444. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  445. transfer->speed_hz = PCH_MAX_BAUDRATE;
  446. /* if bits per word has been specified validate the same */
  447. if (transfer->bits_per_word) {
  448. if ((transfer->bits_per_word != 8)
  449. && (transfer->bits_per_word != 16)) {
  450. retval = -EINVAL;
  451. dev_err(&pspi->dev,
  452. "%s Invalid bits per word\n", __func__);
  453. goto err_return_spinlock;
  454. }
  455. }
  456. }
  457. spin_unlock_irqrestore(&data->lock, flags);
  458. /* We won't process any messages if we have been asked to terminate */
  459. if (data->status == STATUS_EXITING) {
  460. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  461. retval = -ESHUTDOWN;
  462. goto err_out;
  463. }
  464. /* If suspended ,return -EINVAL */
  465. if (data->board_dat->suspend_sts) {
  466. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  467. retval = -EINVAL;
  468. goto err_out;
  469. }
  470. /* set status of message */
  471. pmsg->actual_length = 0;
  472. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  473. pmsg->status = -EINPROGRESS;
  474. spin_lock_irqsave(&data->lock, flags);
  475. /* add message to queue */
  476. list_add_tail(&pmsg->queue, &data->queue);
  477. spin_unlock_irqrestore(&data->lock, flags);
  478. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  479. /* schedule work queue to run */
  480. queue_work(data->wk, &data->work);
  481. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  482. retval = 0;
  483. err_out:
  484. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  485. return retval;
  486. err_return_spinlock:
  487. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  488. spin_unlock_irqrestore(&data->lock, flags);
  489. return retval;
  490. }
  491. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  492. struct spi_device *pspi)
  493. {
  494. if (data->current_chip != NULL) {
  495. if (pspi->chip_select != data->n_curnt_chip) {
  496. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  497. data->current_chip = NULL;
  498. }
  499. }
  500. data->current_chip = pspi;
  501. data->n_curnt_chip = data->current_chip->chip_select;
  502. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  503. pch_spi_setup_transfer(pspi);
  504. }
  505. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  506. {
  507. int size;
  508. u32 n_writes;
  509. int j;
  510. struct spi_message *pmsg;
  511. const u8 *tx_buf;
  512. const u16 *tx_sbuf;
  513. /* set baud rate if needed */
  514. if (data->cur_trans->speed_hz) {
  515. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  516. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  517. }
  518. /* set bits per word if needed */
  519. if (data->cur_trans->bits_per_word &&
  520. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  521. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  522. pch_spi_set_bits_per_word(data->master,
  523. data->cur_trans->bits_per_word);
  524. *bpw = data->cur_trans->bits_per_word;
  525. } else {
  526. *bpw = data->current_msg->spi->bits_per_word;
  527. }
  528. /* reset Tx/Rx index */
  529. data->tx_index = 0;
  530. data->rx_index = 0;
  531. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  532. /* find alloc size */
  533. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  534. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  535. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  536. if (data->pkt_tx_buff != NULL) {
  537. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  538. if (!data->pkt_rx_buff)
  539. kfree(data->pkt_tx_buff);
  540. }
  541. if (!data->pkt_rx_buff) {
  542. /* flush queue and set status of all transfers to -ENOMEM */
  543. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  544. list_for_each_entry(pmsg, data->queue.next, queue) {
  545. pmsg->status = -ENOMEM;
  546. if (pmsg->complete != 0)
  547. pmsg->complete(pmsg->context);
  548. /* delete from queue */
  549. list_del_init(&pmsg->queue);
  550. }
  551. return;
  552. }
  553. /* copy Tx Data */
  554. if (data->cur_trans->tx_buf != NULL) {
  555. if (*bpw == 8) {
  556. tx_buf = data->cur_trans->tx_buf;
  557. for (j = 0; j < data->bpw_len; j++)
  558. data->pkt_tx_buff[j] = *tx_buf++;
  559. } else {
  560. tx_sbuf = data->cur_trans->tx_buf;
  561. for (j = 0; j < data->bpw_len; j++)
  562. data->pkt_tx_buff[j] = *tx_sbuf++;
  563. }
  564. }
  565. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  566. n_writes = data->bpw_len;
  567. if (n_writes > PCH_MAX_FIFO_DEPTH)
  568. n_writes = PCH_MAX_FIFO_DEPTH;
  569. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  570. "0x2 to SSNXCR\n", __func__);
  571. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  572. for (j = 0; j < n_writes; j++)
  573. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  574. /* update tx_index */
  575. data->tx_index = j;
  576. /* reset transfer complete flag */
  577. data->transfer_complete = false;
  578. data->transfer_active = true;
  579. }
  580. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  581. {
  582. struct spi_message *pmsg;
  583. dev_dbg(&data->master->dev, "%s called\n", __func__);
  584. /* Invoke complete callback
  585. * [To the spi core..indicating end of transfer] */
  586. data->current_msg->status = 0;
  587. if (data->current_msg->complete != 0) {
  588. dev_dbg(&data->master->dev,
  589. "%s:Invoking callback of SPI core\n", __func__);
  590. data->current_msg->complete(data->current_msg->context);
  591. }
  592. /* update status in global variable */
  593. data->bcurrent_msg_processing = false;
  594. dev_dbg(&data->master->dev,
  595. "%s:data->bcurrent_msg_processing = false\n", __func__);
  596. data->current_msg = NULL;
  597. data->cur_trans = NULL;
  598. /* check if we have items in list and not suspending
  599. * return 1 if list empty */
  600. if ((list_empty(&data->queue) == 0) &&
  601. (!data->board_dat->suspend_sts) &&
  602. (data->status != STATUS_EXITING)) {
  603. /* We have some more work to do (either there is more tranint
  604. * bpw;sfer requests in the current message or there are
  605. *more messages)
  606. */
  607. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  608. queue_work(data->wk, &data->work);
  609. } else if (data->board_dat->suspend_sts ||
  610. data->status == STATUS_EXITING) {
  611. dev_dbg(&data->master->dev,
  612. "%s suspend/remove initiated, flushing queue\n",
  613. __func__);
  614. list_for_each_entry(pmsg, data->queue.next, queue) {
  615. pmsg->status = -EIO;
  616. if (pmsg->complete)
  617. pmsg->complete(pmsg->context);
  618. /* delete from queue */
  619. list_del_init(&pmsg->queue);
  620. }
  621. }
  622. }
  623. static void pch_spi_set_ir(struct pch_spi_data *data)
  624. {
  625. /* enable interrupts, set threshold, enable SPI */
  626. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  627. /* set receive threshold to PCH_RX_THOLD */
  628. pch_spi_setclr_reg(data->master, PCH_SPCR,
  629. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  630. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  631. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  632. MASK_RFIC_SPCR_BITS | PCH_ALL);
  633. else
  634. /* set receive threshold to maximum */
  635. pch_spi_setclr_reg(data->master, PCH_SPCR,
  636. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  637. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  638. SPCR_SPE_BIT,
  639. MASK_RFIC_SPCR_BITS | PCH_ALL);
  640. /* Wait until the transfer completes; go to sleep after
  641. initiating the transfer. */
  642. dev_dbg(&data->master->dev,
  643. "%s:waiting for transfer to get over\n", __func__);
  644. wait_event_interruptible(data->wait, data->transfer_complete);
  645. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  646. dev_dbg(&data->master->dev,
  647. "%s:no more control over SSN-writing 0 to SSNXCR.", __func__);
  648. /* clear all interrupts */
  649. pch_spi_writereg(data->master, PCH_SPSR,
  650. pch_spi_readreg(data->master, PCH_SPSR));
  651. /* Disable interrupts and SPI transfer */
  652. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  653. /* clear FIFO */
  654. pch_spi_clear_fifo(data->master);
  655. }
  656. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  657. {
  658. int j;
  659. u8 *rx_buf;
  660. u16 *rx_sbuf;
  661. /* copy Rx Data */
  662. if (!data->cur_trans->rx_buf)
  663. return;
  664. if (bpw == 8) {
  665. rx_buf = data->cur_trans->rx_buf;
  666. for (j = 0; j < data->bpw_len; j++)
  667. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  668. } else {
  669. rx_sbuf = data->cur_trans->rx_buf;
  670. for (j = 0; j < data->bpw_len; j++)
  671. *rx_sbuf++ = data->pkt_rx_buff[j];
  672. }
  673. }
  674. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  675. {
  676. int j;
  677. u8 *rx_buf;
  678. u16 *rx_sbuf;
  679. const u8 *rx_dma_buf;
  680. const u16 *rx_dma_sbuf;
  681. /* copy Rx Data */
  682. if (!data->cur_trans->rx_buf)
  683. return;
  684. if (bpw == 8) {
  685. rx_buf = data->cur_trans->rx_buf;
  686. rx_dma_buf = data->dma.rx_buf_virt;
  687. for (j = 0; j < data->bpw_len; j++)
  688. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  689. } else {
  690. rx_sbuf = data->cur_trans->rx_buf;
  691. rx_dma_sbuf = data->dma.rx_buf_virt;
  692. for (j = 0; j < data->bpw_len; j++)
  693. *rx_sbuf++ = *rx_dma_sbuf++;
  694. }
  695. }
  696. static void pch_spi_start_transfer(struct pch_spi_data *data)
  697. {
  698. struct pch_spi_dma_ctrl *dma;
  699. unsigned long flags;
  700. dma = &data->dma;
  701. spin_lock_irqsave(&data->lock, flags);
  702. /* disable interrupts, SPI set enable */
  703. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  704. spin_unlock_irqrestore(&data->lock, flags);
  705. /* Wait until the transfer completes; go to sleep after
  706. initiating the transfer. */
  707. dev_dbg(&data->master->dev,
  708. "%s:waiting for transfer to get over\n", __func__);
  709. wait_event_interruptible(data->wait, data->transfer_complete);
  710. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  711. DMA_FROM_DEVICE);
  712. async_tx_ack(dma->desc_rx);
  713. async_tx_ack(dma->desc_tx);
  714. kfree(dma->sg_tx_p);
  715. kfree(dma->sg_rx_p);
  716. spin_lock_irqsave(&data->lock, flags);
  717. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  718. dev_dbg(&data->master->dev,
  719. "%s:no more control over SSN-writing 0 to SSNXCR.", __func__);
  720. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  721. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  722. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  723. SPCR_SPE_BIT);
  724. /* clear all interrupts */
  725. pch_spi_writereg(data->master, PCH_SPSR,
  726. pch_spi_readreg(data->master, PCH_SPSR));
  727. /* clear FIFO */
  728. pch_spi_clear_fifo(data->master);
  729. spin_unlock_irqrestore(&data->lock, flags);
  730. }
  731. static void pch_dma_rx_complete(void *arg)
  732. {
  733. struct pch_spi_data *data = arg;
  734. /* transfer is completed;inform pch_spi_process_messages_dma */
  735. data->transfer_complete = true;
  736. wake_up_interruptible(&data->wait);
  737. }
  738. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  739. {
  740. struct pch_dma_slave *param = slave;
  741. if ((chan->chan_id == param->chan_id) &&
  742. (param->dma_dev == chan->device->dev)) {
  743. chan->private = param;
  744. return true;
  745. } else {
  746. return false;
  747. }
  748. }
  749. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  750. {
  751. dma_cap_mask_t mask;
  752. struct dma_chan *chan;
  753. struct pci_dev *dma_dev;
  754. struct pch_dma_slave *param;
  755. struct pch_spi_dma_ctrl *dma;
  756. unsigned int width;
  757. if (bpw == 8)
  758. width = PCH_DMA_WIDTH_1_BYTE;
  759. else
  760. width = PCH_DMA_WIDTH_2_BYTES;
  761. dma = &data->dma;
  762. dma_cap_zero(mask);
  763. dma_cap_set(DMA_SLAVE, mask);
  764. /* Get DMA's dev information */
  765. dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
  766. /* Set Tx DMA */
  767. param = &dma->param_tx;
  768. param->dma_dev = &dma_dev->dev;
  769. param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
  770. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  771. param->width = width;
  772. chan = dma_request_channel(mask, pch_spi_filter, param);
  773. if (!chan) {
  774. dev_err(&data->master->dev,
  775. "ERROR: dma_request_channel FAILS(Tx)\n");
  776. data->use_dma = 0;
  777. return;
  778. }
  779. dma->chan_tx = chan;
  780. /* Set Rx DMA */
  781. param = &dma->param_rx;
  782. param->dma_dev = &dma_dev->dev;
  783. param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
  784. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  785. param->width = width;
  786. chan = dma_request_channel(mask, pch_spi_filter, param);
  787. if (!chan) {
  788. dev_err(&data->master->dev,
  789. "ERROR: dma_request_channel FAILS(Rx)\n");
  790. dma_release_channel(dma->chan_tx);
  791. dma->chan_tx = NULL;
  792. data->use_dma = 0;
  793. return;
  794. }
  795. dma->chan_rx = chan;
  796. }
  797. static void pch_spi_release_dma(struct pch_spi_data *data)
  798. {
  799. struct pch_spi_dma_ctrl *dma;
  800. dma = &data->dma;
  801. if (dma->chan_tx) {
  802. dma_release_channel(dma->chan_tx);
  803. dma->chan_tx = NULL;
  804. }
  805. if (dma->chan_rx) {
  806. dma_release_channel(dma->chan_rx);
  807. dma->chan_rx = NULL;
  808. }
  809. return;
  810. }
  811. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  812. {
  813. const u8 *tx_buf;
  814. const u16 *tx_sbuf;
  815. u8 *tx_dma_buf;
  816. u16 *tx_dma_sbuf;
  817. struct scatterlist *sg;
  818. struct dma_async_tx_descriptor *desc_tx;
  819. struct dma_async_tx_descriptor *desc_rx;
  820. int num;
  821. int i;
  822. int size;
  823. int rem;
  824. unsigned long flags;
  825. struct pch_spi_dma_ctrl *dma;
  826. dma = &data->dma;
  827. /* set baud rate if needed */
  828. if (data->cur_trans->speed_hz) {
  829. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  830. spin_lock_irqsave(&data->lock, flags);
  831. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  832. spin_unlock_irqrestore(&data->lock, flags);
  833. }
  834. /* set bits per word if needed */
  835. if (data->cur_trans->bits_per_word &&
  836. (data->current_msg->spi->bits_per_word !=
  837. data->cur_trans->bits_per_word)) {
  838. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  839. spin_lock_irqsave(&data->lock, flags);
  840. pch_spi_set_bits_per_word(data->master,
  841. data->cur_trans->bits_per_word);
  842. spin_unlock_irqrestore(&data->lock, flags);
  843. *bpw = data->cur_trans->bits_per_word;
  844. } else {
  845. *bpw = data->current_msg->spi->bits_per_word;
  846. }
  847. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  848. /* copy Tx Data */
  849. if (data->cur_trans->tx_buf != NULL) {
  850. if (*bpw == 8) {
  851. tx_buf = data->cur_trans->tx_buf;
  852. tx_dma_buf = dma->tx_buf_virt;
  853. for (i = 0; i < data->bpw_len; i++)
  854. *tx_dma_buf++ = *tx_buf++;
  855. } else {
  856. tx_sbuf = data->cur_trans->tx_buf;
  857. tx_dma_sbuf = dma->tx_buf_virt;
  858. for (i = 0; i < data->bpw_len; i++)
  859. *tx_dma_sbuf++ = *tx_sbuf++;
  860. }
  861. }
  862. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  863. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  864. size = PCH_DMA_TRANS_SIZE;
  865. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  866. } else {
  867. num = 1;
  868. size = data->bpw_len;
  869. rem = data->bpw_len;
  870. }
  871. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  872. __func__, num, size, rem);
  873. spin_lock_irqsave(&data->lock, flags);
  874. /* set receive fifo threshold and transmit fifo threshold */
  875. pch_spi_setclr_reg(data->master, PCH_SPCR,
  876. ((size - 1) << SPCR_RFIC_FIELD) |
  877. ((PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE) <<
  878. SPCR_TFIC_FIELD),
  879. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  880. spin_unlock_irqrestore(&data->lock, flags);
  881. /* RX */
  882. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  883. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  884. /* offset, length setting */
  885. sg = dma->sg_rx_p;
  886. for (i = 0; i < num; i++, sg++) {
  887. if (i == 0) {
  888. sg->offset = 0;
  889. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  890. sg->offset);
  891. sg_dma_len(sg) = rem;
  892. } else {
  893. sg->offset = rem + size * (i - 1);
  894. sg->offset = sg->offset * (*bpw / 8);
  895. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  896. sg->offset);
  897. sg_dma_len(sg) = size;
  898. }
  899. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  900. }
  901. sg = dma->sg_rx_p;
  902. desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
  903. num, DMA_FROM_DEVICE,
  904. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  905. if (!desc_rx) {
  906. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  907. __func__);
  908. return;
  909. }
  910. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  911. desc_rx->callback = pch_dma_rx_complete;
  912. desc_rx->callback_param = data;
  913. dma->nent = num;
  914. dma->desc_rx = desc_rx;
  915. /* TX */
  916. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  917. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  918. /* offset, length setting */
  919. sg = dma->sg_tx_p;
  920. for (i = 0; i < num; i++, sg++) {
  921. if (i == 0) {
  922. sg->offset = 0;
  923. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  924. sg->offset);
  925. sg_dma_len(sg) = rem;
  926. } else {
  927. sg->offset = rem + size * (i - 1);
  928. sg->offset = sg->offset * (*bpw / 8);
  929. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  930. sg->offset);
  931. sg_dma_len(sg) = size;
  932. }
  933. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  934. }
  935. sg = dma->sg_tx_p;
  936. desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
  937. sg, num, DMA_TO_DEVICE,
  938. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  939. if (!desc_tx) {
  940. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  941. __func__);
  942. return;
  943. }
  944. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  945. desc_tx->callback = NULL;
  946. desc_tx->callback_param = data;
  947. dma->nent = num;
  948. dma->desc_tx = desc_tx;
  949. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  950. "0x2 to SSNXCR\n", __func__);
  951. spin_lock_irqsave(&data->lock, flags);
  952. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  953. desc_rx->tx_submit(desc_rx);
  954. desc_tx->tx_submit(desc_tx);
  955. spin_unlock_irqrestore(&data->lock, flags);
  956. /* reset transfer complete flag */
  957. data->transfer_complete = false;
  958. }
  959. static void pch_spi_process_messages(struct work_struct *pwork)
  960. {
  961. struct spi_message *pmsg;
  962. struct pch_spi_data *data;
  963. int bpw;
  964. data = container_of(pwork, struct pch_spi_data, work);
  965. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  966. spin_lock(&data->lock);
  967. /* check if suspend has been initiated;if yes flush queue */
  968. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  969. dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
  970. "flushing queue\n", __func__);
  971. list_for_each_entry(pmsg, data->queue.next, queue) {
  972. pmsg->status = -EIO;
  973. if (pmsg->complete != 0) {
  974. spin_unlock(&data->lock);
  975. pmsg->complete(pmsg->context);
  976. spin_lock(&data->lock);
  977. }
  978. /* delete from queue */
  979. list_del_init(&pmsg->queue);
  980. }
  981. spin_unlock(&data->lock);
  982. return;
  983. }
  984. data->bcurrent_msg_processing = true;
  985. dev_dbg(&data->master->dev,
  986. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  987. /* Get the message from the queue and delete it from there. */
  988. data->current_msg = list_entry(data->queue.next, struct spi_message,
  989. queue);
  990. list_del_init(&data->current_msg->queue);
  991. data->current_msg->status = 0;
  992. pch_spi_select_chip(data, data->current_msg->spi);
  993. spin_unlock(&data->lock);
  994. if (data->use_dma)
  995. pch_spi_request_dma(data,
  996. data->current_msg->spi->bits_per_word);
  997. do {
  998. /* If we are already processing a message get the next
  999. transfer structure from the message otherwise retrieve
  1000. the 1st transfer request from the message. */
  1001. spin_lock(&data->lock);
  1002. if (data->cur_trans == NULL) {
  1003. data->cur_trans =
  1004. list_entry(data->current_msg->transfers.next,
  1005. struct spi_transfer, transfer_list);
  1006. dev_dbg(&data->master->dev, "%s "
  1007. ":Getting 1st transfer message\n", __func__);
  1008. } else {
  1009. data->cur_trans =
  1010. list_entry(data->cur_trans->transfer_list.next,
  1011. struct spi_transfer, transfer_list);
  1012. dev_dbg(&data->master->dev, "%s "
  1013. ":Getting next transfer message\n", __func__);
  1014. }
  1015. spin_unlock(&data->lock);
  1016. if (data->use_dma) {
  1017. pch_spi_handle_dma(data, &bpw);
  1018. pch_spi_start_transfer(data);
  1019. pch_spi_copy_rx_data_for_dma(data, bpw);
  1020. } else {
  1021. pch_spi_set_tx(data, &bpw);
  1022. pch_spi_set_ir(data);
  1023. pch_spi_copy_rx_data(data, bpw);
  1024. kfree(data->pkt_rx_buff);
  1025. data->pkt_rx_buff = NULL;
  1026. kfree(data->pkt_tx_buff);
  1027. data->pkt_tx_buff = NULL;
  1028. }
  1029. /* increment message count */
  1030. data->current_msg->actual_length += data->cur_trans->len;
  1031. dev_dbg(&data->master->dev,
  1032. "%s:data->current_msg->actual_length=%d\n",
  1033. __func__, data->current_msg->actual_length);
  1034. /* check for delay */
  1035. if (data->cur_trans->delay_usecs) {
  1036. dev_dbg(&data->master->dev, "%s:"
  1037. "delay in usec=%d\n", __func__,
  1038. data->cur_trans->delay_usecs);
  1039. udelay(data->cur_trans->delay_usecs);
  1040. }
  1041. spin_lock(&data->lock);
  1042. /* No more transfer in this message. */
  1043. if ((data->cur_trans->transfer_list.next) ==
  1044. &(data->current_msg->transfers)) {
  1045. pch_spi_nomore_transfer(data);
  1046. }
  1047. spin_unlock(&data->lock);
  1048. } while (data->cur_trans != NULL);
  1049. if (data->use_dma)
  1050. pch_spi_release_dma(data);
  1051. }
  1052. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1053. struct pch_spi_data *data)
  1054. {
  1055. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1056. /* free workqueue */
  1057. if (data->wk != NULL) {
  1058. destroy_workqueue(data->wk);
  1059. data->wk = NULL;
  1060. dev_dbg(&board_dat->pdev->dev,
  1061. "%s destroy_workqueue invoked successfully\n",
  1062. __func__);
  1063. }
  1064. }
  1065. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1066. struct pch_spi_data *data)
  1067. {
  1068. int retval = 0;
  1069. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1070. /* create workqueue */
  1071. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1072. if (!data->wk) {
  1073. dev_err(&board_dat->pdev->dev,
  1074. "%s create_singlet hread_workqueue failed\n", __func__);
  1075. retval = -EBUSY;
  1076. goto err_return;
  1077. }
  1078. /* reset PCH SPI h/w */
  1079. pch_spi_reset(data->master);
  1080. dev_dbg(&board_dat->pdev->dev,
  1081. "%s pch_spi_reset invoked successfully\n", __func__);
  1082. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1083. err_return:
  1084. if (retval != 0) {
  1085. dev_err(&board_dat->pdev->dev,
  1086. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1087. pch_spi_free_resources(board_dat, data);
  1088. }
  1089. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1090. return retval;
  1091. }
  1092. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1093. struct pch_spi_data *data)
  1094. {
  1095. struct pch_spi_dma_ctrl *dma;
  1096. dma = &data->dma;
  1097. if (dma->tx_buf_dma)
  1098. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1099. dma->tx_buf_virt, dma->tx_buf_dma);
  1100. if (dma->rx_buf_dma)
  1101. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1102. dma->rx_buf_virt, dma->rx_buf_dma);
  1103. return;
  1104. }
  1105. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1106. struct pch_spi_data *data)
  1107. {
  1108. struct pch_spi_dma_ctrl *dma;
  1109. dma = &data->dma;
  1110. /* Get Consistent memory for Tx DMA */
  1111. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1112. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1113. /* Get Consistent memory for Rx DMA */
  1114. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1115. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1116. }
  1117. static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
  1118. {
  1119. int ret;
  1120. struct spi_master *master;
  1121. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1122. struct pch_spi_data *data;
  1123. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1124. master = spi_alloc_master(&board_dat->pdev->dev,
  1125. sizeof(struct pch_spi_data));
  1126. if (!master) {
  1127. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1128. plat_dev->id);
  1129. return -ENOMEM;
  1130. }
  1131. data = spi_master_get_devdata(master);
  1132. data->master = master;
  1133. platform_set_drvdata(plat_dev, data);
  1134. /* baseaddress + address offset) */
  1135. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1136. PCH_ADDRESS_SIZE * plat_dev->id;
  1137. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
  1138. PCH_ADDRESS_SIZE * plat_dev->id;
  1139. if (!data->io_remap_addr) {
  1140. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1141. ret = -ENOMEM;
  1142. goto err_pci_iomap;
  1143. }
  1144. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1145. plat_dev->id, data->io_remap_addr);
  1146. /* initialize members of SPI master */
  1147. master->bus_num = -1;
  1148. master->num_chipselect = PCH_MAX_CS;
  1149. master->setup = pch_spi_setup;
  1150. master->transfer = pch_spi_transfer;
  1151. data->board_dat = board_dat;
  1152. data->plat_dev = plat_dev;
  1153. data->n_curnt_chip = 255;
  1154. data->status = STATUS_RUNNING;
  1155. data->ch = plat_dev->id;
  1156. data->use_dma = use_dma;
  1157. INIT_LIST_HEAD(&data->queue);
  1158. spin_lock_init(&data->lock);
  1159. INIT_WORK(&data->work, pch_spi_process_messages);
  1160. init_waitqueue_head(&data->wait);
  1161. ret = pch_spi_get_resources(board_dat, data);
  1162. if (ret) {
  1163. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1164. goto err_spi_get_resources;
  1165. }
  1166. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1167. IRQF_SHARED, KBUILD_MODNAME, data);
  1168. if (ret) {
  1169. dev_err(&plat_dev->dev,
  1170. "%s request_irq failed\n", __func__);
  1171. goto err_request_irq;
  1172. }
  1173. data->irq_reg_sts = true;
  1174. pch_spi_set_master_mode(master);
  1175. ret = spi_register_master(master);
  1176. if (ret != 0) {
  1177. dev_err(&plat_dev->dev,
  1178. "%s spi_register_master FAILED\n", __func__);
  1179. goto err_spi_register_master;
  1180. }
  1181. if (use_dma) {
  1182. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1183. pch_alloc_dma_buf(board_dat, data);
  1184. }
  1185. return 0;
  1186. err_spi_register_master:
  1187. free_irq(board_dat->pdev->irq, board_dat);
  1188. err_request_irq:
  1189. pch_spi_free_resources(board_dat, data);
  1190. err_spi_get_resources:
  1191. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1192. err_pci_iomap:
  1193. spi_master_put(master);
  1194. return ret;
  1195. }
  1196. static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
  1197. {
  1198. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1199. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1200. int count;
  1201. unsigned long flags;
  1202. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1203. __func__, plat_dev->id, board_dat->pdev->irq);
  1204. if (use_dma)
  1205. pch_free_dma_buf(board_dat, data);
  1206. /* check for any pending messages; no action is taken if the queue
  1207. * is still full; but at least we tried. Unload anyway */
  1208. count = 500;
  1209. spin_lock_irqsave(&data->lock, flags);
  1210. data->status = STATUS_EXITING;
  1211. while ((list_empty(&data->queue) == 0) && --count) {
  1212. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1213. __func__);
  1214. spin_unlock_irqrestore(&data->lock, flags);
  1215. msleep(PCH_SLEEP_TIME);
  1216. spin_lock_irqsave(&data->lock, flags);
  1217. }
  1218. spin_unlock_irqrestore(&data->lock, flags);
  1219. pch_spi_free_resources(board_dat, data);
  1220. /* disable interrupts & free IRQ */
  1221. if (data->irq_reg_sts) {
  1222. /* disable interrupts */
  1223. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1224. data->irq_reg_sts = false;
  1225. free_irq(board_dat->pdev->irq, data);
  1226. }
  1227. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1228. spi_unregister_master(data->master);
  1229. spi_master_put(data->master);
  1230. platform_set_drvdata(plat_dev, NULL);
  1231. return 0;
  1232. }
  1233. #ifdef CONFIG_PM
  1234. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1235. pm_message_t state)
  1236. {
  1237. u8 count;
  1238. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1239. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1240. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1241. if (!board_dat) {
  1242. dev_err(&pd_dev->dev,
  1243. "%s pci_get_drvdata returned NULL\n", __func__);
  1244. return -EFAULT;
  1245. }
  1246. /* check if the current message is processed:
  1247. Only after thats done the transfer will be suspended */
  1248. count = 255;
  1249. while ((--count) > 0) {
  1250. if (!(data->bcurrent_msg_processing))
  1251. break;
  1252. msleep(PCH_SLEEP_TIME);
  1253. }
  1254. /* Free IRQ */
  1255. if (data->irq_reg_sts) {
  1256. /* disable all interrupts */
  1257. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1258. pch_spi_reset(data->master);
  1259. free_irq(board_dat->pdev->irq, data);
  1260. data->irq_reg_sts = false;
  1261. dev_dbg(&pd_dev->dev,
  1262. "%s free_irq invoked successfully.\n", __func__);
  1263. }
  1264. return 0;
  1265. }
  1266. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1267. {
  1268. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1269. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1270. int retval;
  1271. if (!board_dat) {
  1272. dev_err(&pd_dev->dev,
  1273. "%s pci_get_drvdata returned NULL\n", __func__);
  1274. return -EFAULT;
  1275. }
  1276. if (!data->irq_reg_sts) {
  1277. /* register IRQ */
  1278. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1279. IRQF_SHARED, KBUILD_MODNAME, data);
  1280. if (retval < 0) {
  1281. dev_err(&pd_dev->dev,
  1282. "%s request_irq failed\n", __func__);
  1283. return retval;
  1284. }
  1285. /* reset PCH SPI h/w */
  1286. pch_spi_reset(data->master);
  1287. pch_spi_set_master_mode(data->master);
  1288. data->irq_reg_sts = true;
  1289. }
  1290. return 0;
  1291. }
  1292. #else
  1293. #define pch_spi_pd_suspend NULL
  1294. #define pch_spi_pd_resume NULL
  1295. #endif
  1296. static struct platform_driver pch_spi_pd_driver = {
  1297. .driver = {
  1298. .name = "pch-spi",
  1299. .owner = THIS_MODULE,
  1300. },
  1301. .probe = pch_spi_pd_probe,
  1302. .remove = __devexit_p(pch_spi_pd_remove),
  1303. .suspend = pch_spi_pd_suspend,
  1304. .resume = pch_spi_pd_resume
  1305. };
  1306. static int __devinit pch_spi_probe(struct pci_dev *pdev,
  1307. const struct pci_device_id *id)
  1308. {
  1309. struct pch_spi_board_data *board_dat;
  1310. struct platform_device *pd_dev = NULL;
  1311. int retval;
  1312. int i;
  1313. struct pch_pd_dev_save *pd_dev_save;
  1314. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1315. if (!pd_dev_save) {
  1316. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1317. return -ENOMEM;
  1318. }
  1319. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1320. if (!board_dat) {
  1321. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1322. retval = -ENOMEM;
  1323. goto err_no_mem;
  1324. }
  1325. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1326. if (retval) {
  1327. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1328. goto pci_request_regions;
  1329. }
  1330. board_dat->pdev = pdev;
  1331. board_dat->num = id->driver_data;
  1332. pd_dev_save->num = id->driver_data;
  1333. pd_dev_save->board_dat = board_dat;
  1334. retval = pci_enable_device(pdev);
  1335. if (retval) {
  1336. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1337. goto pci_enable_device;
  1338. }
  1339. for (i = 0; i < board_dat->num; i++) {
  1340. pd_dev = platform_device_alloc("pch-spi", i);
  1341. if (!pd_dev) {
  1342. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1343. goto err_platform_device;
  1344. }
  1345. pd_dev_save->pd_save[i] = pd_dev;
  1346. pd_dev->dev.parent = &pdev->dev;
  1347. retval = platform_device_add_data(pd_dev, board_dat,
  1348. sizeof(*board_dat));
  1349. if (retval) {
  1350. dev_err(&pdev->dev,
  1351. "platform_device_add_data failed\n");
  1352. platform_device_put(pd_dev);
  1353. goto err_platform_device;
  1354. }
  1355. retval = platform_device_add(pd_dev);
  1356. if (retval) {
  1357. dev_err(&pdev->dev, "platform_device_add failed\n");
  1358. platform_device_put(pd_dev);
  1359. goto err_platform_device;
  1360. }
  1361. }
  1362. pci_set_drvdata(pdev, pd_dev_save);
  1363. return 0;
  1364. err_platform_device:
  1365. pci_disable_device(pdev);
  1366. pci_enable_device:
  1367. pci_release_regions(pdev);
  1368. pci_request_regions:
  1369. kfree(board_dat);
  1370. err_no_mem:
  1371. kfree(pd_dev_save);
  1372. return retval;
  1373. }
  1374. static void __devexit pch_spi_remove(struct pci_dev *pdev)
  1375. {
  1376. int i;
  1377. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1378. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1379. for (i = 0; i < pd_dev_save->num; i++)
  1380. platform_device_unregister(pd_dev_save->pd_save[i]);
  1381. pci_disable_device(pdev);
  1382. pci_release_regions(pdev);
  1383. kfree(pd_dev_save->board_dat);
  1384. kfree(pd_dev_save);
  1385. }
  1386. #ifdef CONFIG_PM
  1387. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1388. {
  1389. int retval;
  1390. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1391. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1392. pd_dev_save->board_dat->suspend_sts = true;
  1393. /* save config space */
  1394. retval = pci_save_state(pdev);
  1395. if (retval == 0) {
  1396. pci_enable_wake(pdev, PCI_D3hot, 0);
  1397. pci_disable_device(pdev);
  1398. pci_set_power_state(pdev, PCI_D3hot);
  1399. } else {
  1400. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1401. }
  1402. return retval;
  1403. }
  1404. static int pch_spi_resume(struct pci_dev *pdev)
  1405. {
  1406. int retval;
  1407. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1408. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1409. pci_set_power_state(pdev, PCI_D0);
  1410. pci_restore_state(pdev);
  1411. retval = pci_enable_device(pdev);
  1412. if (retval < 0) {
  1413. dev_err(&pdev->dev,
  1414. "%s pci_enable_device failed\n", __func__);
  1415. } else {
  1416. pci_enable_wake(pdev, PCI_D3hot, 0);
  1417. /* set suspend status to false */
  1418. pd_dev_save->board_dat->suspend_sts = false;
  1419. }
  1420. return retval;
  1421. }
  1422. #else
  1423. #define pch_spi_suspend NULL
  1424. #define pch_spi_resume NULL
  1425. #endif
  1426. static struct pci_driver pch_spi_pcidev = {
  1427. .name = "pch_spi",
  1428. .id_table = pch_spi_pcidev_id,
  1429. .probe = pch_spi_probe,
  1430. .remove = pch_spi_remove,
  1431. .suspend = pch_spi_suspend,
  1432. .resume = pch_spi_resume,
  1433. };
  1434. static int __init pch_spi_init(void)
  1435. {
  1436. int ret;
  1437. ret = platform_driver_register(&pch_spi_pd_driver);
  1438. if (ret)
  1439. return ret;
  1440. ret = pci_register_driver(&pch_spi_pcidev);
  1441. if (ret)
  1442. return ret;
  1443. return 0;
  1444. }
  1445. module_init(pch_spi_init);
  1446. static void __exit pch_spi_exit(void)
  1447. {
  1448. pci_unregister_driver(&pch_spi_pcidev);
  1449. platform_driver_unregister(&pch_spi_pd_driver);
  1450. }
  1451. module_exit(pch_spi_exit);
  1452. module_param(use_dma, int, 0644);
  1453. MODULE_PARM_DESC(use_dma,
  1454. "to use DMA for data transfers pass 1 else 0; default 1");
  1455. MODULE_LICENSE("GPL");
  1456. MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");